Nothing Special   »   [go: up one dir, main page]

JP4568528B2 - Water treatment equipment - Google Patents

Water treatment equipment Download PDF

Info

Publication number
JP4568528B2
JP4568528B2 JP2004134196A JP2004134196A JP4568528B2 JP 4568528 B2 JP4568528 B2 JP 4568528B2 JP 2004134196 A JP2004134196 A JP 2004134196A JP 2004134196 A JP2004134196 A JP 2004134196A JP 4568528 B2 JP4568528 B2 JP 4568528B2
Authority
JP
Japan
Prior art keywords
tank
carrier
sludge
aerobic
anaerobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004134196A
Other languages
Japanese (ja)
Other versions
JP2005313081A (en
Inventor
俊則 京才
義晴 縄村
稔 佐藤
勝則 大泉
育 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nishihara Environment Co Ltd
Original Assignee
Nishihara Environmental Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nishihara Environmental Technology Co Ltd filed Critical Nishihara Environmental Technology Co Ltd
Priority to JP2004134196A priority Critical patent/JP4568528B2/en
Publication of JP2005313081A publication Critical patent/JP2005313081A/en
Application granted granted Critical
Publication of JP4568528B2 publication Critical patent/JP4568528B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は、下水、産業廃水、し尿などの排水の処理に関し、特に、活性汚泥を保持する担体を利用した水処理装置に関する。   The present invention relates to the treatment of wastewater such as sewage, industrial wastewater, and human waste, and more particularly to a water treatment apparatus using a carrier that holds activated sludge.

従来より、水処理においては、活性汚泥法が広く用いられているが、高い活性汚泥濃度が保持できないため、処理時間が長く、負荷変動に対する処理の安定性に問題があった。また、閉鎖性水域における富栄養化現象の原因となる窒素およびリンなどの栄養塩類を除去することが求められていた。   Conventionally, the activated sludge method has been widely used in water treatment. However, since a high activated sludge concentration cannot be maintained, the treatment time is long and there is a problem in the stability of treatment against load fluctuations. In addition, it has been required to remove nutrients such as nitrogen and phosphorus that cause eutrophication in closed waters.

一方、わが国の下水処理施設においては、すでに増設のスペースがなく、また、増設のための土地の取得が困難な状況にあり、既存の施設を利用してより高度な水処理を可能とすることが要求されている。   On the other hand, in Japan's sewage treatment facilities, there is already no space for expansion, and it is difficult to acquire land for expansion, and it will be possible to use existing facilities for more advanced water treatment. Is required.

これに対して、微生物や活性汚泥を保持しうる担体素材の性能向上に伴い、これらの担体を利用した水処理装置が開発されている。   On the other hand, with the improvement of the performance of carrier materials capable of holding microorganisms and activated sludge, water treatment apparatuses using these carriers have been developed.

たとえば、特許第3285252号公報や特開2002−263687号公報において、微生物固定化担体を内在する好気槽と無酸素槽とを有する硝化脱窒法による有機性汚水の生物処理による水処理装置が開示されている。   For example, in Japanese Patent No. 3285252 and Japanese Patent Application Laid-Open No. 2002-263687, a water treatment apparatus by biological treatment of organic wastewater by a nitrification denitrification method having an aerobic tank and an oxygen-free tank containing a microorganism-immobilized carrier is disclosed. Has been.

かかる水処理装置においては、微生物固定化担体は好気槽にのみ保持されるが、微生物固定化担体が被処理水とともに好気槽を流下し、好気槽末端部の担体濃度が高くなり、槽内に担体の濃度分布が生ずるという問題がある。また、微生物固定化担体を好気槽内に保持するために好気槽流出側に担体分離スクリーンを設ける必要がある。好気槽からの流出水は硝化液として無酸素槽に移送されるが、従来の微生物固定化担体は好気性処理においてのみ使用でき、無酸素槽における脱窒には適さないことから、無酸素槽には移送できなかった。   In such a water treatment apparatus, the microorganism-immobilized carrier is held only in the aerobic tank, but the microorganism-immobilized carrier flows down the aerobic tank together with the water to be treated, and the carrier concentration at the end of the aerobic tank increases. There is a problem that a carrier concentration distribution is generated in the tank. Further, in order to hold the microorganism-immobilized carrier in the aerobic tank, it is necessary to provide a carrier separation screen on the outflow side of the aerobic tank. Although the effluent from the aerobic tank is transferred to the anoxic tank as a nitrification solution, the conventional microorganism-immobilized carrier can be used only in the aerobic treatment and is not suitable for denitrification in the anoxic tank. It could not be transferred to the tank.

この問題に対して、特許第3285252号公報に記載された発明では、好気槽末端部の気液混合移送手段からの返送ラインに担体分離器を設けて、途中で固液を分離し、微生物固定化担体を好気槽先端に返送し、好気槽流出液を無酸素槽に移送している。この移送に対しては、エアリフトポンプなどが使用されるが、処理水の流下速度やスクリーン構造を原因として、気液混合移送手段の下流側にある担体分離スクリーンに微生物固定化担体が接触して、摩耗したり、その他の夾雑物とともにスクリーンを閉塞して、スクリーン前後の水位差により、担体分離スクリーン上方から活性汚泥混合液が流出したり、担体分離スクリーンの変形を生じることとなる。   In order to solve this problem, in the invention described in Japanese Patent No. 3285252, a carrier separator is provided in the return line from the gas-liquid mixing and transferring means at the end of the aerobic tank, and the solid-liquid is separated in the middle. The immobilization carrier is returned to the tip of the aerobic tank, and the aerobic tank effluent is transferred to the anaerobic tank. For this transfer, an air lift pump or the like is used. However, due to the flow rate of the treated water and the screen structure, the microorganism-immobilized carrier contacts the carrier separation screen on the downstream side of the gas-liquid mixing and transferring means. The screen is closed along with wear and other impurities, and the activated sludge mixed liquid flows out from above the carrier separation screen or deforms the carrier separation screen due to the difference in water level before and after the screen.

特開2002−263687号公報に記載された発明では、硝化液の移送をスクリーンの下流側で行い、スクリーンの前後に水位センサーを設けることで、消化液の循環量を調整して、スクリーンからの活性汚泥液の越流や担体の流出を防止している。しかし、この場合には、担体の分布を調整するためには、別途、担体の返送手段を設ける必要があった。   In the invention described in Japanese Patent Application Laid-Open No. 2002-263687, the nitrification liquid is transferred downstream of the screen, and a water level sensor is provided before and after the screen to adjust the circulation amount of the digestive juice. Prevents overflow of activated sludge liquid and carrier outflow. However, in this case, in order to adjust the distribution of the carrier, it is necessary to separately provide a carrier returning means.

さらに、微生物固定化担体の活性を維持するために好気槽内部に設備されている散気装置の改修を行う際には、好気槽を休止して、内部を空にする必要があり、これに対して、特許第3285252号公報に記載された発明では、並列に配置された複数系列の別の系の装置に微生物固定化担体を移送する手段を設けて対処しており、硝化液や微生物固定化担体の移送ラインが複雑なものとなっている。   Furthermore, when refurbishing the air diffuser installed inside the aerobic tank in order to maintain the activity of the microorganism-immobilized carrier, it is necessary to pause the aerobic tank and empty the inside. On the other hand, in the invention described in Japanese Patent No. 3285252, a means for transferring the microorganism-immobilized carrier is provided in another series of devices arranged in parallel to cope with this problem. The transfer line of the microorganism-immobilized carrier is complicated.

一方、既存の設備を利用して、嫌気性処理、無酸素処理および好気性処理を1つの反応槽で行う嫌気・無酸素・好気法による水処理装置が開発されている。かかる水処理装置は、第1固液分離手段(最初沈殿池)、反応槽、第2固液分離手段(最終沈殿池)からなり、反応槽は、嫌気槽、無酸素槽および好気槽に3分割された構成となっている。   On the other hand, an anaerobic, anaerobic, and aerobic water treatment apparatus that performs anaerobic treatment, oxygen-free treatment, and aerobic treatment in one reaction tank has been developed. Such a water treatment apparatus comprises a first solid-liquid separation means (first sedimentation basin), a reaction tank, and a second solid-liquid separation means (final sedimentation basin). The reaction tanks are anaerobic tank, anoxic tank and aerobic tank. The configuration is divided into three.

まず、流入排水は、最初沈殿池で固液分離され、その分離液が嫌気槽に導入され、嫌気槽では、最終沈殿池から返送汚泥管を通じて返送された返送汚泥と、前記分離液が接触される。この際、返送汚泥に含まれるリン蓄積菌が、流入排水中の溶解性BOD(主に揮発性有機酸)を取り込むと同時に、菌体内に蓄積していたリンを放出する。   First, influent wastewater is firstly solid-liquid separated in a settling basin, and the separated liquid is introduced into an anaerobic tank. In the anaerobic tank, the returned sludge returned from the final settling basin through a return sludge pipe is contacted with the separated liquid. The At this time, the phosphorus accumulating bacteria contained in the returned sludge take in the soluble BOD (mainly volatile organic acid) in the inflow wastewater and simultaneously release the phosphorus accumulated in the cells.

次に、嫌気槽の流出水は無酸素槽に導入され、無酸素槽では、好気槽で酸化された酸化態窒素を含む混合液が循環され、無酸素状態で前記流出水および混合液が接触される。これにより、汚泥中に含まれる脱窒細菌が流入排水中のBODを利用して脱窒を行い、酸化態窒素は窒素ガスとして除去される。   Next, the effluent water from the anaerobic tank is introduced into the anoxic tank, and in the anoxic tank, a mixed liquid containing oxidized nitrogen oxidized in the aerobic tank is circulated. Touched. Thereby, the denitrifying bacteria contained in the sludge performs denitrification using the BOD in the inflow wastewater, and the oxidized nitrogen is removed as nitrogen gas.

さらに、無酸素槽の流出水は好気槽に導入され、好気状態下で流入排水中のBODは酸化分解されるとともに、汚泥中に含まれる硝化細菌によりアンモニア態窒素や有機態窒素が硝化され、リンはリン蓄積菌により過剰に再摂取され、液相中から除去される。   Furthermore, the effluent from the anaerobic tank is introduced into the aerobic tank, and BOD in the inflow wastewater is oxidatively decomposed under aerobic conditions, and ammonia nitrogen and organic nitrogen are nitrified by nitrifying bacteria contained in the sludge. The phosphorus is re-uptaked excessively by the phosphorus accumulating bacteria and removed from the liquid phase.

好気槽の流出水は最終沈殿池に導入され、処理水と汚泥とに固液分離され、処理水は消毒後に放流され、汚泥は返送汚泥管を通じて嫌気槽に一部返送される。また、汚泥の一部は余剰汚泥として汚泥処理工程で処理されるか、いったん最初沈殿池に移送し、初沈汚泥とともに汚泥処理工程で処理される。   The outflow water from the aerobic tank is introduced into the final sedimentation basin and separated into solid and liquid into treated water and sludge. The treated water is discharged after disinfection, and the sludge is partially returned to the anaerobic tank through the return sludge pipe. In addition, a part of the sludge is treated as surplus sludge in the sludge treatment process, or once transferred to the first sedimentation basin and treated in the sludge treatment process together with the initial sedimentation sludge.

嫌気・無酸素・好気法による水処理装置では、リンの除去に関して、排水水質の変動により嫌気槽でのリン蓄積菌のリン放出が不安定となり、好気槽での十分なリン除去が得られないという課題があった。これに対して、本出願人等により開示された特開平11−156387号公報では、最初沈殿池からの分離水を嫌気槽へ導入せず、最初沈殿池からの初沈汚泥を導入する汚泥調質槽で得られる揮発性有機酸(VFA)を含んだ酸発酵液を導入し、最終沈殿池から導入された返送汚泥と接触させ、嫌気槽での流入排水の影響を取り除いている。   In an anaerobic / anoxic / aerobic water treatment system, the phosphorus release of phosphorus accumulating bacteria in the anaerobic tank becomes unstable due to fluctuations in the drainage water quality, and sufficient phosphorus removal is achieved in the aerobic tank. There was a problem that was not possible. On the other hand, in Japanese Patent Application Laid-Open No. 11-156387 disclosed by the present applicants and the like, the sludge condition in which the first settling sludge from the first settling basin is introduced without introducing the separated water from the first settling basin into the anaerobic tank. The acid fermentation broth containing volatile organic acid (VFA) obtained in the peptizer is introduced and brought into contact with the returned sludge introduced from the final sedimentation basin to remove the influence of the inflow wastewater in the anaerobic tank.

特開平11−156387号公報に記載の水処理装置においては、反応槽容積の縮小化に対して、微生物固定化担体を利用して、微生物保持量を高めることで、流入排水中の有機物や窒素を安定かつ効率的に除去している。すなわち、硝化・脱窒に係る無酸素槽および好気槽の全MLSS濃度(これらの槽における活性汚泥全体の濃度)を、微生物固定化担体を利用しない場合に比べて、2倍以上保持して、汚泥滞留時間(SRT)を十分に確保して、処理の効率化を図っている。   In the water treatment apparatus described in Japanese Patent Application Laid-Open No. 11-156387, organic substances and nitrogen in the inflow wastewater are increased by using a microorganism-immobilized carrier to increase the amount of microorganisms retained for reducing the reaction tank volume. Are removed stably and efficiently. That is, the total MLSS concentration in the anaerobic tank and aerobic tank related to nitrification / denitrification (concentration of the activated sludge in these tanks) is maintained at least twice as compared with the case where the microorganism-immobilized support is not used. In addition, sufficient sludge retention time (SRT) is ensured to improve processing efficiency.

特許第3285252号公報Japanese Patent No. 3285252

特開2002−263687号公報JP 2002-263687 A

特開平11−156387号公報JP-A-11-156387

本発明は、既存の下水処理施設において、生物処理槽や最終沈殿池の拡張といった既存処理施設の増設を必要とすることなく、最終沈殿池の負荷を高めることなく、負荷水量の増加に対応でき、かつ、バルキングを防止しうる水処理装置を提供することを目的とする。   The present invention can cope with an increase in the amount of load water in an existing sewage treatment facility without the need to add an existing treatment facility such as expansion of a biological treatment tank or final sedimentation basin, and without increasing the load on the final sedimentation basin. And it aims at providing the water treatment apparatus which can prevent bulking.

具体的には、活性汚泥や微生物を担持した担体が、最終沈殿池に流出することを防止して、最終沈殿池の負荷を高めず、かつ、余剰汚泥の発生を抑制し、さらには、処理時間の短縮や処理の安定を図ることができる水処理装置を提供する。   Specifically, the carrier carrying activated sludge and microorganisms is prevented from flowing into the final sedimentation basin, the load on the final sedimentation basin is not increased, the generation of excess sludge is suppressed, and further, the treatment A water treatment apparatus capable of reducing time and stabilizing treatment is provided.

また、既存設備を拡張することなく、必要に応じて、BOD除去、窒素除去およびリン除去を可能な設備を提供する。   In addition, the present invention provides equipment capable of removing BOD, removing nitrogen, and removing phosphorus as needed without expanding existing equipment.

本発明は、下流側に吸引口と上流側に吐出口とを有して担体を返送する返送管が設けられた生物反応槽で、該担体を用いて排水を処理する水処理装置に係る。特に、本発明においては、前記返送管の周囲に設けられた複数の空気吹込孔、該空気吹込孔の周りに空気溜りを形成する気体分散器、および、該気体分散器に接続して空気を供給する送気管が備えられると共に、前記返送管にはエア抜きバルブが設けられているThe present invention relates to a water treatment apparatus which has a suction port on the downstream side and a discharge port on the upstream side and is provided with a return pipe for returning the carrier, and which treats waste water using the carrier. In particular, in the present invention, a plurality of air blowing holes provided around the return pipe , a gas distributor forming an air reservoir around the air blowing holes, and air connected to the gas distributor with flue to supply equipped et be, vent valve is provided in the return pipe.

前記生物反応槽は、担体分離器を備えた好気槽であることが望ましい。 The bioreactor is preferably a aerobic tank provided with a carrier separator.

前記生物反応槽は、担体分離器を備えた好気槽と無酸素槽とからなることが望ましい。 The biological reaction tank is preferably composed of an aerobic tank equipped with a carrier separator and an oxygen- free tank.

前記生物反応槽は、嫌気槽を備えることが望ましい。 The biological reaction tank preferably includes an anaerobic tank .

前記生物反応槽は、有機物添加管を備えることが望ましい。 The biological reaction tank preferably includes an organic substance addition tube .

本発明による水処理装置では、活性汚泥を高濃度にできるので、活性汚泥循環変法が必要とする反応槽の容量の半分となる。すなわち、活性汚泥循環変法と比較して半分の滞留時間でBOD、窒素の除去が可能となる。   In the water treatment apparatus according to the present invention, the activated sludge can be made high in concentration, so that the capacity of the reaction tank required by the activated sludge circulation modified method is reduced to half. That is, BOD and nitrogen can be removed in half the residence time compared with the activated sludge circulation modified method.

活性汚泥を保持する担体は、反応槽内でのみ滞留するため、最終沈殿池の負荷を高めずに活性汚泥を高濃度とすることができ、最終沈殿池を拡張する必要がなく、既存の設備を利用できる。   Since the carrier that holds the activated sludge stays only in the reaction tank, the activated sludge can be concentrated at a high concentration without increasing the load on the final settling basin. Can be used.

担体の投入により、活性汚泥を反応槽内に高濃度に保持でき、SS負荷が低下するので、汚泥の沈降性を安定化することができる。   By introducing the carrier, the activated sludge can be kept at a high concentration in the reaction tank, and the SS load is reduced, so that the sedimentation property of the sludge can be stabilized.

担体混合液の返送に、エアリフト循環を利用し、循環ポンプに係るコストを低減できる。   Airlift circulation is used for returning the carrier mixture, and the cost associated with the circulation pump can be reduced.

硝化において汚泥の管理が重要であるが、硝化菌を担体に保持できるため、維持管理が容易となり、汚泥滞留時間に関係なく、低い水温でも所定の滞留時間で高い窒素除去率を得られる。さらに、高水温時で窒素負荷が高くても、高い窒素除去率を得られる。そのため、高窒素負荷処理が可能となった。   Although management of sludge is important in nitrification, since nitrifying bacteria can be held on a carrier, maintenance management becomes easy, and a high nitrogen removal rate can be obtained at a predetermined residence time even at a low water temperature regardless of the sludge residence time. Furthermore, even if the nitrogen load is high at high water temperature, a high nitrogen removal rate can be obtained. Therefore, high nitrogen load processing became possible.

嫌気槽と、担体を利用する無酸素槽と好気槽の組合せを、既存の標準活性汚泥法の設置面積と同程度の大きさで、脱窒と脱リンが同時に除去可能となり、生物反応槽の構造を変更することなく、既存の処理装置に適用でき、処理施設の省容量化、省スペース化が図れる。さらに、脱窒や脱リンに際して、メタノールや薬品の添加を不要としつつ、高い窒素とリンの除去率を得ることができる。   A combination of an anaerobic tank, an anaerobic tank using a carrier, and an aerobic tank has the same size as the installation area of the existing standard activated sludge process. This can be applied to an existing processing apparatus without changing the structure of the processing facility, and the processing facility can be reduced in capacity and space. Furthermore, a high nitrogen and phosphorus removal rate can be obtained while eliminating the need for methanol and chemicals during denitrification and dephosphorization.

本発明の一態様では、返送管の中に送気管を設けないので、返送管の口径を小さくでき、設備コストを削減できる。また、吐出口を水中にすると、揚程を小さくできるので、揚水効率を向上させることが可能となり、運転コストを少なくできる。   In one embodiment of the present invention, since the air supply pipe is not provided in the return pipe, the diameter of the return pipe can be reduced, and the equipment cost can be reduced. Further, when the discharge port is submerged, the head can be reduced, so that the pumping efficiency can be improved and the operating cost can be reduced.

図1は、本発明による水処理装置の第1態様を示すフローシート図である。なお、全図を通じて、同一または相当部分には同一符号を付して重複説明を省略する。また、担体(16)は、説明のために一部を図示し、大部分の図示を、存在が分かる程度に省略した。また、全図を通じて、水などの流れを矢印で示した。   FIG. 1 is a flowchart showing a first embodiment of a water treatment apparatus according to the present invention. Throughout the drawings, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted. In addition, the carrier (16) is partially illustrated for the sake of explanation, and most of the illustration is omitted to the extent that the presence can be understood. In addition, the flow of water and the like is indicated by arrows throughout the entire diagram.

図1から明らかなように、第1態様では好気槽(5)のみからなる生物反応槽(2)から構成される。   As is apparent from FIG. 1, the first mode is constituted by a biological reaction tank (2) consisting only of an aerobic tank (5).

最初沈殿池(第1固液分離手段)(1)には、沈殿池のほかに膜を利用した分離装置やろ材を利用したろ過装置を採用してもよい。最初沈殿池(1)で固液分離された分離液を、移送管(13)で好気槽(5)に導入し、最初沈殿池(1)からの汚泥および最後沈殿液からの返送汚泥を管路で導入する。   In addition to the sedimentation basin, the first sedimentation basin (first solid-liquid separation means) (1) may employ a separation device using a membrane or a filtration device using a filter medium. The separated liquid separated in the first sedimentation basin (1) is introduced into the aerobic tank (5) through the transfer pipe (13), and the sludge from the first sedimentation basin (1) and the returned sludge from the last sedimentation liquid are removed. Introduce by pipeline.

最初沈殿池(1)の汚泥は、ローターマットを通じてし渣を除いた後に投入するとよい。投入される汚泥の濃度が設定濃度となるように、電動調節弁を制御して、最初沈殿池(1)の投入量を制御する。たとえば、22000m3 /日あたりで、最初沈殿池(1)からの初沈汚泥80〜90m3 /日を投入する。なお、最初沈殿池(1)の汚泥を投入しているが、最初沈殿池(1)からの汚泥を汚泥調質槽(図示せず)に導き、汚泥発酵物ないしは汚泥発酵後の上澄水など、易分解性有機物を投入してもよい。 The sludge in the first sedimentation basin (1) may be added after removing the residue through the rotor mat. The electric control valve is controlled so that the concentration of the introduced sludge becomes the set concentration, and the input amount of the first settling basin (1) is controlled. For example, 80 to 90 m 3 / day of first settling sludge from the first settling basin (1) is charged at around 22000 m 3 / day. The sludge from the first sedimentation basin (1) is introduced, but the sludge from the first sedimentation basin (1) is guided to a sludge tempering tank (not shown), and the sludge fermentation product or the supernatant water after sludge fermentation is used. An easily decomposable organic substance may be added.

担体(16)は、微生物を保持する。この担体(16)は、主に一辺もしくは直径が5〜30mmの立体形状のポリウレタン製のものを用いるが、ポリエステルやポリプロピレンなど、生分解性がきわめて低く、耐食性、耐久性に優れていれば、材質は任意である。また、活性炭などの天然素材を用いてもよい。また、曝気や撹拌により槽内を流動し、微生物を保持できる機能を有するものであれば、形状や大きさは任意である。また、微生物の保持形態も、微生物を担体(16)の表面や内部に付着固定させてもよく、あるいは、担体材料で微生物を包括固定してもよい。さらに、担体(16)の材質は、無機性物質および有機性物質のいずれでも適用可能である。   The carrier (16) holds microorganisms. This carrier (16) is mainly made of a three-dimensional polyurethane having a side or a diameter of 5 to 30 mm, but if the biodegradability is extremely low, such as polyester or polypropylene, and is excellent in corrosion resistance and durability, The material is arbitrary. Natural materials such as activated carbon may also be used. Moreover, the shape and the size are arbitrary as long as it has a function of flowing in the tank by aeration or stirring and retaining microorganisms. The microorganisms may be held in a manner that the microorganisms are adhered and fixed to the surface or inside of the carrier (16), or the microorganisms may be comprehensively fixed with a carrier material. Furthermore, the material of the carrier (16) can be any of an inorganic substance and an organic substance.

好気槽(5)の末端部から先端部へ、好気槽(5)の混合液および担体(16)を循環させる返送管(10)が設けられる。返送管(10)はエアリフト部(31)と横引き部(32)からなり、送気管と気体分散器(14)が設けられる。返送管(10)に混合液および担体(16)を取り入れる吸込口(15)は、槽下部に設けられる。返送管(10)に、気体分散器(14)としてエアの吹込のための孔(25mm)を複数個設けて、空気溜まりを設けて、空気の吹込みを均一にする。孔の位置は、管の切り口が角でも、管の切り口が円でも、同一面の周囲に設ける。吐出量を大きくするためには、気体分散器(14)は、できるだけ下部に設けることが望ましい。返送管(10)の吸込口は、略45°からそれよりも下向きに構成することが望ましい。なお、気体分散器(14)の空気吹込み口の孔径は、移送量により変化する。   A return pipe (10) that circulates the liquid mixture of the aerobic tank (5) and the carrier (16) from the end to the tip of the aerobic tank (5) is provided. The return pipe (10) includes an air lift part (31) and a horizontal pulling part (32), and an air supply pipe and a gas distributor (14) are provided. A suction port (15) for taking the mixed liquid and the carrier (16) into the return pipe (10) is provided at the bottom of the tank. The return pipe (10) is provided with a plurality of holes (25 mm) for blowing air as a gas disperser (14), and an air reservoir is provided to make air blowing uniform. The positions of the holes are provided around the same surface regardless of whether the cut end of the tube is a corner or the cut end of the tube is a circle. In order to increase the discharge amount, it is desirable that the gas disperser (14) is provided as low as possible. It is desirable that the suction port of the return pipe (10) is configured to be substantially downward from 45 °. In addition, the hole diameter of the air blowing port of a gas disperser (14) changes with transfer amounts.

返送管(10)エア抜きバルブは、水面より上に設ける。これは脈動を防ぐためであるが、エア抜きバルブを閉めることにより、強制的に脈動を発生させて、担体(16)の汚泥を落とすことも可能である。   Return pipe (10) The air vent valve is provided above the water surface. This is to prevent pulsation, but it is also possible to force the pulsation and close the sludge of the carrier (16) by closing the air vent valve.

返送管(10)の移送部分は、水中に設けても、水面より上に設けてもよい。形状は管路でもよいが、水面より上に設けた開水路としてテーパーを1/100程度とすることもできる。担体(16)を含む混合液を開水路で返送することで、水と担体(16)の分離や蓄積を防止することができる。また、混合液や担体(16)の循環量の確認も、開水路における流速の測定や水深の測定が簡単なので、容易となる。さらに、初期の担体投入時に開水路に投入することで、担体(16)と水を急速になじませることで、馴養期間を短くすることが可能となる。   The transfer portion of the return pipe (10) may be provided in water or above the water surface. The shape may be a pipe line, but the taper may be about 1/100 as an open water path provided above the water surface. By returning the mixed liquid containing the carrier (16) through the open channel, separation and accumulation of water and the carrier (16) can be prevented. In addition, confirmation of the circulation amount of the mixed liquid and the carrier (16) is easy because it is easy to measure the flow velocity and the water depth in the open channel. Furthermore, the acclimatization period can be shortened by introducing the carrier (16) and water rapidly by introducing it into the open channel when the carrier is initially introduced.

好気槽(5)の末端部には、担体(16)と好気槽(5)からの流出液を分離する手段として、担体分離器(例えば、パンチングプレート)(17)を用いる。主として孔径3〜20mmφで、開孔率はパンチングプレート(17)の強度が保持できる最大として、加工を行うのがよい。なお、パンチングプレート(17)の厚さは、1〜5mmとするのが良い。   At the end of the aerobic tank (5), a carrier separator (for example, a punching plate) (17) is used as means for separating the effluent from the carrier (16) and the aerobic tank (5). Processing is preferably performed with a hole diameter of 3 to 20 mm and a hole area ratio that can maintain the strength of the punching plate (17). The thickness of the punching plate (17) is preferably 1 to 5 mm.

パンチングプレート(17)は、好気槽(5)の末端において、垂直に設けるが、槽の形状などによっては傾斜があってもよい。一般には、処理水の流れる方向に直角に設けられるが、好気槽(5)の末端部において、コの字形状に好気槽(5)の末端部に設置したパンチングプレートを通過するようにしてもよい。   The punching plate (17) is provided vertically at the end of the aerobic tank (5), but may be inclined depending on the shape of the tank. Generally, it is provided at right angles to the direction in which the treated water flows, but at the end of the aerobic tank (5), it passes through a punching plate installed at the end of the aerobic tank (5) in a U-shape. May be.

パンチングプレート(17)の孔の大きさやピッチについては、担体(16)の大きさなどの要因により決定される。ただし、好気槽(5)の担体(16)がスムーズに流動するためには、パンチングプレート(17)の開孔部を通過する流出液の通過速度を、通常は、0.3〜3cm/secとすることが好ましい。   The size and pitch of the holes of the punching plate (17) are determined by factors such as the size of the carrier (16). However, in order for the carrier (16) of the aerobic tank (5) to flow smoothly, the passing speed of the effluent passing through the aperture of the punching plate (17) is usually 0.3-3 cm / It is preferable to set to sec.

好気槽末端の担体分離器(17)として、バースクリーンや集水管を設けて担体分離を行いうるが、担体(16)がバーに食い込むなどして、担体(16)の摩耗が激しい。しかし、パンチングプレートは、内側に突起がなく、摩擦係数が低いことから、担体接触側が滑らかであり、担体(16)の摩耗を防止することができる。なお、担体分離器(17)は、これに限らず、担体(16)の摩耗が少なく、分離可能なものであれば、いかなるものでもよい。   As the carrier separator (17) at the end of the aerobic tank, a carrier can be separated by providing a bar screen or a water collecting pipe. However, the carrier (16) wears heavily because the carrier (16) bites into the bar. However, since the punching plate has no protrusion on the inside and has a low coefficient of friction, the carrier contact side is smooth and wear of the carrier (16) can be prevented. The carrier separator (17) is not limited to this, and any carrier separator (17) may be used as long as the carrier (16) has little wear and can be separated.

かかる担体分離器(17)を設けることにより、担体(16)の摩耗を防止し、かつ、夾雑物による閉塞により、担体分離器(17)の前後での水頭差が生じるのを防止することができ、担体(16)や活性汚泥を、最終沈殿池(9)に導くことがない。   By providing such a carrier separator (17), it is possible to prevent the carrier (16) from being worn, and to prevent the head difference between the front and the rear of the carrier separator (17) from being blocked by impurities. The carrier (16) and activated sludge are not led to the final sedimentation basin (9).

さらに、担体分離器(17)の上流側下部に、担体分離器に平行に曝気の帯ができるように洗浄用散気設備(19)を設ける。これにより、担体分離器(17)に沿って上向流が生じる。そこで、流水方向の流れで担体分離器(17)に寄ってきた担体(16)は、浮上しながら、担体分離器(17)に付着した夾雑物やスカムを掻き取りながら移動することで、担体分離器(17)前後の水頭差ができることを防止できる。なお、担体分離器(17)近傍に消泡装置を設けてもよい。   Further, a cleaning air diffuser (19) is provided in the lower part on the upstream side of the carrier separator (17) so as to create an aeration zone parallel to the carrier separator. This creates an upward flow along the carrier separator (17). Therefore, the carrier (16) that has approached the carrier separator (17) by the flow in the direction of flowing water moves while scraping off foreign matter and scum adhering to the carrier separator (17) while floating. It is possible to prevent the head difference between the front and rear separators (17). A defoaming device may be provided in the vicinity of the carrier separator (17).

好気槽(5)には、処理水の流れる方向と平行に、散気設備(8)が設けられる。散気設備(8)は、好気槽(5)内の処理水を曝気できるものであれば、任意である。散気設備(8)としては、微細気泡散気筒を用いることが推奨されるが、散気板などを用いることもできる。微細気泡散気筒を使用する場合、孔の開いたキャップを取り付け、担体(16)が散気設備(8)内に入り込まないようにする。   The aerobic tank (5) is provided with an air diffusion facility (8) in parallel with the direction in which the treated water flows. The diffuser facility (8) is optional as long as it can aerate the treated water in the aerobic tank (5). As the air diffusion facility (8), it is recommended to use a fine bubble diffusion cylinder, but an air diffusion plate or the like can also be used. When using a fine bubble diffuser cylinder, a cap with a hole is attached so that the carrier (16) does not enter the diffuser (8).

散気設備(8)は、圧力損失が大きく、かつ、経日的に変化(増加)するので、底部固定の新しい散気設備を設けるだけでは、既設の散気設備との空気配分がうまくいかないことがある。そこで、図5に示すように、ヘッダー管の高さを調整できるように可動式とする。可動式とすることで、吊上げ可能となり、散気設備(8)の交換が容易となる。これにより、担体(16)を抜いて、好気槽(5)を空にすることなく、散気設備(8)の交換が容易に行える。   The air diffuser (8) has a large pressure loss and changes (increases) over time. Therefore, the air distribution with the existing air diffuser cannot be achieved simply by installing a new air diffuser fixed at the bottom. There is. Therefore, as shown in FIG. 5, a movable type is adopted so that the height of the header pipe can be adjusted. By making it movable, it can be lifted, and it becomes easy to replace the diffuser facility (8). Thereby, replacement | exchange of aeration equipment (8) can be performed easily, without extracting a support | carrier (16) and emptying an aerobic tank (5).

好気槽(5)では、散気設備(8)により曝気し、好気性処理を行うことで、BODの酸化分解、硝化細菌による窒素成分の硝化が行われる。担体(16)は、槽容積あたり5〜50%程度を投入する。担体(16)の投入により、好気槽(5)での活性汚泥の保持濃度が向上するので、BODの除去効率が向上する。さらに、担体(16)の内部が無酸素状態となっていることから、担体(16)の好気槽脱窒により窒素の除去も可能となる。このことで、担体(16)を含む混合液を、好気槽(5)から無酸素槽(後述する)に循環運転することにより、担体(16)を投入しない場合の10〜30%増の窒素除去が可能となる。すなわち、同じ窒素除去量を得るのに循環量を減らすことができ、動力費を削減できる。また、担体(16)を投入した好気槽(5)のみの運転でも、担体(16)を投入しない場合の25%程度の窒素の除去が見込める。例えば、窒素除去の50%の内、余剰汚泥として25%、好気槽脱窒で25%、除去できることになる。また、前述の構成により、好気槽(5)での担体(16)の分布に偏りが生じることはなく、さらに、担体(16)の摩耗を最小限に抑えた水処理が可能となる。さらに、担体(16)は、反応槽内のみで滞留するので、最終沈殿池(9)の負荷を高めることなく、活性汚泥を高濃度とすることができる。これにより、余剰汚泥の発生量を、標準活性汚泥法と同程度に抑えることが可能となり、最終沈殿池(9)の拡張が不要となる。   In the aerobic tank (5), aeration is performed by the aeration equipment (8), and aerobic treatment is performed, whereby oxidative decomposition of BOD and nitrification of nitrogen components by nitrifying bacteria are performed. About 5 to 50% of the carrier (16) is charged per tank volume. Since the activated sludge retention concentration in the aerobic tank (5) is improved by introducing the carrier (16), the removal efficiency of BOD is improved. Furthermore, since the inside of the carrier (16) is in an oxygen-free state, nitrogen can be removed by aerobic tank denitrification of the carrier (16). Thus, by circulating the mixed liquid containing the carrier (16) from the aerobic tank (5) to the oxygen-free tank (described later), the carrier (16) is increased by 10 to 30%. Nitrogen can be removed. That is, the circulation amount can be reduced to obtain the same nitrogen removal amount, and the power cost can be reduced. Further, even when only the aerobic tank (5) in which the carrier (16) is charged is operated, about 25% of nitrogen can be removed when the carrier (16) is not charged. For example, of 50% of nitrogen removal, 25% can be removed as excess sludge and 25% can be removed by aerobic tank denitrification. In addition, with the above-described configuration, there is no bias in the distribution of the carrier (16) in the aerobic tank (5), and water treatment with minimal wear of the carrier (16) is possible. Furthermore, since the carrier (16) stays only in the reaction tank, the activated sludge can be made high in concentration without increasing the load on the final sedimentation tank (9). Thereby, it becomes possible to suppress the generation amount of surplus sludge to the same extent as the standard activated sludge method, and the extension of the final sedimentation basin (9) becomes unnecessary.

図2は、本発明の水処理装置の第2態様を示す。第2態様における生物反応槽(2)は、無酸素槽(4)および好気槽(5)から構成される。   FIG. 2 shows a second embodiment of the water treatment apparatus of the present invention. The biological reaction tank (2) in the second embodiment includes an anoxic tank (4) and an aerobic tank (5).

この態様では、無酸素槽(4)と好気槽(5)は、仕切により分離されている。仕切の上部より無酸素槽(4)の処理水が、好気槽(5)に流入する。このことで、無酸素槽(4)の状態と好気槽(5)の状態を分けることが可能となる。   In this embodiment, the anoxic tank (4) and the aerobic tank (5) are separated by a partition. The treated water in the oxygen-free tank (4) flows into the aerobic tank (5) from the upper part of the partition. This makes it possible to separate the state of the anaerobic tank (4) and the state of the aerobic tank (5).

無酸素槽(4)には、無酸素撹拌状態を生じさせるための撹拌機(7)が設置される。無酸素槽(4)における撹拌機(7)の羽根の枚数は、撹拌回転数を抑える必要があるため、4枚以上とするが、3〜10rpm程度で運転できて、無酸素槽(4)内に流れを生じて、担体(16)が流動する状態にできるなら、枚数に制限はない。撹拌機(7)の上部には、発泡を抑制するための羽根を取り付けてもよい。また、担体(16)の摩耗や損傷を防止するため、羽根の形状は角を丸くしたものが好ましい。担体(16)の摩耗や酸素の溶け込みを防止するために、撹拌機(7)は3〜15rpmで運転可能なものが必要である。   The oxygen-free tank (4) is provided with a stirrer (7) for generating an oxygen-free stirring state. The number of blades of the stirrer (7) in the anaerobic tank (4) is 4 or more because it is necessary to suppress the rotation speed of stirring, but it can be operated at about 3 to 10 rpm, and the anaerobic tank (4) There is no limitation on the number of sheets as long as the carrier (16) can be made to flow by generating a flow therein. You may attach the blade | wing for suppressing foaming to the upper part of a stirrer (7). In order to prevent the carrier (16) from being worn or damaged, the blades preferably have rounded corners. In order to prevent wear of the carrier (16) and oxygen dissolution, the stirrer (7) must be operable at 3 to 15 rpm.

第2態様においては、最初沈殿池(1)からの分離液は、移送管(13)を通じて無酸素槽(4)に導入される。また、最初沈殿池(1)からの初沈汚泥は、汚泥用スクリーン(11)(例えばローターマット)を通して移送管(13)を通じて無酸素槽(4)に導入される。また、好気槽(5)の混合液は、担体(16)とともに返送管(10)により無酸素槽(4)に循環される。その他の構成は、第1態様と同様である。   In the second embodiment, the separation liquid from the first sedimentation basin (1) is introduced into the anoxic tank (4) through the transfer pipe (13). The first settling sludge from the first settling basin (1) is introduced into the anoxic tank (4) through the transfer pipe (13) through the sludge screen (11) (for example, rotor mat). The mixed solution in the aerobic tank (5) is circulated to the anoxic tank (4) through the return pipe (10) together with the carrier (16). Other configurations are the same as those in the first embodiment.

無酸素槽(4)では、最初沈殿池(1)からの分離液が流入するとともに、好気槽(5)からの担体(16)を含んだ硝化液が、返送管(10)により循環しており、無酸素槽(4)内での撹拌機(7)による無酸素撹拌状態下で、活性汚泥中に含まれる脱窒細菌が、排水および初沈汚泥の有機物(BOD)を利用して、循環してくる酸素態窒素を脱窒し、窒素ガスとして除去する。   In the anaerobic tank (4), the separation liquid from the first sedimentation tank (1) flows in, and the nitrification liquid containing the carrier (16) from the aerobic tank (5) is circulated by the return pipe (10). The denitrifying bacteria contained in the activated sludge under the oxygen-free stirring condition by the stirrer (7) in the oxygen-free tank (4) uses the organic matter (BOD) of the waste water and the first settling sludge. Then, the circulating oxygen nitrogen is denitrified and removed as nitrogen gas.

無酸素槽(4)では、酸化還元電位ORPによる制御運転が望ましい。この場合、ORPセンサー(図示せず)を設置し、測定値に基づいて投入汚泥量、分離液量、循環水量を制御することにより、無酸素槽(4)内を無酸素状態に保持することが可能となる。無酸素槽(4)では、概ね0〜−300mVの酸化還元電位ORPで運転することが好ましい。   In the anaerobic tank (4), the control operation by the oxidation-reduction potential ORP is desirable. In this case, an oxygen sensor (4) is maintained in an oxygen-free state by installing an ORP sensor (not shown) and controlling the amount of input sludge, the amount of separated liquid, and the amount of circulating water based on the measured values. Is possible. In the anaerobic tank (4), it is preferable to operate at an oxidation-reduction potential ORP of about 0 to -300 mV.

脱窒処理された担体(16)を含んだ混合液は、好気槽(5)に導入され、前述した好気性処理が施される。第2態様では、無酸素槽(4)と好気槽(5)に担体(16)を添加することにより、硝化速度と脱窒速度の両方の向上を図れる高窒素負荷運転が可能となる。特に、硝化菌が担体(16)に固定されているため、成長速度の遅い硝化菌の汚泥滞留時間の管理が容易となる。その他、反応槽内での担体(16)の偏りを生ずることなく、また、担体(16)の摩耗を抑制できる点は、第1態様と同様である。   The mixed liquid containing the denitrified carrier (16) is introduced into the aerobic tank (5) and subjected to the aerobic treatment described above. In the second aspect, by adding the carrier (16) to the anaerobic tank (4) and the aerobic tank (5), a high nitrogen load operation capable of improving both the nitrification rate and the denitrification rate becomes possible. In particular, since the nitrifying bacteria are fixed to the carrier (16), the sludge residence time of the nitrifying bacteria having a slow growth rate can be easily managed. In addition, it is the same as the first embodiment in that the carrier (16) is not biased in the reaction tank and the wear of the carrier (16) can be suppressed.

図3は、本発明の水処理装置の第3態様を示す。第3態様における生物反応槽(2)は、嫌気槽(3)、無酸素槽(4)および好気槽(5)から構成される。その他の構成は、第1態様および第2態様と同様である。   FIG. 3 shows a third embodiment of the water treatment apparatus of the present invention. The biological reaction tank (2) in the third aspect includes an anaerobic tank (3), an oxygen-free tank (4), and an aerobic tank (5). Other configurations are the same as those in the first and second aspects.

この態様では、嫌気槽(3)と無酸素槽(4)の間、および無酸素槽(4)と好気槽(5)との間は、仕切により分離されている。嫌気槽(3)と無酸素槽(4)の間の仕切の上部に開口部を設ける。当該開口部を上部に設けるのは、スカムを流すことと、角落としを入れてレベルを調整することで、水没して担体(16)が流量の変動により無酸素槽(4)から嫌気槽(3)に逆流することを防止するためである。また、無酸素槽(4)の処理水は、仕切上部より好気槽(5)へと流入することで、無酸素の状態と好気の状態を分けることが可能となる。   In this aspect, the anaerobic tank (3) and the anaerobic tank (4) and the anoxic tank (4) and the aerobic tank (5) are separated by a partition. An opening is provided in the upper part of the partition between the anaerobic tank (3) and the anaerobic tank (4). The opening is provided in the upper part by flowing the scum and adjusting the level by dropping the corners, so that the carrier (16) is submerged and the anaerobic tank (4) is changed from the anaerobic tank (4) by the flow rate fluctuation ( This is to prevent backflow in 3). Further, the treated water in the anaerobic tank (4) flows into the aerobic tank (5) from the upper part of the partition, so that the anoxic state and the aerobic state can be separated.

嫌気槽(3)には、嫌気撹拌状態を生じさせるための撹拌機(6)が設置される。撹拌機(6)は、酸素の溶け込みを防止する運転が可能な攪拌機であればよい。   The anaerobic tank (3) is provided with a stirrer (6) for generating an anaerobic stirring state. The stirrer (6) may be any stirrer that can be operated to prevent oxygen from being dissolved.

第3態様においては、最初沈殿池(1)からの分離液、および汚泥用スクリーンを通じた最初沈殿池(1)からの初沈汚泥は、それぞれ移送管(13)を通じて、嫌気槽(3)および/または無酸素槽(4)に導入される。また、好気槽(5)の混合液は、担体(16)とともに返送管(10)により無酸素槽(4)に循環される。その他の構成は、第1態様および第2態様と同様である。   In the third aspect, the separation liquid from the first sedimentation basin (1) and the initial sedimentation sludge from the first sedimentation basin (1) through the sludge screen are passed through the transfer pipe (13), respectively, in the anaerobic tank (3) and / Or introduced into the anoxic tank (4). The mixed solution in the aerobic tank (5) is circulated to the anoxic tank (4) through the return pipe (10) together with the carrier (16). Other configurations are the same as those in the first and second aspects.

最初沈殿池(1)からの初沈汚泥を、移送管(13)を通じて、嫌気槽(3)や無酸素槽(4)に投入して、有機物として使用する。これにより、嫌気槽(3)において、最初沈澱池からの分離液や初沈汚泥よりの有機物は、リン蓄積菌のリン放出に利用される。また、無酸素槽(4)では、脱窒菌がこの有機物を利用して脱窒を行う。これにより、嫌気工程におけるリン放出や、無酸素工程における脱窒に対する有機物不足を、酸発酵槽を別途設けることなく、既存設備における初沈汚泥を利用することで、安価に解消できる。   The first settling sludge from the first settling basin (1) is introduced into the anaerobic tank (3) and the anoxic tank (4) through the transfer pipe (13) and used as an organic substance. Thereby, in the anaerobic tank (3), the separated substance from the first sedimentation basin and the organic matter from the first sedimentation sludge are used for the phosphorus release of the phosphorus accumulating bacteria. In the anaerobic tank (4), denitrifying bacteria use this organic matter to perform denitrification. Thereby, the phosphorus discharge | release in an anaerobic process and the organic matter shortage with respect to the denitrification in an oxygen-free process can be solved at low cost by using the first settling sludge in the existing equipment, without providing an acid fermentation tank separately.

嫌気槽(3)では、最初沈殿池(1)からの分離液が流入するとともに、汚泥用スクリーンを通じた最初沈殿池(1)からの初沈汚泥が導入される。ここで、リン蓄積菌は、撹拌機(6)による嫌気撹拌状態下で、初沈汚泥や分離液の有機物を、菌体内に貯蔵したポリリン酸を加水分解して得られるエネルギーで、菌体内に取り込む。すなわち、菌体内に蓄積していたリンを確実に放出する。さら好気・嫌気状態の繰り返し条件下では、好気条件下で、リン酸を細胞内に過剰に取り込み、ポリリン酸の形で細胞内に貯蔵する。また、この嫌気槽(3)では、糸状性細菌を不活性化できるので、沈降性のよい浮遊性汚泥が得られる。これにより、バルキングを防止することができる。   In the anaerobic tank (3), the separation liquid from the first sedimentation basin (1) flows in and the first sedimentation sludge from the first sedimentation basin (1) through the sludge screen is introduced. Here, the phosphorus accumulating bacteria are the energy obtained by hydrolyzing the polyphosphoric acid stored in the microbial bodies under the anaerobic stirring condition by the stirrer (6), and the organic substances in the microbial bodies are stored in the microbial bodies. take in. That is, the phosphorus accumulated in the cells is reliably released. Furthermore, under repeated aerobic / anaerobic conditions, phosphate is excessively taken up into cells under aerobic conditions and stored in the form of polyphosphate. Moreover, in this anaerobic tank (3), since filamentous bacteria can be inactivated, floating sludge with good sedimentation can be obtained. Thereby, bulking can be prevented.

嫌気槽(3)においても、酸化還元電位ORPによる制御運転が望ましい。この場合、ORPセンサー(図示せず)を設置し、測定値に基づいて導入汚泥量、分離液量を制御することにより、槽内を嫌気状態に保持することが可能となる。嫌気槽(3)においては、概ね、−200〜−500mVの酸化還元電位ORPで運転することが好ましい。   Also in the anaerobic tank (3), the control operation by the redox potential ORP is desirable. In this case, by installing an ORP sensor (not shown) and controlling the amount of introduced sludge and the amount of separated liquid based on the measured values, the inside of the tank can be maintained in an anaerobic state. In the anaerobic tank (3), it is generally preferable to operate at an oxidation-reduction potential ORP of -200 to -500 mV.

嫌気処理された混合液は、無酸素槽(4)に導入され、前述した脱窒処理が行われ、さらに脱窒処理された混合液は好気槽(5)に導入され、前述した好気性処理が施される。   The anaerobic mixed liquid is introduced into the anaerobic tank (4) and the above-described denitrification treatment is performed, and the denitrified mixed liquid is introduced into the aerobic tank (5) and the above-described aerobic characteristics. Processing is performed.

第3態様では、無酸素槽(4)と好気槽(5)に、担体(16)を添加することにより、硝化速度と脱窒速度の両方の向上を図れる高窒素負荷運転が可能となる。特に、硝化菌が担体(16)に固定されているため、成長速度の遅い硝化菌の汚泥滞留時間の管理が容易となる。その他、反応槽内での担体(16)の偏りを生ずることなく、また、担体(16)の摩耗を抑制できる点は、第1態様と同様である。   In the third aspect, by adding the carrier (16) to the anaerobic tank (4) and the aerobic tank (5), a high nitrogen load operation capable of improving both the nitrification rate and the denitrification rate becomes possible. . In particular, since the nitrifying bacteria are fixed to the carrier (16), the sludge residence time of the nitrifying bacteria having a slow growth rate can be easily managed. In addition, it is the same as the first embodiment in that the carrier (16) is not biased in the reaction tank and the wear of the carrier (16) can be suppressed.

さらに、別途施設を設ける必要なく、処理水量の増加のみならず、脱窒のためのメタノールや脱リンのための薬品の添加を必要とせずに、窒素やリンの効率的な除去が可能となる。また、既存設備を利用して、負荷処理水の増加に対応したBOD、SSの除去と同時に、窒素とリンの除去も可能となり、用地に制約があり、かつ、リン除去が必要な閉鎖性水域に放流する処理場において有用である。   Furthermore, it is possible to efficiently remove nitrogen and phosphorus without requiring additional facilities and not only increasing the amount of treated water but also adding methanol for denitrification and chemicals for dephosphorization. . In addition, using existing equipment, it is possible to remove nitrogen and phosphorus simultaneously with removal of BOD and SS corresponding to the increase in load treated water, and there are restrictions on the site, and closed water areas where phosphorus removal is necessary It is useful in the treatment plant that discharges to

[実施例1]
図1に示したように、生物反応槽(2)が好気槽(5)からなる水処理装置を用いて、有機物と窒素除去に適用した。
[Example 1]
As shown in FIG. 1, the biological reaction tank (2) was applied to the removal of organic matter and nitrogen by using a water treatment device comprising an aerobic tank (5).

既存の処理施設の好気槽の下流側末端部に、担体分離器(パンチングプレート)(17)を設けた。さらに、気体分散器(14)と送気管(12)とを備えた返送管(10)を設けた。   A carrier separator (punching plate) (17) was provided at the downstream end of the aerobic tank of the existing processing facility. Furthermore, the return pipe (10) provided with the gas disperser (14) and the air feed pipe (12) was provided.

担体分離器(パンチングプレート)(17)は、厚さが2mmであり、孔径8mmφで、開孔率は40%であった。開孔部を通過する通過速度は、1.4cm/secで行った。   The carrier separator (punching plate) (17) had a thickness of 2 mm, a hole diameter of 8 mmφ, and a hole area ratio of 40%. The passing speed through the aperture was 1.4 cm / sec.

図5に示したように、散気装置(8)のヘッダー管は、ニージョイント(20)で結合された2本のライザー管(21)に接続され、上部のリフトディフューザ本体(22)に接続され、さらにブロワー(図示せず)に接続される。ブロワーからの空気は、これらのライザー管(21)等を通じて散気装置のヘッダー管8に送られる。リフトディフューザ本体(22)およびニージョイント(20)の2カ所には、ヒンジが設けられており、リフトディフューザ本体(22)およびニージョイント(20)を回転させながら引っ張ることで、ヘッダー管を吊り上げることが可能である。   As shown in FIG. 5, the header pipe of the air diffuser (8) is connected to the two riser pipes (21) joined by the knee joint (20) and connected to the upper lift diffuser body (22). And further connected to a blower (not shown). The air from the blower is sent to the header pipe 8 of the diffuser through these riser pipes (21) and the like. The lift diffuser body (22) and knee joint (20) are provided with hinges at two locations, and the header pipe is lifted by pulling while rotating the lift diffuser body (22) and knee joint (20). Is possible.

図4、7に示すように、気体分散器(14)を備えた返送管(10)は、担体(16)が流れるに十分な管径にした。返送管エアリフト部(31)は、図4に示すように、吸込口(15)と気体分散器(14)とからなる。返送管エアリフト部(31)は、担体分離器(パンチングプレート)(17)の上流側に設置した。槽下部に設けられる担体(16)および混合液の吸込口(15)は、円錐形状で、吸込口(15)が水平に対して45°とした。かかる吸込口(15)は、返送管の垂直管路に接続される。垂直管路の底部側に気体分散器(14)を設けた。垂直管路は、水面上でエルボにより接続され、返送管(10)は、好気槽(5)の末端から先端部へ伸長し、エルボに接続された吐出口(25)を設けた。また、前記担体分離器(パンチングプレート)(17)の上流側下部に洗浄用散気設備(19)を設けた。なお、吸込口(15)は図1、2、3に示すようにスクリーンの上流側で、返送管横引き部(32)に接続することもできる。吸込口(15)の形状は円錐形状に限らず、吸い込みが容易であればよい。   As shown in FIGS. 4 and 7, the return pipe (10) provided with the gas disperser (14) has a pipe diameter sufficient for the carrier (16) to flow. As shown in FIG. 4, the return pipe air lift part (31) includes a suction port (15) and a gas distributor (14). The return pipe air lift part (31) was installed on the upstream side of the carrier separator (punching plate) (17). The carrier (16) and the mixed solution suction port (15) provided in the lower part of the tank were conical and the suction port (15) was 45 ° with respect to the horizontal. The suction port (15) is connected to the vertical pipe line of the return pipe. A gas distributor (14) was provided on the bottom side of the vertical pipe. The vertical pipe was connected by an elbow on the water surface, and the return pipe (10) was extended from the end of the aerobic tank (5) to the tip, and provided with a discharge port (25) connected to the elbow. Further, a cleaning air diffuser (19) is provided at the lower part on the upstream side of the carrier separator (punching plate) (17). The suction port (15) can also be connected to the return pipe horizontal pulling portion (32) on the upstream side of the screen as shown in FIGS. The shape of the suction port (15) is not limited to the conical shape, and it is sufficient that the suction is easy.

担体(16)として、15×12×12mmの大きさのポリウレタン製のスポンジを用いた。担体(16)の投入率は、槽容積比で20%であり、担体混合液の返送率は、除去率によって変化させた。   A polyurethane sponge having a size of 15 × 12 × 12 mm was used as the carrier (16). The input rate of the carrier (16) was 20% in terms of the tank volume ratio, and the return rate of the carrier mixed solution was changed depending on the removal rate.

以上の構成の生物反応槽(2)を有する水処理装置を、1年間にわたり連続運転を行った。処理対象は都市下水であった。   The water treatment apparatus having the biological reaction tank (2) having the above configuration was continuously operated for one year. The treatment target was urban sewage.

その結果、活性汚泥を、生物反応槽内に高濃度に保持できたことから、SS負荷が低下し、汚泥の沈降性が安定した。そのため、浮遊性汚泥濃度は1000〜2000mg/Lであったが、担体(16)に保持された活性汚泥を含めた全活性汚泥濃度は、3000〜4500mg/Lであった。   As a result, the activated sludge could be maintained at a high concentration in the biological reaction tank, so that the SS load was reduced and the sedimentation property of the sludge was stabilized. Therefore, the floating sludge concentration was 1000 to 2000 mg / L, but the total activated sludge concentration including the activated sludge retained on the carrier (16) was 3000 to 4500 mg / L.

好気槽(5)に担体(16)を添加したことにより、好気槽(5)での活性汚泥の保持濃度が向上し、BODの除去率が向上し、95%以上の除去率であった。さらに、担体(16)による好気槽脱窒が可能となり、窒素は、平均して30〜50%の除去率が得られた。   By adding the carrier (16) to the aerobic tank (5), the activated sludge retention concentration in the aerobic tank (5) is improved, the BOD removal rate is improved, and the removal rate is 95% or more. It was. Furthermore, the aerobic tank denitrification by the carrier (16) became possible, and a nitrogen removal rate of 30 to 50% was obtained on average.

また、担体混合液の返送に、エアリフト循環を利用したため、循環ポンプにかかるコストが低減された。また、好気槽(5)での担体(16)の分布に偏りはなく、さらに担体(16)が担体分離器(パンチングプレート)(17)に詰まることなく、担体(16)の摩耗も1%以下であった。   Further, since the air lift circulation is used for returning the carrier mixed liquid, the cost for the circulation pump is reduced. Further, the distribution of the carrier (16) in the aerobic tank (5) is not biased, the carrier (16) is not clogged with the carrier separator (punching plate) (17), and the wear of the carrier (16) is also 1 % Or less.

吸込口(15)の近傍で、担体分離器(パンチングプレート)(17)の上流側下部に設けた洗浄用散気設備(19)により、担体(16)やゴミが、パンチングプレートに詰まることがなく、そのため、担体(16)は、生物反応槽内にのみ滞留し、担体分離器(パンチングプレート)(17)をオーバーフローすることがなかった。さらに、活性汚泥が担体(16)内に保持されることから、最終沈殿池(9)の負荷を高めることがないため、既存の最終沈殿池(9)による処理で問題は生じなかった。さらに、余剰汚泥発生量も、従来の標準活性汚泥方と同程度であった。   In the vicinity of the suction port (15), the carrier (16) and dust may be clogged in the punching plate by the cleaning air diffuser (19) provided in the lower part of the upstream side of the carrier separator (punching plate) (17). Therefore, the carrier (16) stayed only in the biological reaction tank and did not overflow the carrier separator (punching plate) (17). Furthermore, since the activated sludge is retained in the carrier (16), the load on the final sedimentation basin (9) is not increased, and therefore no problem has occurred in the treatment with the existing final sedimentation basin (9). Furthermore, the amount of surplus sludge generation was similar to that of conventional standard activated sludge.

[実施例2]
図2に示したように、既存の処理施設に対して、生物反応槽(2)を無酸素槽(4)と好気槽(5)に仕切り、無酸素槽(4)に、撹拌機(7)を設けた以外は、担体(16)およびその投入率も含めて、実施例1と同様の構成とした水処理装置を設置した。
[Example 2]
As shown in FIG. 2, the biological reaction tank (2) is divided into the anaerobic tank (4) and the aerobic tank (5) with respect to the existing processing facility, and the anaerobic tank (4) Except for the provision of 7), a water treatment device having the same configuration as in Example 1 was installed, including the carrier (16) and its charging rate.

返送管(10)により、担体(16)と混合液は、好気槽(5)の末端から無酸素槽(4)の先端に返送される。担体(16)と処理水は、オーバーフローによって無酸素槽(4)から好気槽(5)へ移動することができる。   By the return pipe (10), the carrier (16) and the mixed liquid are returned from the end of the aerobic tank (5) to the tip of the anaerobic tank (4). The carrier (16) and the treated water can move from the anoxic tank (4) to the aerobic tank (5) by overflow.

以上の構成の生物反応槽(2)を有する水処理装置を、1年間にわたり連続運転を行った。処理対象は都市下水であった。窒素負荷は0.2kg/m3・日であった。 The water treatment apparatus having the biological reaction tank (2) having the above configuration was continuously operated for one year. The treatment target was urban sewage. The nitrogen load was 0.2 kg / m 3 · day.

その結果、活性汚泥を生物反応槽内に高濃度に保持でき、また担体が偏ることなく運転でき。それらのことから、SS負荷が低下し、汚泥の沈降性が安定した。そのため、浮遊性汚泥濃度は1000〜2000mg/Lであったが、担体(16)に保持された活性汚泥を含めた全活性汚泥濃度は、3000〜4500mg/Lであった。   As a result, the activated sludge can be kept at a high concentration in the biological reaction tank and can be operated without being biased. From these things, SS load fell and the sedimentation property of sludge was stabilized. Therefore, the floating sludge concentration was 1000 to 2000 mg / L, but the total activated sludge concentration including the activated sludge retained on the carrier (16) was 3000 to 4500 mg / L.

無酸素槽(4)に返送された混合液中の酸化態窒素は、流入水中の有機物や汚泥に付着した有機物を水素供与体として、担体(16)や浮遊汚泥中の脱窒細菌により還元され、窒素ガスとして処理された。なお、無酸素槽(4)は、−150mVの酸化還元電位ORPとした。   Oxidized nitrogen in the mixed solution returned to the anaerobic tank (4) is reduced by denitrifying bacteria in the carrier (16) and floating sludge using the organic matter in the inflowing water and the organic matter adhering to the sludge as a hydrogen donor. Treated as nitrogen gas. The oxygen-free tank (4) was set to a redox potential ORP of −150 mV.

硝化において、汚泥の管理は重要であるが、硝化菌を担体(16)に保持できるので、従来の活性汚泥循環変法では、窒素除去率を70%以上とするためには、16時間の滞留時間を要していたのに対して、12℃の水温でも滞留時間8時間で70%以上の窒素除去率を得ることができ、汚泥の滞留時間に留意する必要がなくなった。   In nitrification, sludge management is important, but nitrifying bacteria can be retained on the carrier (16). Therefore, in the conventional activated sludge circulation modified method, in order to achieve a nitrogen removal rate of 70% or more, a residence time of 16 hours is required. In contrast to the time required, a nitrogen removal rate of 70% or more was obtained at a water temperature of 12 ° C. with a residence time of 8 hours, and it became unnecessary to pay attention to the sludge residence time.

また、水温25℃で汚泥滞留時間が4〜5日の場合、浮遊汚泥の硝酸菌数は、2.4×102MPN/mL、担体付着汚泥は9.0×102MPN/mLとなっており、担体(16)上では、15〜20日の汚泥滞留時間が保たれていた。 When the sludge retention time is 4 to 5 days at a water temperature of 25 ° C., the number of nitric acid bacteria in the suspended sludge is 2.4 × 10 2 MPN / mL, and the carrier-attached sludge is 9.0 × 10 2 MPN / mL. The sludge residence time of 15 to 20 days was maintained on the carrier (16).

また、水温20℃で、浮遊性汚泥濃度が2000mg/L、窒素負荷が0.26kg/m3・日においても、70%以上の窒素除去率が得られた。また、BODの除去率も95%以上であった。 Further, a nitrogen removal rate of 70% or more was obtained even at a water temperature of 20 ° C., a suspended sludge concentration of 2000 mg / L, and a nitrogen load of 0.26 kg / m 3 · day. Further, the removal rate of BOD was 95% or more.

このようにして、連続運転を行ったが、無酸素槽(4)と好気槽(5)で、担体(16)の分布には偏りはなく、また、担体(16)の摩耗も1%以下であった。さらに、最終沈殿池(9)への担体(16)や活性汚泥の流出も抑制された。   In this way, continuous operation was performed, but there was no bias in the distribution of the carrier (16) in the anaerobic tank (4) and the aerobic tank (5), and the wear of the carrier (16) was 1%. It was the following. Furthermore, the outflow of the carrier (16) and activated sludge to the final sedimentation basin (9) was also suppressed.

また、無酸素槽(4)と好気槽(5)のいずれにも、担体(16)を添加することにより、硝化速度と脱窒速度の両方の向上を目的とした高窒素負荷運転が可能となった。さらに、硝化菌が担体(16)に固定されているので、成長速度の遅い硝化菌の汚泥滞留時間の管理が容易となった。   Also, by adding the carrier (16) to both the anaerobic tank (4) and the aerobic tank (5), a high nitrogen load operation can be performed for the purpose of improving both the nitrification rate and the denitrification rate. It became. Furthermore, since the nitrifying bacteria are fixed to the carrier (16), the sludge residence time of the nitrifying bacteria having a slow growth rate can be easily managed.

[実施例3]
図3に示したように、既存の処理施設に対して、生物反応槽(2)を嫌気槽(3)、無酸素槽(4)と好気槽(5)に仕切り、嫌気槽(3)および無酸素槽(4)に、撹拌機(6)、(7)をそれぞれ設けた以外は、担体(16)およびその投入率も含めて、実施例1と同様の構成とした水処理装置を設置した。
[Example 3]
As shown in FIG. 3, the biological reaction tank (2) is divided into the anaerobic tank (3), the anaerobic tank (4), and the aerobic tank (5) with respect to the existing processing facility, and the anaerobic tank (3). And a water treatment device having the same configuration as in Example 1, including the carrier (16) and its charging rate, except that the anaerobic tank (4) is provided with the stirrers (6) and (7), respectively. installed.

返送管(10)により、担体(16)と混合液は、好気槽(5)の末端から無酸素槽(4)の先端に返送される。処理水は、オーバーフローによって嫌気槽(3)から無酸素槽(4)に流入し、さらに、担体(16)と処理水は、オーバーフローによって無酸素槽(4)から好気槽(5)へ移動する。   By the return pipe (10), the carrier (16) and the mixed liquid are returned from the end of the aerobic tank (5) to the tip of the anaerobic tank (4). The treated water flows from the anaerobic tank (3) into the anaerobic tank (4) due to overflow, and the carrier (16) and the treated water move from the anaerobic tank (4) to the aerobic tank (5) due to overflow. To do.

以上の構成の生物反応槽(2)を有する水処理装置を、1年間にわたり連続運転を行った。処理対象は都市下水であった。   The water treatment apparatus having the biological reaction tank (2) having the above configuration was continuously operated for one year. The treatment target was urban sewage.

その結果、活性汚泥を生物反応槽内に高濃度に保持できたことから、SS負荷が低下し、汚泥の沈降性が安定した。そのため、浮遊性汚泥濃度は1000〜2000mg/Lであったが、担体(16)に保持された活性汚泥を含めた全活性汚泥濃度は、3000〜4500mg/Lであった。なお、担体(16)の汚泥保持量は、通常、5〜20g/Lの範囲である。   As a result, the activated sludge could be kept at a high concentration in the biological reaction tank, so that the SS load was reduced and the sedimentation property of the sludge was stabilized. Therefore, the floating sludge concentration was 1000 to 2000 mg / L, but the total activated sludge concentration including the activated sludge retained on the carrier (16) was 3000 to 4500 mg / L. In addition, the sludge holding amount of a support | carrier (16) is the range of 5-20 g / L normally.

最初沈殿池(1)の流出水は、嫌気槽(3)に流入し、嫌気槽(3)で有機物の存在の下、嫌気状態で活性汚泥の微生物体内から正リン酸態リン(PO4−P)を放出した後、好気槽(5)において、放出した以上の正リン酸態リンを、活性汚泥微生物体内に摂取し、汚泥が系外に排出される。なお、嫌気槽(3)は、−250mVの酸化還元電位ORPとした。 First, the effluent from the settling basin (1) flows into the anaerobic tank (3), and in the anaerobic tank (3), in the presence of organic matter, the anaerobic state activates normal phosphate (PO 4 − After releasing P), in the aerobic tank (5), more of the released normal phosphate phosphorus is taken into the activated sludge microorganisms, and the sludge is discharged out of the system. In addition, the anaerobic tank (3) was set to -250 mV oxidation-reduction potential ORP.

また、無酸素槽(4)に返送された混合液中の酸化態窒素は、流入水中の有機物や汚泥に付着した有機物を水素供与体として、担体(16)や浮遊汚泥中の脱窒細菌により還元され、窒素ガスとして処理された。   Oxidized nitrogen in the mixed solution returned to the anoxic tank (4) is caused by denitrifying bacteria in the carrier (16) or floating sludge using organic matter in the inflowing water or organic matter adhering to the sludge as a hydrogen donor. Reduced and treated as nitrogen gas.

これにより、すでに設置されている標準活性汚泥法の設置面積と同程度の大きさで、窒素とリンの同時除去が可能となり、生物反応槽(2)の構造を大きく変更することなく、脱窒および脱リンを行える水処理装置を提供できる。   This makes it possible to remove nitrogen and phosphorus at the same size as the installation area of the standard activated sludge method that has already been installed, and denitrification without significantly changing the structure of the biological reaction tank (2). And a water treatment apparatus capable of dephosphorization.

初沈流出水の水質は、平均で窒素30mg−N/L、リン3.5mg−P/L、BOD7mg/Lであったが、滞留時間8時間で、水温14℃の場合、処理水の水質は、平均で窒素9mg−N/L、リン0.4mg−P/L、BOD7mg/Lが得られ、脱窒のためのメタノールの添加やリン除去のための薬品の添加を必要とせずに、窒素70%以上、リン80%以上の除去率を得ることができた。   The water quality of the initial sedimentation effluent was, on average, 30 mg-N / L nitrogen, 3.5 mg-P / L phosphorus, 7 mg / L BOD, but when the residence time was 8 hours and the water temperature was 14 ° C, the quality of the treated water Obtained 9 mg-N / L of nitrogen, 0.4 mg-P / L of phosphorus and 7 mg / L of BOD on average, without the need for addition of methanol for denitrification or addition of chemicals for phosphorus removal, A removal rate of 70% or more of nitrogen and 80% or more of phosphorus could be obtained.

なお、通常、最初沈澱池からの分離液と初沈汚泥は、嫌気槽に流入するが、嫌気槽の酸化還元電位ORPが上昇するような場合(例えば、雨天時)には、無酸素槽に分離液や初沈汚泥を流入させるようにすることもあり、また、無酸素槽の酸化還元電位ORPが上昇したり、有機物源が不足するような場合には、初沈汚泥を無酸素槽に投入することもある。これらは、酸化還元電位ORPを測定することで、嫌気槽は概ね−200〜−500mV、無酸素槽は概ね0〜−300mVに保つことが推奨される。   Normally, the separation liquid from the first settling basin and the first settling sludge flow into the anaerobic tank. However, when the oxidation-reduction potential ORP of the anaerobic tank rises (for example, in rainy weather), In some cases, the separation liquid and the initial settling sludge are allowed to flow, and when the oxidation-reduction potential ORP of the anoxic tank rises or the organic matter source is insufficient, the initial settling sludge enters the anoxic tank. May be thrown in. By measuring the oxidation-reduction potential ORP, it is recommended to keep the anaerobic tank at approximately −200 to −500 mV and the anaerobic tank at approximately 0 to −300 mV.

このようにして、連続運転を行ったが、無酸素槽(4)と好気槽(5)で、担体(16)の分布に偏りはなく、また、担体(16)の摩耗も1%以下であった。さらに、最終沈殿池(9)への担体(16)や活性汚泥の流出も抑制された。   In this way, continuous operation was performed, but there was no bias in the distribution of the carrier (16) in the anaerobic tank (4) and the aerobic tank (5), and the wear of the carrier (16) was 1% or less. Met. Furthermore, the outflow of the carrier (16) and activated sludge to the final sedimentation basin (9) was also suppressed.

吐出口
吐出口(25)の設置位置は、水面の上下近傍でよい。吐出口(25)が水面より出ている形状は図1、7、11に示す。吐出口(25)が水面下である形状は図3、6、8、12に示す。吐出口(25)が水面と同じである形状は図2に示す。さらに、吐出口の位置は図12に示すように水位に追随しても、あるいは、固定しても、槽の形状や流入の形態などにより、どちらでもよい。吐出口(25)の形状は、ラッパ状でも筒状でもスムーズに担体と活性汚泥の混合液が循環排出される形状なら、いずれでもよい。
The installation position of the discharge port discharge port (25) may be near the top and bottom of the water surface. The shape of the discharge port (25) protruding from the water surface is shown in FIGS. The shape in which the discharge port (25) is below the water surface is shown in FIGS. The shape in which the discharge port (25) is the same as the water surface is shown in FIG. Further, the position of the discharge port may follow either the water level as shown in FIG. 12, or may be fixed depending on the shape of the tank, the form of inflow, or the like. The shape of the discharge port (25) may be either a trumpet shape or a cylindrical shape as long as the mixed liquid of the carrier and the activated sludge is smoothly circulated and discharged.

複数の生物反応槽は処理の形態により、好気槽および無酸素槽の組み合わせでも、好気槽、無酸素槽および嫌気槽の組み合わせでも、好気槽が2槽、無酸素槽および嫌気槽の組み合わせでも、担体が用いられており、さらにその担体を移動する必要のある場合に、本発明は用いられる。   A plurality of biological reaction tanks may be a combination of an aerobic tank and an anaerobic tank, an aerobic tank, an anaerobic tank, and an anaerobic tank, depending on the type of treatment. The present invention is used when a carrier is used even in the combination and it is necessary to move the carrier.

気体分散器
返送管(10)の返送管エアリフト部(31)に送気管(12)から空気を供給して、エアリフト効果を得るが、図13、図14および図15に示したように、返送管(10)に均等に空気が供給されるように、返送管(10)の周囲に孔(14)を明け、その周りに空気溜まりができるようにした気体分散器(14)を設けた。気体分散器(14)の位置を、返送管(10)の浸水深さのより深い位置に設けることで、送気量を減らすことができ、維持管理費用の削減となる。
Air is supplied from the air supply pipe (12) to the air return section (31) of the return pipe (10) of the gas distributor to obtain the air lift effect. However, as shown in FIGS. A hole (14) was formed around the return pipe (10) so that air was evenly supplied to the pipe (10), and a gas distributor (14) was provided so that air could be collected around the hole (14). By providing the position of the gas distributor (14) at a deeper depth of the return pipe (10), the amount of air supply can be reduced, and the maintenance cost can be reduced.

ドラフトチューブ
図16に示すように、嫌気槽内にドラフトチューブを設け、ドラフトチューブ内に流入水や返送汚泥を導くことで、汚泥の返送エネルギーを利用して攪拌のためのエネルギーを削減できる。返送汚泥をドラフトチューブに導入するのをドラフトチューブの上部に導いても良いが、構造によってはドラフトチューブの下部に導くことも良い。また、四角い嫌気槽に返送汚泥を導入する場合に隅に返送するようにし旋回流が起きるようにすることもエネルギー削減になる。また、無酸素槽にドラフトチューブを備え、返送管の吐出口をドラフトチューブの上部に設けることで、攪拌のためのエネルギーを削減できる。ドラフトチューブの形状は槽の形状に適したものを選ぶことができる。例えば、ドラフトチューブの外側に羽根を取り付け少しのエネルギーで自転できるようにすることや、ドラフトチューブの位置をチェーンで調整できるようにするなど挙げることができる。
Draft tube As shown in FIG. 16, the draft tube is provided in the anaerobic tank, and the inflowing water and the return sludge are guided into the draft tube, so that the energy for stirring can be reduced by using the return energy of the sludge. The return sludge introduced into the draft tube may be guided to the upper part of the draft tube, but depending on the structure, it may be guided to the lower part of the draft tube. In addition, when returning sludge is introduced into a square anaerobic tank, it is also possible to reduce the energy by returning the sludge to the corner so that a swirling flow occurs. Moreover, the energy for stirring can be reduced by providing the draft tube in the oxygen-free tank and providing the discharge port of the return pipe at the top of the draft tube. The shape of the draft tube can be selected according to the shape of the tank. For example, a blade can be attached to the outside of the draft tube so that it can rotate with a little energy, or the position of the draft tube can be adjusted with a chain.

有機物添加管
図6に示すように、生物反応槽(2)に有機物添加管を設けて、リン蓄積菌のリンの放出が十分できるように、有機物すなわち最初沈殿槽からの流入水や、最初沈殿槽からの引抜汚泥や、汚泥発酵槽からの有機酸や、酢酸ナトリウムなどの薬品を添加する構造とした。
Organic substance addition pipe As shown in Fig. 6, an organic substance addition pipe is provided in the biological reaction tank (2), so that the phosphorus of the phosphorus accumulating bacteria can be released sufficiently. It is structured to add chemicals such as extraction sludge from the tank, organic acid from the sludge fermentation tank, and sodium acetate.

なお、無酸素槽の攪拌羽根は担体の摩耗を防止するように、羽根の角を落としてある。   It should be noted that the stirring blades of the anaerobic tank have the blades angled to prevent the carrier from being worn.

担体分離器(17)の形状としては、スクリーンとしてパンチングプレートを設ける以外に、図9および図10に示すように、傾斜板(27)の組み合わせによってもよい。また、傾斜板(27)の組み合わせとパンチングプレートなどのスクリーンを複合的に用いることも良い。さらに、担体分離器の上流側で曝気をすることで担体分離器が常に目詰まりのない状態に保持することができる。   The shape of the carrier separator (17) may be a combination of inclined plates (27) as shown in FIGS. 9 and 10 in addition to providing a punching plate as a screen. Further, a combination of the inclined plate (27) and a screen such as a punching plate may be used in combination. Furthermore, by aeration on the upstream side of the carrier separator, the carrier separator can always be kept free from clogging.

図8に示すように、無酸素槽と好気槽の流出側が近接している場合、返送管の横引きの部分は少なくて良く、返送管の設置に係る費用が削減でき、管路が短い分維持管理が容易となる。   As shown in FIG. 8, when the outflow side of the anaerobic tank and the aerobic tank are close to each other, the horizontal pulling portion of the return pipe may be small, the cost for installing the return pipe can be reduced, and the pipe line is short. Minute maintenance is easy.

[実施例4]
返送管の直径350mm、送気管の直径150mm、返送管に明ける孔の直径25mm(個数8個)、気体分散器の直径500mm、気体分散器の高さ200mm、浸水深さは2400mm、揚水量は3.0m3/分、送気量4.5m3/分で、図6に示す槽の組み合わせの本発明の水処理装置で、好気槽から無酸素槽に担体と活性汚泥の混合水を返送したところ、担体が下流側に滞留することなく良好な運転ができた。
[Example 4]
The diameter of the return pipe is 350 mm, the diameter of the air supply pipe is 150 mm, the diameter of the hole opened in the return pipe is 25 mm (number of 8 pieces), the diameter of the gas disperser is 500 mm, the height of the gas disperser is 200 mm, the inundation depth is 2400 mm, With the water treatment device of the present invention having a combination of tanks shown in FIG. 6 at a rate of 3.0 m 3 / min and an air supply rate of 4.5 m 3 / min, mixed water of a carrier and activated sludge is transferred from an aerobic tank to an anoxic tank. When returned, good operation was possible without the carrier staying downstream.

[実施例5]
図2の装置を使って、晴天時は窒素除去を中心とした処理装置として稼働し、雨天時には3Qを1次処理する装置とできる。すなわち、晴天時には実施例2で示したように好気槽(5)で硝化とBOD除去を行い、無酸素槽(4)では脱窒が行われるが、雨天時には処理水量が増加するので好気槽(5)、無酸素槽(4)での滞留時間が短くなり、活性汚泥が流出するが、担体(16)が投入してあることで懸濁物質の除去、すなわち1次処理槽としての機能が保持できる。さらに、晴天時には、冬季の低水温の場合にも、有機物除去対応の生物量の確保と、窒素除去対応の硝化細菌の確保ができる。
[Example 5]
The apparatus of FIG. 2 can be used as a processing apparatus mainly for removing nitrogen during fine weather, and can be a primary processing apparatus for 3Q during rainy weather. That is, nitrification and BOD removal are performed in the aerobic tank (5) as shown in Example 2 during clear weather, and denitrification is performed in the anaerobic tank (4), but the amount of treated water increases during rainy weather, so aerobic. The residence time in the tank (5) and the oxygen-free tank (4) is shortened and the activated sludge flows out. However, since the carrier (16) is put in, the suspended matter is removed, that is, as a primary treatment tank. Function can be retained. Furthermore, when the weather is fine, even when the water temperature is low in winter, it is possible to secure the biomass for organic matter removal and nitrifying bacteria for nitrogen removal.

また、沈殿槽の後段にろ過槽を設けることで、ろ過槽への流入水のSSを50mg/L以下にできる。また、沈降性の良い沈殿槽の汚泥を返送でき、沈降するのが難しい汚泥をろ過槽で処理する。さらに、沈殿槽やろ過槽の排泥にサイフォン管を用いた浮体式の排泥機を用いることで、水中に駆動部を用いず、浮体式にすることで水中も空間が大きくなるので傾斜板を用いて効率良く汚泥の沈殿が可能となる。   Moreover, SS provided in the filtration tank can be reduced to 50 mg / L or less by providing a filtration tank after the precipitation tank. Moreover, the sludge of a sedimentation tank with good sedimentation can be returned, and the sludge that is difficult to settle is treated in a filtration tank. In addition, by using a floating body drainage machine that uses a siphon tube to drain the sedimentation tank and filtration tank, a floating body is used without using a drive unit in the water. The sludge can be efficiently precipitated using this.

さらに、ろ過槽に凝集剤を添加することで、リンの除去も可能である。   Furthermore, phosphorus can be removed by adding a flocculant to the filtration tank.

[実施例6]
図8の装置を使って、生物反応槽(2)を無酸素槽(4)と好気槽(5)として処理を行った。なお、返送管(10)は、好気槽(5)に吸引口(15)を備え、無酸素槽(4)に吐出口(25)を備えた。窒素除去は、良好な処理を行うことができた。
[Example 6]
Using the apparatus of FIG. 8, the biological reaction tank (2) was treated as an anaerobic tank (4) and an aerobic tank (5). The return pipe (10) was provided with a suction port (15) in the aerobic tank (5) and a discharge port (25) in the anaerobic tank (4). Nitrogen removal was a good treatment.

さらに、生物反応槽(2)として、無酸素槽(4)と好気槽(5)を設ける他に、嫌気槽を設けると、生物脱リンを行うことができた。   Furthermore, in addition to providing the anaerobic tank (4) and the aerobic tank (5) as the biological reaction tank (2), biological dephosphorization could be performed by providing an anaerobic tank.

本発明の第1態様であり、好気槽のみからなる生物反応槽の水処理装置を示す概念フロー図である。It is a 1st aspect of this invention, and is a conceptual flowchart which shows the water treatment apparatus of the biological reaction tank which consists only of an aerobic tank. 本発明の第2態様であり、無酸素槽および好気槽からなる生物反応槽の水処理装置を示す概念フロー図である。It is a conceptual flow figure which is the 2nd aspect of this invention, and shows the water treatment apparatus of the biological reaction tank which consists of an anaerobic tank and an aerobic tank. 本発明の第3態様であり、嫌気槽、無酸素槽および好気槽からなる生物反応槽の水処理装置を示す概念フロー図である。It is a conceptual flow figure which is the 3rd aspect of this invention, and shows the water treatment apparatus of the biological reaction tank which consists of an anaerobic tank, an oxygen-free tank, and an aerobic tank. 返送管エアリフト部、洗浄用散気設備および担体分離器を示す概略図である。It is the schematic which shows a return pipe airlift part, the air diffuser for washing | cleaning, and a carrier separator. 散気装置の使用状態と吊上げ状態を示す概略図である。It is the schematic which shows the use condition and lifting state of a diffuser. 本発明の第4態様であり、嫌気槽、無酸素槽および好気槽からなる生物反応槽の水処理装置を示す概念フロー図である。It is a conceptual flow figure which is the 4th aspect of this invention, and shows the water treatment apparatus of the biological reaction tank which consists of an anaerobic tank, an oxygen-free tank, and an aerobic tank. 本発明の第5態様であり、好気槽のみからなる生物反応槽の水処理装置を示す概念フロー図である。It is a conceptual flow figure which is the 5th aspect of this invention, and shows the water treatment apparatus of the biological reaction tank which consists only of an aerobic tank. 本発明の第6態様であり、無酸素槽および好気槽からなる生物反応槽の水処理装置を示す概念フロー図である。It is a conceptual flow figure which is the 6th aspect of this invention, and shows the water treatment apparatus of the biological reaction tank which consists of an anaerobic tank and an aerobic tank. 担体分離器の一実施例を示した概略図である。It is the schematic which showed one Example of the carrier separator. 担体分離器の一実施例を示した概略図である。It is the schematic which showed one Example of the carrier separator. 吐出口の一実施例を示した概略図である。It is the schematic which showed one Example of the discharge outlet. 吐出口の一実施例を示した概略図である。It is the schematic which showed one Example of the discharge outlet. 返送管エアリフト部の気体分散器を示した概略図である。It is the schematic which showed the gas disperser of the return pipe air lift part. 返送管エアリフト部の気体分散器を示した概略図である。It is the schematic which showed the gas disperser of the return pipe air lift part. 返送管エアリフト部の気体分散器を示した概略図である。It is the schematic which showed the gas disperser of the return pipe air lift part. 嫌気槽、無酸素槽および好気槽からなる生物反応槽の水処理装置の嫌気槽にドラフトチューブを設けた概念フロー図である。It is the conceptual flow figure which provided the draft tube in the anaerobic tank of the water treatment apparatus of the biological reaction tank which consists of an anaerobic tank, an oxygen-free tank, and an aerobic tank.

符号の説明Explanation of symbols

1 最初沈殿池
2 生物反応槽
3 嫌気槽
4 無酸素槽
5 好気槽
6、7 撹拌機
8 散気設備
9 最終沈殿池
10 返送管
11 汚泥用スクリーン
12 送気管
13 移送管
14 気体分散器
15 吸込口
16 担体
17、26、29 担体分離器(パンチングプレート)
19 洗浄用散気設備
20 ニージョイント
21 ライザー管
22 リフトディフューザ本体
24 有機物添加管
25 吐出口
27 傾斜板
28 通水路
30 浮き
31 返送管エアリフト部
32 返送管横引き部
33 ドラフトチューブ
DESCRIPTION OF SYMBOLS 1 First sedimentation tank 2 Biological reaction tank 3 Anaerobic tank 4 Anoxic tank 5 Aerobic tank 6, 7 Stirrer 8 Aeration equipment 9 Final sedimentation tank 10 Return pipe 11 Sludge screen 12 Air feed pipe 13 Transfer pipe 14 Gas disperser 15 Suction port 16 Carrier 17, 26, 29 Carrier separator (punching plate)
19 Aeration equipment for cleaning 20 Knee joint 21 Riser pipe 22 Lift diffuser body 24 Organic substance addition pipe 25 Discharge port 27 Inclined plate 28 Water passage 30 Floating 31 Return pipe air lift part 32 Return pipe horizontal pulling part 33 Draft tube

Claims (5)

下流側に吸引口と上流側に吐出口とを有して担体を返送する返送管が設けられた生物反応槽で、該担体を用いて排水を処理する水処理装置において、前記返送管の周囲に設けられた複数の空気吹込孔、該空気吹込孔の周りに空気溜りを形成する気体分散器、および、該気体分散器に接続して空気を供給する送気管を備えると共に、前記返送管にはエア抜きバルブが設けられていることを特徴とする水処理装置。 In a biological reaction tank having a return pipe for returning a carrier having a suction port on the downstream side and a discharge port on the upstream side, in a water treatment apparatus for treating waste water using the carrier, the periphery of the return pipe A plurality of air blowing holes provided in the air, a gas distributor that forms an air reservoir around the air blowing holes, and an air supply pipe that is connected to the gas distributor and supplies air, and the return pipe Is a water treatment apparatus provided with an air vent valve . 前記生物反応槽は、担体分離器を備えた好気槽であることを特徴とする請求項1に記載の水処理装置。 The said biological reaction tank is an aerobic tank provided with the support | carrier separator, The water treatment apparatus of Claim 1 characterized by the above-mentioned. 前記生物反応槽は、担体分離器を備えた好気槽と無酸素槽とからなることを特徴とする請求項1に記載の水処理装置。 The biological reactor, the water treatment apparatus according to claim 1, characterized in that comprising the aerobic tank and the anoxic tank having a carrier separator. 前記生物反応槽は、嫌気槽を備えることを特徴とする請求項1〜3のいずれかに記載の水処理装置。 The said biological reaction tank is equipped with an anaerobic tank, The water treatment apparatus in any one of Claims 1-3 characterized by the above-mentioned. 前記生物反応槽は、有機物添加管を備えることを特徴とする請求項1〜4のいずれかに記載の水処理装置。 The said biological reaction tank is equipped with an organic substance addition pipe | tube, The water treatment apparatus in any one of Claims 1-4 characterized by the above-mentioned.
JP2004134196A 2004-04-28 2004-04-28 Water treatment equipment Expired - Lifetime JP4568528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004134196A JP4568528B2 (en) 2004-04-28 2004-04-28 Water treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004134196A JP4568528B2 (en) 2004-04-28 2004-04-28 Water treatment equipment

Publications (2)

Publication Number Publication Date
JP2005313081A JP2005313081A (en) 2005-11-10
JP4568528B2 true JP4568528B2 (en) 2010-10-27

Family

ID=35441074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004134196A Expired - Lifetime JP4568528B2 (en) 2004-04-28 2004-04-28 Water treatment equipment

Country Status (1)

Country Link
JP (1) JP4568528B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5329021B2 (en) * 2005-04-06 2013-10-30 株式会社西原環境 Sewage treatment equipment
JP4796852B2 (en) * 2006-01-25 2011-10-19 前澤化成工業株式会社 Wastewater treatment equipment
JP2007283223A (en) * 2006-04-18 2007-11-01 Nippon Steel Corp Method for recovering phosphorus from sludge
JP4854401B2 (en) * 2006-06-30 2012-01-18 中国電力株式会社 Wastewater treatment tank
JP4938582B2 (en) * 2007-07-31 2012-05-23 メタウォーター株式会社 Reaction tank for sewage treatment
JP5468251B2 (en) * 2008-12-26 2014-04-09 株式会社西原環境 Supporting bioreactor
JP2011147868A (en) * 2010-01-20 2011-08-04 Hitachi Plant Technologies Ltd Waste water treatment system and method
JP5651384B2 (en) * 2010-06-18 2015-01-14 株式会社クボタ Sewage treatment equipment, sewage treatment method, and method for renovating sewage treatment equipment
JP5951416B2 (en) * 2012-09-04 2016-07-13 株式会社東芝 Method and apparatus for recovering phosphorus from waste water containing phosphorus
JP6654981B2 (en) * 2016-07-26 2020-02-26 水ing株式会社 Anaerobic treatment of organic wastewater

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59110095U (en) * 1983-01-11 1984-07-25 海洋工業株式会社 water purification device
JPS5938833B2 (en) * 1976-11-17 1984-09-19 東レエンジニアリング株式会社 Biological treatment equipment for high concentration wastewater
JPH0321173U (en) * 1989-07-12 1991-03-01
JPH09155374A (en) * 1995-12-13 1997-06-17 Nishihara Environ Sanit Res Corp Carrier returning device for waste water treatment facility
JPH1015570A (en) * 1996-07-04 1998-01-20 Sekisui Chem Co Ltd Sludge transfer device of purifying tank
JPH11156387A (en) * 1997-11-21 1999-06-15 Nishihara Environ Sanit Res Corp Wastewater treatment apparatus
JP2003181482A (en) * 2001-12-13 2003-07-02 Fuji Clean Kogyo Kk Waste water treatment apparatus and treatment water transportation method in waste water treatment apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5938833B2 (en) * 1976-11-17 1984-09-19 東レエンジニアリング株式会社 Biological treatment equipment for high concentration wastewater
JPS59110095U (en) * 1983-01-11 1984-07-25 海洋工業株式会社 water purification device
JPH0321173U (en) * 1989-07-12 1991-03-01
JPH09155374A (en) * 1995-12-13 1997-06-17 Nishihara Environ Sanit Res Corp Carrier returning device for waste water treatment facility
JPH1015570A (en) * 1996-07-04 1998-01-20 Sekisui Chem Co Ltd Sludge transfer device of purifying tank
JPH11156387A (en) * 1997-11-21 1999-06-15 Nishihara Environ Sanit Res Corp Wastewater treatment apparatus
JP2003181482A (en) * 2001-12-13 2003-07-02 Fuji Clean Kogyo Kk Waste water treatment apparatus and treatment water transportation method in waste water treatment apparatus

Also Published As

Publication number Publication date
JP2005313081A (en) 2005-11-10

Similar Documents

Publication Publication Date Title
AU2002301606B2 (en) Batch Style Wastewater Treatment Apparatus Using Biological Filtering Process and Wastewater Treatment Method Using The Same
KR101147157B1 (en) An Equipment For Water Treatment Comprising A Rectangle Upstreaming Anaerobic/Anoxic Reactor, And Method Of Water Treatment Using The Same
JP3729332B2 (en) Wastewater treatment apparatus including upflow anaerobic reactor and wastewater treatment method using the same
KR101472421B1 (en) Membrane wastewater treatment system and method for high energy efficiency, high flow capicity, low operating cost, automated scum and foam removal / destruction and conversion method thereof from a constant level sequencing batch reactor process
JP4568528B2 (en) Water treatment equipment
CN113307456A (en) Improved sewage treatment method and device for MBBR (moving bed biofilm reactor) process
CN209065698U (en) A kind of Lurgi furnace coal gasification sewage disposal system
CN107827324B (en) Urban sewage comprehensive treatment system
JP5743448B2 (en) Sewage treatment equipment
KR100279843B1 (en) Wastewater Contact Aeration Purification System and Contact Aeration Purification Method
CN107473382A (en) By controlling dissolved oxygen to realize sewage carbon nitrogen while the bioremediation removed
CN207512032U (en) For the processing unit of high COD high ammonia nitrogens oily waste water
KR100953075B1 (en) Oxidation-reduction reaction tank for treating wastewater and wastewater treatment method using the same
IL155193A (en) Apparatus and method for wastewater treatment with enhanced solids reduction (esr)
CN212334950U (en) Processing system of kitchen garbage aerobic degradation treatment factory waste water
KR100460942B1 (en) Process for Treating Waste Water and Device Thereof Using Septic Tank and Sequencing Batch Reactor
CN113716803A (en) Integrated enhanced denitrification sewage treatment device and treatment method
KR101032068B1 (en) Sewage-wastewater treating system and method the same, using high-effciency sequencing batch reactor process
KR101898183B1 (en) wastewater treatment system using composite/water blow apparatus and removing methods of nitrogenphosphorous thereby
JP4864258B2 (en) Organic wastewater treatment equipment
KR100489328B1 (en) System and method for wastewater treatment using partition type anoxic basin and membrane basin
WO2021165980A1 (en) A multi-zone attached growth batch bio-reactor & method of biological treatment of domestic wastewater
CN112142253A (en) Sewage treatment method and sewage treatment device thereof
KR100297178B1 (en) Fluidized Media Biofilm Reactor with Clarifier
KR20020089215A (en) Wastewater Treatment Plant with Upflow Anaerobic Reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100809

R150 Certificate of patent or registration of utility model

Ref document number: 4568528

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term