JP4566425B2 - Carbon fiber and method for producing activated carbon fiber - Google Patents
Carbon fiber and method for producing activated carbon fiber Download PDFInfo
- Publication number
- JP4566425B2 JP4566425B2 JP2001056757A JP2001056757A JP4566425B2 JP 4566425 B2 JP4566425 B2 JP 4566425B2 JP 2001056757 A JP2001056757 A JP 2001056757A JP 2001056757 A JP2001056757 A JP 2001056757A JP 4566425 B2 JP4566425 B2 JP 4566425B2
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- phenol
- carbon fiber
- activated carbon
- oxygen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Carbon And Carbon Compounds (AREA)
- Inorganic Fibers (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は炭素繊維及び活性炭素繊維の製造方法に関する。さらに詳しくは、特定量の酸素を含有するフェノール繊維を原料とする強度に優れた炭素繊維及び活性炭素繊維を高収率で製造することのできる炭素繊維及び活性炭素繊維の製造方法に関する。
【0002】
【従来の技術】
従来、フェノール繊維を製造する方法は多く知られており、例えば、アルカリ(土類)金属を含むレゾール型フェノール樹脂を加熱し、流動しているプロピレングリコール中で硬化させる方法(特公昭48−43570号公報)、ノボラック樹脂を溶融紡糸して得た未硬化ノボラック繊維をアルデヒド類で酸化処理した硬化ノボラック繊維を非酸化性雰囲気中で熱処理する方法(特開昭53−94626号公報)、未硬化ノボラック樹脂にポリビニルブチラールを含有させ、溶融紡糸後硬化させて得た硬化ノボラック樹脂繊維を熱処理する方法(特開平9−13223号公報)、塩基性触媒の存在下にフェノール類とアルデヒド類とを反応させて得られる固形状のレゾール型フェノール樹脂を熱溶融させ、加熱空気流の牽引力で紡糸ノズルから紡出して繊維化し、該繊維を酸性ガス雰囲気中で加熱して不溶不融化する方法(特開平9−132818号公報)などが知られている。
【0003】
以上述べたフェノール繊維は炭素繊維であり、これを賦活することにより活性炭繊維とすることができ、浄水用、脱臭用、電気材料用などさらに用途が拡大するが、これまで、フェノール繊維を賦活して活性炭繊維としたものとして、未硬化ノボラック繊維をアルデヒド類で硬化処理して得た硬化ノボラック繊維を、水蒸気と不活性ガスとからなる混合ガスの雰囲気下に700℃まで昇温して活性炭繊維とする方法が特公昭58−51527号公報に知られている。また、フェノール系の活性炭繊維を電気二重層キャパシタ用に応用した例が特開昭62−222617号公報に開示されている。そして、該特許公報には、かかる活性炭繊維は、原料繊維を炭化して炭素繊維とし、これを賦活して活性炭繊維とすることが記載されている。
【0004】
【発明が解決しようとする課題】
フェノール繊維は既に不融化された繊維であるが、上述したように、炭素繊維はフェノール繊維原料を炭化処理して得たものであり、活性炭素繊維は該炭素繊維をさらに賦活処理して得るのが一般的である。しかし、フェノール繊維を炭化処理する際、特に炭化時の分解反応により、タールや低級炭化物が生成し、炭素繊維の収率は低く、しかも繊維の強度は小さいものであった。活性炭素繊維は該炭素繊維を賦活して得られるが、同様に収率は低く、繊維の強度は小さく、品位に劣るものであった。したがって、本発明の目的は、このような問題点のない、強度に優れたを高収率で得ることのできる炭素繊維及び活性炭素繊維の製造方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明者らは、上記目的を達成するため鋭意検討し、フェノール繊維に特定量の酸素を含有させ、炭化時の分解反応を抑制することにより、上記目的全てが達成されることを見出し本発明に至った。すなわち、本発明は、18−24重量%の酸素を含有させたフェノール繊維を炭化することを特徴とする炭素繊維の製造方法である。そして、本発明のもう一つの発明は、18−24重量%の酸素を含有させたフェノール繊維を炭化し、さらに賦活処理する活性炭素繊維の製造方法である。
【0006】
【発明の実施の形態】
本発明において使用されるフェノール繊維とは、フェノール樹脂を紡糸、熱処理して得られたものであればよく、具体的には、ノボラックフェノール樹脂を紡糸して得られるノボロイド繊維(商品名:カイノール)やレゾール樹脂を紡糸して得られるレゾール繊維などを例示することができる。本発明の最大の特徴は、炭化させる前のフェノール繊維原料を18−24重量%の酸素が含有された状態にすることにあるが、フェノール繊維原料における酸素含有量は、原料や製造方法によっても異なるが、通常15%未満であるので、これを酸化処理して、フェノール繊維原料の酸素含有量を18−24重量%の状態にする
【0007】
本発明における酸化処理とは、フェノール繊維原料と酸素及び/又は酸素含有化合物とを接触させ、フェノール繊維原料に酸素を有する基を形成し、及び/又はフェノール分子間に架橋反応を起こさせる処理のことである。酸化処理の雰囲気にするために使用されるガスとしては、酸素を含有するガスを使用すればよいが、通常は空気が使用される。酸化処理の温度については、通常100−300℃の範囲で行われるが、50℃以下の場合でも、紫外線を照射する等の手段により、酸化反応を進行させることができる。
【0008】
フェノール繊維中の酸素量を測定するには、以下のような方法によることができる。すなわち、フェノール繊維を不活性ガス雰囲気中で熱分解させ、炭素触媒上で原料中の酸素を一酸化炭素に変換し、かかる一酸化炭素の濃度を測定することにより、原料中の酸素量を求めることができる。このような原理を利用して一酸化炭素の濃度を測定するための分析装置としては、例えば、ヤナコ分析工業株式会社より市販されている元素分析装置MT−6、株式会社パーキンエルマーより市販されている元素分析装置2400IIなどの装置を使用すればよい。本発明により、フェノール繊維に酸化処理を行い、特定量の酸素を含有させた状態のフェノール繊維原料を炭化処理することにより、炭化反応時に分解が少なく、強度に優れた炭素繊維を高収率で得ることができる。このようにして得た炭素繊維をさらに賦活処理することにより、強度及び品位に優れた活性炭繊維を高収率で得ることができる。
【0009】
本発明によれば、炭素繊維又は活性炭繊維は従来に比べて10〜15%も高い収率で製造することができ、しかも、得られた炭素繊維又は活性炭繊維は強度に優れている。この理由を必ずしも明確に説明することはできないけれども、理由としては次のようなことが考えられる。フェノール原料中の酸素原子の割合は、フェノール表面における水酸基、カルボキシル基、エステル基等、有機官能基の割合を示しているので、これらの官能基は、フェノール分子の架橋に寄与している。したがって、酸素原子の割合がある一定数値以上となると、活性炭製造の重量収率が向上することが認められることから、酸素分子とフェノール分子とが架橋構造をとることにより、炭化の際の環化構造の形成に寄与しているものと思われる。しかし、酸素原子の割合が多くなりすぎると、環化反応の際の活性点が多くなり、環化構造の成長を阻害するものと思われる。
【0010】
また、ニット、不織布、フェルト、クロスなどのシート状の活性炭繊維では、品位についても優れていることが要求される。ここで、品位とは、シートの一次、二次、三次元的均一性を示すものであり、具体的には、目付、厚み、密度などの物性が均一であること、又は、つり、たるみ、色斑などの欠点がないことをいう。従来のフェノール繊維では、架橋が不十分であるため、炭化時及び/又は賦活時にタール成分を含む排ガスが発生し、タール成分がフェノール樹脂に局所的に再付着する現象が見られ、その結果、タール付着箇所と未付着箇所とで炭化度、賦活度に差が生じ、必ずしも品位に優れたものではなかった。しかしながら、本発明の方法によれば、排ガス中のタール成分が減少し、炭化及び/又は賦活反応が阻害されることなく均一に進行し、高品位の活性炭繊維を得ることができる。
【0011】
以下、本発明について実施例により具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例及び比較例において、物性の測定は以下の方法によった。
(1)フェノール繊維の酸素含有量:ヤナコ分析工業株式会社製の元素分析装置MT−6を用いて測定した。
(2)重量収率:未処理のフェノール繊維の重量に対する各々の処理を施したフェノール繊維の重量の割合から求めた。
(3)比表面積:窒素の吸着量から求めたBET比表面積である。
(4)繊維強度:JIS K 1477 繊維状活性炭試験方法5.5引張り強さに準拠して測定した。
【0012】
【実施例】
実施例1〜2
フェノール繊維(日本カイノール株式会社製ノボロイド繊維、酸素含有量15%)を280℃で30分空気中で加熱し、酸素含有量を24%とした。これを窒素ガス雰囲気中で300℃から800℃まで昇温して炭化処理し、炭素繊維を得た(実施例1)。さらに該炭素繊維を900℃の水蒸気ガス雰囲気中で賦活し、活性炭素繊維とした。結果を表1に示す。
【0013】
実施例3〜4
フェノール繊維(日本カイノール株式会社製ノボロイド繊維、酸素含有量13%)を25℃の空気中で紫外線照射し、酸素含有量を20%とした。これを実施例1及び2と同様にして、炭化、賦活処理を実施した(各々実施例3及び4)。
結果を表1に示す。
【0014】
実施例5〜6
フェノール繊維(サンゴバン株式会社製レゾール繊維、酸素含有量14%)を、燃焼ガス排ガス/空気が1/1の混合ガス雰囲気中200℃で加熱し、酸素含有量を19%とした。これを実施例1及び2と同様にして、炭化、賦活処理を実施した(各々実施例5及び6)。結果を表1に示す。
【0015】
比較例1〜2
実施例1で使用したものと同じフェノール繊維(酸素含有量15%)を280℃で30分窒素ガス雰囲気中で加熱した。酸素含有量は15%のままであった。これを実施例1及び2と同様にして炭化、賦活処理を実施し、表1の結果を得た(各々比較例1及び2)。実施例1〜6と比較例1〜2とを比較すると、本発明により得られた炭素繊維及び活性炭素繊維が優れていることは明らかである。
【0016】
【表1】
【0017】
実施例7及び比較例3
実施例5で使用したフェノール繊維のクロスを100℃で3時間酸素ガス雰囲気中で加熱し、酸素含有量を21%とした。これを窒素ガス雰囲気中で300℃〜800℃まで昇温して炭化処理し、さらに900℃の水蒸気ガス雰囲気中で賦活し、活性炭繊維クロスを得た(実施例7)。実施例7と同じクロスを実施例7と同じ条件で炭化、賦活処理した。酸素含有量は14%のままであった(比較例3)。これらのクロス各々1m2から5箇所無作為にサンプリングし、物性を評価した。結果を表2に示すが、本発明の方法により製造した活性炭繊維は高品位であることが明らかである。
【0018】
【表2】
【0019】
【発明の効果】
本発明により、18−24重量%の酸素を付着させたフェノール繊維を炭化することを特徴とする炭素繊維の製造方法及び該炭素繊維をさらに賦活処理する活性炭素繊維の製造方法を提供することができる。本発明によれば、炭素繊維及び活性炭素繊維は強度に優れ、高収率で製造することができるので、産業上の有用性が大きい。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing carbon fibers and activated carbon fibers. More specifically, the present invention relates to a carbon fiber and an activated carbon fiber production method capable of producing a carbon fiber excellent in strength and an activated carbon fiber using a phenol fiber containing a specific amount of oxygen as a raw material in a high yield.
[0002]
[Prior art]
Conventionally, many methods for producing phenol fibers are known. For example, a method for heating a resol type phenol resin containing an alkali (earth) metal and curing it in flowing propylene glycol (Japanese Patent Publication No. 48-43570). No.), a method of heat-treating a cured novolak fiber obtained by subjecting an uncured novolak fiber obtained by melt spinning a novolak resin with an aldehyde to a non-oxidizing atmosphere (Japanese Patent Laid-Open No. 53-94626), uncured A method of heat-treating a cured novolak resin fiber obtained by adding polyvinyl butyral to a novolak resin and curing it after melt spinning (Japanese Patent Laid-Open No. 9-13223), reacting phenols and aldehydes in the presence of a basic catalyst The solid resol-type phenolic resin obtained by heating is melted and the spinning nozzle is operated by the traction of the heated air flow. It spun and fiberizing by, including how to insoluble and infusible by heating in an acidic gas atmosphere (JP-A-9-132818) is known the fibers.
[0003]
The phenol fiber described above is a carbon fiber, and by activating it, it can be made into activated carbon fiber, and its applications are further expanded for water purification, deodorization, electrical materials, etc. As the activated carbon fiber, the cured novolac fiber obtained by curing the uncured novolak fiber with aldehydes is heated to 700 ° C. in an atmosphere of a mixed gas composed of water vapor and inert gas, and the activated carbon fiber is heated. This method is known from Japanese Patent Publication No. 58-51527. An example in which a phenol-based activated carbon fiber is applied to an electric double layer capacitor is disclosed in Japanese Patent Application Laid-Open No. 62-222617. And this patent gazette describes that this activated carbon fiber carbonizes raw material fiber to make carbon fiber, and activates this to make activated carbon fiber.
[0004]
[Problems to be solved by the invention]
Phenol fibers are already infusible fibers, but as described above, carbon fibers are obtained by carbonizing a phenol fiber raw material, and activated carbon fibers are obtained by further activating the carbon fibers. Is common. However, when carbonizing the phenol fiber, tar and lower carbides are generated particularly by the decomposition reaction during carbonization, the yield of the carbon fiber is low, and the strength of the fiber is low. The activated carbon fiber is obtained by activating the carbon fiber, but similarly the yield is low, the strength of the fiber is small, and the quality is inferior. Accordingly, an object of the present invention is to provide a carbon fiber and a method for producing an activated carbon fiber that can be obtained in a high yield with excellent strength without such problems.
[0005]
[Means for Solving the Problems]
The present inventors have intensively studied to achieve the above object, and found that the above object is achieved by containing a specific amount of oxygen in the phenol fiber and suppressing the decomposition reaction during carbonization. It came to. That is, the present invention is a carbon fiber production method characterized by carbonizing a phenol fiber containing 18 to 24% by weight of oxygen. Another invention of the present invention is a method for producing activated carbon fibers, wherein a phenol fiber containing 18 to 24% by weight of oxygen is carbonized and further activated.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The phenol fiber used in the present invention may be one obtained by spinning and heat-treating a phenol resin, and specifically, a novoloid fiber (trade name: Kynol) obtained by spinning a novolak phenol resin. And resole fibers obtained by spinning a resole resin. The greatest feature of the present invention is that the phenol fiber raw material before carbonization contains 18-24% by weight of oxygen, but the oxygen content in the phenol fiber raw material depends on the raw material and the manufacturing method. Although it is different, it is usually less than 15%, so it is oxidized to bring the oxygen content of the phenol fiber raw material to a state of 18-24% by weight.
The oxidation treatment in the present invention is a treatment in which a phenol fiber raw material is brought into contact with oxygen and / or an oxygen-containing compound, a group having oxygen is formed in the phenol fiber raw material, and / or a crosslinking reaction is caused between phenol molecules. That is. As the gas used to make the atmosphere for the oxidation treatment, a gas containing oxygen may be used, but usually air is used. The temperature of the oxidation treatment is usually performed in the range of 100 to 300 ° C., but even in the case of 50 ° C. or less, the oxidation reaction can be advanced by means such as irradiation with ultraviolet rays.
[0008]
In order to measure the amount of oxygen in the phenol fiber, the following method can be used. That is, the amount of oxygen in the raw material is obtained by thermally decomposing phenol fiber in an inert gas atmosphere, converting oxygen in the raw material to carbon monoxide on a carbon catalyst, and measuring the concentration of the carbon monoxide. be able to. As an analyzer for measuring the concentration of carbon monoxide using such a principle, for example, an element analyzer MT-6 commercially available from Yanaco Analytical Co., Ltd., commercially available from Perkin Elmer Co., Ltd. A device such as the element analysis device 2400II may be used. According to the present invention, by oxidizing the phenol fiber and carbonizing the phenol fiber raw material containing a specific amount of oxygen, the carbon fiber that is less decomposed during the carbonization reaction and excellent in strength is obtained in a high yield. Obtainable. By further activating the carbon fibers thus obtained, activated carbon fibers excellent in strength and quality can be obtained in high yield.
[0009]
According to the present invention, carbon fiber or activated carbon fiber can be produced with a yield as high as 10 to 15% compared to the conventional case, and the obtained carbon fiber or activated carbon fiber is excellent in strength. Although the reason for this cannot always be explained clearly, the following reasons can be considered. Since the proportion of oxygen atoms in the phenol raw material indicates the proportion of organic functional groups such as hydroxyl groups, carboxyl groups, ester groups, etc. on the phenol surface, these functional groups contribute to the crosslinking of phenol molecules. Therefore, it is recognized that the weight yield of activated carbon production is improved when the oxygen atom ratio exceeds a certain value. Therefore, the oxygen molecule and the phenol molecule take a cross-linked structure, so that cyclization during carbonization occurs. It seems to contribute to the formation of the structure. However, if the proportion of oxygen atoms increases too much, the number of active sites during the cyclization reaction increases, which seems to inhibit the growth of the cyclized structure.
[0010]
In addition, sheet-like activated carbon fibers such as knit, non-woven fabric, felt, and cloth are required to be excellent in quality. Here, the quality indicates the primary, secondary, and three-dimensional uniformity of the sheet. Specifically, the physical properties such as the basis weight, thickness, and density are uniform, or the suspension, sagging, It means that there are no defects such as color spots. In the conventional phenol fiber, since the crosslinking is insufficient, an exhaust gas containing a tar component is generated during carbonization and / or activation, and a phenomenon in which the tar component is locally reattached to the phenol resin is observed. There was a difference in the carbonization degree and activation degree between the tar adhering part and the non-adhering part, and the quality was not necessarily excellent. However, according to the method of the present invention, the tar component in the exhaust gas is reduced, and the carbonization and / or activation reaction proceeds uniformly without being hindered, and a high-grade activated carbon fiber can be obtained.
[0011]
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to these. In Examples and Comparative Examples, physical properties were measured by the following methods.
(1) Oxygen content of phenol fiber: It was measured using an element analyzer MT-6 manufactured by Yanaco Analytical Industries.
(2) Weight yield: It was determined from the ratio of the weight of the phenol fiber subjected to each treatment to the weight of the untreated phenol fiber.
(3) Specific surface area: BET specific surface area determined from the amount of nitrogen adsorbed.
(4) Fiber strength: Measured according to JIS K 1477 Fibrous Activated Carbon Test Method 5.5 Tensile Strength.
[0012]
【Example】
Examples 1-2
Phenol fiber (Novoloid fiber manufactured by Nippon Kainol Co., Ltd., oxygen content: 15%) was heated in air at 280 ° C. for 30 minutes to make the oxygen content 24%. This was heated from 300 ° C. to 800 ° C. in a nitrogen gas atmosphere and carbonized to obtain carbon fibers (Example 1). Further, the carbon fibers were activated in a steam gas atmosphere at 900 ° C. to obtain activated carbon fibers. The results are shown in Table 1.
[0013]
Examples 3-4
Phenol fiber (Novoloid fiber manufactured by Nippon Kainol Co., Ltd., oxygen content: 13%) was irradiated with ultraviolet rays in air at 25 ° C. to adjust the oxygen content to 20%. In the same manner as in Examples 1 and 2, carbonization and activation treatment were carried out (Examples 3 and 4 respectively).
The results are shown in Table 1.
[0014]
Examples 5-6
Phenol fiber (Resol fiber manufactured by Saint-Gobain Co., Ltd., oxygen content: 14%) was heated at 200 ° C. in a mixed gas atmosphere with combustion gas exhaust gas / air of 1/1 to make the oxygen content 19%. In the same manner as in Examples 1 and 2, carbonization and activation treatment were performed (Examples 5 and 6 respectively). The results are shown in Table 1.
[0015]
Comparative Examples 1-2
The same phenol fiber (oxygen content 15%) as used in Example 1 was heated at 280 ° C. for 30 minutes in a nitrogen gas atmosphere. The oxygen content remained at 15%. This was carbonized and activated in the same manner as in Examples 1 and 2, and the results shown in Table 1 were obtained (Comparative Examples 1 and 2 respectively). When Examples 1-6 are compared with Comparative Examples 1-2, it is clear that the carbon fibers and activated carbon fibers obtained by the present invention are excellent.
[0016]
[Table 1]
[0017]
Example 7 and Comparative Example 3
The phenol fiber cloth used in Example 5 was heated in an oxygen gas atmosphere at 100 ° C. for 3 hours to adjust the oxygen content to 21%. This was heated to 300 ° C. to 800 ° C. in a nitrogen gas atmosphere and carbonized, and further activated in a steam gas atmosphere at 900 ° C. to obtain activated carbon fiber cloth (Example 7). The same cloth as in Example 7 was carbonized and activated under the same conditions as in Example 7. The oxygen content remained 14% (Comparative Example 3). Each of these crosses was sampled at random from 1 m 2 to evaluate physical properties. The results are shown in Table 2, and it is clear that the activated carbon fibers produced by the method of the present invention are of high quality.
[0018]
[Table 2]
[0019]
【The invention's effect】
According to the present invention, it is possible to provide a carbon fiber production method characterized by carbonizing a phenol fiber to which 18 to 24% by weight of oxygen is attached, and an activated carbon fiber production method for further activating the carbon fiber. it can. According to the present invention, the carbon fiber and the activated carbon fiber are excellent in strength and can be produced in a high yield, so that the industrial utility is great.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001056757A JP4566425B2 (en) | 2001-03-01 | 2001-03-01 | Carbon fiber and method for producing activated carbon fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001056757A JP4566425B2 (en) | 2001-03-01 | 2001-03-01 | Carbon fiber and method for producing activated carbon fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002266174A JP2002266174A (en) | 2002-09-18 |
JP4566425B2 true JP4566425B2 (en) | 2010-10-20 |
Family
ID=18916733
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001056757A Expired - Fee Related JP4566425B2 (en) | 2001-03-01 | 2001-03-01 | Carbon fiber and method for producing activated carbon fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4566425B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6020346B2 (en) * | 2013-05-20 | 2016-11-02 | 東洋紡株式会社 | Fibrous activated carbon multiple fabric |
CN103909853A (en) * | 2014-04-10 | 2014-07-09 | 江苏同康特种活性炭纤维面料有限公司 | Environment-friendly automobile cushion |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5710205B2 (en) * | 1971-09-22 | 1982-02-25 | ||
JPS6030368B2 (en) * | 1977-07-13 | 1985-07-16 | 東洋カ−ボン株式会社 | Manufacturing method of phenolic resin carbon fiber |
JPS6054406B2 (en) * | 1977-03-22 | 1985-11-29 | 東洋紡績株式会社 | Method for producing nitrogen-containing activated carbon fiber |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5029053B1 (en) * | 1971-07-07 | 1975-09-20 | ||
JPS6461514A (en) * | 1987-08-31 | 1989-03-08 | Ibiden Co Ltd | Production of carbon yarn having high strength and high modulus of elasticity |
-
2001
- 2001-03-01 JP JP2001056757A patent/JP4566425B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5710205B2 (en) * | 1971-09-22 | 1982-02-25 | ||
JPS6054406B2 (en) * | 1977-03-22 | 1985-11-29 | 東洋紡績株式会社 | Method for producing nitrogen-containing activated carbon fiber |
JPS6030368B2 (en) * | 1977-07-13 | 1985-07-16 | 東洋カ−ボン株式会社 | Manufacturing method of phenolic resin carbon fiber |
Also Published As
Publication number | Publication date |
---|---|
JP2002266174A (en) | 2002-09-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yue et al. | Carbonization and activation for production of activated carbon fibers | |
US7708805B2 (en) | Method of producing carbon fibers, and methods of making protective clothing and a filter module | |
KR100485603B1 (en) | Preparation of activated carbon fibers using nano fibers | |
CA1159810A (en) | Process for the production of fibrous activated carbon | |
CN110541210B (en) | Nitrogen-rich porous polyacrylonitrile-based carbon fiber and preparation method and application thereof | |
JP2011128154A (en) | Gas sensor using porous nano-fiber containing metal oxide and method of manufacturing the same | |
WO2018115177A1 (en) | Graphite material | |
KR101327972B1 (en) | Preparing method of stabilized carbon nano-fiber by radiation and thermal treatment, and the carbon nano-fiber prepared by the same method | |
JP4566425B2 (en) | Carbon fiber and method for producing activated carbon fiber | |
JPH026618A (en) | Production of meso-phase pitch-based carbon fiber | |
JPH0314624A (en) | Production of carbon yarn | |
CN114457469B (en) | Preparation method of polyacrylonitrile pre-oxidized fiber, pre-oxidized fiber and application of pre-oxidized fiber | |
JP3412970B2 (en) | Method for producing activated carbon fiber | |
JP3031626B2 (en) | Binder, impregnating agent, and method for producing them | |
JPS6054406B2 (en) | Method for producing nitrogen-containing activated carbon fiber | |
KR100400393B1 (en) | Electrically heatable porous Si/SiC fiber media and method of making same | |
JPH0735614B2 (en) | Method for producing highly graphitized carbon fiber | |
KR101405481B1 (en) | Method for manufacturing activated carbon fiber and activated carbon fiber manufactured by the same | |
JP4433676B2 (en) | Method for producing carbon fiber reinforced carbon composite material | |
JP3336159B2 (en) | Method for producing porous phenolic resin fiber | |
KR20240117388A (en) | Preparation method of composite activated carbon nonwoven with high strength and high specific surface area and composite activated carbon nonwoven therefrom | |
JPH0627373B2 (en) | Activated carbon fiber manufacturing method | |
JP2766530B2 (en) | Method for producing pitch-based carbon fiber | |
JPS6117411A (en) | Infusibilization of formed pitch | |
KR20240086183A (en) | Activated carbon fiber using wasted clothing and manufacturing method of it |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070928 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100412 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100420 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100621 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100713 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100804 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130813 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |