Nothing Special   »   [go: up one dir, main page]

JP4560849B2 - Control valve type lead storage battery manufacturing method - Google Patents

Control valve type lead storage battery manufacturing method Download PDF

Info

Publication number
JP4560849B2
JP4560849B2 JP14800499A JP14800499A JP4560849B2 JP 4560849 B2 JP4560849 B2 JP 4560849B2 JP 14800499 A JP14800499 A JP 14800499A JP 14800499 A JP14800499 A JP 14800499A JP 4560849 B2 JP4560849 B2 JP 4560849B2
Authority
JP
Japan
Prior art keywords
electrode plate
negative electrode
battery
control valve
valve type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14800499A
Other languages
Japanese (ja)
Other versions
JP2000340220A (en
JP2000340220A5 (en
Inventor
信治 山田
能弘 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP14800499A priority Critical patent/JP4560849B2/en
Publication of JP2000340220A publication Critical patent/JP2000340220A/en
Publication of JP2000340220A5 publication Critical patent/JP2000340220A5/ja
Application granted granted Critical
Publication of JP4560849B2 publication Critical patent/JP4560849B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鉛蓄電池の製造方法、特に電槽化成の工程を経る制御弁式鉛蓄電池の製造方法に関するものである。
【0002】
【従来の技術】
鉛蓄電池は、未化成の正、負極板の両方を化成槽中で化成し、これら化成済みの極板を用いて製造する方法と、未化成の正、負極板の両方を用いて電池を構成した後、化成と初充電を同時に行う、いわゆる電槽化成(ケースフォーメーション)により製造する方法とがある。
【0003】
【発明が解決しようとする課題】
上記何れの方法においても、化成工程の終期でガスの発生量が多くなる。このガス発生は、負極板よりも正極板の方が著しい。正極板は、未化成の状態から完全充電に至るまで、充電率にもよるが、理論容量の200%前後の電気量が必要であり、負極板のそれ(130%前後)に比べ多い。これは、正極板が化成終期に近づくに従い、充電に消費される電気量より酸素ガス発生に消費される電気量が多くなるためである。
【0004】
従来の技術で述べた前者の方法は、正極板と負極板の両方が希硫酸溶液で満たされた化成槽中で化成されるため、負極板が正極板から発生した酸素ガスに殆ど触れることがない。従って、負極板は殆ど酸素ガスを吸収せず、酸素ガス吸収反応に伴う電力の消費が行われない。しかし、電解液量を規制し、該電解液を微細ガラスマットセパレータに保持させた制御弁式鉛蓄電池を従来の電槽化成の方法で化成すると、負極板が露出しているため、正極板から発生した酸素ガスが負極板に触れ、負極板で酸素ガス吸収反応が起こり、電力が消費される。このため、負極板は完全充電状態にならず、正極板の方が先に完全充電状態になる。そして、この状態で化成が終了すると、負極板に硫酸鉛が残存し、このまま放置しておくと、この硫酸鉛が粗大化して不活性化し、充放電を行っても元に戻すことができなかった。このような不活性化した硫酸鉛が多くなると、活性な活物質の割合が減少し、負極板の放電容量、特に高率放電性能が低下するという問題点があった。
【0005】
また、負極板に不活性化した硫酸鉛の多い電池を規定電圧でフロート(トリクル)充電した場合、負極の電位は、水素が発生する電位に至らず、水素発生電位より貴な充電反応電位で安定する。一方、正極板の電位は、貴な電位に分極するため、酸素ガス発生を加速させ、フロート(トリクル)充電電流が増大する。その結果、負極板は、酸素ガスをさらに吸収して未充電状態が継続され、水分解反応により電解液が減少し、電池の放電性能や寿命性能が低下する。
【0006】
このような問題点を抑制する手段として、負極板の活物質容量を正極板のそれより減らし、正極板からガスが発生する前、あるいは電解液量が減少する前に負極板を完全充電する方法が用いられているが、このようにすると、負極板の放電容量、特に高率放電容量が低下するため、電池性能を充分に満たさなくなる。
【0007】
また、電槽化成時間を追加して負極板の化成度を上げる方法が用いられているが、生産効率を犠牲にする割りには化成度を上げることができなかった。
【0008】
以上のように、制御弁式鉛蓄電池を電槽化成により作製すると、負極板を完全に充電することが困難であり、また、フロート(トリクル)充電時の各極板にかかる電圧制御も困難であった。
【0009】
従って、本発明の目的は、製造工程を簡略化できる電槽化成方法において、負極板を完全充電できる制御弁式鉛蓄電池の製造方法を提供し、高率放電特性および寿命性能の優れた制御弁式鉛蓄電池を得ることにある。
【0010】
【課題を解決するための手段】
上記課題を解決するために、本発明の制御弁式鉛蓄電池の製造方法は、電槽化成によって制御弁式鉛蓄電池を製造する製造方法において、未化成の正極板と負極板を準備し、前記未化成の負極板のみを充電した後、前記未化成の正極板と充電後の負極板を用いて電池を構成し、前記電池を電槽化成することを特徴とする。このように、負極板を予め充電して電槽化成すると、正極板から多くの酸素ガスが発生する前に、負極板を完全充電状態にできる。そして、このようにして作製された制御弁式鉛蓄電池は、負極板に不活性化された硫酸鉛が殆ど存在しなくなるため、フロート電流を増加させることがなく、放電電流や寿命性能が優れる。
【0011】
【発明の実施の形態】
以下、本発明の実施例について説明する。
【0012】
まず、公知の方法により作製した、未化成の負極板を用意する。この負極板を比重1.10(25℃)の硫酸水溶液中でその理論容量の5、50、100%まで定電流でそれぞれ0.5、5、10時間かけて充電した。その後、該極板を公知の方法で水洗、乾燥した。これら負極板と、公知の方法により作製した未化成の正極板と、電解液として比重1.26(25℃)の硫酸水溶液を用いて制御弁式鉛蓄電池A, B, Cを構成した。次に上記電池を正極板の理論容量換算でその200%まで定電流で40時間かけて充電(電槽化成)した。
【0013】
上記の製造方法(以下、実施例と略記する。)と、従来の製造方法について比較検討した。従来の製造方法(以下、従来例と略記する。)は、未化成の正極板及び負極板と、電解液として比重1.26(25℃)の硫酸水溶液を用いて制御弁式鉛蓄電池を構成し、正極板の理論容量の250%まで定電流で50時間かけて充電(電槽化成)する方法である。図1に実施例と従来例の電槽化成後の50℃加速試験中のフロート(トリクル)充電特性を、図2に実施例と従来例の電槽化成後の50℃加速試験中の高率放電特性を示す。なお、電池Dは、従来の製造方法で作製した制御弁式鉛蓄電池である。
【0014】
図1、2から明らかなように、本発明による電池A,B,Cは、従来方法による電池Dに比べ、経過日数に対するフロート電流率と放電容量の低下が少ない。
なお、フロート電流率(%)は、電池Dの初期4時間目のフロート電流を100(%)としたときの相対値である。
【0015】
図1、2を具体的に説明する。図1は、電池A〜Dのフロート充電電流特性を示し、初期以外でフロート電流率が急激に増加しているのは、該当日に高率放電特性の試験を行ったためであり、フロート試験の再スタート時、一次的にフロート電流が高くなったことによる。
【0016】
図2は、図1のフロート試験中の電池を定期的に高率放電率(3CA)で放電した際の放電容量推移を示す。
【0017】
図1、2からわかるように、負極板を電槽化成前に充電した電池A,B,Cは、従来法による電池Dに比較して、フロート電流が低下し、長期間その低い値が維持されている。さらに、高率放電性能についても初期の放電容量が高く、その放電容量が長期間維持されることがわかる。負極板に対する電槽化成前の充電は、電気量が、理論容量に対して100%充電しなくても、5%程度(電池A)でも十分電池特性を向上させる効果があった。それに対し、従来の方法ではトータルの充電電気量が電池A〜Cより多い250%の充電をしているにもかかわらず、フロート電流が大きく、また高率放電容量も小さい。これは、負極板が完全に充電状態になっていないことが原因と考えられる。つまり、従来の電槽化成では、前述した正極板からの酸素ガス発生の際に多くの酸素が負極板で吸収され、その結果、負極板の充電電気量が主に酸素ガス吸収反応によって生成した硫酸鉛の充電に使用されたためと考えられる。
【0018】
【発明の効果】
以上詳述したように、本発明の製造方法は、正極板から酸素ガスが発生するまでに、負極板を完全充電状態にできるので、負極板に不活性化した硫酸鉛が残存しない。従って、本発明により製造した制御弁式鉛蓄電池は、高率放電特性およびフロート寿命性能が優れる。
【図面の簡単な説明】
【図1】本発明および従来法に係る電池のフロート(トリクル)充電特性を示すグラフである。
【図2】本発明および従来法に係る電池の高率放電特性を示すグラフである。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a lead-acid battery, and more particularly to a method for manufacturing a control valve-type lead-acid battery that undergoes a process for forming a battery case.
[0002]
[Prior art]
Lead storage batteries are composed of both unformed positive and negative electrode plates in a chemical conversion tank and manufactured using these formed electrode plates, and unformed positive and negative electrode plates. After that, there is a method of manufacturing by so-called battery case formation (case formation) in which chemical conversion and initial charging are performed simultaneously.
[0003]
[Problems to be solved by the invention]
In any of the above methods, the amount of gas generated increases at the end of the chemical conversion step. This gas generation is more remarkable in the positive electrode plate than in the negative electrode plate. The positive electrode plate requires an amount of electricity of about 200% of the theoretical capacity from the unformed state to full charge, but it is more than that of the negative electrode plate (about 130%). This is because as the positive electrode plate approaches the end of chemical conversion, the amount of electricity consumed for oxygen gas generation becomes larger than the amount of electricity consumed for charging.
[0004]
In the former method described in the prior art, since both the positive electrode plate and the negative electrode plate are formed in a chemical conversion tank filled with a dilute sulfuric acid solution, the negative electrode plate is almost in contact with oxygen gas generated from the positive electrode plate. Absent. Therefore, the negative electrode plate hardly absorbs oxygen gas, and power consumption associated with the oxygen gas absorption reaction is not performed. However, when the control valve type lead-acid battery that regulates the amount of electrolyte and holds the electrolyte in a fine glass mat separator is formed by the conventional battery formation method, the negative electrode is exposed. The generated oxygen gas touches the negative electrode plate, an oxygen gas absorption reaction occurs in the negative electrode plate, and power is consumed. For this reason, the negative electrode plate is not fully charged, and the positive electrode plate is first fully charged. When the formation is completed in this state, the lead sulfate remains on the negative electrode plate. If left as it is, the lead sulfate becomes coarse and inactivated, and cannot be restored even after charge / discharge. It was. When the amount of such inactivated lead sulfate increases, there is a problem that the ratio of the active active material decreases, and the discharge capacity of the negative electrode plate, in particular, the high rate discharge performance decreases.
[0005]
In addition, when a battery containing a large amount of lead sulfate deactivated on the negative electrode plate is float (trickle) charged at a specified voltage, the potential of the negative electrode does not reach the potential at which hydrogen is generated, but at a charging reaction potential that is nobler than the hydrogen generation potential. Stabilize. On the other hand, since the potential of the positive electrode is polarized to a noble potential, oxygen gas generation is accelerated and the float (tricle) charging current is increased. As a result, the negative electrode plate further absorbs oxygen gas and remains in an uncharged state, the electrolytic solution decreases due to the water splitting reaction, and the discharge performance and life performance of the battery are degraded.
[0006]
As a means of suppressing such problems, a method of fully charging the negative electrode plate before reducing the active material capacity of the negative electrode plate than that of the positive electrode plate and generating gas from the positive electrode plate or before reducing the amount of electrolyte In this case, since the discharge capacity of the negative electrode plate, particularly the high rate discharge capacity, is lowered, the battery performance is not sufficiently satisfied.
[0007]
Moreover, although the method of increasing the formation degree of a negative electrode plate by adding battery case formation time is used, the formation degree was not able to be raised for the sacrifice of production efficiency.
[0008]
As described above, when a valve-regulated lead-acid battery is produced by battery case formation, it is difficult to fully charge the negative electrode plate, and it is difficult to control the voltage applied to each electrode plate during float (trickle) charging. there were.
[0009]
Accordingly, an object of the present invention is to provide a control valve type lead acid battery manufacturing method capable of fully charging a negative electrode plate in a battery case forming method capable of simplifying the manufacturing process, and to provide a control valve with excellent high rate discharge characteristics and life performance. It is to obtain a lead-acid battery.
[0010]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, a method for manufacturing a control valve type lead storage battery according to the present invention is a manufacturing method for manufacturing a control valve type lead storage battery by battery case formation, preparing an unformed positive electrode plate and a negative electrode plate, After charging only the unformed negative electrode plate, a battery is formed using the unformed positive electrode plate and the charged negative electrode plate, and the battery is formed into a battery case. As described above, when the negative electrode plate is charged in advance to form a battery case, the negative electrode plate can be fully charged before a large amount of oxygen gas is generated from the positive electrode plate. And the control valve type lead acid battery produced in this way has almost no inactivated lead sulfate on the negative electrode plate, so that the float current is not increased, and the discharge current and life performance are excellent.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Examples of the present invention will be described below.
[0012]
First, an unformed negative electrode plate prepared by a known method is prepared. This negative electrode plate was charged in a sulfuric acid aqueous solution having a specific gravity of 1.10 (25 ° C.) to 5, 50, and 100% of its theoretical capacity at a constant current for 0.5, 5 and 10 hours, respectively. Thereafter, the electrode plate was washed with water and dried by a known method. Control valve type lead acid batteries A, B, and C were constructed using these negative electrode plates, an unformed positive electrode plate produced by a known method, and a sulfuric acid aqueous solution having a specific gravity of 1.26 (25 ° C.) as an electrolytic solution. Next, the battery was charged (battery formation) over 40 hours at a constant current up to 200% in terms of theoretical capacity of the positive electrode plate.
[0013]
The above manufacturing method (hereinafter abbreviated as “Example”) and a conventional manufacturing method were compared. A conventional manufacturing method (hereinafter abbreviated as a conventional example) comprises a control valve type lead-acid battery using an unformed positive electrode plate and negative electrode plate and a sulfuric acid aqueous solution having a specific gravity of 1.26 (25 ° C.) as an electrolyte. The battery is charged (battery formation) at a constant current for 50 hours up to 250% of the theoretical capacity of the positive electrode plate. FIG. 1 shows the float (tricle) charging characteristics during the 50 ° C. acceleration test after the battery formation in the example and the conventional example, and FIG. 2 shows the high rate during the 50 ° C. acceleration test after the battery formation in the example and the conventional example. Shows the discharge characteristics. The battery D is a control valve type lead storage battery manufactured by a conventional manufacturing method.
[0014]
As is clear from FIGS. 1 and 2, the batteries A, B, and C according to the present invention have less decrease in the float current rate and the discharge capacity with respect to the elapsed days than the battery D according to the conventional method.
The float current rate (%) is a relative value when the float current at the initial 4 hours of the battery D is 100 (%).
[0015]
1 and 2 will be described in detail. FIG. 1 shows the float charging current characteristics of batteries A to D, and the reason why the float current rate increases rapidly except for the initial period is that the high rate discharge characteristics were tested on the corresponding day. This is because the float current temporarily increased during the restart.
[0016]
FIG. 2 shows a change in discharge capacity when the battery in the float test of FIG. 1 is periodically discharged at a high rate discharge rate (3CA).
[0017]
As can be seen from FIGS. 1 and 2, the batteries A, B, and C, in which the negative electrode plate was charged before the formation of the battery case, had a lower float current and maintained that low value for a long time compared to the battery D by the conventional method. Has been. Furthermore, it can be seen that the initial discharge capacity is high for high rate discharge performance, and that discharge capacity is maintained for a long period of time. Charging before forming the battery case with respect to the negative electrode plate had an effect of sufficiently improving the battery characteristics even when the amount of electricity was not charged 100% of the theoretical capacity, even if it was about 5% (battery A). On the other hand, in the conventional method, the float current is large and the high rate discharge capacity is small even though the total amount of charge is 250% more than that of the batteries A to C. This is probably because the negative electrode plate is not completely charged. That is, in the conventional battery case formation, a large amount of oxygen is absorbed by the negative electrode plate when the oxygen gas is generated from the positive electrode plate described above, and as a result, the amount of electricity charged in the negative electrode plate is mainly generated by the oxygen gas absorption reaction. It is thought that it was used for charging lead sulfate.
[0018]
【The invention's effect】
As described in detail above, the production method of the present invention can fully charge the negative electrode plate until oxygen gas is generated from the positive electrode plate, so that the deactivated lead sulfate does not remain on the negative electrode plate. Therefore, the control valve type lead storage battery manufactured according to the present invention is excellent in high rate discharge characteristics and float life performance.
[Brief description of the drawings]
FIG. 1 is a graph showing float (tricle) charging characteristics of a battery according to the present invention and a conventional method.
FIG. 2 is a graph showing high rate discharge characteristics of a battery according to the present invention and a conventional method.

Claims (1)

電槽化成によって制御弁式鉛蓄電池を製造する製造方法において、未化成の正極板と負極板を準備し、前記未化成の負極板のみを充電した後、前記未化成の正極板と充電後の負極板を用いて電池を構成し、前記電池を電槽化成することを特徴とする制御弁式鉛蓄電池の製造方法。 In a manufacturing method for producing a valve-regulated lead-acid battery by battery case formation, after preparing an unformed positive electrode plate and a negative electrode plate, charging only the unformed negative electrode plate, and then charging the unformed positive electrode plate and A method for producing a control valve type lead-acid battery, comprising: forming a battery using a negative electrode plate; and forming the battery in a battery case.
JP14800499A 1999-05-27 1999-05-27 Control valve type lead storage battery manufacturing method Expired - Fee Related JP4560849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14800499A JP4560849B2 (en) 1999-05-27 1999-05-27 Control valve type lead storage battery manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14800499A JP4560849B2 (en) 1999-05-27 1999-05-27 Control valve type lead storage battery manufacturing method

Publications (3)

Publication Number Publication Date
JP2000340220A JP2000340220A (en) 2000-12-08
JP2000340220A5 JP2000340220A5 (en) 2005-10-27
JP4560849B2 true JP4560849B2 (en) 2010-10-13

Family

ID=15442968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14800499A Expired - Fee Related JP4560849B2 (en) 1999-05-27 1999-05-27 Control valve type lead storage battery manufacturing method

Country Status (1)

Country Link
JP (1) JP4560849B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114678602A (en) * 2022-02-23 2022-06-28 浙江铅锂智行科技有限公司 Formation method and system of lead-acid storage battery pole plate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57113555A (en) * 1980-12-29 1982-07-15 Shin Kobe Electric Mach Co Ltd Initial charging method of unformated plate fabricating lead-acid battery
JPS6132355A (en) * 1984-07-23 1986-02-15 Japan Storage Battery Co Ltd Formation of plates for lead storage battery
JPS63168966A (en) * 1986-12-29 1988-07-12 Shin Kobe Electric Mach Co Ltd Manufacture of lead storage battery

Also Published As

Publication number Publication date
JP2000340220A (en) 2000-12-08

Similar Documents

Publication Publication Date Title
EP2960978B1 (en) Flooded lead-acid battery
JP2003123760A (en) Negative electrode for lead-acid battery
JP3936157B2 (en) Manufacturing method for sealed lead-acid batteries
JP2001028263A (en) Lead-acid battery formation method
JP4560849B2 (en) Control valve type lead storage battery manufacturing method
JP5196732B2 (en) Method for producing lead-acid battery
JP2008071717A (en) Method of chemical conversion of lead-acid battery
JP2004327299A (en) Sealed lead-acid storage battery
JP2003346890A (en) Valve regulated lead-acid battery and its manufacturing method
JP5283429B2 (en) Sealed lead acid battery
JP2007095626A (en) Method of manufacturing lead-acid battery
JP4854157B2 (en) Chemical conversion method for positive electrode plate and lead acid battery
JP4411860B2 (en) Storage battery
JPH09147871A (en) Negative electrode plate for lead-acid battery
JPH0850896A (en) Manufacture of lead-acid battery
JP2001085046A (en) Sealed lead-acid battery
JP4742424B2 (en) Control valve type lead acid battery
JP2771584B2 (en) Manufacturing method of non-sintering type sealed alkaline storage battery
JP3648761B2 (en) How to charge sealed lead-acid batteries
JP3951285B2 (en) Control valve type lead acid battery
JPH08115718A (en) Manufacture of lead-acid battery
JPH0654661B2 (en) Sealed lead acid battery
JP2964555B2 (en) Battery storage method for lead-acid batteries
JP2000149932A (en) Lead-acid battery and its manufacture
JPH10308215A (en) Manufacture of sealed lead-acid battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050906

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050909

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090819

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees