JP4572434B2 - Magnetoresistive element, magnetoresistive head, and memory element - Google Patents
Magnetoresistive element, magnetoresistive head, and memory element Download PDFInfo
- Publication number
- JP4572434B2 JP4572434B2 JP32403799A JP32403799A JP4572434B2 JP 4572434 B2 JP4572434 B2 JP 4572434B2 JP 32403799 A JP32403799 A JP 32403799A JP 32403799 A JP32403799 A JP 32403799A JP 4572434 B2 JP4572434 B2 JP 4572434B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- magnetoresistive
- film
- layer
- effect element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000005291 magnetic effect Effects 0.000 claims description 188
- 230000005415 magnetization Effects 0.000 claims description 59
- 230000000694 effects Effects 0.000 claims description 50
- 230000001629 suppression Effects 0.000 claims description 28
- 230000008859 change Effects 0.000 claims description 23
- 239000004020 conductor Substances 0.000 claims description 22
- 239000002184 metal Substances 0.000 claims description 11
- 229910052751 metal Inorganic materials 0.000 claims description 11
- 229910052759 nickel Inorganic materials 0.000 claims description 10
- 229910052742 iron Inorganic materials 0.000 claims description 8
- 229910052741 iridium Inorganic materials 0.000 claims description 3
- 229910052763 palladium Inorganic materials 0.000 claims description 2
- 229910052697 platinum Inorganic materials 0.000 claims description 2
- 229910052703 rhodium Inorganic materials 0.000 claims description 2
- 229910052707 ruthenium Inorganic materials 0.000 claims description 2
- 229910000914 Mn alloy Inorganic materials 0.000 claims 1
- 229910052804 chromium Inorganic materials 0.000 claims 1
- 238000004544 sputter deposition Methods 0.000 description 12
- 239000000758 substrate Substances 0.000 description 11
- 229910019041 PtMn Inorganic materials 0.000 description 10
- 230000035945 sensitivity Effects 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 229910003271 Ni-Fe Inorganic materials 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910015136 FeMn Inorganic materials 0.000 description 2
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 2
- 229910002796 Si–Al Inorganic materials 0.000 description 2
- 230000001066 destructive effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000005294 ferromagnetic effect Effects 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- AYOOGWWGECJQPI-NSHDSACASA-N n-[(1s)-1-(5-fluoropyrimidin-2-yl)ethyl]-3-(3-propan-2-yloxy-1h-pyrazol-5-yl)imidazo[4,5-b]pyridin-5-amine Chemical compound N1C(OC(C)C)=CC(N2C3=NC(N[C@@H](C)C=4N=CC(F)=CN=4)=CC=C3N=C2)=N1 AYOOGWWGECJQPI-NSHDSACASA-N 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- QIVUCLWGARAQIO-OLIXTKCUSA-N (3s)-n-[(3s,5s,6r)-6-methyl-2-oxo-1-(2,2,2-trifluoroethyl)-5-(2,3,6-trifluorophenyl)piperidin-3-yl]-2-oxospiro[1h-pyrrolo[2,3-b]pyridine-3,6'-5,7-dihydrocyclopenta[b]pyridine]-3'-carboxamide Chemical compound C1([C@H]2[C@H](N(C(=O)[C@@H](NC(=O)C=3C=C4C[C@]5(CC4=NC=3)C3=CC=CN=C3NC5=O)C2)CC(F)(F)F)C)=C(F)C=CC(F)=C1F QIVUCLWGARAQIO-OLIXTKCUSA-N 0.000 description 1
- HFGHRUCCKVYFKL-UHFFFAOYSA-N 4-ethoxy-2-piperazin-1-yl-7-pyridin-4-yl-5h-pyrimido[5,4-b]indole Chemical compound C1=C2NC=3C(OCC)=NC(N4CCNCC4)=NC=3C2=CC=C1C1=CC=NC=C1 HFGHRUCCKVYFKL-UHFFFAOYSA-N 0.000 description 1
- 229910003321 CoFe Inorganic materials 0.000 description 1
- 229910002551 Fe-Mn Inorganic materials 0.000 description 1
- 229910001199 N alloy Inorganic materials 0.000 description 1
- 229910020018 Nb Zr Inorganic materials 0.000 description 1
- 229910003286 Ni-Mn Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910000808 amorphous metal alloy Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- XULSCZPZVQIMFM-IPZQJPLYSA-N odevixibat Chemical compound C12=CC(SC)=C(OCC(=O)N[C@@H](C(=O)N[C@@H](CC)C(O)=O)C=3C=CC(O)=CC=3)C=C2S(=O)(=O)NC(CCCC)(CCCC)CN1C1=CC=CC=C1 XULSCZPZVQIMFM-IPZQJPLYSA-N 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y25/00—Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/32—Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
- H01F10/324—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
- H01F10/3268—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
- H01F10/3281—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn only by use of asymmetry of the magnetic film pair itself, i.e. so-called pseudospin valve [PSV] structure, e.g. NiFe/Cu/Co
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nanotechnology (AREA)
- Power Engineering (AREA)
- Mram Or Spin Memory Techniques (AREA)
- Magnetic Heads (AREA)
- Thin Magnetic Films (AREA)
- Semiconductor Memories (AREA)
- Hall/Mr Elements (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は外部磁界に対して磁気抵抗変化により大きな出力を生ずる磁気抵抗効果素子と、それを用いて構成される磁気抵抗効果型ヘッド及びメモリ−素子に関するものである。
【0002】
【従来の技術】
近年、ハードディスクドライブの高密度化は著しく、媒体に記録された磁化を読みとる再生磁気ヘッドの進歩も著しい。中でも巨大磁気抵抗(GMR)効果を利用したスピンバルブと呼ばれる磁気抵抗効果素子(MR素子)は、現在用いられている磁気抵抗効果型ヘッド(MRヘッド)の感度を大幅に上昇されるものとして盛んに研究されている。又GMR膜を用いたメモリ−素子も提案されている。
【0003】
GMR膜を用いたMR素子の基本原理は[磁性層/非磁性層/磁性層]より構成される積層膜において、二つの磁性層の磁化方向が平行の場合は抵抗が低く、反平行の場合は抵抗が高くなることを利用するものである。
【0004】
スピンバルブは、非磁性層を介して2つの強磁性体層が配置され、一方の磁性層(固定層)の磁化方向を磁化回転抑制層(ピンニング層)による交換バイアス磁界で固定し(この時の強磁性体層と磁化回転抑制層を合わせて交換結合膜と呼ぶ)、もう一方の磁性層(自由層)の磁化方向を外部磁界に応じて比較的自由に動かすことにより、固定層と自由層の磁化方向の相対角度を変化させて、電気抵抗の変化を生じさせるものである。
【0005】
スピンバルブ膜に用いられる材料としては、当初、磁性膜としてNi-Fe膜、非磁性膜としてCu、磁化回転抑制層としてFe-Mnを用いたもので磁気抵抗変化率(MR比)が約2%のものが提案された(ジャーナル オブマグネティズム アンド マグネティック マテリアルズ 93 第101項 (1991年) (Journal of Magnetism and Magnetic Materials 93,p101,1991))。このように、磁化回転抑制層としてFeMn膜を用いたものはMR比が小さく、またブロッキング温度(磁化回転抑制層による固定層の磁化固定効果が無くなる温度)が十分高くなく、またFeMn自体に耐食性に難点があるので、種種の磁化回転抑制層を用いたスピンバルブ膜が提案されている。中でも、PtMn系はMR比はさほど大きくないものの耐食性と熱的安定性が良く、NiOやα-Fe2O3等の酸化物を磁化回転抑制層として用いたスピンバルブ膜は熱的安定性に課題があるものの、MR比が15%以上の大きなものが得られ、研究開発が進められている。
【0006】
更に大きなMR比を得る方法として、[磁性層/非磁性層/磁性層]から成る磁気抵抗効果素子部の非磁性層にAl2O3等の酸化物膜を用い(注:磁性層部は金属膜)、この素子部の上下に電極を設けてトンネル効果を利用するものが研究されており、これらはTMR膜とも呼ばれている。又これに磁化回転抑制層を付けたスピンバルブ型TMR膜も研究されており、TMR膜ではMR比が20%以上のものが得られている。
【0007】
【発明が解決しようとする課題】
しかしながら、TMR膜においては上記酸化物非磁性層は均質で膜厚が一定の1nm程度の超薄膜であることが必要で、量産性や再現性に課題がある。又TMR膜を実用デバイスに用いるには素子抵抗が高すぎるため、低抵抗化が必要であり、かつ素子が均一なインピ−ダンスを有することが課題であった。
【0008】
【課題を解決するための手段】
上記の非磁性層に高抵抗の酸化物膜を用いた従来のTMR膜とは全く異なり、本発明は、金属膜からなる非磁性層(2)を介して積層された二つの磁性層の積層膜を主構成要素とする磁気抵抗効果素子であって、一方の前記磁性層が磁化回転抑制層(4)と磁気的に結合して固定層を構成し、前記一方の磁性層が2層の界面磁性膜(5)と前記2層の界面磁性膜に挟まれたMFe2O4磁性膜(3、MはFe,Co,Niから選ばれる1種もしくは2種以上の元素)との積層膜より構成され、一方の前記界面磁性膜が[磁性膜(5−1)/非磁性膜(5−2)/磁性膜(5−3)]から成り、前記非磁性膜を介して前記二つの磁性膜(5−1、5−3)が反強磁性的に結合し、前記非磁性層を介して積層された二つの磁性層の積層膜の膜面の主に垂直方向に電流を流す。MがFeの場合は比較的低抵抗となり、MがNi,Coとなるに従って比較的高抵抗となるので、組成を適当に選ぶことにより素子のインピ−ダンスの調整が可能である。
【0009】
特に上記の二つの磁性層の一方が外部磁界に対して磁化回転し易く、他方が磁化回転し難いものとすれば磁気抵抗効果素子が構成される。上記MFe2O4膜でMがFe-richであれば磁化回転し易く、MがCo-richであれば磁化回転し難いのでこの様な構成は容易に実現される。
【0010】
又一方の磁性層が磁化回転抑制層(ピンニング層)と磁気的に結合して固定層を構成して、スピンバルブ型としても良い。磁化回転抑制層としてはP-Mn系(PはPt,Ni,Pd,Ir,Rh,Ru,Crから選ばれる1種もしくは2種以上の元素)合金より成るものが望ましい。
【0011】
又これら磁気抵抗効果素子の磁性層は界面磁性膜とMFe2O4(MはFe,Co,Niから選ばれる1種もしくは2種以上の元素)磁性膜との積層膜より構成されても良い。
【0012】
これにより非磁性層との界面やピンニング層との界面に相性の良い金属磁性膜を用いることが可能となる。
【0013】
又MFe2O4酸化物磁性膜だけでは抵抗が高くなりすぎる場合はこのような積層膜とし、MFe2O4酸化物磁性膜の膜厚を薄くすることより低抵抗化が可能である。
【0014】
更にこの界面磁性膜が[磁性膜/非磁性膜/磁性膜]から成り、非磁性膜を介して二つの磁性膜が反強磁性的に結合している構成とすると、微細パタ−ン化した場合、反磁界係数が大きくなる問題を、酸化物磁性膜とこの界面磁性膜を構成する二つの磁性膜の膜厚、飽和磁化等を調整することにより、全体での反磁界係数の大きさを小さくすることで解決することが可能で、デバイスを作製した場合、磁界感度を向上することが出来る。
【0015】
これら磁気抵抗効果素子にシールド部を具備すれば、シ−ルド型磁気抵抗効果ヘッドが構成され、又これら磁気抵抗効果素子に検知すべき磁界を磁気抵抗素子部に導入するヨ−クを具備すればヨ−ク型磁気抵抗効果ヘッドやヨ−クを具備した磁気抵抗効果素子が構成される。
【0016】
これら磁気抵抗効果素子に情報を記録するための磁界を発生させる導体線、及びこれら磁気抵抗効果素子の磁気抵抗変化により情報読み出しするための導体線を具備すればメモリ−素子が構成される。
【0017】
【発明の実施の形態】
以下本発明の磁気抵抗効果素子、磁気抵抗効果型ヘッド、メモリ−素子を図面に基づいて説明する。
【0018】
図1に参考例の磁気抵抗効果素子の構成を示す断面図の一例を示す。図1は、非磁性層2によって磁気的に隔離された二つの酸化物磁性層1,3より成る磁気抵抗効果素子を示す。酸化物磁性層1,3は主としてMFe2O4(MはFe,Co,Niから選ばれる1種もしくは2種以上の元素)より構成される。
【0019】
酸化物磁性層は膜厚を変えたり組成を変えたりすることにより、外部磁界により一方が磁化回転し易く、他方がそうでないもの、あるいは保磁力が小さいものとそうでないものとにすることが可能である。これにより外部磁界に対して二つの磁性層の磁化方向のなす角度が変化し、これに応じて抵抗変化が生ずる。従って図1の積層膜に電極を設け、電流を流し、外部磁界により抵抗が変化する現象を電圧変化で読みとることにより磁気抵抗効果素子となる。
【0020】
図2は図1の積層膜に更に磁化回転抑制層4を設けて酸化物磁性層3と交換結合させることにより酸化物磁性層3の磁化回転を抑制し、酸化物磁性膜1は容易に磁化回転する膜とすることにより、図1と同様の原理により磁気抵抗効果素子とするものである。 この場合は酸化物磁性層1と3は軟磁気特性に優れたものであれば、全く同一のものでもかまわない。
【0021】
図3は酸化物磁性層と非磁性層の界面に、あるいは酸化物磁性層と磁化回転抑制層との間に界面磁性層5を設けた構成のものである。これにより非磁性層との界面やピンニング層との界面に相性の良い金属磁性膜を用いることが可能となる。図3では全ての界面に界面磁性層を入れた構成としたが、必ずしもこの様な構成とする必要はなく、一箇所だけでも良い。又磁化回転抑制層の無い図1の構成のものにこの構成を適用してもかまわない。
【0022】
又図3の1酸化物磁性層の上にこの界面磁性層を用いても良い。
【0023】
更に図では界面磁性層が酸化物磁性層より薄くしているが、素子全体の抵抗を下げたい場合は酸化物磁性層を薄くして、界面磁性層をこれより厚くしても良い。
【0024】
図5は検知すべき外部磁界Hを透磁率の高い磁性膜で構成されるヨ−ク6により磁気抵抗素子部に導くことにより磁気抵抗効果素子の感度を向上させるものである。基本的にはヨ−ク部6は磁界Hが磁化回転が容易な磁性層に導かれるように配置される。図5では磁化回転抑制層4のあるものについて示したが、これが無い図1の構成にヨ−ク部6を設けたものでも良い。
【0025】
以上述べたような参考例の磁気抵抗効果素子を用いて、磁気抵抗効果型ヘッドを構成することができる。図に示したものはセンサ−等の磁気抵抗効果素子として使用できるし、ヨ−クの形状により読み取るべき信号磁界の領域を規制することにより磁気抵抗効果型ヘッドともなるものである。
【0026】
図6に磁気抵抗効果型ヘッドの構成の一例を示す。図6において記録は巻き線部8に電流を流し、それにより発生する磁界を記録用磁極7で導き、記録ギャップからの漏れ磁界により媒体への信号の記録を行う。信号の再生は上部および下部のシールド部10,13によって決まるシ−ルドギャップ内に設けられた磁気抵抗効果素子部12に媒体からの磁界が入り、磁界による素子部12の抵抗変化により信号の再生がなされる。図6では素子部12の膜面に垂直に電流を流す構成のものを一例として示しており、電流は電極11を通してシ−ルドとリ−ドを兼用したシ−ルド部10,13を流れる構成としている。
【0027】
図7にこれら磁気抵抗効果膜を用いたメモリ−素子の構成の一例を示す。図7において、磁気抵抗効果素子部12を構成する二つの磁性層のうち一方は外部磁界により磁化反転し易く、他方は反転し難いものを用い、情報の記録は情報記録用導体線14に電流を流し、発生する磁界により磁化回転し易い方の磁化を反転して情報の記録を行う。情報の読み出しは導体線14に逆向きの電流を流し、この時情報読出用導体線15と電極11を通じて接続された磁気抵抗効果素子部12に抵抗変化が生ずるか否かで情報の読み出しを行う。
【0028】
又磁気抵抗効果素子部12の磁性層が保磁力は異なるものの、二つとも磁化反転可能なものとし、導体線14に大きな電流を流して両方の磁性層を磁化反転して情報を記録し、再生は導体線14に逆方向の弱い電流を流して保磁力の小さい磁性層のみの磁化を反転し、その時の抵抗変化により情報を読み出しても良い。この場合は前述の場合と異なり、情報の記録には保磁力の大きい磁性層の磁化反転を用い、情報の読み出しには保磁力の小さい磁性層の磁化反転のみを用いるので非破壊読み出しが可能となる。
【0029】
以上図に示した磁気抵抗効果素子部の磁性層の少なくとも一方、あるいは全てに比較的高抵抗のMFe2O4(MはFe,Co,Niから選ばれる1種もしくは2種以上の元素)を主成分とする膜を用いることが望ましい。MがFeの場合は比較的低抵抗(〜10-3Ωcm)となり、MがNi,Coとなるに従って比較的高抵抗(103〜107Ωcm)となるので、組成を適当に選ぶことにより10-3〜107Ωcmと広範にわたる素子のインピ−ダンスの調整が可能である。実際[金属磁性層/Al2O3/金属磁性層]より構成されるトンネル型磁気抵抗効果素子においては膜面に垂直に電流を流して使用するが、抵抗が1010Ωcmと通常のデバイスに使用するにはインピ−ダンスが高すぎる問題点があり、実用化の阻害要因となっている。これに対して本発明は上述のようにインピ−ダンスが広範囲で調整可能である特長を有する。
【0030】
上記MFe2O4膜でMがFe-richであれば磁化回転し易く、MがCo-richであれば磁化回転し難いので、FeとCoの組成を調整することにより保磁力の調整が可能であり、る。これらの酸化物磁性膜はスピン分極率Pが極めて高く、磁性層/非磁性層界面でのスピン散乱に起因する大きな磁気抵抗変化が得られるため、磁気抵抗効果素子用の磁性膜としては理想的なものである。
【0031】
又これら磁気抵抗効果素子の磁性層は界面磁性膜とMFe2O4(MはFe,Co,Niから選ばれる1種もしくは2種以上の元素)磁性膜との積層膜より構成されても良い。これにより非磁性層との界面やピンニング層との界面に相性の良い金属磁性膜を用いることが可能となる。具体的にはCo, CoFe, NiFe, NiCoFe等の合金膜があげられる。
【0032】
又酸化物磁性層だけではインピ−ダンスがまだ高い場合には、磁性層部をMFe2O4酸化物磁性膜と上述の界面磁性膜との積層膜とし、MFe2O4酸化物磁性膜の膜厚を薄くすることより低インピ−ダンス化が可能である。
【0033】
更にこの界面磁性膜が[磁性膜/非磁性膜/磁性膜]から成り、非磁性膜を介して二つの磁性膜が反強磁性的に結合している構成とすると、微細パタ−ン化した場合、反磁界係数が大きくなる問題を、酸化物磁性膜とこの界面磁性膜を構成する二つの磁性膜の膜厚、飽和磁化等を調整することにより、全体での反磁界係数の大きさを小さくすることにより解決することが可能で、デバイスを作製した場合、磁界感度を向上することが出来る。この場合の交換結合用非磁性膜としてはRu,Ir等が適している。
【0034】
磁化回転抑制層としては金属膜としては不規則合金系のIr-Mn,Rh-Mn,Ru-Mn,Cr-Pt-Mn等があり、磁界中で成膜することにより磁性膜と交換結合させることができ工程が簡便となる利点がある。これらの膜を用いて素子を形成する場合は図4とは上下逆の構成とすることが望ましい。一方規則合金系のNi-Mn,Pt-(Pd)-Mn等は規則化のための熱処理が必要であるが、熱的安定性に優れている。一般的にはこれらも素子に用いる場合は図5とは上下逆の構成で使用するがが、Pt-Mn系は上下どちらでも使用出来き、図5の構造としても良い。この系はピンニング効果も大きく、かつ熱的にも安定である等の望ましい特長を有する。以上の金属膜を磁化回転抑制層に用い、磁性層にも金属膜を用いた素子は大きなMR比が得られない欠点があったが、本発明はこの欠点を補い磁化回転抑制層にこれら金属系を用いても大きなMR比を得ることが可能である。
【0035】
非磁性層としては、Cu,Ag,Auなどがあるが、特にCuが優れている。非磁性層の膜厚としては、磁性層間の相互作用を弱くするために少なくとも0.9nm以上は必要である。又この非磁性層の膜厚が3nm以下の場合は膜の平坦性が重要で、平坦性が悪いと、非磁性層で磁気的に分離されているはずの二つの磁性層間に磁気的結合が生じてMR比の劣化と感度の低下が生ずる。
【0036】
シ−ルド型磁気抵抗効果ヘッドやヨ−ク型磁気抵抗効果ヘッドにおいては、シ−ルド材やヨ−ク材に、Fe-Si-Al、Ni-Fe(-Co)、Co-Nb-Zr、Co-Ta-Zr、Fe-Ta-N合金などの軟磁性膜が使われる。Fe-Si-Alは基板上に付けられたものが市販されており、Ni-Fe(-Co)系はメッキ法で作製でき、Co-(Nb,Ta)-Zr系は耐食性に優れ異方性の制御性が良く、Fe-Ta-N系は高温熱処理に強い特長がある。
【0037】
又メモリ−素子においては導体線はAl, Au, Cu, Ag等の金属導体線で構成され、磁気抵抗効果素子部の電極材料は抵抗があまり高くないものが望ましい。
【0038】
【実施例】
本発明の磁気抵抗効果素子および磁気抵抗効果型ヘッドについて以下具体的な実施例を用いて説明する。
【0039】
(参考例1)
多元スパッタリング装置を用いて図1に示した構成の磁気抵抗効果素子を作製した。基板にはSiを用い、磁性層用のターケ゛ットには焼結したNi0.5Fe2.5O4、Co0.5Fe2.5O4を用い、又非磁性層用にはCuタ−ゲットを用いた。真空チャンバー内を1x10-8Torr以下まで排気した後、Arガスを0.8mTorrになるように流しながら、スハ゜ッタリンク゛法を用いて、下記の構成の磁気抵抗効果素子を作製した。
試料A Ni0.5Fe2.5O4(30)/Cu(25)/Co0.5Fe2.5O4(20) (()内は膜厚nmを示す)
試料Aの磁化曲線を室温で200kA/mの磁界を印可して磁界振動磁力計で測定したところ、保磁力が異なる2種類の磁性層からなる積層膜特有の2段曲線を示した。この磁気抵抗効果素子の上下に電極を設けて、そのMR特性を室温で最高200kA/mの磁界を印可して測定した。その結果MR比は30%と極めて高い値を示した。
【0040】
(参考例2)
参考例1と同様に多元スパッタリング装置を用いて図2に示した構成の磁気抵抗効果素子を作製した。基板にはSiを用い、磁性層用のタ−ゲットには焼結したNi0.1Fe2.9O4、Co0.2Fe2.8O4を用い、又非磁性層用にはCuを、磁化回転抑制層にはIrMnタ−ゲットを用いた。真空チャンバー内を1x10-8Torr以下まで排気した後、Arガスを0.8mTorrになるように流しながら、スハ゜ッタリンク゛法を用いて、下記の構成の磁気抵抗効果素子を作製した。
試料B Ni0.1Fe2.9O4(50)/Cu(22)/Co0.2Fe2.8O4(20)/IrMn(15)
この磁気抵抗効果素子の上下に電極を設けて、そのMR特性を室温で最高200kA/mの磁界を印可して測定した。その結果MR比は28%と極めて高い値を示した。
【0041】
(参考例3)
参考例1と同様に多元スパッタリング装置を用いて図3に示した構成の磁気抵抗効果素子を作製した。基板にはSiを用い、磁性層用のタ−ゲットには焼結したNi0.1Fe2.9O4、Co0.2Fe2.8O4を用い、又非磁性層用にはCuタ−ゲットを、磁化回転抑制層にはIrMnを、界面磁性層にはCo0.9Fe0.1を用いた。真空チャンバー内を1x10-8Torr以下まで排気した後、Arガスを0.8mTorrになるように流しながら、スハ゜ッタリンク゛法を用いて、下記の構成の磁気抵抗効果素子を作製した。
試料C Ni0.1Fe2.9O4(50)/Co0.9Fe0.1(2)/Cu(22)/Co0.9Fe0.1(2)/Co0.2Fe2.8O4(20)/Co0.9Fe0.1(2)/IrMn(15)
この磁気抵抗効果素子の上下に電極を設けて、そのMR特性を室温で最高200kA/mの磁界を印可して測定した。その結果MR比は32%と極めて高い値を示した。
【0042】
(参考例4)
参考例1と同様に多元スパッタリング装置を用いて類似の構成の磁気抵抗効果素子を作製した。基板にはSiを用い、磁性層用のタ−ゲットには焼結したFe3O4を用い、又非磁性層用にはCuタ−ゲットを、磁化回転抑制層にはPtMnを、界面磁性層にはCo0.9Fe0.1とNi0.8Fe0.2を用いた。真空チャンバー内を1x10-8Torr以下まで排気した後、Arガスを0.8mTorrになるように流しながら、スハ゜ッタリンク゛法を用いて、下記の構成の磁気抵抗効果素子を成膜し、280℃で磁界中熱処理を行った。
試料C’ Ni0.8Fe0.2(2)/Fe3O4(1)/Co0.9Fe0.1(0.5)/Cu(2.2)/Co0.9Fe0.1(2)/Fe3O4(1)/Co0.9Fe0.1(2)/PtMn(15)
この磁気抵抗効果素子の上下に電極を設けて、そのMR特性を室温で最高200kA/mの磁界を印可して測定した。その結果MR比は40%と極めて高い値を示した。
【0043】
(参考例5)
参考例1と同様に多元スパッタリング装置を用いて図1と図2に示した構成の2種類の磁気抵抗効果素子を作製した。基板にはSiを用い、磁性層用のターケ゛ットには焼結したNi0.2Fe2.8O4、Co0.2Fe2.8O4を用い、又非磁性層用にはCuを、磁化回転抑制層としてはPtMnタ−ゲットを用いた。真空チャンバー内を1x10-8Torr以下まで排気した後、Arガスを0.8mTorrになるように流しながら、スハ゜ッタリンク゛法を用いて、下記の構成の磁気抵抗効果素子を作製した。
試料D Ni0.2Fe2.8O4(50)/Cu(25)/Co0.2Fe2.8O4(20)
試料E Ni0.2Fe2.8O4(50)/Cu(25)/Co0.2Fe2.8O4(20)/PtMn(20)
成膜後試料Eは280℃で磁界中熱処理を施し、PtMnの規則化を行った。
【0044】
本発明の試料番号Bの磁気抵抗効果素子を用いて図5に示した構成の磁気抵抗効果型ヘッドを作製した(ただし試料Dを用いたものは磁化回転抑制層はない)。この時ヨ−クには軟磁気特性に優れたCoNbZrアモルファス合金膜を用いた。この構成とすることにより、ヨ−クのない試料D及びEの磁気抵抗効果素子に比べてヨ−クのあるものは外部磁界が10 Oeの時の感度がどちらも約3倍高くなることがわかった。
【0045】
(参考例6)
参考例1と同様に多元スパッタリング装置を用いて図3に示した構成の磁気抵抗効果素子を作製した。基板にはSiを用い、磁性層用のタ−ゲットには焼結したNi0.1Fe2.9O4、Co0.1Fe2.9O4を用い、又非磁性層用にはCuタ−ゲットを、磁化回転抑制層にはPtMnを、界面磁性層にはCo0.9Fe0.1を用いた。真空チャンバー内を1x10-8Torr以下まで排気した後、Arガスを0.8mTorrになるように流しながら、スハ゜ッタリンク゛法を用いて、下記の構成の磁気抵抗効果素子を作製した。
試料F Ni0.1Fe2.9O4(50)/Co0.9Fe0.1(2)/Cu(22)/Co0.9Fe0.1(2)/Co0.1Fe2.9O4(20)/Co0.9Fe0.1(2)/PtMn(20)
この磁気抵抗効果素子を用いて図に示すようなシ−ルド型の磁気抵抗効果ヘッドを作製した。基板としてはAl2O3-TiC基板を用い、シールド材にはNi0.8Fe0.2合金を用い、絶縁膜にはAl2O3を用いた。電極にはAuを用いた。自由層Ni0.1Fe2.9O4(50)/Co0.9Fe0.1(2)の磁化容易方向が検知すべき信号磁界方向と垂直になるように、固定層Co0.9Fe0.1(2)/Co0.2Fe2.8O4(20)/Co0.9Fe0.1(2)/IrMn(15)の磁化容易軸の方向が検知すべき信号磁界方向と平行になるように磁性膜に異方性を付与した。この方法は、磁気抵抗効果素子を作成後、まず、磁界中280℃で熱処理して、固定層の容易方向を規定した後、更に、200℃で上記と直交する方向に磁界を印加して熱処理し、自由層の容易軸を規定した。
【0046】
これらのヘッドに、センス電流として直流電流を流し、約3kA/mの交流信号磁界を印加してヘッドの出力を評価した。その結果本発明のヘッドの出力は、磁気抵抗効果素子としてNiFeを用いた市販のAMRヘッドの出力に比べて約5倍高いことがわかった。
【0047】
(参考例7)
参考例1と同様に多元スパッタリング装置を用いて図1と図2に示した構成の2種類の磁気抵抗効果素子を作製した。基板にはSiを用い、磁性層用のターケ゛ットには焼結したNi0.1Fe2.9O4とCo0.1Fe2.9O4を用い、又非磁性層用にはCuを、磁化回転抑制層としてはIrMnを、界面磁性層用としてNi0.8Fe0.2,Co0.9Fe0.1をタ−ゲットを用いた。真空チャンバー内を1x10-8Torr以下まで排気した後、Arガスを0.8mTorrになるように流しながら、スハ゜ッタリンク゛法を用いて、下記の構成の磁気抵抗効果素子を作製した。
試料G Ni0.1Fe2.9O4(50)/Ni0.8Fe0.2(2)/Cu(25)/Co0.9Fe0.1(1)/Co0.1Fe2.9O4(50)
試料H Ni0.1Fe2.9O4(50)/Ni0.8Fe0.2(2)/Cu(25)/Co0.9Fe0.1(1)/Ni0.1Fe2.9O4(20)/Co0.9Fe0.1(2)/IrMn(15)
これら磁気抵抗効果素子G,Hを用いて、図7に示したようなメモリ−素子を作製した。導体線にはAuを用い、情報読出用導体線と磁気抵抗効果素子部とを接合する電極にはPtを用いた。又情報記録用導体線と磁気抵抗効果素子部及び情報読出用導体線部との絶縁にはAl2O3を用いた。
【0048】
試料Gを用いたメモリ−素子において情報記録用導体線にパルス電流を流して0→ +40→ 0 Oeの磁界を発生させて、磁性層の磁化反転を行った後、同様に情報記録用導体線にパルス電流を流して約0 → -20→ +20→ 0 Oeの磁界を発生させてNi0.1Fe2.9O4(50)/Ni0.8Fe0.2(2)部のみの磁化反転を行い、その時の抵抗変化を情報読出線部の電圧変化により観測したところ、明確な抵抗変化が生じることがわかった。この弱いパルス電流により何回でも同様の出力変化が生じて非破壊読み出しが可能であることがわかった。又パルス電流を流して0→ -40→ 0 Oeの磁界を発生させて、磁性層の磁化反転を行った後、同様に情報記録用導体線にパルス電流を流して約0 → -20→ +20→ 0 Oeの磁界を発生させてNi0.1Fe2.9O4(50)/Ni0.8 Fe0.2(2)部のみの磁化反転を行い、その時の抵抗変化を情報読出線部の電圧変化により観測したところ、上述とは逆方向の出力変化が生じて、記録された情報の識別がなされることがわかった。
【0049】
試料Hを用いたメモリ−素子において情報記録用導体線にパルス電流を流して0→ +20→ 0 Oeの磁界を発生させて、磁性層の磁化反転を行った後、同様に情報記録用導体線にパルス電流を流して約0 → -20→ 0 Oeの磁界を発生させてNi0.1Fe2.9O4(50)/Ni0.8Fe0.2(2)部のみの磁化反転を行い、その時の抵抗変化を情報読出線部の電圧変化により観測したところ、明確な抵抗変化が生じることがわかった。又パルス電流を流して0→ -20→ 0 Oeの磁界を発生させて、磁性層の磁化反転を行った後、同様に情報記録用導体線にパルス電流を流して約0 → -20→ 0 Oeの磁界を発生させ、その時の抵抗変化を情報読出線部の電圧変化により観測したところ、上述とは異なり出力変化が生じず、記録された情報の識別がなされることがわかった。
【0050】
以上より本発明の磁気抵抗効果素子を用いてメモリ−素子が構成可能なことがわかった。試料Gを用いた例では非破壊読み出しが可能となり、試料Hを用いた例では非破壊読み出しは出来ないものの、弱い電流での動作が可能であることがこれらメモリ−素子の特徴である。
【0051】
(実施例1)
参考例1と同様に多元スパッタリング装置を用いて図4の構成の磁気抵抗効果素子を作製した。基板にはSiを用い、磁性層用のタ−ゲットには焼結したFe3O4を用い、又非磁性層用にはCuタ−ゲットを、磁化回転抑制層にはPtMnを、界面磁性層にはRuを介して反強磁性的に交換結合したCo0.9Fe0.1 /Ru/Co 0.9 Fe 0.1 とNi0.8Fe0.2 /Ru/Ni 0.8 Fe 0.2 を用いた。真空チャンバー内を1x10-8Torr以下まで排気した後、Arガスを0.8mTorrになるように流しながら、スハ゜ッタリンク゛法を用いて、下記の構成の磁気抵抗効果素子を成膜し、280℃で磁界中熱処理を行った。
試料I Ni0.8Fe0.2(2)/Ru(0.7)/Ni0.8Fe0.2(1)/Fe 3 O 4 (0.6)/Co0.9Fe0.1(1)/Cu(2.2)/Co0.9Fe0.1(2)/Fe3O4(0.6)/Co0.9Fe0.1(2)/Ru(0.7)/Co0.9Fe0.1(2)/PtMn(15)
この磁気抵抗効果素子の上下に電極を設けて、そのMR特性を室温で最高200kA/mの磁界を印可して測定した。その結果MR比は36%と極めて高い値を示した。
【0052】
作製したこの素子を用いて実施例5と同様な方法で磁気ヘッドを作製し、センス電流として約1kA/mの交流信号磁界を印加してこの膜を用いたヘッドと実施例5のヘッドの出力を比較した。その結果このヘッドの出力は、参考例5のヘッドよりも更に感度が高くなることがわかった。
【0053】
又この膜を用いて参考例6と同様な方法でメモリ−素子を作製した。このメモリ−素子と参考例6のメモリ−素子の反転磁界を測定したところ、同じ形状の素子であれば、このメモリ−素子の反転磁界は参考例6のそれより小さくなることがわかった。
【0054】
【発明の効果】
本発明の磁気抵抗効果素子は従来のものに比べて大きなMR比を実現し、これを用いることにより高出力の磁気抵抗効果型ヘッドとメモリ−素子を可能とするものである。
【0055】
又これらをにより超高密度のハ−ドディスクや、省エネで不揮発性の固体メモリ−である磁気RAMが実現され、VTRやモバイル機器のストレイジデバイスやメモリ−デバイスとして使用出来る。
【図面の簡単な説明】
【図1】本発明の磁気抵抗効果素子の断面の模式図
【図2】本発明の磁気抵抗効果素子の断面の模式図
【図3】本発明の磁気抵抗効果素子の断面の模式図
【図4】本発明の磁気抵抗効果素子の断面の模式図
【図5】本発明のヨ−ク型磁気抵抗効果型ヘッドの一例を示す図
【図6】本発明のシ−ルド型磁気抵抗効果型ヘッドの一例を示す図
【図7】本発明のメモリ−素子の一例を示す図
【符号の説明】
1 酸化物磁性層
2 非磁性層
3 酸化物磁性層
4 磁化回転抑制層
5 界面磁性層
6 ヨ−ク部
7 記録用磁極
8 巻き線部
9 絶縁膜
10 上部シ−ルド部
11 電極部
12 磁気抵抗効果素子部
13 下部シールド部
14 情報記録用導体線
15 情報読出用導体線[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a magnetoresistive effect element that generates a large output due to a change in magnetoresistance with respect to an external magnetic field, and a magnetoresistive effect head and a memory element configured using the magnetoresistive effect element.
[0002]
[Prior art]
In recent years, the density of hard disk drives has increased significantly, and the progress of reproducing magnetic heads that read the magnetization recorded on the medium has also made significant progress. Among them, a magnetoresistive element (MR element) called a spin valve that utilizes the giant magnetoresistive (GMR) effect is prominent as it greatly increases the sensitivity of the magnetoresistive head (MR head) currently used. Has been studied. A memory element using a GMR film has also been proposed.
[0003]
The basic principle of an MR element using a GMR film is that in a laminated film composed of [magnetic layer / nonmagnetic layer / magnetic layer], the resistance is low when the magnetization directions of the two magnetic layers are parallel, and the anti-parallel case. Uses the fact that resistance increases.
[0004]
In the spin valve, two ferromagnetic layers are arranged via a nonmagnetic layer, and the magnetization direction of one magnetic layer (fixed layer) is fixed by an exchange bias magnetic field by a magnetization rotation suppression layer (pinning layer) (at this time) The ferromagnetic layer and the magnetization rotation suppression layer are collectively referred to as an exchange coupling film), and the magnetization direction of the other magnetic layer (free layer) is moved relatively freely according to the external magnetic field, thereby freeing the fixed layer and the free layer. The relative angle of the magnetization direction of the layer is changed to cause a change in electrical resistance.
[0005]
The material used for the spin-valve film was initially a Ni-Fe film as the magnetic film, Cu as the nonmagnetic film, and Fe-Mn as the magnetization rotation suppression layer, and the magnetoresistance change rate (MR ratio) was about 2 % Was proposed (Journal of Magnetism and Magnetic Materials 93, p101, 1991). As described above, those using the FeMn film as the magnetization rotation suppression layer have a low MR ratio, and the blocking temperature (the temperature at which the magnetization pinning effect of the fixed layer by the magnetization rotation suppression layer disappears) is not sufficiently high, and the FeMn itself has corrosion resistance. Therefore, spin valve films using various magnetization rotation suppression layers have been proposed. Among them, the PtMn system is not so large, but has good corrosion resistance and thermal stability, such as NiO and α-Fe.2OThreeAlthough spin valve films using such oxides as the magnetization rotation suppression layer have a problem in thermal stability, they have a large MR ratio of 15% or more, and are being researched and developed.
[0006]
As a method of obtaining a larger MR ratio, Al is used for the nonmagnetic layer of the magnetoresistive effect element portion composed of [magnetic layer / nonmagnetic layer / magnetic layer].2OThree(Note: the magnetic layer part is a metal film), and an electrode is provided above and below this element part to utilize the tunnel effect, and these are also called TMR films. A spin-valve type TMR film with a magnetization rotation suppression layer added thereto has also been studied, and a TMR film having an MR ratio of 20% or more has been obtained.
[0007]
[Problems to be solved by the invention]
However, in the TMR film, the oxide nonmagnetic layer needs to be an ultrathin film having a uniform and constant film thickness of about 1 nm, and there are problems in mass productivity and reproducibility. Moreover, since the element resistance is too high to use the TMR film for a practical device, it is necessary to reduce the resistance, and the element has a uniform impedance.
[0008]
[Means for Solving the Problems]
Unlike the conventional TMR film using a high-resistance oxide film for the nonmagnetic layer, the present inventionMade of metal filmA magnetoresistive effect element having a laminated film of two magnetic layers laminated via a nonmagnetic layer (2) as a main component, wherein one of the magnetic layers is magnetically coupled to the magnetization rotation suppression layer (4). MFe is bonded to form a fixed layer, and the one magnetic layer is sandwiched between the two interfacial magnetic films (5) and the two interfacial magnetic films2OFourIt is composed of a laminated film with a magnetic film (3, M is one or more elements selected from Fe, Co, Ni), and one of the interface magnetic films is [magnetic film (5-1) / nonmagnetic Film (5-2) / magnetic film (5-3)], and the two magnetic films (5-1, 5-3) are antiferromagnetically coupled via the non-magnetic film. A current is caused to flow mainly in the vertical direction of the film surface of the laminated film of two magnetic layers laminated via the magnetic layer. When M is Fe, the resistance is relatively low, and as M becomes Ni or Co, the resistance becomes relatively high. Therefore, the impedance of the element can be adjusted by appropriately selecting the composition.
[0009]
In particular, if one of the two magnetic layers described above is easy to rotate with respect to the external magnetic field and the other is difficult to rotate with respect to the magnetic field, a magnetoresistive element is formed. MFe above2OFourIf M is Fe-rich in the film, magnetization rotation is easy, and if M is Co-rich, magnetization rotation is difficult, so such a configuration is easily realized.
[0010]
Alternatively, one of the magnetic layers may be magnetically coupled to a magnetization rotation suppression layer (pinning layer) to form a fixed layer, and a spin valve type may be used. The magnetization rotation suppression layer is preferably made of a P-Mn based alloy (P is one or more elements selected from Pt, Ni, Pd, Ir, Rh, Ru, Cr).
[0011]
The magnetic layers of these magnetoresistive elements are interfacial magnetic films and MFe.2OFour(M is one or more elements selected from Fe, Co, and Ni) and may be formed of a laminated film with a magnetic film.
[0012]
This makes it possible to use a metal magnetic film having good compatibility at the interface with the nonmagnetic layer and the interface with the pinning layer.
[0013]
MFe2OFourIf the resistance is too high with the oxide magnetic film alone, such a laminated film is formed.2OFourThe resistance can be reduced by reducing the thickness of the oxide magnetic film.
[0014]
Furthermore, if this interfacial magnetic film is composed of [magnetic film / nonmagnetic film / magnetic film], and the two magnetic films are antiferromagnetically coupled via the nonmagnetic film, the pattern is finely patterned. In this case, the problem of an increase in the demagnetizing factor is to adjust the film thickness, saturation magnetization, etc. of the oxide magnetic film and the two magnetic films constituting this interfacial magnetic film, thereby reducing the overall demagnetizing factor. This can be solved by reducing the size, and when the device is manufactured, the magnetic field sensitivity can be improved.
[0015]
If these magnetoresistive elements are provided with a shield part, a shield type magnetoresistive head is constructed, and the magnetoresistive element is provided with a yoke for introducing a magnetic field to be detected into the magnetoresistive element part. For example, a yoke type magnetoresistive head or a magnetoresistive element including a yoke is formed.
[0016]
A memory element is configured by providing a conductor line for generating a magnetic field for recording information on these magnetoresistive effect elements and a conductor line for reading information by a magnetoresistance change of these magnetoresistive effect elements.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a magnetoresistive effect element, a magnetoresistive effect type head, and a memory element of the present invention will be described with reference to the drawings.
[0018]
Figure 1Reference exampleAn example of sectional drawing which shows the structure of this magnetoresistive effect element is shown. FIG. 1 shows a magnetoresistive element composed of two oxide
[0019]
By changing the film thickness or the composition of the oxide magnetic layer, one can be easily rotated by an external magnetic field, the other is not, or the coercive force is small or not. It is. As a result, the angle formed by the magnetization directions of the two magnetic layers changes with respect to the external magnetic field, and resistance changes accordingly. Accordingly, an electrode is provided on the laminated film of FIG. 1, a current is passed, and a phenomenon in which resistance is changed by an external magnetic field is read as a voltage change, so that a magnetoresistive element is obtained.
[0020]
In FIG. 2, a magnetization rotation suppression layer 4 is further provided on the laminated film of FIG. 1 and exchange-coupled with the oxide
[0021]
FIG. 3 shows a configuration in which an interfacial
[0022]
Further, this interfacial magnetic layer may be used on the one oxide magnetic layer of FIG.
[0023]
Further, although the interface magnetic layer is made thinner than the oxide magnetic layer in the figure, the oxide magnetic layer may be made thinner and the interface magnetic layer may be made thicker in order to reduce the resistance of the entire element.
[0024]
In FIG. 5, the sensitivity of the magnetoresistive effect element is improved by guiding the external magnetic field H to be detected to the magnetoresistive element portion by a
[0025]
As mentioned aboveReference exampleA magnetoresistive head can be constructed using this magnetoresistive element. What is shown in the figure can be used as a magnetoresistive element such as a sensor, and can also be used as a magnetoresistive head by regulating the signal magnetic field region to be read by the shape of the yoke.
[0026]
FIG. 6 shows an example of the configuration of the magnetoresistive head. In FIG. 6, in recording, a current is passed through the winding portion 8, a magnetic field generated thereby is guided by the recording magnetic pole 7, and a signal is recorded on the medium by a leakage magnetic field from the recording gap. The signal is reproduced by the magnetic field from the medium entering the
[0027]
FIG. 7 shows an example of the configuration of a memory element using these magnetoresistive films. In FIG. 7, one of the two magnetic layers constituting the magnetoresistive
[0028]
Also, although the magnetic layers of the magnetoresistive
[0029]
A relatively high resistance MFe is applied to at least one or all of the magnetic layers of the magnetoresistive effect element shown in the above figure.2OFourIt is desirable to use a film mainly composed of (M is one or more elements selected from Fe, Co, Ni). When M is Fe, the resistance is relatively low (~ 10-3Ωcm), and relatively high resistance (10Three~Ten7Ωcm), 10-3~Ten7The impedance of the element can be adjusted over a wide range of Ωcm. Actual [Metal Magnetic Layer / Al2OThree/ Metallic magnetic layer] tunnel type magnetoresistive effect element is used by passing a current perpendicular to the film surface, but the resistance is 10TenThere is a problem that impedance is too high to be used for ordinary devices with Ωcm, which is an impediment to practical use. On the other hand, the present invention has a feature that the impedance can be adjusted in a wide range as described above.
[0030]
MFe above2OFourIf M is Fe-rich in the film, magnetization rotation is easy, and if M is Co-rich, magnetization rotation is difficult. Therefore, the coercive force can be adjusted by adjusting the composition of Fe and Co. These oxide magnetic films have an extremely high spin polarizability P, and a large change in magnetoresistance due to spin scattering at the magnetic layer / nonmagnetic layer interface can be obtained, making them ideal as magnetic films for magnetoresistive effect elements. It is a thing.
[0031]
The magnetic layers of these magnetoresistive elements are interfacial magnetic films and MFe.2OFour(M is one or two or more elements selected from Fe, Co, and Ni) and may be composed of a laminated film with a magnetic film. This makes it possible to use a metal magnetic film having good compatibility at the interface with the nonmagnetic layer and the interface with the pinning layer. Specifically, an alloy film of Co, CoFe, NiFe, NiCoFe or the like can be given.
[0032]
If the impedance of the oxide magnetic layer alone is still high, the magnetic layer portion is2OFourA laminated film of an oxide magnetic film and the above-mentioned interfacial magnetic film,2OFourThe impedance can be reduced by reducing the thickness of the oxide magnetic film.
[0033]
Furthermore, if this interfacial magnetic film is composed of [magnetic film / nonmagnetic film / magnetic film], and the two magnetic films are antiferromagnetically coupled via the nonmagnetic film, the pattern is finely patterned. In this case, the problem of an increase in the demagnetizing factor is to adjust the film thickness, saturation magnetization, etc. of the oxide magnetic film and the two magnetic films constituting this interfacial magnetic film, thereby reducing the overall demagnetizing factor. This can be solved by reducing the size, and when the device is manufactured, the magnetic field sensitivity can be improved. In this case, Ru, Ir, etc. are suitable as the nonmagnetic film for exchange coupling.
[0034]
As the magnetization rotation suppression layer, there are disordered Ir-Mn, Rh-Mn, Ru-Mn, Cr-Pt-Mn, etc. as metal films, which are exchange-coupled to the magnetic film by depositing in a magnetic field There is an advantage that the process can be simplified. In the case of forming an element using these films, it is desirable that the structure is upside down with respect to FIG. On the other hand, ordered alloys such as Ni-Mn, Pt- (Pd) -Mn, etc. require heat treatment for ordering, but are excellent in thermal stability. In general, when these are also used in an element, they are used upside down with respect to FIG. 5, but the Pt-Mn system can be used either upside down or the structure shown in FIG. This system has desirable features such as a large pinning effect and thermal stability. An element using the above metal film as a magnetization rotation suppression layer and also using a metal film as a magnetic layer has a defect that a large MR ratio cannot be obtained. A large MR ratio can be obtained even using a system.
[0035]
Examples of the nonmagnetic layer include Cu, Ag, and Au, and Cu is particularly excellent. The film thickness of the nonmagnetic layer is required to be at least 0.9 nm in order to weaken the interaction between the magnetic layers. If the thickness of the nonmagnetic layer is 3 nm or less, the flatness of the film is important. If the flatness is poor, magnetic coupling between the two magnetic layers that should have been magnetically separated by the nonmagnetic layer is not possible. As a result, the MR ratio is deteriorated and the sensitivity is lowered.
[0036]
For shield type magnetoresistive heads and yoke type magnetoresistive heads, Fe-Si-Al, Ni-Fe (-Co), Co-Nb-Zr Soft magnetic films such as Co-Ta-Zr and Fe-Ta-N alloys are used. Fe-Si-Al attached on the substrate is commercially available, Ni-Fe (-Co) system can be made by plating, and Co- (Nb, Ta) -Zr system has excellent corrosion resistance and is anisotropic. The Fe-Ta-N system is highly resistant to high-temperature heat treatment.
[0037]
In the memory element, the conductor wire is preferably composed of a metal conductor wire such as Al, Au, Cu, Ag, etc., and the electrode material of the magnetoresistive effect element portion is preferably not so high in resistance.
[0038]
【Example】
The magnetoresistive element and magnetoresistive head of the present invention will be described below using specific examples.
[0039]
(Reference example1)
A magnetoresistive element having the configuration shown in FIG. 1 was produced using a multi-source sputtering apparatus. Si is used for the substrate and sintered Ni is used for the target for the magnetic layer.0.5Fe2.5OFour, Co0.5Fe2.5OFourCu target was used for the nonmagnetic layer. 1x10 inside the vacuum chamber-8After evacuating to below Torr, a magnetoresistive effect element having the following configuration was produced by using the sputtering method while flowing Ar gas at 0.8 mTorr.
Sample A Ni0.5Fe2.5OFour(30) / Cu (25) / Co0.5Fe2.5OFour(20) (() indicates the film thickness nm)
When the magnetization curve of sample A was measured with a magnetic field vibration magnetometer by applying a magnetic field of 200 kA / m at room temperature, a two-stage curve peculiar to a laminated film composed of two types of magnetic layers having different coercive forces was shown. Electrodes were provided above and below the magnetoresistive element, and the MR characteristics were measured by applying a magnetic field of up to 200 kA / m at room temperature. As a result, the MR ratio was as high as 30%.
[0040]
(Reference example2)
Reference example2 was used to produce the magnetoresistive effect element having the configuration shown in FIG. The substrate is Si, and the target for the magnetic layer is sintered Ni0.1Fe2.9OFour, Co0.2Fe2.8OFourCu was used for the nonmagnetic layer, and IrMn target was used for the magnetization rotation suppression layer. 1x10 inside the vacuum chamber-8After evacuating to below Torr, a magnetoresistive effect element having the following configuration was produced by using the sputtering method while flowing Ar gas at 0.8 mTorr.
Sample B Ni0.1Fe2.9OFour(50) / Cu (22) / Co0.2Fe2.8OFour(20) / IrMn (15)
Electrodes were provided above and below the magnetoresistive element, and the MR characteristics were measured by applying a magnetic field of up to 200 kA / m at room temperature. As a result, the MR ratio was as high as 28%.
[0041]
(Reference example3)
Reference example1 was used to produce the magnetoresistive effect element having the configuration shown in FIG. The substrate is Si, and the target for the magnetic layer is sintered Ni0.1Fe2.9OFour, Co0.2Fe2.8OFourCu target for nonmagnetic layer, IrMn for magnetization rotation suppression layer, Co for interface magnetic layer0.9Fe0.1Was used. 1x10 inside the vacuum chamber-8After evacuating to below Torr, a magnetoresistive effect element having the following configuration was produced by using the sputtering method while flowing Ar gas at 0.8 mTorr.
Sample C Ni0.1Fe2.9OFour(50) / Co0.9Fe0.1(2) / Cu (22) / Co0.9Fe0.1(2) / Co0.2Fe2.8OFour(20) / Co0.9Fe0.1(2) / IrMn (15)
Electrodes were provided above and below the magnetoresistive element, and the MR characteristics were measured by applying a magnetic field of up to 200 kA / m at room temperature. As a result, the MR ratio was as high as 32%.
[0042]
(Reference example4)
Reference exampleIn the same manner as in Example 1, a magnetoresistive effect element having a similar configuration was produced using a multi-source sputtering apparatus. Si is used for the substrate, and the target for the magnetic layer is sintered Fe.ThreeOFourCu target for nonmagnetic layer, PtMn for magnetization rotation suppression layer, Co for interface magnetic layer0.9Fe0.1And Ni0.8Fe0.2Was used. 1x10 inside the vacuum chamber-8After evacuating to below Torr, a magnetoresistive effect element having the following constitution was formed by using a sputtering method while flowing Ar gas at 0.8 mTorr, and heat treatment was performed in a magnetic field at 280 ° C.
Sample C ’Ni0.8Fe0.2(2) / FeThreeOFour(1) / Co0.9Fe0.1(0.5) / Cu (2.2) / Co0.9Fe0.1(2) / FeThreeOFour(1) / Co0.9Fe0.1(2) / PtMn (15)
Electrodes were provided above and below the magnetoresistive element, and the MR characteristics were measured by applying a magnetic field of up to 200 kA / m at room temperature. As a result, the MR ratio showed an extremely high value of 40%.
[0043]
(Reference example5)
Reference example2, two types of magnetoresistive elements having the configuration shown in FIGS. 1 and 2 were produced using a multi-source sputtering apparatus. Si is used for the substrate and sintered Ni is used for the target for the magnetic layer.0.2Fe2.8OFour, Co0.2Fe2.8OFourCu was used for the nonmagnetic layer, and PtMn target was used for the magnetization rotation suppression layer. 1x10 inside the vacuum chamber-8After evacuating to below Torr, a magnetoresistive effect element having the following configuration was produced by using the sputtering method while flowing Ar gas at 0.8 mTorr.
Sample D Ni0.2Fe2.8OFour(50) / Cu (25) / Co0.2Fe2.8OFour(20)
Sample E Ni0.2Fe2.8OFour(50) / Cu (25) / Co0.2Fe2.8OFour(20) / PtMn (20)
After film formation, Sample E was heat-treated in a magnetic field at 280 ° C. to order PtMn.
[0044]
A magnetoresistive head having the configuration shown in FIG. 5 was produced using the magnetoresistive element of sample number B of the present invention (however, the sample D used does not have a magnetization rotation suppression layer). At this time, a CoNbZr amorphous alloy film having excellent soft magnetic properties was used for the yoke. By adopting this configuration, the sensitivity when the external magnetic field is 10 Oe is approximately three times higher for the one with yoke compared to the magnetoresistive elements of samples D and E without yoke. all right.
[0045]
(Reference example6)
Reference example1 was used to produce the magnetoresistive effect element having the configuration shown in FIG. The substrate is Si, and the target for the magnetic layer is sintered Ni0.1Fe2.9OFour, Co0.1Fe2.9OFourCu target for nonmagnetic layer, PtMn for magnetization rotation suppression layer, Co for interface magnetic layer0.9Fe0.1Was used. 1x10 inside the vacuum chamber-8After evacuating to below Torr, a magnetoresistive effect element having the following configuration was produced by using the sputtering method while flowing Ar gas at 0.8 mTorr.
Sample F Ni0.1Fe2.9OFour(50) / Co0.9Fe0.1(2) / Cu (22) / Co0.9Fe0.1(2) / Co0.1Fe2.9OFour(20) / Co0.9Fe0.1(2) / PtMn (20)
Using this magnetoresistive element, a shield type magnetoresistive head as shown in the figure was produced. Al as substrate2OThree-Use TiC substrate and Ni as shielding material0.8Fe0.2An alloy is used, and the insulating film is made of Al.2OThreeWas used. Au was used for the electrode. Free layer Ni0.1Fe2.9OFour(50) / Co0.9Fe0.1The fixed layer Co is set so that the easy magnetization direction of (2) is perpendicular to the signal magnetic field direction to be detected.0.9Fe0.1(2) / Co0.2Fe2.8OFour(20) / Co0.9Fe0.1(2) Anisotropy was imparted to the magnetic film so that the direction of the easy axis of / IrMn (15) was parallel to the direction of the signal magnetic field to be detected. In this method, after creating the magnetoresistive effect element, first, heat treatment is performed in a magnetic field at 280 ° C., the easy direction of the fixed layer is defined, and further, a magnetic field is applied at 200 ° C. in a direction orthogonal to the above, And defined the easy axis of the free layer.
[0046]
A DC current was passed through these heads as a sense current, and an AC signal magnetic field of about 3 kA / m was applied to evaluate the head output. As a result, it was found that the output of the head of the present invention was about 5 times higher than the output of a commercially available AMR head using NiFe as the magnetoresistive effect element.
[0047]
(Reference example7)
Reference example2, two types of magnetoresistive elements having the configuration shown in FIGS. 1 and 2 were produced using a multi-source sputtering apparatus. Si is used for the substrate and sintered Ni is used for the target for the magnetic layer.0.1Fe2.9OFourAnd Co0.1Fe2.9OFourIn addition, Cu is used for the nonmagnetic layer, IrMn is used for the magnetization rotation suppression layer, and Ni is used for the interface magnetic layer.0.8Fe0.2, Co0.9Fe0.1The target was used. 1x10 inside the vacuum chamber-8After evacuating to below Torr, a magnetoresistive effect element having the following configuration was produced by using the sputtering method while flowing Ar gas at 0.8 mTorr.
Sample G Ni0.1Fe2.9OFour(50) / Ni0.8Fe0.2(2) / Cu (25) / Co0.9Fe0.1(1) / Co0.1Fe2.9OFour(50)
Sample H Ni0.1Fe2.9OFour(50) / Ni0.8Fe0.2(2) / Cu (25) / Co0.9Fe0.1(1) / Ni0.1Fe2.9OFour(20) / Co0.9Fe0.1(2) / IrMn (15)
Using these magnetoresistance effect elements G and H, a memory element as shown in FIG. 7 was produced. Au was used as the conductor wire, and Pt was used as the electrode for joining the information reading conductor wire and the magnetoresistive element portion. Also, the insulation between the information recording conductor, the magnetoresistive effect element, and the information reading conductor is Al.2OThreeWas used.
[0048]
In the memory element using the sample G, a pulse current is passed through the information recording conductor wire to generate a magnetic field of 0 → + 40 → 0 Oe, and after reversing the magnetization of the magnetic layer, similarly, the information recording conductor Apply a pulse current to the wire to generate a magnetic field of approximately 0 → -20 → +20 → 0 Oe, and Ni0.1Fe2.9OFour(50) / Ni0.8Fe0.2When the magnetization reversal of only the (2) part was performed and the resistance change at that time was observed by the voltage change of the information readout line part, it was found that a clear resistance change occurred. It was found that this weak pulse current caused the same output change any number of times, and nondestructive reading was possible. In addition, by applying a pulse current to generate a magnetic field of 0 → -40 → 0 Oe and reversing the magnetization of the magnetic layer, similarly, a pulse current is passed through the information recording conductor wire to approximately 0 → -20 → + Generate a magnetic field of 20 → 0 Oe and Ni0.1Fe2.9OFour(50) / Ni0.8 Fe0.2 (2) When magnetization reversal of only the part was performed, and the resistance change at that time was observed by the voltage change of the information readout line part, the output change in the direction opposite to the above occurred, and the recorded information could be identified. all right.
[0049]
In the memory element using the sample H, a pulse current is passed through the information recording conductor wire to generate a magnetic field of 0 → + 20 → 0 Oe to reverse the magnetization of the magnetic layer. A pulse current is passed through the wire to generate a magnetic field of approximately 0 → -20 → 0 Oe and Ni0.1Fe2.9OFour(50) / Ni0.8Fe0.2When the magnetization reversal of only the (2) part was performed and the resistance change at that time was observed by the voltage change of the information readout line part, it was found that a clear resistance change occurred. In addition, by applying a pulse current to generate a magnetic field of 0 → -20 → 0 Oe and reversing the magnetization of the magnetic layer, similarly, a pulse current is passed through the information recording conductor wire to obtain about 0 → -20 → 0. When the Oe magnetic field was generated and the resistance change at that time was observed by the voltage change of the information readout line portion, it was found that the output information did not change and the recorded information could be identified.
[0050]
From the above, it has been found that a memory element can be constructed using the magnetoresistive element of the present invention. The non-destructive readout is possible in the example using the sample G, and the non-destructive readout is not possible in the example using the sample H, but the operation with a weak current is possible.
[0051]
Example 1
As in Reference Example 1, a magnetoresistive effect element having the configuration of FIG. Si is used for the substrate, and the target for the magnetic layer is sintered Fe.ThreeOFourCo, which is antiferromagnetically exchange-coupled via a Cu target for the nonmagnetic layer, PtMn for the magnetization rotation suppression layer, and Ru for the interface magnetic layer.0.9Fe0.1 / Ru / Co 0.9 Fe 0.1 And Ni0.8Fe0.2 / Ru / Ni 0.8 Fe 0.2 Was used. 1x10 inside the vacuum chamber-8After evacuating to below Torr, a magnetoresistive effect element having the following constitution was formed by using a sputtering method while flowing Ar gas at 0.8 mTorr, and heat treatment was performed in a magnetic field at 280 ° C.
Sample I Ni0.8Fe0.2(2) / Ru (0.7) / Ni0.8Fe0.2(1) / Fe Three O Four (0.6) / Co0.9Fe0.1(1) / Cu (2.2) / Co0.9Fe0.1(2) / FeThreeOFour(0.6) / Co0.9Fe0.1(2) / Ru (0.7) / Co0.9Fe0.1(2) / PtMn (15)
Electrodes were provided above and below the magnetoresistive element, and the MR characteristics were measured by applying a magnetic field of up to 200 kA / m at room temperature. As a result, the MR ratio was as extremely high as 36%.
[0052]
Using this manufactured element, a magnetic head was manufactured by the same method as in Example 5, and an AC signal magnetic field of about 1 kA / m was applied as a sense current to output the head using this film and the head of Example 5 Compared. As a result, the output of this head isReference exampleIt was found that the sensitivity was higher than that of the head of 5.
[0053]
Also using this membraneReference exampleA memory element was produced in the same manner as in FIG. With this memory elementReference example6. When the reversal magnetic field of the
[0054]
【The invention's effect】
The magnetoresistive element of the present invention realizes a larger MR ratio than that of the conventional one, and by using this, a high output magnetoresistive head and a memory element can be realized.
[0055]
These also realize an ultra-high-density hard disk and a magnetic RAM which is an energy-saving and non-volatile solid-state memory, and can be used as a storage device or memory device for VTRs and mobile devices.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a magnetoresistive element of the present invention.
FIG. 2 is a schematic cross-sectional view of a magnetoresistive element of the present invention.
FIG. 3 is a schematic sectional view of a magnetoresistive element of the present invention.
FIG. 4 is a schematic cross-sectional view of a magnetoresistive element of the present invention.
FIG. 5 is a view showing an example of a yoke type magnetoresistive head of the present invention.
FIG. 6 is a diagram showing an example of a shielded magnetoresistive head of the present invention.
FIG. 7 is a diagram showing an example of a memory element of the present invention.
[Explanation of symbols]
1 Oxide magnetic layer
2 Nonmagnetic layer
3 Oxide magnetic layer
4 Magnetization rotation suppression layer
5 Interfacial magnetic layer
6 York
7 Magnetic pole for recording
8 Winding part
9 Insulating film
10 Upper shield
11 Electrode section
12 Magnetoresistive effect element
13 Lower shield part
14 Conductor wire for information recording
15 Conductor wire for reading information
Claims (7)
一方の前記磁性層が磁化回転抑制層と磁気的に結合して固定層を構成し、
前記一方の磁性層が2層の界面磁性膜と前記2層の界面磁性膜に挟まれたMFe2O4磁性膜(MはFe,Co,Niから選ばれる1種もしくは2種以上の元素)との積層膜より構成され、
一方の前記界面磁性膜が[磁性膜/非磁性膜/磁性膜]から成り、前記非磁性膜を介して前記二つの磁性膜が反強磁性的に結合し、
前記非磁性層を介して積層された二つの磁性層の積層膜の膜面の主に垂直方向に電流を流す、
磁気抵抗効果素子。A magnetoresistive effect element having a laminated film of two magnetic layers laminated via a nonmagnetic layer made of a metal film as a main component,
One of the magnetic layers is magnetically coupled to the magnetization rotation suppression layer to form a fixed layer,
MFe 2 O 4 magnetic film in which the one magnetic layer is sandwiched between two interface magnetic films and the two interface magnetic films (M is one or more elements selected from Fe, Co, Ni) And a laminated film,
One of the interfacial magnetic films comprises [magnetic film / nonmagnetic film / magnetic film], and the two magnetic films are antiferromagnetically coupled via the nonmagnetic film,
Current flows mainly in the vertical direction of the film surface of the laminated film of the two magnetic layers laminated via the nonmagnetic layer,
Magnetoresistive effect element.
情報を記録するために設けられた磁気抵抗効果素子、及び
前記磁気抵抗効果素子の磁気抵抗変化より情報読み出しするための導体線を主構成要素とするメモリ素子において、
前記磁気抵抗効果素子が請求項1に記載の磁気抵抗効果素子である、メモリ素子。A conductor wire that generates a magnetic field for recording information,
In a memory element including a magnetoresistive effect element provided for recording information and a conductor line for reading information from a magnetoresistive change of the magnetoresistive effect element as a main component,
A memory element, wherein the magnetoresistive effect element is the magnetoresistive effect element according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32403799A JP4572434B2 (en) | 1999-03-23 | 1999-11-15 | Magnetoresistive element, magnetoresistive head, and memory element |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11-77384 | 1999-03-23 | ||
JP7738499 | 1999-03-23 | ||
JP32403799A JP4572434B2 (en) | 1999-03-23 | 1999-11-15 | Magnetoresistive element, magnetoresistive head, and memory element |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2000340859A JP2000340859A (en) | 2000-12-08 |
JP2000340859A5 JP2000340859A5 (en) | 2006-11-09 |
JP4572434B2 true JP4572434B2 (en) | 2010-11-04 |
Family
ID=26418478
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32403799A Expired - Fee Related JP4572434B2 (en) | 1999-03-23 | 1999-11-15 | Magnetoresistive element, magnetoresistive head, and memory element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4572434B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002099906A1 (en) * | 2001-06-04 | 2002-12-12 | Matsushita Electric Industrial Co., Ltd. | Magnetoresistance element and magnetoresistance storage element and magnetic memory |
JP2003031867A (en) | 2001-07-17 | 2003-01-31 | Hitachi Ltd | Magnetoresistive effect element constituted by laminating oxide magnetic layer and metallic magnetic layer upon another |
FR2830971B1 (en) | 2001-10-12 | 2004-03-12 | Commissariat Energie Atomique | MAGNETORESISTIVE DEVICE WITH IMPROVED PERFORMANCE SPIN VALVE |
US7477490B2 (en) * | 2004-06-30 | 2009-01-13 | Seagate Technology Llc | Single sensor element that is naturally differentiated |
JP6553857B2 (en) * | 2014-09-18 | 2019-07-31 | 三星電子株式会社Samsung Electronics Co.,Ltd. | Magnetic tunnel junction device and magnetic random access memory |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001237471A (en) * | 1999-03-02 | 2001-08-31 | Matsushita Electric Ind Co Ltd | Magnetoresistance effect element and its manufacturing method, magnetoresistance effect type head, magnetic recording device, and magnetoresistance effect memory element |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69407158T2 (en) * | 1993-10-06 | 1998-05-28 | Koninkl Philips Electronics Nv | MAGNETORESISTIVE ARRANGEMENT AND THIS MAGNET HEAD USING |
JPH1041561A (en) * | 1996-07-25 | 1998-02-13 | Sanyo Electric Co Ltd | Magnetoresistance effect element |
JP2924825B2 (en) * | 1996-10-31 | 1999-07-26 | 日本電気株式会社 | Magnetoresistive element and magnetoresistive sensor using the same |
US6556390B1 (en) * | 1999-10-28 | 2003-04-29 | Seagate Technology Llc | Spin valve sensors with an oxide layer utilizing electron specular scattering effect |
-
1999
- 1999-11-15 JP JP32403799A patent/JP4572434B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001237471A (en) * | 1999-03-02 | 2001-08-31 | Matsushita Electric Ind Co Ltd | Magnetoresistance effect element and its manufacturing method, magnetoresistance effect type head, magnetic recording device, and magnetoresistance effect memory element |
Also Published As
Publication number | Publication date |
---|---|
JP2000340859A (en) | 2000-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3462832B2 (en) | Magnetic resistance sensor, magnetic head and magnetic recording / reproducing apparatus using the same | |
US6724585B2 (en) | Magnetoresistive element and device utilizing magnetoresistance effect | |
JP3563375B2 (en) | Magnetic detecting element and thin-film magnetic head using the magnetic detecting element | |
JP3590006B2 (en) | Magnetoresistive element, magnetic head, and magnetic reproducing device | |
JP3327375B2 (en) | Magnetoresistive transducer, method of manufacturing the same, and magnetic recording apparatus | |
US6657823B2 (en) | Differential detection read sensor, thin film head for perpendicular magnetic recording and perpendicular magnetic recording apparatus | |
US6608738B2 (en) | Magnetoresistance effect device utilizing an oxide film to produce antiferromagnetic exchange-coupling between first and second magnetic films in either the pinned layer or the free layer of the device | |
JP3601690B2 (en) | Magnetoresistive element and manufacturing method thereof, magnetoresistive head, magnetic recording device, magnetoresistive memory element | |
JP3657916B2 (en) | Magnetoresistive head and perpendicular magnetic recording / reproducing apparatus | |
JPH05347013A (en) | Magnetic recording and reproducing device | |
JP2003281705A (en) | Magnetic head, magnetic head gimbal assembly, magnetic recording/reproducing device and magnetic memory | |
JP2009026400A (en) | Differential magnetoresistive magnetic head | |
US6456469B1 (en) | Buffer layer of a spin valve structure | |
JP2001052316A (en) | Magnetoresistance effect head, its manufacture effect head, and magnetic recording apparatus using the magnetoresistance | |
JPH1097709A (en) | Spin valve magneto-resistive head and its production as well as magnetic recording and reproducing device | |
JP3177184B2 (en) | Magnetoresistive element, magnetic head and magnetic recording / reproducing apparatus using the same | |
JP3817399B2 (en) | Magnetoresistive sensor | |
JP4572434B2 (en) | Magnetoresistive element, magnetoresistive head, and memory element | |
US6552882B1 (en) | Information reproduction head apparatus and information recording/reproduction system | |
JP2000315305A (en) | Magnetic reproducing head, magnetic head assembly, magnetic disk driving device and manufacture of magnetic head assembly | |
JP3575672B2 (en) | Magnetoresistance effect film and magnetoresistance effect element | |
KR19980024661A (en) | Magnetoresistive device and magnetic head | |
JP3261698B2 (en) | Magnetic head and magnetoresistive element | |
JP3243092B2 (en) | Thin film magnetic head | |
JP2000276714A (en) | Spin valve sensor fixing magnetization with current |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060920 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060922 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20061012 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20091119 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091222 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091224 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100112 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100720 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100802 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130827 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |