Nothing Special   »   [go: up one dir, main page]

JP4553308B2 - Temperature / thickness measuring device, temperature / thickness measuring method, temperature / thickness measuring system, control system, control method - Google Patents

Temperature / thickness measuring device, temperature / thickness measuring method, temperature / thickness measuring system, control system, control method Download PDF

Info

Publication number
JP4553308B2
JP4553308B2 JP2005032223A JP2005032223A JP4553308B2 JP 4553308 B2 JP4553308 B2 JP 4553308B2 JP 2005032223 A JP2005032223 A JP 2005032223A JP 2005032223 A JP2005032223 A JP 2005032223A JP 4553308 B2 JP4553308 B2 JP 4553308B2
Authority
JP
Japan
Prior art keywords
light
measurement
interference waveform
temperature
optical path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005032223A
Other languages
Japanese (ja)
Other versions
JP2006220461A (en
Inventor
智博 鈴木
地塩 輿水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2005032223A priority Critical patent/JP4553308B2/en
Priority to US11/349,276 priority patent/US7379189B2/en
Publication of JP2006220461A publication Critical patent/JP2006220461A/en
Application granted granted Critical
Publication of JP4553308B2 publication Critical patent/JP4553308B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は,測定対象例えば半導体ウエハや液晶基板等の温度又は厚さを正確に測定可能な温度/厚さ測定装置,温度/厚さ測定方法,温度/厚さ測定システム,制御システム,制御方法に関する。   The present invention relates to a temperature / thickness measuring apparatus, a temperature / thickness measuring method, a temperature / thickness measuring system, a control system, and a control method capable of accurately measuring the temperature or thickness of a measurement object such as a semiconductor wafer or a liquid crystal substrate. About.

例えば基板処理装置により処理される被処理基板例えば半導体ウエハ(以下,単に「ウエハ」とも称する。)の温度などを正確に測定することは,成膜やエッチングなど種々の処理の結果によりウエハ上に形成される膜やホールなどの形状,物性等を正確にコントロールする点からも極めて重要である。このため,従来より例えば抵抗温度計や,基材裏面の温度を測定する蛍光式温度計等を利用した計測法など様々な方法によってウエハの温度計測がなされている。   For example, accurate measurement of the temperature of a substrate to be processed, for example, a semiconductor wafer (hereinafter also simply referred to as “wafer”) processed by a substrate processing apparatus is performed on the wafer according to the results of various processes such as film formation and etching. This is extremely important from the viewpoint of accurately controlling the shape and physical properties of the film and holes to be formed. For this reason, the temperature of a wafer has been conventionally measured by various methods such as a resistance thermometer and a measurement method using a fluorescence thermometer for measuring the temperature of the back surface of a substrate.

近年では,上述したような従来の温度計測方法では困難だったウエハの温度を直接計測することができる温度計測方法や装置も研究されている(例えば特許文献1参照)。このような温度測定装置の具体例を図32及び図33を参照しながら説明する。図32は従来の温度測定装置の原理を説明するための図であり,図33は温度測定装置により計測された干渉波形を観念的に示した図である。   In recent years, a temperature measurement method and apparatus capable of directly measuring the wafer temperature, which has been difficult with the conventional temperature measurement method as described above, have been studied (see, for example, Patent Document 1). A specific example of such a temperature measuring apparatus will be described with reference to FIGS. 32 and 33. FIG. FIG. 32 is a diagram for explaining the principle of a conventional temperature measuring device, and FIG. 33 is a diagram conceptually showing an interference waveform measured by the temperature measuring device.

図32に示す温度測定装置10は,例えばマイケルソン干渉計を基本とした低コヒーレンス干渉計を利用したものである。温度測定装置10は,例えば低コヒーレンス性を持つSLD(Super Luminescent Diode)より構成される光源12と,この光源12の光を参照ミラー20へ照射する参照光及び測定対象(例えばウエハ)30へ照射する測定光の2つに分けるビームスプリッタ14と,一方向へ駆動可能に設けられ上記参照光の光路長を可変可能な参照ミラー20と,参照ミラー20から反射する参照光と測定対象30から反射する測定光とを受光して干渉を計測する受光器16とを備える。   The temperature measuring apparatus 10 shown in FIG. 32 uses a low coherence interferometer based on, for example, a Michelson interferometer. The temperature measuring apparatus 10 irradiates a light source 12 composed of, for example, a low-coherence SLD (Super Luminescent Diode), reference light that irradiates the reference mirror 20 with light from the light source 12 and a measurement target (for example, a wafer) 30. A beam splitter 14 that divides the measurement light into two, a reference mirror 20 that can be driven in one direction and can change the optical path length of the reference light, a reference light reflected from the reference mirror 20, and a reflection from the measurement object 30. And a light receiver 16 that receives the measurement light and measures the interference.

このような温度測定装置10においては,光源12からの光がビームスプリッタ14により参照光と測定光との2つに分けられ,測定光は測定対象30へ向けて照射されて測定対象の両端面(例えば表面と裏面)で反射され,参照光は参照ミラー20へ向けて照射されて参照ミラーの表面で反射される。そして,それぞれから反射した測定光と参照光が再びビームスプリッタ14に入射し,その際,参照光の光路長によっては測定光と参照光とが重なり合って干渉を起こして,その干渉波形が受光器16で検出される。   In such a temperature measuring device 10, the light from the light source 12 is divided into the reference light and the measuring light by the beam splitter 14, and the measuring light is irradiated toward the measuring object 30 and both end faces of the measuring object. The reference light is reflected toward the reference mirror 20 and reflected from the surface of the reference mirror (for example, the front surface and the back surface). Then, the measurement light and the reference light reflected from each enter the beam splitter 14 again. At this time, depending on the optical path length of the reference light, the measurement light and the reference light are overlapped to cause interference, and the interference waveform is received by the light receiver. 16 is detected.

そこで,温度測定を行う際,参照ミラー20を一方向に駆動させて参照光の光路長を変化させる。すると,光源12の低コヒーレンス性により光源12からの光のコヒーレンス長が短いため,通常は,測定光の光路長と参照光の光路長が一致した場所で強く干渉が起こり,それ以外の場所では干渉は実質的に低減する。このように,参照ミラー20を例えば前後方向(図32における矢印方向)に駆動させ,参照光の光路長を変化させることにより,測定対象30における屈折率差(例えば空中の屈折率nと測定対象30内の屈折率n)によって測定対象30の表面,裏面からそれぞれ反射した測定光と参照ミラーから反射した参照光とが干渉し,図33(a)に示すような干渉波形が検出される。 Therefore, when the temperature is measured, the reference mirror 20 is driven in one direction to change the optical path length of the reference light. Then, since the coherence length of the light from the light source 12 is short due to the low coherence property of the light source 12, normally, strong interference occurs in a place where the optical path length of the measurement light and the optical path length of the reference light coincide with each other, and in other places Interference is substantially reduced. Thus, the reference mirror 20 for example the front-rear direction is driven (arrow direction in FIG. 32), by changing the optical path length of the reference light, the refractive index difference in the measurement object 30 (e.g., measurement and air refractive index n a The measurement light reflected from the front and back surfaces of the measurement object 30 interferes with the reference light reflected from the reference mirror due to the refractive index n) in the object 30, and an interference waveform as shown in FIG. 33A is detected. .

これら干渉波形のピーク間距離は,測定対象30の厚さを構成する各面間の光路長Lに相当する。この光路長Lは,測定対象30の厚さをd,屈折率をnとすると,L=d×nで表すことができる。これらの厚さdと屈折率nは,温度変化に応じて変化するため,測定対象30の光路長(光学厚さ)Lも温度変化によって変化する。このため,測定対象30の光路長Lの変化を利用することによって,測定対象の深度方向の温度測定が可能となる。   The distance between peaks of these interference waveforms corresponds to the optical path length L between the surfaces constituting the thickness of the measurement object 30. This optical path length L can be expressed as L = d × n, where d is the thickness of the measuring object 30 and n is the refractive index. Since the thickness d and the refractive index n change according to the temperature change, the optical path length (optical thickness) L of the measuring object 30 also changes with the temperature change. For this reason, it is possible to measure the temperature in the depth direction of the measurement target by using the change in the optical path length L of the measurement target 30.

例えば,図33においてヒータなどにより温められて測定対象30の温度が変化すると,測定対象30は一点鎖線に示すように膨張する。このとき測定対象30内の屈折率nも変化するため,図33(a),(b)に示すように温度変化の前後では干渉波形の位置がずれて,各干渉波形のピーク位置間の幅(ピーク間幅)が変化し,しかも干渉波形のピーク間幅の変化量は上記温度変化の変化量に対応する。また,干渉波形のピーク間幅は,参照ミラー20の移動距離と対応しているため,参照ミラー20の移動距離に基づいて干渉波形のピーク間幅を精度よく測定することで温度変化を精度よく測定することができる。   For example, in FIG. 33, when the temperature of the measuring object 30 is changed by being warmed by a heater or the like, the measuring object 30 expands as shown by a one-dot chain line. At this time, since the refractive index n in the measurement object 30 also changes, as shown in FIGS. 33 (a) and 33 (b), the position of the interference waveform shifts before and after the temperature change, and the width between the peak positions of each interference waveform. The (peak-to-peak width) changes, and the change amount of the peak-to-peak width of the interference waveform corresponds to the change amount of the temperature change. Further, since the peak-to-peak width of the interference waveform corresponds to the movement distance of the reference mirror 20, the temperature change can be accurately measured by accurately measuring the peak-to-peak width of the interference waveform based on the movement distance of the reference mirror 20. Can be measured.

国際公開第03/087744号パンフレットInternational Publication No. 03/087744 Pamphlet

ところで,上述したように測定対象30の光路長(光学厚さ)Lは,厚さd×屈折率nで表され,この厚さdと屈折率nは温度変化に対して比で変化するので,光路長Lも温度変化に対して比で変化する。このため,測定対象30の厚さdが厚いほど光路長(光学厚さ)Lの温度変化に対する変化量も大きくなり,測定対象30の厚さdが薄いほど光路長(光学厚さ)Lも温度変化に対する変化量も小さくなる。   By the way, as described above, the optical path length (optical thickness) L of the measurement object 30 is expressed by thickness d × refractive index n, and the thickness d and the refractive index n change in a ratio with respect to temperature change. , The optical path length L also changes at a ratio to the temperature change. For this reason, as the thickness d of the measuring object 30 is thicker, the amount of change of the optical path length (optical thickness) L with respect to the temperature change becomes larger, and as the measuring object 30 is thinner, the optical path length (optical thickness) L is also increased. The amount of change with respect to temperature change is also reduced.

例えば厚さ10mmのシリコンウエハにおける光路長Lの変化量は2.7μm/℃であるのに対して,これよりも薄いウエハ,例えば厚さ0.75mmのシリコンウエハにおける光路長Lの変化量は0.2μm/℃とかなり小さくなる。   For example, the change amount of the optical path length L in a silicon wafer having a thickness of 10 mm is 2.7 μm / ° C., whereas the change amount of the optical path length L in a wafer thinner than this, for example, a silicon wafer having a thickness of 0.75 mm, is It becomes considerably small at 0.2 μm / ° C.

このように,測定対象30の温度が変化した場合,測定対象30の厚さdが薄い(小さい)ほど測定対象30の光路長Lの変化量が小さくなるので,この光路長Lに相当する各面の干渉波形のピーク間幅の変化量も小さくなる。このため,測定対象30の厚さdが薄いほど,測定対象30の各面の干渉波形のピーク間幅の変化量を精度よく測定することが困難になるため,ひいては測定対象の温度測定精度向上の妨げになるという問題がある。   Thus, when the temperature of the measuring object 30 changes, the amount of change in the optical path length L of the measuring object 30 becomes smaller as the thickness d of the measuring object 30 is thinner (smaller). The amount of change in the peak-to-peak width of the interference waveform on the surface is also reduced. For this reason, the thinner the thickness d of the measuring object 30, the more difficult it is to accurately measure the amount of change in the peak-to-peak width of the interference waveform on each surface of the measuring object 30. Consequently, the temperature measurement accuracy of the measuring object is improved. There is a problem of hindering.

そこで,本発明は,このような問題に鑑みてなされたもので,その目的とするところは,測定対象の厚さに拘らず,測定対象の温度又は厚さの測定精度を向上させることができる温度/厚さ測定装置,温度/厚さ測定方法,温度/厚さ測定システム,制御システム,制御方法を提供することにある。   Therefore, the present invention has been made in view of such problems, and the object of the present invention is to improve the measurement accuracy of the temperature or thickness of the measurement object regardless of the thickness of the measurement object. A temperature / thickness measuring device, a temperature / thickness measuring method, a temperature / thickness measuring system, a control system, and a control method are provided.

上記課題を解決するために,本発明のある観点によれば,測定対象の両端面を透過し反射する光であって,前記測定対象の両端面で少なくとも2回以上往復反射可能な光を照射する光源と,前記光源からの光を測定光と参照光とにスプリットするためのスプリッタと,前記スプリッタからの参照光を反射するための参照光反射手段と,前記参照光反射手段から反射する参照光の光路長を変化させるための光路長変化手段と,前記スプリッタからの参照光を前記参照光反射手段へ向けて照射する参照光照射位置まで伝送する参照光伝送手段と,前記スプリッタからの測定光を前記測定対象へ向けて照射する測定光照射位置まで伝送する測定光伝送手段と,前記測定対象を透過又は反射する測定光と前記参照光反射手段から反射する参照光とが干渉して得られる複数の測定光の干渉波形を測定するための受光手段と,前記受光手段で測定された測定光の干渉波形のうち,ある干渉波形を基準とし,この基準干渉波形の測定光よりも前記測定対象の両端面を少なくとも2回以上多く往復反射する測定光の干渉波形を選択干渉波形として,前記基準干渉波形と前記選択干渉波形とに基づいて前記測定対象の両端面間における測定光の光路長を測定し,その光路長に基づいて前記測定対象の温度又は厚さを測定する測定手段とを備えたことを特徴とする温度/厚さ測定装置が提供される。   In order to solve the above-described problem, according to one aspect of the present invention, light that is transmitted through and reflected from both end faces of a measurement object and that can be reflected back and forth at least twice at both end faces of the measurement object is irradiated. A light source, a splitter for splitting light from the light source into measurement light and reference light, reference light reflecting means for reflecting reference light from the splitter, and reference reflecting from the reference light reflecting means Optical path length changing means for changing the optical path length of the light, reference light transmitting means for transmitting the reference light from the splitter to the reference light reflecting position for irradiating the reference light reflecting means, and measurement from the splitter Measurement light transmitting means for transmitting light to a measurement light irradiation position for irradiating the measurement object, measurement light that transmits or reflects the measurement object, and reference light that is reflected from the reference light reflection means are dried. A light receiving means for measuring the interference waveforms of the plurality of measurement lights obtained in this manner, and a reference interference waveform among the interference waveforms of the measurement light measured by the light receiving means. The measurement light between the two end surfaces of the measurement object is based on the reference interference waveform and the selected interference waveform, with the interference waveform of the measurement light that reciprocally reflects at least two times at both end surfaces of the measurement object as a selection interference waveform. There is provided a temperature / thickness measuring apparatus comprising a measuring means for measuring the optical path length of the measuring object and measuring the temperature or thickness of the measurement object based on the optical path length.

上記課題を解決するために,本発明の別の観点によれば,前記測定対象の両端面を透過し反射する光を照射する光源からスプリットされた測定光を前記測定対象へ向けて照射するとともに,参照光を参照光反射手段へ向けて照射する工程と,前記参照光反射手段を一方向へ走査することによって前記参照光反射手段から反射する参照光の光路長を変化させながら,前記測定対象を透過又は反射する測定光と前記参照光反射手段から反射する参照光とが干渉して得られる複数の測定光の干渉波形を測定する工程と,前記受光手段で測定された測定光の干渉波形のうち,ある干渉波形を基準とし,この基準干渉波形の測定光よりも前記測定対象の両端面を少なくとも2回以上多く往復反射する測定光の干渉波形を選択干渉波形として,前記基準干渉波形と前記選択干渉波形とに基づいて前記測定対象の両端面間における測定光の光路長を測定し,その光路長に基づいて前記測定対象の温度又は厚さを測定する工程とを有することを特徴とする温度/厚さ測定方法が提供される。   In order to solve the above-described problem, according to another aspect of the present invention, the measurement light split from a light source that emits light that is transmitted through and reflected from both end faces of the measurement object is irradiated toward the measurement object. Irradiating the reference light toward the reference light reflecting means; and changing the optical path length of the reference light reflected from the reference light reflecting means by scanning the reference light reflecting means in one direction, A step of measuring an interference waveform of a plurality of measurement lights obtained by interference between the measurement light transmitted or reflected by the reference light reflected from the reference light reflecting means, and the interference waveform of the measurement light measured by the light receiving means The interference waveform of the measurement light that reciprocally reflects at least two end faces of the measurement object at least two times more than the measurement light of the reference interference waveform as a reference interference waveform is selected as the reference interference waveform. Measuring the optical path length of the measurement light between both end faces of the measurement object based on the waveform and the selected interference waveform, and measuring the temperature or thickness of the measurement object based on the optical path length. A featured temperature / thickness measurement method is provided.

このような本発明にかかる装置又は方法において,光源からスプリットされた測定光が測定対象へ向けて照射されると,例えば測定対象の両端面(例えば表面と裏面)をそのまま透過する測定光や測定対象の各端面でそれぞれ反射する測定光の干渉波形のみならず,測定対象の両端面を1回以上往復反射してから測定対象を透過又は反射する測定光の干渉波形も測定できる。   In such an apparatus or method according to the present invention, when the measurement light split from the light source is irradiated toward the measurement object, for example, the measurement light or the measurement light that directly passes through both end faces (for example, the front surface and the back surface) of the measurement object. It is possible to measure not only the interference waveform of the measurement light reflected at each end surface of the object, but also the interference waveform of the measurement light that is transmitted or reflected through the measurement object after being reciprocally reflected at both end surfaces of the measurement object at least once.

これらの測定された複数の干渉波形のうち,例えば測定対象の表面で反射する測定光の干渉波形を基準干渉波形とすれば,測定対象の裏面で反射して測定対象の両端面を1回往復した測定光の干渉波形と基準干渉波形とのピーク間幅が測定対象の両端面間における測定光の光路長に相当することから,測定対象の両端面を2回以上往復反射した測定光の干渉波形と基準干渉波形とのピーク間幅は測定対象の両端面間における測定光の光路長の2倍以上となる。   Of these measured interference waveforms, for example, if the interference waveform of the measurement light reflected on the surface of the measurement object is the reference interference waveform, it is reflected on the back surface of the measurement object and reciprocates once on both end faces of the measurement object. Since the peak-to-peak width of the measured measurement light interference waveform and the reference interference waveform corresponds to the optical path length of the measurement light between both end faces of the measurement object, the interference of the measurement light reflected back and forth twice or more at both end faces of the measurement object The peak-to-peak width between the waveform and the reference interference waveform is at least twice the optical path length of the measurement light between both end faces of the measurement target.

従って,測定対象の両端面を2回以上往復反射した測定光の干渉波形を選択干渉波形とすることにより,基準干渉波形と選択干渉波形とのピーク間幅を長くとることができるので,測定対象の温度変化による上記ピーク間幅の変化量も大きくすることができる。これにより,各干渉波形のピーク間幅の測定精度を向上させることができる。   Therefore, by making the interference waveform of the measurement light reflected back and forth twice or more at both end faces of the measurement object as the selected interference waveform, the width between the peaks of the reference interference waveform and the selected interference waveform can be increased. The amount of change in the peak-to-peak width due to temperature change can be increased. Thereby, the measurement accuracy of the peak-to-peak width of each interference waveform can be improved.

特に厚みが薄く測定対象の両端面間における測定光の光路長が短い場合(例えば厚さの薄い半導体ウエハなどを測定対象とする場合)には,基準干渉波形と選択干渉波形との幅を長くとることにより,これら干渉波形のピーク間幅の測定精度を大幅に向上させることができる。これにより,測定対象の両端面間における測定光の光路長の測定精度も向上させることができるので,ひいては温度又は厚さの測定精度も向上させることができる。   In particular, when the optical path length of the measurement light between both end faces of the measurement target is small (for example, when a thin semiconductor wafer or the like is the measurement target), the width of the reference interference waveform and the selected interference waveform is increased. As a result, the measurement accuracy of the peak-to-peak width of these interference waveforms can be greatly improved. Thereby, since the measurement accuracy of the optical path length of the measurement light between both end faces of the measurement object can be improved, the measurement accuracy of temperature or thickness can also be improved.

また,上記装置又は方法において,選択干渉波形は,例えばその干渉波形を構成する波連全体を曲線近似した基準近似曲線(例えば干渉波形を構成する波連全体の基準近似曲線は正規分布曲線)と,その干渉波形の波連を構成する個々の繰返し波形に基づいてその干渉波形の波連を曲線近似した近似曲線(例えば干渉波形の波連を構成する各繰返し波形に基づいて得られる包絡線)とのずれ量で指標される干渉波形の崩れ度合に基づいて選択するようにしてもよい。   In the above apparatus or method, the selected interference waveform is, for example, a reference approximate curve obtained by curve approximation of the entire wave train constituting the interference waveform (for example, the reference approximate curve of the whole wave stream constituting the interference waveform is a normal distribution curve) and , An approximate curve obtained by approximating the interferogram of the interference waveform based on the individual repetitive waveforms constituting the interferogram of the interference waveform (for example, an envelope obtained based on each repetitive waveform constituting the interlink of the interference waveform) Alternatively, the selection may be made based on the degree of collapse of the interference waveform indicated by the amount of deviation.

上述したように測定対象の両端面間の往復反射回数が多い測定光の干渉波形を選択するほど基準干渉波形と選択干渉波形との幅を長くとることができるので,これら干渉波形のピーク間幅の測定精度をより一層向上させることができる。ところがその一方でこのような往復反射回数が多い測定光の干渉波形ほど光強度も低下しその干渉波形の崩れ度合も大きくなり,例えば干渉波形の崩れ度合が所定以上になると干渉波形のピーク間幅の測定精度を低下させる要因となる。そこで,干渉波形の崩れ度合に基づいて選択干渉波形を選択するようにすれば,干渉波形の崩れ度合が干渉波形のピーク間幅の測定精度を低下させない範囲で,基準干渉波形と選択干渉波形との幅をより長くとることができる干渉波形を容易に選択することができる。   As described above, the width between the reference interference waveform and the selected interference waveform can be increased as the interference waveform of the measurement light having a larger number of round-trip reflections between the both end faces of the measurement object is selected. Measurement accuracy can be further improved. However, on the other hand, the interference waveform of the measurement light with such a large number of round-trip reflections decreases the light intensity and increases the degree of collapse of the interference waveform. For example, when the degree of collapse of the interference waveform exceeds a predetermined value, the width between peaks of the interference waveform This is a factor that reduces the measurement accuracy. Therefore, if the selected interference waveform is selected based on the degree of collapse of the interference waveform, the reference interference waveform and the selected interference waveform can be selected within a range in which the degree of collapse of the interference waveform does not reduce the measurement accuracy of the peak-to-peak width of the interference waveform. It is possible to easily select an interference waveform that can be longer.

また,上記装置又は方法において,前記測定光の光路の途中に,この測定光の光路に並列して接続した迂回光路を設け,これらの光路を通る測定光を測定対象に照射することにより,測定光の干渉波形の種類(パターン)を増やすことができる。例えば測定対象の両端面で同じ回数だけ往復反射する測定光の干渉波形についても,迂回光路を介さない光路を通るものと,少なくとも一度は前記迂回光路を介する光路を通るものとを測定することができる。これらの干渉波形にはずれが生じ,そのずれ量は測定光の迂回光路の光路長を調整することにより調整可能である。   Further, in the above apparatus or method, a detour optical path connected in parallel with the optical path of the measurement light is provided in the middle of the optical path of the measurement light, and the measurement light passing through these optical paths is irradiated to the measurement object, thereby performing measurement. The types (patterns) of light interference waveforms can be increased. For example, with respect to the interference waveform of measurement light that is reflected back and forth the same number of times on both end faces of the measurement object, it is possible to measure the interference waveform that passes through the optical path that does not pass through the bypass optical path and the optical path that passes through the bypass optical path at least once. it can. Deviations occur in these interference waveforms, and the deviation amount can be adjusted by adjusting the optical path length of the detour optical path of the measurement light.

従って,上記測定光の迂回光路の光路長を調整することにより,迂回光路を介さない光路を通る測定光の干渉波形と少なくとも一度は迂回光路を介する光路を通る測定光の干渉波形のうち,いずれか一方の光路を通る測定光の干渉波形から選択された前記基準干渉波形と,他方の光路を通る測定光の干渉波形から選択された選択干渉波形とがそれぞれ近傍で測定されるようにすることができる。このため,少なくともこれらの干渉波形が測定できる範囲だけ参照光反射手段(例えば参照ミラー)を移動させれば足りる。これにより,参照光反射手段(例えば参照ミラー)の移動距離を短くすることができるので,温度又は厚さ測定にかかる時間も短縮することができる。   Therefore, by adjusting the optical path length of the bypass optical path of the measurement light, either the interference waveform of the measurement light passing through the optical path not passing through the bypass optical path or the interference waveform of the measurement light passing through the optical path passing through the bypass optical path at least once. The reference interference waveform selected from the interference waveform of the measurement light passing through one of the optical paths and the selected interference waveform selected from the interference waveform of the measurement light passing through the other optical path are respectively measured in the vicinity. Can do. For this reason, it is sufficient to move the reference light reflecting means (for example, the reference mirror) at least within a range in which these interference waveforms can be measured. Thereby, since the moving distance of the reference light reflecting means (for example, the reference mirror) can be shortened, the time required for temperature or thickness measurement can also be shortened.

また,上記装置又は方法において,前記参照光反射手段は,複数の反射面を設け,前記スプリッタからの参照光を前記参照光反射手段へ照射し前記各反射面で反射させて光路長の異なる複数の参照光を反射させることにより,参照光と測定光の干渉波形の種類(パターン)を増やすことができる。例えば測定対象の両端面で同じ回数だけ往復反射する測定光の干渉波形についても,光路長の異なる複数の参照光と測定光の干渉波形をそれぞれ測定することができる。これらの干渉波形にはずれが生じ,そのずれ量は参照光反射手段の複数の反射面の位置を調整することにより調整可能である。   Further, in the above apparatus or method, the reference light reflecting means is provided with a plurality of reflecting surfaces, and the reference light from the splitter is irradiated to the reference light reflecting means and reflected by the reflecting surfaces, so that a plurality of different optical path lengths are provided. By reflecting the reference light, the types (patterns) of interference waveforms between the reference light and the measurement light can be increased. For example, even with respect to the interference waveform of measurement light that is reflected back and forth the same number of times on both end faces of the measurement object, it is possible to measure the interference waveforms of a plurality of reference light and measurement light having different optical path lengths. Deviations occur in these interference waveforms, and the deviation amount can be adjusted by adjusting the positions of the plurality of reflecting surfaces of the reference light reflecting means.

従って,参照光反射手段の複数の反射面の位置を調整することにより,前記各反射面から反射する複数の参照光のうち,いずれかの反射面から反射する参照光と測定光との干渉波形から選択された前記基準干渉波形と,別の反射面から反射する参照光と測定光の干渉波形から選択された前記選択干渉波形とがそれぞれ近傍で測定されるようにすることができる。このため,少なくともこれらの干渉波形が測定できる範囲だけ参照光反射手段(例えば参照ミラー)を移動させれば足りる。これにより,参照光反射手段(例えば参照ミラー)の移動距離を短くすることができるので,温度又は厚さ測定にかかる時間も短縮することができる。   Therefore, by adjusting the positions of the plurality of reflecting surfaces of the reference light reflecting means, the interference waveform between the reference light reflected from one of the reflecting surfaces and the measurement light among the plurality of reference lights reflected from the respective reflecting surfaces. The reference interference waveform selected from the above, the selected interference waveform selected from the interference waveform of the reference light reflected from another reflecting surface and the measurement light can be respectively measured in the vicinity. For this reason, it is sufficient to move the reference light reflecting means (for example, the reference mirror) at least within a range in which these interference waveforms can be measured. Thereby, since the moving distance of the reference light reflecting means (for example, the reference mirror) can be shortened, the time required for temperature or thickness measurement can also be shortened.

また,上記装置又は方法において,前記スプリッタからの参照光をさらに複数の参照光にスプリットするための参照光スプリッタを設け,この参照光スプリッタからの複数の参照光をそれぞれ異なる光路長で前記参照光反射手段へ照射し反射させることによって,
そのような参照光と測定光の干渉波形の種類(パターン)を増やすことができる。例えば測定対象の両端面で同じ回数だけ往復反射する測定光の干渉波形についても,光路長の異なる複数の参照光と測定光との干渉波形をそれぞれ測定することができる。これら光の干渉にはずれが生じ,そのずれ量は参照光スプリッタからの複数の参照光の光路長を調整することにより調整可能である。
Further, in the above apparatus or method, a reference light splitter for further splitting the reference light from the splitter into a plurality of reference lights is provided, and the plurality of reference lights from the reference light splitter are different from each other with different optical path lengths. By irradiating and reflecting the reflection means,
The types (patterns) of interference waveforms of such reference light and measurement light can be increased. For example, with respect to the interference waveform of measurement light that is reflected back and forth the same number of times on both end faces of the measurement object, the interference waveforms of a plurality of reference beams and measurement beams having different optical path lengths can be measured. There is a shift in the interference of these lights, and the shift amount can be adjusted by adjusting the optical path lengths of the plurality of reference lights from the reference light splitter.

従って,参照光スプリッタからの複数の参照光の光路長を調整することにより,参照光スプリッタからスプリットされた複数の参照光のうち,いずれかの参照光と測定光との干渉波形から選択された前記基準干渉波形と,別の参照光と測定光の干渉波形から選択された前記選択干渉波形とがそれぞれ近傍で測定されるようにすることができる。このため,少なくともこれらの干渉波形が測定できる範囲だけ参照光反射手段(例えば参照ミラー)を移動させれば足りる。これにより,参照光反射手段(例えば参照ミラー)の移動距離を短くすることができるので,温度又は厚さ測定にかかる時間も短縮することができる。   Therefore, by adjusting the optical path lengths of the plurality of reference beams from the reference beam splitter, it is selected from the interference waveforms of one of the reference beams and the measurement beam among the plurality of reference beams split from the reference beam splitter The reference interference waveform and the selected interference waveform selected from the interference waveforms of another reference beam and measurement beam can be measured in the vicinity. For this reason, it is sufficient to move the reference light reflecting means (for example, the reference mirror) at least within a range in which these interference waveforms can be measured. Thereby, since the moving distance of the reference light reflecting means (for example, the reference mirror) can be shortened, the time required for temperature or thickness measurement can also be shortened.

また,上記装置又は方法において,参照光の光路の途中に,この参照光の光路に並列して接続した迂回光路を設け,これらの光路を通る参照光を前記参照光反射手段へ照射し反射させて光路長の異なる複数の参照光を反射させることにより,測定光の干渉波形の種類(パターン)を増やすことができる。例えば測定対象の両端面で同じ回数だけ往復反射する測定光の干渉波形についても,迂回光路を介さない光路を通る参照光と測定光の干渉波形と,少なくとも一度は前記迂回光路を介する光路を通る参照光と測定光の干渉波形を測定することができる。これらの干渉波形にはずれが生じ,そのずれ量は参照光の迂回光路の光路長を調整することにより調整可能である。   In the above apparatus or method, a bypass optical path connected in parallel with the optical path of the reference light is provided in the middle of the optical path of the reference light, and the reference light passing through these optical paths is irradiated and reflected on the reference light reflecting means. By reflecting a plurality of reference lights having different optical path lengths, the types (patterns) of interference waveforms of measurement light can be increased. For example, the interference waveform of the measurement light that is reflected back and forth by the same number of times on both end faces of the measurement object also passes through the optical path that passes through the bypass optical path at least once with the reference light passing through the optical path that does not pass through the bypass optical path. The interference waveform between the reference light and the measurement light can be measured. Deviations occur in these interference waveforms, and the deviation amount can be adjusted by adjusting the optical path length of the detour optical path of the reference light.

従って,上記参照光の迂回光路の光路長を調整することにより,迂回光路を介さない光路を通る参照光と測定光の干渉波形と少なくとも一度は迂回光路を介する光路を通る参照光と測定光の干渉波形のうち,いずれか一方の光路を通る参照光と測定光の干渉波形から選択された前記基準干渉波形と,他方の光路を通る参照光と測定光の干渉波形から選択された選択干渉波形とがそれぞれ近傍で測定されるようにすることができる。このため,少なくともこれらの干渉波形が測定できる範囲だけ参照光反射手段(例えば参照ミラー)を移動させれば足りる。これにより,参照光反射手段(例えば参照ミラー)の移動距離を短くすることができるので,温度又は厚さ測定にかかる時間も短縮することができる。   Therefore, by adjusting the optical path length of the detour optical path of the reference light, the interference waveform of the reference light passing through the optical path not passing through the detour optical path and the measurement light, and the reference light passing through the optical path passing through the bypass optical path and the measurement light at least once. Of the interference waveforms, the reference interference waveform selected from the interference waveform of the reference light and measurement light passing through one of the optical paths, and the selected interference waveform selected from the interference waveform of the reference light and measurement light passing through the other optical path Can be measured in the vicinity. For this reason, it is sufficient to move the reference light reflecting means (for example, the reference mirror) at least within a range in which these interference waveforms can be measured. Thereby, since the moving distance of the reference light reflecting means (for example, the reference mirror) can be shortened, the time required for temperature or thickness measurement can also be shortened.

また,上記装置又は方法において,前記各光(光源からの光,測定光,参照光など)はそれぞれ,空中を介して伝送されるようにしてもよい。これによれば,光ファイバやコリメートファイバの用いずに光を伝送させることができる。これにより,光ファイバやコリメートファイバを通らない波長(例えば2.5μm以上の波長)の光であっても,光源として利用することができる。   In the above apparatus or method, each light (light from a light source, measurement light, reference light, etc.) may be transmitted via the air. According to this, light can be transmitted without using an optical fiber or a collimating fiber. Thereby, even light having a wavelength that does not pass through the optical fiber or collimate fiber (for example, a wavelength of 2.5 μm or more) can be used as a light source.

また,上記装置又は方法において,前記測定対象は,例えばシリコン又はシリコン酸化膜により形成され,前記光源は,例えば1.0〜2.5μmの波長を有する光を照射可能なもので構成される。このような1.0〜2.5μmの波長を有する光は,測定対象を構成するシリコン又はシリコン酸化膜を透過し反射するので,測定対象の両端面を2回以上往復反射する測定光の干渉波形を測定することが可能となる。   In the above apparatus or method, the measurement object is formed of, for example, silicon or a silicon oxide film, and the light source is configured to be capable of irradiating light having a wavelength of, for example, 1.0 to 2.5 μm. Such light having a wavelength of 1.0 to 2.5 μm passes through and reflects the silicon or silicon oxide film constituting the measurement object, so that interference of measurement light that reciprocally reflects both ends of the measurement object twice or more. Waveform can be measured.

また,上記装置又は方法において,前記測定対象は,例えば基板処理装置(例えばプラズマ処理装置など)内で処理される被処理基板(例えば半導体ウエハ,ガラス基板など)又はこの被処理基板に対向して配設される電極板(例えば上部電極の電極板,下部電極の電極板など)である。このように,本発明によれば上記のような厚さの薄い測定対象の温度又は厚さの測定精度を向上させることができる。   In the above apparatus or method, the measurement object is, for example, a substrate to be processed (for example, a semiconductor wafer, a glass substrate, or the like) processed in a substrate processing apparatus (for example, a plasma processing apparatus) or the substrate to be processed. It is an electrode plate (for example, an electrode plate for an upper electrode, an electrode plate for a lower electrode, etc.). As described above, according to the present invention, it is possible to improve the measurement accuracy of the temperature or thickness of the thin measurement target as described above.

また,上記装置における測定光伝送手段は,前記測定対象の一方側に配置され,前記光源からの測定光を伝送して前記測定対象の一方側の端面へ向けて照射するとともに,前記測定対象の両端面で往復反射して又は往復せずに一方側の端面で反射して,戻ってくる測定光を受光して前記受光手段へ向けて伝送するようにしてもよい。また,上記装置における測定光伝送手段は,前記測定対象の一方側に配置され,前記光源からの測定光を伝送して前記測定対象の一方側の端面へ向けて照射する照射光伝送手段と,前記測定対象の他方側に配置され,前記測定対象の両端面で往復反射して又は往復せずに一方側の端面を透過して,他方側の端面を透過する測定光を受光して前記受光手段へ向けて伝送する受光伝送手段とを別個に設けるようにしてもよい。   Further, the measurement light transmission means in the apparatus is arranged on one side of the measurement object, transmits the measurement light from the light source, irradiates the measurement object on one end surface, and The measurement light that is reflected back and forth at both end surfaces or reflected at one end surface without reciprocation and returned can be received and transmitted to the light receiving means. Further, the measurement light transmission means in the apparatus is arranged on one side of the measurement object, transmits the measurement light from the light source, and irradiates the measurement light transmission means to one end surface of the measurement object; It is arranged on the other side of the measuring object, and reciprocally reflects at both end faces of the measuring object or transmits through one end face without reciprocating and receives measuring light transmitted through the other end face to receive the light. You may make it provide separately the light reception transmission means transmitted to a means.

また,上記方法において,前記測定光と前記参照光との光の干渉の測定中に前記光源の光強度を変えるようにしてもよい。例えば参照光反射手段の移動距離に応じて前記光源の光強度を徐々に大きくしたり,また測定対象の両端面を往復反射する回数が多い測定光の干渉波形ほど前記光源の光強度を大きくするようにしたり,また受光手段で受光される測定光の反射強度を予め測定し,その反射強度に応じて前記光源の光強度を変えるようにしてもよい。これにより,測定光と参照光との光の干渉の測定中に,測定光が測定対象を往復反射することによる測定光の光強度の低下を防止するができるので,そのような測定光の干渉波形についてのノイズに対する光強度(S/N比)の低下を防止してその干渉波形が崩れないようにすることができる。これにより,例えば干渉波形のピーク位置の検出精度を向上させて,干渉波形のピーク間幅に基づく温度や厚みの測定精度を向上させることができる。   In the above method, the light intensity of the light source may be changed during measurement of light interference between the measurement light and the reference light. For example, the light intensity of the light source is gradually increased according to the moving distance of the reference light reflecting means, or the light intensity of the light source is increased as the interference waveform of the measurement light has a large number of reciprocal reflections on both end faces of the measurement target. Alternatively, the reflection intensity of the measurement light received by the light receiving means may be measured in advance, and the light intensity of the light source may be changed according to the reflection intensity. As a result, during measurement of the interference between the measurement light and the reference light, it is possible to prevent a decrease in the light intensity of the measurement light due to reciprocal reflection of the measurement light on the measurement object. It is possible to prevent the interference waveform from collapsing by preventing a decrease in light intensity (S / N ratio) with respect to noise of the waveform. Thereby, for example, the detection accuracy of the peak position of the interference waveform can be improved, and the measurement accuracy of temperature and thickness based on the peak-to-peak width of the interference waveform can be improved.

上記課題を解決するために,本発明の別の観点によれば,処理室内の被処理基板に所定の処理を施す基板処理装置と,この基板処理装置に取付けられる温度/厚さ測定装置と,前記温度/厚さ測定装置を制御する制御装置とを備える温度/厚さ測定システムであって,前記温度/厚さ測定装置は,測定対象となる前記被処理基板の両端面を透過し反射する光であって,前記被処理基板の両端面で少なくとも2回以上往復反射可能な光を照射する光源と,前記光源からの光を測定光と参照光とにスプリットするためのスプリッタと,前記スプリッタからの参照光を反射するための参照光反射手段と,前記参照光反射手段から反射する参照光の光路長を変化させるための光路長変化手段と,前記スプリッタからの参照光を前記参照光反射手段へ向けて照射する参照光照射位置まで伝送する参照光伝送手段と,前記スプリッタからの測定光を前記被処理基板へ向けて照射する測定光照射位置まで伝送する測定光伝送手段と,前記被処理基板を透過又は反射する測定光と前記参照光反射手段から反射する参照光とが干渉して得られる複数の測定光の干渉波形を測定するための受光手段とを備え,前記制御装置は,前記温度/厚さ測定装置の受光手段で測定された測定光の干渉波形のうち,ある干渉波形を基準とし,この基準干渉波形の測定光よりも前記被処理基板の両端面を少なくとも2回以上多く往復反射する測定光の干渉波形を選択干渉波形として,前記基準干渉波形と前記選択干渉波形とに基づいて前記被処理基板の両端面間における測定光の光路長を測定し,その光路長に基づいて前記被処理基板の温度又は厚さを測定することを特徴とする温度/厚さ測定システムが提供される。   In order to solve the above-described problems, according to another aspect of the present invention, a substrate processing apparatus that performs a predetermined process on a substrate to be processed in a processing chamber, a temperature / thickness measuring apparatus attached to the substrate processing apparatus, A temperature / thickness measurement system including a control device for controlling the temperature / thickness measurement device, wherein the temperature / thickness measurement device transmits and reflects both end faces of the substrate to be measured. A light source that emits light that can be reflected back and forth at least twice at both end faces of the substrate to be processed, a splitter for splitting light from the light source into measurement light and reference light, and the splitter Reference light reflecting means for reflecting the reference light from the reference light, optical path length changing means for changing the optical path length of the reference light reflected from the reference light reflecting means, and reference light from the splitter reflecting the reference light Towards the means A reference light transmission means for transmitting to a reference light irradiation position for irradiation, a measurement light transmission means for transmitting measurement light from the splitter to a measurement light irradiation position for irradiating the processing substrate, and the substrate to be processed. And a light receiving means for measuring interference waveforms of a plurality of measurement lights obtained by interference between the measurement light transmitted or reflected and the reference light reflected from the reference light reflection means. Of the interference waveform of the measurement light measured by the light receiving means of the thickness measuring device, a certain interference waveform is used as a reference, and both end faces of the substrate to be processed are reflected at least twice more than the measurement light of this reference interference waveform. And measuring the optical path length of the measurement light between both end faces of the substrate to be processed based on the reference interference waveform and the selected interference waveform, and using the interference waveform of the measurement light as a selective interference waveform. Serial temperature / thickness measurement system and measuring the temperature or the thickness of the substrate is provided.

このような本発明にかかる温度/厚さ測定システムによれば,厚みが薄く両端面間における測定光の光路長が短いような被処理基板や電極板などの測定対象でも,基準干渉波形と選択干渉波形との幅を長くとることができるので,これら干渉波形のピーク間幅の測定精度を大幅に向上させることができる。これにより,測定対象の両端面間における測定光の光路長の測定精度も向上させることができるので,ひいては温度又は厚さの測定精度も向上させることができる。   According to such a temperature / thickness measurement system according to the present invention, the reference interference waveform and the selection can be made even for a measurement target such as a substrate to be processed or an electrode plate whose thickness is thin and the optical path length of the measurement light between both end faces is short. Since the width of the interference waveform can be increased, the measurement accuracy of the peak-to-peak width of these interference waveforms can be greatly improved. Thereby, since the measurement accuracy of the optical path length of the measurement light between both end faces of the measurement object can be improved, the measurement accuracy of temperature or thickness can also be improved.

上記課題を解決するために,本発明の別の観点によれば,処理室内の被処理基板に所定のプロセス処理を施す基板処理装置と,この基板処理装置に設置される温度/厚さ測定装置と,前記温度/厚さ測定装置及び前記基板処理装置を制御するとともに,前記被処理基板の温度制御とプロセス制御のうち少なくとも一方の制御を行う制御装置とを備える制御システムであって,前記温度/厚さ測定装置は,測定対象となる前記被処理基板の両端面を透過し反射する光であって,前記被処理基板の両端面で少なくとも2回以上往復反射可能な光を照射する光源と,前記光源からの光を測定光と参照光とにスプリットするためのスプリッタと,前記スプリッタからの参照光を反射するための参照光反射手段と,前記参照光反射手段から反射する参照光の光路長を変化させるための光路長変化手段と,前記スプリッタからの参照光を前記参照光反射手段へ向けて照射する参照光照射位置まで伝送する参照光伝送手段と,前記スプリッタからの測定光を前記被処理基板へ向けて照射する測定光照射位置まで伝送する測定光伝送手段と,前記被処理基板を透過又は反射する測定光と前記参照光反射手段から反射する参照光とが干渉して得られる複数の測定光の干渉波形を測定するための受光手段とを備え,前記制御装置は,前記温度/厚さ測定装置の受光手段で測定された測定光の干渉波形のうち,ある干渉波形を基準とし,この基準干渉波形の測定光よりも前記被処理基板の両端面を少なくとも2回以上多く往復反射する測定光の干渉波形を選択干渉波形として,前記基準干渉波形と前記選択干渉波形とに基づいて前記被処理基板の両端面間における測定光の光路長を測定し,その光路長に基づいて前記被処理基板の温度又は厚さを測定し,これらの温度又は厚さに基づいて前記基板処理装置の処理室内にある前記被処理基板の温度制御とプロセス制御のうち少なくとも一方の制御を行うことを特徴とする制御システムが提供される。   In order to solve the above-described problems, according to another aspect of the present invention, a substrate processing apparatus that performs a predetermined process on a substrate to be processed in a processing chamber, and a temperature / thickness measuring apparatus installed in the substrate processing apparatus. And a control device for controlling the temperature / thickness measuring device and the substrate processing apparatus, and for controlling at least one of temperature control and process control of the substrate to be processed. / Thickness measuring device includes a light source that irradiates light that is transmitted through and reflected by both end surfaces of the substrate to be measured and that can be reflected back and forth at least twice at both end surfaces of the substrate to be processed; , A splitter for splitting light from the light source into measurement light and reference light, reference light reflecting means for reflecting reference light from the splitter, and reference reflecting from the reference light reflecting means An optical path length changing means for changing the optical path length of the light source, a reference light transmitting means for transmitting the reference light from the splitter to the reference light irradiating position for irradiating the reference light to the reference light reflecting means, and a measuring light from the splitter Measurement light transmitting means for transmitting the measurement light to the processing substrate, the measurement light transmitting or reflecting the processing substrate and the reference light reflected from the reference light reflecting means interfere with each other. A light receiving means for measuring the interference waveforms of the plurality of measurement lights obtained, and the control device includes a certain interference waveform among the interference waveforms of the measurement light measured by the light receiving means of the temperature / thickness measurement device. The reference interference waveform and the selection are selected as an interference waveform of the measurement light that reciprocally reflects at least two times at both end faces of the substrate to be processed from the measurement light of the reference interference waveform. Based on the interference waveform, the optical path length of the measurement light between both end faces of the substrate to be processed is measured, and based on the optical path length, the temperature or thickness of the substrate to be processed is measured. A control system is provided that performs at least one of temperature control and process control of the substrate to be processed in a processing chamber of the substrate processing apparatus.

このような本発明にかかる制御システムによれば,厚みが薄く両端面間における測定光の光路長が短いような被処理基板や電極板などの測定対象でも,基準干渉波形と選択干渉波形との幅を長くとることができるので,これら干渉波形のピーク間幅の測定精度を大幅に向上させることができる。これにより,測定対象の両端面間における測定光の光路長の測定精度も向上させることができるので,ひいては温度又は厚さの測定精度も向上させることができ,これらの温度又は厚みに基づいて被処理基板の温度制御やプロセス制御を行うことができるので,被処理基板のプロセス特性を的確に制御することができ,また基板処理装置の安定性を向上させることができる。   According to such a control system according to the present invention, the reference interference waveform and the selected interference waveform can be measured even on a measurement target such as a substrate to be processed or an electrode plate whose thickness is small and the optical path length of the measurement light between both end faces is short. Since the width can be increased, the measurement accuracy of the peak-to-peak width of these interference waveforms can be greatly improved. As a result, the measurement accuracy of the optical path length of the measurement light between the both end faces of the measurement object can be improved, and thus the measurement accuracy of the temperature or thickness can be improved. Since the temperature control and process control of the processing substrate can be performed, the process characteristics of the substrate to be processed can be accurately controlled, and the stability of the substrate processing apparatus can be improved.

上記課題を解決するために,本発明の別の観点によれば,処理室内の被処理基板に所定のプロセス処理を施す基板処理装置の制御システムについて制御方法であって,前記測定対象の両端面を透過し反射する光を照射する光源からスプリットされた測定光を前記測定対象へ向けて照射するとともに,参照光を参照光反射手段へ向けて照射する工程と,前記参照光反射手段を一方向へ走査することによって前記参照光反射手段から反射する参照光の光路長を変化させながら,前記測定対象を透過又は反射する測定光と前記参照光反射手段から反射する参照光とが干渉して得られる複数の測定光の干渉波形を測定する工程と,前記受光手段で測定された測定光の干渉波形のうち,ある干渉波形を基準とし,この基準干渉波形の測定光よりも前記測定対象の両端面を少なくとも2回以上多く往復反射する測定光の干渉波形を選択干渉波形として,前記基準干渉波形と前記選択干渉波形とに基づいて前記測定対象の両端面間における測定光の光路長を測定し,その光路長に基づいて前記測定対象の温度又は厚さを測定する工程と,測定した前記測定対象物の温度又は厚さに基づいて,前記基板処理装置における前記被処理基板の温度制御とプロセス制御のうち少なくとも一方の制御を行う工程とを有することを特徴とする制御方法が提供される。   In order to solve the above-described problems, according to another aspect of the present invention, there is provided a control method for a control system of a substrate processing apparatus that performs a predetermined process on a substrate to be processed in a processing chamber. Irradiating the measuring object with the split measurement light from the light source that irradiates the reflected and reflected light, and irradiating the reference light toward the reference light reflecting means, and the reference light reflecting means in one direction The measurement light transmitted or reflected by the measurement object and the reference light reflected from the reference light reflecting means interfere with each other while changing the optical path length of the reference light reflected from the reference light reflecting means by scanning to the reference light reflecting means. Measuring the interference waveform of the plurality of measurement lights, and using the interference waveform as a reference among the interference waveforms of the measurement light measured by the light receiving means, An optical path length of the measurement light between the both end faces of the measurement target based on the reference interference waveform and the selected interference waveform, with an interference waveform of the measurement light that reciprocally reflects at least two times at both end faces of the target as a selection interference waveform Measuring the temperature or thickness of the measurement target based on the optical path length, and the temperature of the substrate to be processed in the substrate processing apparatus based on the measured temperature or thickness of the measurement target. There is provided a control method comprising a step of performing at least one of control and process control.

このような本発明にかかる制御方法によれば,厚みが薄く両端面間における測定光の光路長が短いような被処理基板や電極板などの測定対象でも,基準干渉波形と選択干渉波形との幅を長くとることができるので,これら干渉波形のピーク間幅の測定精度を大幅に向上させることができる。これにより,測定対象の両端面間における測定光の光路長の測定精度も向上させることができるので,ひいては温度又は厚さの測定精度も向上させることができ,これらの温度又は厚みに基づいて被処理基板の温度制御やプロセス制御を行うことができるので,被処理基板のプロセス特性を的確に制御することができ,また基板処理装置の安定性を向上させることができる。   According to such a control method of the present invention, the reference interference waveform and the selected interference waveform can be measured even on a measurement target such as a substrate to be processed or an electrode plate having a small thickness and a short optical path length of the measurement light between both end faces. Since the width can be increased, the measurement accuracy of the peak-to-peak width of these interference waveforms can be greatly improved. As a result, the measurement accuracy of the optical path length of the measurement light between the both end faces of the measurement object can be improved, and thus the measurement accuracy of the temperature or thickness can be improved. Since the temperature control and process control of the processing substrate can be performed, the process characteristics of the substrate to be processed can be accurately controlled, and the stability of the substrate processing apparatus can be improved.

以上説明したように本発明によれば,厚みが薄く両端面間における測定光の光路長が短いような測定対象でも,基準干渉波形と選択干渉波形との幅を長くとることができるので,これら干渉波形のピーク間幅の測定精度を大幅に向上させることができる。これにより,測定対象の両端面間における測定光の光路長の測定精度も向上させることができるので,ひいては温度又は厚さの測定精度も向上させることができる。   As described above, according to the present invention, the width of the reference interference waveform and the selected interference waveform can be increased even in a measurement target having a small thickness and a short optical path length of the measurement light between both end faces. The measurement accuracy of the peak-to-peak width of the interference waveform can be greatly improved. Thereby, since the measurement accuracy of the optical path length of the measurement light between both end faces of the measurement object can be improved, the measurement accuracy of temperature or thickness can also be improved.

なお,上記測定対象には,被処理基板などのような物体としての測定対象物の他,例えば被処理基板の内部層などのような物体の一部を構成する測定対象層も含まれる。   The measurement target includes a measurement target layer that constitutes a part of the object, such as an inner layer of the substrate to be processed, in addition to the measurement target as an object such as the substrate to be processed.

以下に添付図面を参照しながら,本発明の好適な実施の形態について詳細に説明する。なお,本明細書及び図面において,実質的に同一の機能構成を有する構成要素については,同一の符号を付することにより重複説明を省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the present specification and drawings, components having substantially the same functional configuration are denoted by the same reference numerals, and redundant description is omitted.

(第1実施形態にかかる温度測定装置)
本発明の第1実施形態にかかる温度測定装置について図面を参照しながら説明する。図1は,本発明の第1実施形態にかかる温度測定装置の概略構成を示すブロック図である。本実施形態にかかる温度測定装置100は,上述した図32に示すような原理を基本としつつ,簡単な構成で,例えば半導体ウエハ(以下,単に「ウエハ」とも称する。)などのような厚みの薄い測定対象物Tの測定精度を向上することができるようにしたものである。このような温度測定装置100の具体的な構成は以下の通りである。
(Temperature measuring device according to the first embodiment)
A temperature measuring apparatus according to a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a schematic configuration of a temperature measuring apparatus according to the first embodiment of the present invention. The temperature measuring apparatus 100 according to the present embodiment is based on the principle shown in FIG. 32 described above, and has a simple configuration and a thickness such as a semiconductor wafer (hereinafter also simply referred to as “wafer”). The measurement accuracy of the thin measuring object T can be improved. A specific configuration of such a temperature measuring apparatus 100 is as follows.

図1に示すように,温度測定装置100は,光源110と,この光源110からの光を測定光と参照光とにスプリット(分波)するためのスプリッタ120と,このスプリッタ120からの参照光を反射するための参照光反射手段140と,参照光反射手段140から反射する参照光の光路長を変化させるための光路長変化手段とを備える。光路長変化手段は,例えば参照ミラーなどで構成される参照光反射手段140を参照光の入射方向に平行な一方向へ駆動するモータなどの駆動手段142により構成される。このように,参照ミラーを一方向へ駆動させることにより,参照ミラーから反射する参照光の光路長を変化させることができる。   As shown in FIG. 1, the temperature measuring device 100 includes a light source 110, a splitter 120 for splitting light from the light source 110 into measurement light and reference light, and reference light from the splitter 120. The reference light reflecting means 140 for reflecting the light and the optical path length changing means for changing the optical path length of the reference light reflected from the reference light reflecting means 140 are provided. The optical path length changing means is constituted by a driving means 142 such as a motor for driving the reference light reflecting means 140 constituted by a reference mirror or the like in one direction parallel to the incident direction of the reference light. Thus, by driving the reference mirror in one direction, the optical path length of the reference light reflected from the reference mirror can be changed.

また,温度測定装置100は,測定対象物Tの一方側の端面Sに上記スプリッタ120からの測定光を照射したときに,測定対象物Tから反射する測定光(例えば測定対象物Tの両端面S,Sで往復反射して又は往復せずに一方側の端面Sで反射して,戻ってくる測定光)と,参照光反射手段140に上記スプリッタ120からの参照光を照射したときに参照光反射手段140から反射する参照光との複数の干渉波形(これら複数の干渉波形を例えば光の干渉と総称する)を測定するための受光手段150とを備える。 Further, the temperature measuring apparatus 100 reflects measurement light (for example, both ends of the measurement target T) reflected from the measurement target T when the measurement light from the splitter 120 is irradiated on one end surface S1 of the measurement target T. The measurement light that is reflected back and forth by the surfaces S 1 and S 2 or reflected by the end surface S 1 on one side without reciprocating) and the reference light reflecting means 140 is irradiated with the reference light from the splitter 120. And a light receiving means 150 for measuring a plurality of interference waveforms with the reference light reflected from the reference light reflecting means 140 (the plurality of interference waveforms are collectively referred to as light interference, for example).

(第1実施形態にかかる温度測定装置による測定光の種類)
ここで,図1に示すような温度測定装置において,光源110からの測定光を測定対象物Tに向けて照射した際に測定対象物Tから反射する測定光の主な種類について図面を参照しながら説明する。図2は測定光の種類を説明するための観念図であり,図2に示す矢印は測定対象物Tから反射する測定光を示している。なお,図2では測定光における測定対象物Tの両端面間での往復反射回数がわかり易いように測定光の反射位置をずらして表現しているが,実際には測定対象物Tに測定光を照射する角度に応じて反射角度も変わる。例えば測定対象物Tに対してほぼ直行するように測定光を照射すれば,各端面S,Sでの反射位置もその測定光の光軸上にほぼ重なる。
(Types of measuring light by the temperature measuring device according to the first embodiment)
Here, in the temperature measurement apparatus as shown in FIG. 1, the main types of measurement light reflected from the measurement target T when the measurement light from the light source 110 is irradiated toward the measurement target T are referred to the drawings. While explaining. FIG. 2 is a conceptual diagram for explaining the types of measurement light, and the arrows shown in FIG. 2 indicate the measurement light reflected from the measurement object T. FIG. In FIG. 2, the reflection position of the measurement light is shifted so that the number of round-trip reflections between the both end faces of the measurement target T in the measurement light is easy to understand. The reflection angle also changes according to the irradiation angle. For example, if the measurement light is irradiated so as to be almost perpendicular to the measurement target T, the reflection positions at the end faces S 1 and S 2 also substantially overlap the optical axis of the measurement light.

測定対象物Tから反射する測定光としては,図2(a)に示すように測定対象物T内を一度も往復反射することなく,測定対象物Tの一方側の端面(測定光が照射される側の端面である第1面)Sで1回反射して戻ってくる測定光(第1面1回反射測定光又は0回往復反射測定光)及び図2(b)に示すように測定対象物Tの第1面Sを透過して他方側の端面(第1面Sとは反対側の面である第2面S)で1回反射する測定光,すなわち測定対象物Tの両端面S,Sで1回往復反射する測定光(第2面1回反射測定光又は1回往復反射測定光)がある。 As the measurement light reflected from the measurement object T, as shown in FIG. 2 (a), the measurement object T is never reciprocally reflected within the measurement object T, and one end surface (measurement light is irradiated). first surface) S 1 in one reflected and returning measurement light (first surface once reflected measuring light or 0 strokes reflection measurement light) and as shown in FIG. 2 (b) is an end of that side the first surface S 1 passes through the other side end surface of the measuring light (the first surface S 1 the second surface S 2 is the surface on the opposite side) is reflected once by the measurement target T, i.e. the measurement object There is measurement light (second surface one-time reflection measurement light or one-time round-trip reflection measurement light) that reciprocally reflects once at both end faces S 1 and S 2 of T.

さらに,本発明では,上記の測定光に加えて例えば図2(c)に示すように測定対象物Tの第1面Sを透過し第2面Sで反射した後さらに第1面Sで反射して再び第2面Sで反射する測定光,すなわち測定対象物Tの両端面S,Sで2回往復反射する測定光(第2面2回反射測定光又は2回往復反射測定光),図2(d)に示すように測定対象物Tの第1面Sを透過した後,第2面Sで3回,第1面Sで2回反射する測定光,すなわち測定対象物Tの両端面S,Sで3回往復反射する測定光(第2面3回反射測定光又は3回往復反射測定光)などのように,測定対象物Tの両端面S,Sで複数回往復反射する測定光(第2面複数回反射測定光又は複数回往復反射測定光)もある。従って,受光手段150ではこれらの測定光と参照光との干渉波形がそれぞれ測定される。 Further, in the present invention, in addition to the above-described measurement light, for example, as shown in FIG. 2C, the first surface S 1 is transmitted through the first surface S 1 of the measurement object T and reflected by the second surface S 2 , and then the first surface S. 1 and reflected again on the second surface S 2 , that is, measurement light that is reflected twice back and forth on both end surfaces S 1 and S 2 of the measurement object T (second surface twice reflected measurement light or twice). reciprocally reflected measurement light) passes through a first surface S 1 of the measurement target T as shown in FIG. 2 (d), the second side S 2 three times, the measurement of reflected twice by the first surface S 1 Light, that is, measurement light that is reflected back and forth three times at both end faces S 1 and S 2 of the measurement target T (second surface three-time reflection measurement light or three-time round-trip reflection measurement light), etc. There is also measurement light (second surface multiple reflection measurement light or multiple round-trip reflection measurement light) that is reciprocally reflected at both end faces S 1 and S 2 a plurality of times. Accordingly, the light receiving means 150 measures the interference waveforms between the measurement light and the reference light.

従来は,図2(a)に示すような0回往復反射測定光及び図2(b)に示すような1回往復反射測定光を用いて,測定対象物T内の測定光の光路長Lを求めることによって,温度測定を行っていたが,本発明では,厚さの薄い測定対象物Tの温度測定精度を向上させるために,図2(b)に示すような1回往復反射測定光の代わりに,図2(c),(d)に示すような複数回往復反射測定光を用いて温度測定を行うものである。なお,上記のような測定光と参照光との干渉波形の具体例は後述する。   Conventionally, the optical path length L of the measurement light in the measurement object T is measured using the zero round-trip reflection measurement light as shown in FIG. 2A and the single round-trip reflection measurement light as shown in FIG. However, in the present invention, in order to improve the temperature measurement accuracy of the thin measuring object T, the single round-trip reflected measurement light as shown in FIG. Instead of the above, temperature measurement is performed using a plurality of round trip reflection measurement lights as shown in FIGS. 2 (c) and 2 (d). A specific example of the interference waveform between the measurement light and the reference light as described above will be described later.

このような温度測定装置100を構成する光源110としては,測定対象物Tの両端面S,Sを透過し反射し,前記測定対象の両端面で少なくとも2回以上往復反射可能な光であって,光源110からスプリットされる測定光と参照光との干渉が測定できる光を照射可能なものを使用する。本発明では,測定対象物Tの両端面S,Sで少なくとも2回以上往復反射する測定光と参照光の干渉波形を測定対象物Tの温度測定に用いるからである。 The light source 110 constituting such a temperature measuring device 100 is light that is transmitted and reflected at both end faces S 1 and S 2 of the measurement target T, and can be reflected back and forth at least twice at both end faces of the measurement target. In this case, light that can be irradiated with light that can measure interference between the measurement light split from the light source 110 and the reference light is used. This is because, in the present invention, the interference waveform between the measurement light and the reference light reflected back and forth at least twice at both end faces S 1 and S 2 of the measurement target T is used for measuring the temperature of the measurement target T.

なお,測定対象物Tとして例えばウエハの温度測定を行う場合,光源110としては,少なくともウエハの両端面間の距離(通常は800〜1500μm程度)からの反射光が干渉を生じない程度の光が好ましい。具体的には例えば低コヒーレンス光を用いることが好ましい。低コヒーレンス光とは,コヒーレンス長の短い光をいう。低コヒーレンス光の中心波長は例えば0.3〜20μmが好ましく,更に0.5〜5μmがより好ましい。また,コヒーレンス長としては,例えば0.1〜100μmが好ましく,更に3μm以下がより好ましい。このような低コヒーレンス光を光源110として使用することにより,余計な干渉による障害を回避でき,ウエハの両端面S,Sから反射する測定光,その他ウエハ内部に屈折率の異なる層を有する場合にはその境界面から反射する測定光と参照光との干渉波形を容易に測定することができる。 For example, when measuring the temperature of a wafer as the measurement target T, the light source 110 has light that does not interfere with reflected light from at least the distance between the both end faces of the wafer (usually about 800 to 1500 μm). preferable. Specifically, for example, it is preferable to use low coherence light. Low coherence light refers to light with a short coherence length. The center wavelength of the low coherence light is preferably 0.3 to 20 μm, for example, and more preferably 0.5 to 5 μm. The coherence length is preferably 0.1 to 100 μm, for example, and more preferably 3 μm or less. By using such low-coherence light as the light source 110, it is possible to avoid an obstacle due to unnecessary interference, and the measurement light reflected from both end faces S 1 and S 2 of the wafer and other layers having different refractive indexes are provided inside the wafer. In this case, the interference waveform between the measurement light reflected from the boundary surface and the reference light can be easily measured.

上記低コヒーレンス光を使用した光源としては,例えばSLD(Super Luminescent Diode),LED,高輝度ランプ(タングステンランプ,キセノンランプなど),超広帯域波長光源などが挙げられる。これらの低コヒーレンス光源の中でも,高輝度の点に鑑みれば,SLDを光源110として用いることが好ましい。   Examples of the light source using the low-coherence light include SLD (Super Luminescent Diode), LED, high-intensity lamp (tungsten lamp, xenon lamp, etc.), ultra-wideband wavelength light source, and the like. Among these low-coherence light sources, it is preferable to use an SLD as the light source 110 in view of high brightness.

上記スプリッタ120としては,例えば光ファイバカプラを用いる。但し,これに限定されるものではなく,参照光と測定光とにスプリットすることが可能なものであればよい。スプリッタ120としては,例えば光導波路型分波器,半透鏡(ハーフミラー)などを用いてもよい。   As the splitter 120, for example, an optical fiber coupler is used. However, the present invention is not limited to this, and any material that can be split into reference light and measurement light may be used. As the splitter 120, for example, an optical waveguide type demultiplexer, a half mirror, or the like may be used.

上記参照光反射手段140は,例えば参照ミラーにより構成される。参照ミラーとしては例えばコーナーキューブプリズム,平面ミラー等などが適用可能である。これらの中でも,反射光の入射光との平行性の点に鑑みれば,コーナーキューブプリズムを用いることが好ましい。但し,参照光を反射できれば,上記のものに限られず,例えばディレーライン(後述するピエゾチューブ型ディレーライン等の光路変化手段と同様)などで構成してもよい。   The reference light reflecting means 140 is constituted by a reference mirror, for example. As the reference mirror, for example, a corner cube prism, a plane mirror, or the like is applicable. Among these, it is preferable to use a corner cube prism in view of parallelism with incident light of reflected light. However, as long as the reference light can be reflected, the present invention is not limited to the above, and may be constituted by, for example, a delay line (similar to an optical path changing means such as a piezo tube delay line described later).

上記参照光反射手段140を駆動する駆動手段142としては,例えば参照光の入射方向と平行な方向(図1における矢印方向)に駆動させるステッピングモータにより構成することが好ましい。ステッピングモータを用いれば,モータの駆動パルスにより参照光反射手段140の移動距離を容易に検出することができる。但し,光路長変化手段としては,参照光反射手段から反射する光の光路長を変化させることができれば,上記モータに限られることはなく,例えばボイスコイルモータを用いたボイスコイルモータ型ディレーラインの他,ピエゾチューブ型ディレーライン,直動ステージ型ディレーライン,積層ピエゾ型ディレーラインなどで光路長変化手段を構成してもよい。   The driving means 142 for driving the reference light reflecting means 140 is preferably constituted by, for example, a stepping motor that is driven in a direction parallel to the incident direction of the reference light (arrow direction in FIG. 1). If the stepping motor is used, the moving distance of the reference light reflecting means 140 can be easily detected by the motor driving pulse. However, the optical path length changing means is not limited to the motor as long as the optical path length of the light reflected from the reference light reflecting means can be changed. For example, a voice coil motor type delay line using a voice coil motor is used. In addition, the optical path length changing means may be constituted by a piezo tube type delay line, a linear motion stage type delay line, a laminated piezo type delay line, or the like.

上記受光手段150としては,低価格性,コンパクト性を考慮すれば,例えばフォトダイオードを用いて構成することが好ましい。具体的には例えばSiフォトダイオード,InGaAsフォトダイオード,Geフォトダイオードなどを用いたPD(Photo Detector)により構成する。但し,測定対象物Tからの測定光と参照光反射手段140からの参照光との光の干渉を測定できれば,上記のものに限られず,例えばアバランシェフォトダイオード,光電子増倍管などを用いて受光手段150を構成してもよい。   The light receiving means 150 is preferably configured using, for example, a photodiode in consideration of low cost and compactness. Specifically, for example, a PD (Photo Detector) using a Si photodiode, an InGaAs photodiode, a Ge photodiode, or the like is used. However, as long as the interference of the measurement light from the measurement object T and the reference light from the reference light reflecting means 140 can be measured, the light is not limited to the above, and is received using, for example, an avalanche photodiode or a photomultiplier tube. The means 150 may be configured.

上記スプリッタ120からの参照光は,参照光伝送手段(例えば光ファイバcの先端にコリメータを取付けたコリメータ付光ファイバF)を介して参照光反射手段140へ照射する参照光照射位置まで伝送されるようになっている。また,上記スプリッタ120からの測定光は測定光伝送手段(例えば光ファイバbの先端にコリメータを取付けたコリメータ付光ファイバF)を介して測定対象物Tへ向けて照射する測定光照射位置まで伝送されるようになっている。すなわち,図1に示すような温度測定装置100における測定光伝送手段は,測定対象物Tの一方側に配置され,光源110からの測定光を伝送して測定対象物Tの一方側の端面(第1面)Sへ向けて照射する。また,このような測定光伝送手段は測定対象物Tの両端面S,Sで往復反射して又は往復せずに一方側の端面(第1面)Sで反射して,戻ってくる測定光を受光して受光手段150へ向けて伝送するようになっている。なお,上記参照光伝送手段又は上記測定光伝送手段としては,上記コリメータ付光ファイバに限られず,コリメートファイバであってもよい。 The reference light from the splitter 120 is transmitted to a reference light irradiating position for irradiating the reference light reflecting means 140 via a reference light transmitting means (for example, an optical fiber F Z with a collimator having a collimator attached to the tip of the optical fiber c). It has become so. Further, the measurement light from the splitter 120 is transmitted to the measurement light irradiating position for irradiating the measurement target T via the measurement light transmission means (for example, the optical fiber F with a collimator having a collimator attached to the tip of the optical fiber b). It has come to be. That is, the measuring light transmission means in the temperature measuring apparatus 100 as shown in FIG. 1 is arranged on one side of the measuring object T, transmits the measuring light from the light source 110, and has one end face ( first surface) toward S 1 is irradiated. Further, such a measuring light transmission means reflects back and forth at both end faces S 1 and S 2 of the measuring object T or reflects off one end face (first face) S 1 without going back and forth and returns. The incoming measurement light is received and transmitted to the light receiving means 150. The reference light transmission means or the measurement light transmission means is not limited to the collimator-equipped optical fiber, and may be a collimated fiber.

上記スプリッタ120によりスプリットされた測定光と参照光との強度比は例えば1:1とする。これにより,測定光と参照光の強度がほぼ同じ強度になるので,例えばピーク間幅などを測定しやすい干渉波形が得られる。各光の強度はこれに限られることはない。   The intensity ratio between the measurement light split by the splitter 120 and the reference light is, for example, 1: 1. As a result, the intensity of the measurement light and the reference light become substantially the same, so that an interference waveform that makes it easy to measure the width between peaks, for example, can be obtained. The intensity of each light is not limited to this.

(第1実施形態にかかる温度測定装置の動作)
このような構成の温度測定装置100においては,図1に示すように,光源110からの光は,例えば光ファイバaを介してスプリッタ120の入力端子(入力ポート)の一方に入射され,スプリッタ120により2つの出力端子(出力ポート)へ2分波される。このうち,一方の出力端子(出力ポート)からの光は測定光として,測定光伝送手段例えば光ファイバbの先端にコリメータを取付けたコリメータ付光ファイバFを介して測定対象物Tの一方側へ照射される。本実施形態では,このように測定光が測定対象物Tへ照射されたときに,図2に示すように測定対象物Tから反射して同じ側に戻ってくる測定光を受光手段150で受光する。
(Operation of the temperature measuring apparatus according to the first embodiment)
In the temperature measuring apparatus 100 having such a configuration, as shown in FIG. 1, the light from the light source 110 is incident on one of the input terminals (input ports) of the splitter 120 via the optical fiber a, for example. Is divided into two output terminals (output ports). Among these, the light from one output terminal (output port) is used as measurement light to one side of the measurement object T via measurement light transmission means, for example, an optical fiber F with a collimator having a collimator attached to the tip of the optical fiber b. Irradiated. In this embodiment, when the measurement light is irradiated onto the measurement target T in this way, the measurement light reflected from the measurement target T and returns to the same side as shown in FIG. To do.

一方,スプリッタ120により2分波された他方の出力端子(出力ポート)からの光は参照光として,参照光伝送手段例えば光ファイバcの先端にコリメータを取付けたコリメータ付光ファイバFから照射され,参照光反射手段(例えば参照ミラー)140によって反射される。そして,測定対象物Tから反射した測定光はコリメータ付光ファイバFを介してスプリッタ120へ入射するとともに,参照光反射手段(例えば参照ミラー)140で反射した参照光もコリメータ付光ファイバFを介してスプリッタ120に入射し,これら測定光と参照光とが再び合波されて,例えばSiフォトダイオード,InGaAsフォトダイオード,Geフォトダイオードなどを用いたPDで構成された受光手段150へ例えば光ファイバdを介して入射し,受光手段150で測定光と参照光との干渉波形が検出される。 On the other hand, the light from the other output terminal of the splitter 120 is 2 minutes wave (output port) as the reference light, emitted from the reference light transmitting means such as an optical fiber c distal to the collimator optical fiber with F Z, fitted with a collimator , And reflected by a reference light reflecting means (for example, a reference mirror) 140. Then, the measurement light reflected from the measurement target object T is incident on the splitter 120 via the optical fiber F with collimators, the reference beam reflecting means (e.g., a reference mirror) beam with the reference beam reflected even collimator 140 fiber F Z The measurement light and the reference light are recombined via the splitter 120, and the light is combined with the light receiving means 150, which is constituted by a PD using, for example, a Si photodiode, an InGaAs photodiode, a Ge photodiode, or the like. Then, the light receiving unit 150 detects an interference waveform between the measurement light and the reference light.

(測定光と参照光との干渉波形の具体例)
ここで,温度測定装置100により得られる測定光と参照光との光の干渉の具体例を図3に示す。図3は,測定対象物Tから反射する図2に示すような各測定光と,参照光反射手段140で反射する参照光との干渉波形を示したものである。図3(a)は温度変化前の干渉波形を示したものであり,図3(b)は温度変化後の干渉波形を示したものである。図3において縦軸は干渉強度,縦軸は参照ミラーの移動距離をとっている。
(Specific example of interference waveform between measurement light and reference light)
Here, a specific example of the light interference between the measurement light and the reference light obtained by the temperature measurement apparatus 100 is shown in FIG. FIG. 3 shows an interference waveform between each measurement light as shown in FIG. 2 reflected from the measurement object T and the reference light reflected by the reference light reflecting means 140. 3A shows the interference waveform before the temperature change, and FIG. 3B shows the interference waveform after the temperature change. In FIG. 3, the vertical axis represents the interference intensity, and the vertical axis represents the moving distance of the reference mirror.

また,光源110としては,測定対象物Tを透過し反射可能な低コヒーレンス光源を用いる。低コヒーレンス光源によれば,光源110からの光のコヒーレンス長が短いため,通常は測定光の光路長と参照光の光路長とが一致した場所で強く干渉が起こり,それ以外の場所では干渉は実質的に低減するという特質がある。このため,参照光反射手段(例えば参照ミラー)140を例えば参照光の照射方向の前後に駆動させ,参照光の光路長を変化させることにより,図2(a)〜(d)に示すような各測定光と参照光が干渉する。   Further, as the light source 110, a low coherence light source capable of transmitting and reflecting the measurement target T is used. According to the low-coherence light source, since the coherence length of the light from the light source 110 is short, usually strong interference occurs in a place where the optical path length of the measurement light and the optical path length of the reference light coincide with each other, and interference occurs in other places. It has the characteristic of being substantially reduced. For this reason, the reference light reflecting means (for example, the reference mirror) 140 is driven back and forth in the reference light irradiation direction, for example, and the optical path length of the reference light is changed, as shown in FIGS. Each measurement light and reference light interfere.

図3(a),(b)によれば,参照光反射手段(例えば参照ミラー)140を一方向へ走査していくと,先ず図2(a)に示すような第1面1回反射測定光(0回往復反射測定光)と参照光との干渉波形が現れ,次いで図2(b)に示すような第2面1回反射測定光(1回往復反射測定光)と参照光との干渉波形が現れる。参照光反射手段140をさらに走査していくと,図2(c)に示すような第2面2回反射測定光(2回往復反射測定光)と参照光との干渉波形が現れ,図2(d)に示すような第2面3回反射測定光(3回往復反射測定光)と参照光との干渉波形が現れる。その後も,参照光反射手段140をさらに走査すれば,図示はしないが第2面4回反射測定光(4回往復反射測定光),第2面5回反射測定光(5回往復反射測定光)…というように,各測定光の干渉波形が連続して等間隔で現れることになる。   According to FIGS. 3A and 3B, when the reference light reflecting means (for example, the reference mirror) 140 is scanned in one direction, the first-surface first-time reflection measurement as shown in FIG. An interference waveform between the light (0 roundtrip reflection measurement light) and the reference light appears, and then the second surface single reflection measurement light (1 roundtrip reflection measurement light) and the reference light as shown in FIG. An interference waveform appears. When the reference light reflecting means 140 is further scanned, an interference waveform between the second surface twice reflected measurement light (twice round trip reflected measurement light) and the reference light appears as shown in FIG. An interference waveform between the second-surface three-time reflected measurement light (three-time reciprocal reflection measurement light) and the reference light as shown in FIG. Thereafter, if the reference light reflecting means 140 is further scanned, although not shown, the second surface 4 times reflection measurement light (4 times reciprocation reflection measurement light), the second surface 5 times reflection measurement light (5 times reciprocation reflection measurement light). Thus, the interference waveform of each measurement light appears continuously at equal intervals.

(干渉波に基づく温度測定方法)
次に,測定光と参照光との光の干渉に基づいて温度を測定する方法について説明する。測定光と参照光の干渉波に基づく温度測定方法としては,例えば温度変化に基づく光路長変化を用いる温度換算方法がある。ここでは,温度変化に基づく干渉波形の位置ずれを利用した温度換算方法について説明する。
(Temperature measurement method based on interference wave)
Next, a method for measuring temperature based on the interference of light between measurement light and reference light will be described. As a temperature measurement method based on the interference wave of the measurement light and the reference light, for example, there is a temperature conversion method using an optical path length change based on a temperature change. Here, a temperature conversion method using a position shift of an interference waveform based on a temperature change will be described.

測定対象物Tがヒータ等によって温められると,測定対象物Tはそれぞれ膨張して厚さd,屈折率nが変化するため,温度変化前と温度変化後では,測定対象物Tの両端面S,S間(表面と裏面との間)の光路長(光学的厚さ)Lが変化するので,測定光と参照光の干渉波形の位置がずれて,干渉波形のピーク間幅が変化する。従って,このような測定対象物Tの干渉波形のピーク間幅を測定することにより温度変化を検出することができる。例えば測定対象物Tの光路長Lは,例えば図3(a)に示す第1面1回反射測定光の干渉波形と,第2面1回反射測定光の干渉波形とのピーク間幅に相当し,このピーク間幅は参照光反射手段(例えば参照ミラー)140の移動距離に対応しているため,これらの干渉波形のピーク間幅における参照ミラーの移動距離を測定することにより,温度変化前後の測定対象物Tの光路長Lを測定することができる。 When the measuring object T is warmed by a heater or the like, the measuring object T expands and the thickness d and the refractive index n change. Therefore, both end faces S of the measuring object T before and after the temperature change. 1, since between S 2 is the optical path length (optical thickness) L of (between the surface and the back surface) varies, the position is shifted in the interference waveform of the measurement light and the reference light, the peak-to-peak width of the interference waveform changes To do. Therefore, a temperature change can be detected by measuring the peak-to-peak width of the interference waveform of the measurement target T. For example, the optical path length L of the measurement target T corresponds to, for example, the peak-to-peak width between the interference waveform of the first-surface once-reflected measurement light and the interference waveform of the second-surface once-reflected measurement light shown in FIG. Since the peak-to-peak width corresponds to the moving distance of the reference light reflecting means (for example, the reference mirror) 140, by measuring the moving distance of the reference mirror in the peak-to-peak width of these interference waveforms, before and after the temperature change The optical path length L of the measurement object T can be measured.

以下,上記温度測定方法について,図3で測定した測定対象物Tの厚さをそれぞれdとし,屈折率をnとしてより具体的に説明する。測定対象物Tに測定光を照射して,参照ミラーを一方向へ走査していくと,図3(a)に示すように第1面1回反射測定光の干渉波形,第2面1回反射測定光の干渉波形,第2面2回反射測定光の干渉波形,第3面3回反射測定光の干渉波形がこの順に得られる。   Hereinafter, the temperature measurement method will be described more specifically with the thickness of the measurement target T measured in FIG. 3 as d and the refractive index as n. When the measurement object T is irradiated with measurement light and the reference mirror is scanned in one direction, as shown in FIG. 3A, the first surface once reflected measurement light interference waveform, the second surface once The interference waveform of the reflected measurement light, the interference waveform of the second surface twice reflected measurement light, and the interference waveform of the third surface three times reflected measurement light are obtained in this order.

このとき,測定対象物Tを例えばヒータなどより加熱すると,測定対象物Tの温度は上昇し,その温度変化により測定対象物Tは膨張して屈折率nも変化する。これにより,測定対象物Tの1つの干渉波形を基準として他の干渉波形についてのピーク位置がずれて,干渉波形のピーク間幅が変化する。例えば図3(b)では,測定対象物Tの第1面1回反射測定光の干渉波形を基準干渉波形として,他の干渉波形の位置,すなわち第2面1回反射,第2面2回反射,第3面3回反射測定光の干渉波形の位置が図3(a)の場合に比してそれぞれt,2t,3tだけずれている。これにより,基準干渉波形と他の干渉波形のピーク間幅はそれぞれ,図3(a)に示すW,2W,3Wから図3(b)に示すW′,2W′,3W′へ変化する。   At this time, when the measuring object T is heated by, for example, a heater, the temperature of the measuring object T rises, and the measuring object T expands due to the temperature change, and the refractive index n also changes. As a result, the peak positions of other interference waveforms are shifted with reference to one interference waveform of the measurement target T, and the peak-to-peak width of the interference waveform changes. For example, in FIG. 3B, the interference waveform of the first-surface once reflected measurement light of the measurement object T is used as a reference interference waveform, and the position of the other interference waveform, that is, the second surface once reflected, the second surface twice. The position of the interference waveform of the reflected and third surface three-time reflected measurement light is shifted by t, 2t, and 3t, respectively, as compared with the case of FIG. As a result, the peak-to-peak widths of the reference interference waveform and the other interference waveforms change from W, 2W, 3W shown in FIG. 3A to W ′, 2W ′, 3W ′ shown in FIG. 3B, respectively.

このような干渉波形についてのピーク位置のずれは,一般に厚さdについては測定対象物の各層固有の線膨張係数αに依存し,また屈折率nの変化については主として各層固有の屈折率変化の温度係数βに依存する。なお,屈折率変化の温度係数βについては波長にも依存することが知られている。   Such a shift in the peak position of the interference waveform generally depends on the linear expansion coefficient α specific to each layer of the measurement object with respect to the thickness d, and mainly changes in the refractive index specific to each layer with respect to changes in the refractive index n. Depends on temperature coefficient β. It is known that the temperature coefficient β of the refractive index change also depends on the wavelength.

従って,測定対象物Tにおける温度変化後の厚さd′を数式で表すと下記数式(1−1)に示すようになる。なお,下記数式(1−1)において,ΔTは測定対象物Tの温度変化を示している。αは測定対象物Tの線膨張率を示しており,βは測定対象物Tの屈折率変化の温度係数を示している。また,d,nは,それぞれ温度変化前の測定対象物Tの厚さ,屈折率を示している。   Therefore, when the thickness d ′ after the temperature change in the measuring object T is expressed by a mathematical expression, the following mathematical expression (1-1) is obtained. In the following mathematical formula (1-1), ΔT represents a temperature change of the measuring object T. α indicates the linear expansion coefficient of the measuring object T, and β indicates the temperature coefficient of the refractive index change of the measuring object T. D and n indicate the thickness and refractive index of the measuring object T before the temperature change.

d′=d・(1+αΔT),n′=n・(1+βΔT) …(1−1) d ′ = d · (1 + αΔT), n ′ = n · (1 + βΔT) (1-1)

上記数式(1−1)に示すように,温度変化によって測定対象物Tを透過して反射する測定光の光路長が変化する。光路長は一般に,厚さdと屈折率nとを積で表される。従って,温度変化前の測定対象物Tを透過して反射する測定光の光路長をLとし,測定対象物Tにおける温度がΔTだけ変化した後の光路長をL′とすると,L,L′はそれぞれ下記の数式(1−2)に示すようになる。 As shown in the above equation (1-1), the optical path length of the measurement light that is transmitted through and reflected by the measurement target T is changed due to the temperature change. The optical path length is generally expressed as a product of the thickness d and the refractive index n. Accordingly, if the optical path length of the measurement light transmitted through and reflected by the measurement target T before the temperature change is L, and the optical path length after the temperature at the measurement target T is changed by ΔT is L ′, then L 1 , L 1 'is as shown in the following formula (1-2).

L=d・n , L′=d′・n′ …(1−2) L = d · n, L ′ = d ′ · n ′ (1-2)

従って,測定対象物Tにおける測定光の光路長の温度変化前後の差(L′−L)は,上記数式(1−1),(1−2)により計算して整理すると,下記数式(1−3)に示すようになる。なお,下記数式(1−3)では,α・β≪α,α・β≪βを考慮して微小項を省略している。   Accordingly, the difference (L′−L) between the optical path length of the measurement light at the measurement object T and before and after the temperature change is calculated and arranged according to the above formulas (1-1) and (1-2). -3). In addition, in the following mathematical formula (1-3), a minute term is omitted in consideration of α · β << α and α · β << β.

L′−L=d′・n′−d・n=d・n・(α+β)・ΔT
=L・(α+β)・ΔT …(1−3)
L′−L = d ′ · n′−d · n = d · n · (α + β) · ΔT
= L · (α + β) · ΔT (1-3)

ここで,測定対象物Tにおける測定光の光路長Lは,測定光と参照光との干渉波形のピーク間幅に相当する。例えば温度変化前における測定対象物Tの測定光の光路長Lは,図3(a)に示す干渉波形のピーク間幅Wに相当し,温度変化後における測定対象物Tの測定光の光路長L′は,図3(b)に示す干渉波形のピーク間幅W′に相当する。従って,測定対象物Tにおける参照光との干渉波形のピーク間幅は,図1に示すような温度測定装置100によれば,参照光反射手段(例えば参照ミラー)140の移動距離により測定できる。   Here, the optical path length L of the measurement light at the measurement object T corresponds to the width between peaks of the interference waveform between the measurement light and the reference light. For example, the optical path length L of the measurement light of the measurement target T before the temperature change corresponds to the peak-to-peak width W of the interference waveform shown in FIG. 3A, and the optical path length of the measurement light of the measurement target T after the temperature change. L ′ corresponds to the peak-to-peak width W ′ of the interference waveform shown in FIG. Therefore, the peak-to-peak width of the interference waveform with the reference light in the measurement target T can be measured by the moving distance of the reference light reflecting means (for example, the reference mirror) 140 according to the temperature measuring apparatus 100 as shown in FIG.

従って,測定対象物Tの線膨張率α及び屈折率変化の温度係数βを予め調べておけば,測定対象物Tにおける参照光との干渉波形のピーク間幅を計測することによって,上記数式(1−3)を用いて,測定対象物Tの温度に換算することができる。   Therefore, if the linear expansion coefficient α and the temperature coefficient β of the refractive index change of the measurement target T are examined in advance, the above formula ( 1-3) can be used to convert the temperature of the measuring object T.

このように,干渉波から温度への換算する場合,上述したように干渉波形のピーク間で表される光路長が線膨張率α及び屈折率変化の温度係数βによって変るため,これら線膨張率α及び屈折率変化の温度係数βを予め調べておく必要がある。測定対象物Tとなり得るウエハを含めた物質の線膨張率α及び屈折率変化の温度係数βは一般に,温度帯によっては,温度に依存する場合もある。例えば線膨張率αについては一般に,物質の温度が0〜100℃くらいの温度範囲ではそれほど変化しないので,一定とみなしても差支えないが,100℃以上の温度範囲では物質によっては温度が高くなるほど変化率が大きくなる場合もあるので,そのような場合には温度依存性が無視できなくなる。屈折率変化の温度係数βについても同様に温度範囲によっては,温度依存性が無視できなくなる場合がある。   Thus, when converting the interference wave to the temperature, the optical path length expressed between the peaks of the interference waveform varies depending on the linear expansion coefficient α and the temperature coefficient β of the refractive index change as described above. It is necessary to investigate in advance α and the temperature coefficient β of the refractive index change. In general, the linear expansion coefficient α and the temperature coefficient β of refractive index change of a substance including a wafer that can be the measurement object T may depend on the temperature depending on the temperature range. For example, the coefficient of linear expansion α generally does not change so much in the temperature range of about 0 to 100 ° C., so it can be regarded as constant. However, in the temperature range of 100 ° C. or higher, the temperature increases depending on the material. Since the rate of change may be large, the temperature dependency cannot be ignored in such a case. Similarly, the temperature dependence β of the refractive index change may not be negligible depending on the temperature range.

例えばウエハを構成するシリコン(Si)の場合は,0〜500℃の温度範囲において線膨張率α及び屈折率変化の温度係数βは例えば二次曲線で近似することができることが知られている。その詳細については,例えばJ.A.McCaulley,V.M.Donnellyらの論文(J.A.McCaulley,V.M.Donnelly,M.Vernon,andI.Taha,
"Temperature dependence of the near-infrared refractive index of
silicon,gallium arsenide,and indium phosphide"Phy.Rev.B49,7408,1994)などにも記載されている。
For example, in the case of silicon (Si) constituting a wafer, it is known that the linear expansion coefficient α and the temperature coefficient β of refractive index change can be approximated by, for example, a quadratic curve in a temperature range of 0 to 500 ° C. For details, see JAMcCaulley, VMDonnelly et al. (JAMcCaulley, VMDonnelly, M. Vernon, and I. Taha,
"Temperature dependence of the near-infrared refractive index of
silicon, gallium arsenide, and indium phosphide "Phy. Rev. B49, 7408, 1994).

このように,線膨張率α及び屈折率変化の温度係数βは温度に依存するので,例えば温度に応じた線膨張率α及び屈折率変化の温度係数βを実験などによって予め調べて,温度換算用基準データとして予めメモリ(例えば後述する制御装置400のメモリ440等)に記憶しておき,温度換算用基準データを利用して温度換算すれば,より正確な温度に換算することができる。   Thus, since the linear expansion coefficient α and the temperature coefficient β of the refractive index change depend on the temperature, for example, the linear expansion coefficient α and the temperature coefficient β of the refractive index change corresponding to the temperature are examined in advance through experiments, etc. If it is stored in advance in a memory (for example, a memory 440 of the control device 400 described later) as the reference data for use, and the temperature is converted using the reference data for temperature conversion, it can be converted into a more accurate temperature.

なお,測定光と参照光との干渉波に基づいて温度を測定する方法としては,上記の方法に限られず,測定対象物Tについての光路長と温度との関係を実験などにより予め求めて,温度換算用基準データとして予めメモリ(例えば後述する制御装置400のメモリ440等)に記憶しておき,この温度換算用基準データを利用して,測定対象物Tについての測定光と参照光との干渉波に基づいて測定された光路長(干渉波形のピーク間幅)を直接温度に換算するようにしてもよい。これによれば,線膨張率α及び屈折率変化の温度係数βがわからなくても,測定光と参照光との干渉波の測定結果を容易に温度に換算することができる。   Note that the method for measuring the temperature based on the interference wave between the measurement light and the reference light is not limited to the above method, and the relationship between the optical path length and the temperature for the measurement target T is obtained in advance through experiments, The temperature conversion reference data is stored in advance in a memory (for example, a memory 440 of the control device 400 described later), and the temperature conversion reference data is used to calculate the measurement light and the reference light for the measurement target T. The optical path length (inter-peak width of the interference waveform) measured based on the interference wave may be directly converted into temperature. According to this, even if the linear expansion coefficient α and the temperature coefficient β of the refractive index change are not known, the measurement result of the interference wave between the measurement light and the reference light can be easily converted into temperature.

具体的には例えばある測定対象物Tについて,既知の温度tでの光路長をLとし,ある温度tでの光路長をLとし,線膨張率α及び屈折率変化の温度係数βとすると,線膨張率α及び屈折率変化の温度係数βの温度依存を無視できる温度帯であれば,ある温度tは,下記(2−1)式で表すことができる。下記(2−1)式は上記(1−3)式におけるL′=L,L=L,ΔT=t−tとした場合と同様である。そして,下記(2−1)を整理すると,ある温度tは下記(2−2)式で表すことができる。下記(2−2)式において,線膨張率α及び屈折率変化の温度係数βの温度依存を無視できる場合は,α+βは一定と考えられるので,定数の係数をA,Bで置換えると下記(2−3)式に示すような一次式で表すことができる。 For the measurement target object T in particular in example, the optical path length at a known temperature t i and L i, the optical path length at a given temperature t and L t, a temperature coefficient of linear expansion α and the refractive index change β Then, in a temperature range in which the temperature dependence of the linear expansion coefficient α and the temperature coefficient β of the refractive index change can be ignored, a certain temperature t can be expressed by the following equation (2-1). The following equation (2-1) is the same as the case where L ′ = L t , L = L i , and ΔT = t−t i in the above equation (1-3). When the following (2-1) is arranged, a certain temperature t can be expressed by the following equation (2-2). In the following equation (2-2), when the temperature dependence of the linear expansion coefficient α and the temperature coefficient β of the refractive index change can be ignored, α + β is considered to be constant, so the constant coefficients are replaced with A 1 and B 1 . And a linear expression as shown in the following expression (2-3).

−L=L・(α+β)・(t−t) …(2−1) L t −L i = L i · (α + β) · (t−t i ) (2-1)

t=(1/(α+β))・(L/L)−(1/(α+β)+t) …(2−2) t = (1 / (α + β)) · (L t / L i ) − (1 / (α + β) + t i ) (2-2)

t=A・(L/L)+B …(2−3) t = A 1 · (L t / L i ) + B 1 (2-3)

また,線膨張率α及び屈折率変化の温度係数βの温度依存を無視できない場合は,下記(2−4)式に示すような2次式で表すようにしてもよい。この場合の係数をA,B,Cとする。 When the temperature dependence of the linear expansion coefficient α and the temperature coefficient β of the refractive index change cannot be ignored, it may be expressed by a quadratic expression as shown in the following expression (2-4). The coefficients in this case are A 2 , B 2 and C 2 .

t=A・(L/L+B・(L/L)+C …(2−4) t = A 2 · (L t / L i ) 2 + B 2 · (L t / L i ) + C 2 (2-4)

上記(2−3)式における係数A,B,上記(2−4)式における係数A,B,Cはそれぞれ,実験によりいくつかの温度で実際に光路長を測定することにより求める。例えば温度と光路長との関係について図4に示すような実験結果が得られたとすれば,上記既知の温度tを40℃としそのときの光路長をL=L40として,上記(2−4)式における係数はそれぞれ,A=−1.2496×10,B=−2.6302×10,C=−1.3802×10となる。 The coefficients A 1 , B 1 in the above equation (2-3) and the coefficients A 2 , B 2 , C 2 in the above equation (2-4) are actually measured at several temperatures by experiments. Ask for. For example, if an experimental result as shown in FIG. 4 is obtained with respect to the relationship between the temperature and the optical path length, the known temperature t i is set to 40 ° C., and the optical path length at that time is set to L i = L 40. −4) The coefficients in the equation are A 2 = −1.2496 × 10 5 , B 2 = −2.6302 × 10 5 , and C 2 = −1.3802 × 10 5 , respectively.

こうして実験により得られた(2−4)式を温度換算用基準データとして予めメモリ(例えば後述する制御装置400のメモリ440等)に記憶しておき,測定光と参照光との干渉波に基づいて測定された光路長LからL/L40を求めて,(2−4)式のL/Lに当てはめることにより,光路長Lを温度tに換算することができる。 The equation (2-4) thus obtained by experiment is stored in advance in a memory (for example, a memory 440 of the control device 400 to be described later) as temperature conversion reference data, and based on the interference wave between the measurement light and the reference light. from the measured optical path length L t seek L t / L 40 Te, by fitting the L t / L i of (2-4) below, it is possible to convert the optical path length L t of the temperature t.

なお,測定光と参照光との干渉波に基づく温度測定方法としては上述したような方法に限られることはなく,例えば温度変化に基づく吸収強度変化を用いる方法であってもよく,上記温度変化に基づく光路長変化と温度変化に基づく吸収強度変化とを組み合わせた方法であってもよい。   Note that the temperature measurement method based on the interference wave between the measurement light and the reference light is not limited to the method described above. For example, a method using an absorption intensity change based on a temperature change may be used. A method in which an optical path length change based on the above and an absorption intensity change based on a temperature change are combined may be used.

上述したように,温度変化後の測定対象物T内の測定光の光路長L′は,例えば測定対象物Tの両端面S,Sで反射した測定光の干渉波形(図3(b)に示す第1面1回反射測定光の干渉波形と第2面1回反射測定光の干渉波形)のピーク間幅W′に相当するので,このピーク間幅W′を測定することにより求められた光路長L′を温度に変換することにより,測定対象物Tの温度を測定することが可能となる。 As described above, the optical path length L ′ of the measurement light in the measurement target T after the temperature change is, for example, the interference waveform of the measurement light reflected by both end faces S 1 and S 2 of the measurement target T (FIG. 3B). This corresponds to the peak-to-peak width W ′ of the first-surface once-reflected measurement light interference waveform and second-surface one-time reflected measurement light interference waveform shown in FIG. By converting the obtained optical path length L ′ into temperature, the temperature of the measuring object T can be measured.

ところが,図3に示すような測定対象物T内の測定光の光路長Lの単位温度変化(例えば1℃)当りの変化量(L′−L)は,上記(1−3)式によれば,測定対象物Tの厚さdが小さいほど小さくなるので,この光路長Lに相当する第1面1回反射測定光の干渉波形と第2面1回反射測定光の干渉波形のピーク間幅Wの変化量tも小さくなる。このため,測定対象物Tの厚さdが小さいほど,測定対象物Tの干渉波形のピーク間幅Wの変化量tを精度よく測定することが困難になるため,ひいては測定対象物Tの温度測定精度向上の妨げになるという問題がある。   However, the amount of change (L′−L) per unit temperature change (for example, 1 ° C.) of the optical path length L of the measuring light in the measuring object T as shown in FIG. 3 depends on the above equation (1-3). For example, the smaller the thickness d of the measuring object T is, the smaller it becomes. Therefore, between the interference waveform of the first surface once reflected measurement light and the second surface once reflected measurement light corresponding to the optical path length L. The change amount t of the width W is also reduced. For this reason, the smaller the thickness d of the measuring object T, the more difficult it is to accurately measure the amount of change t between the peak-to-peak widths W of the interference waveform of the measuring object T, and consequently the temperature of the measuring object T. There is a problem that the measurement accuracy is hindered.

そこで,干渉波形のピーク間幅をより長くとるようにするため,第2面2回反射又は第2面3回反射測定光の干渉波形のように測定対象物Tの両端面S,Sで2回以上往復反射した測定光の干渉波形(複数回往復反射測定光の干渉波形)を温度測定に用いる。 Therefore, in order to take longer peak width of the interference waveform, end surfaces S 1 of the measurement target T as the second surface double reflection or interference waveform of the second surface 3 times reflected measuring beam, S 2 The interference waveform of the measurement light reflected back and forth twice or more (interference waveform of the measurement light reflected back and forth multiple times) is used for temperature measurement.

例えば第2面2回反射測定光は,図2(c)に示すように測定対象物Tの両端面S,Sで2回往復反射したものであるため,この第2面2回反射測定光の干渉波形と第1面1回反射測定光の干渉波形のピーク間幅2Wは,図3(a)に示すように測定対象物T内の測定光の光路長Lの2倍である2Lに相当する。従って,温度変化前後の干渉波形のピーク間幅2W,2W′を測定して,この場合の測定光の測定対象物Tの両端面S,Sでの往復反射回数である2で,測定したピーク間幅2W,2W′を割算することにより,測定対象物Tの測定光の光路長L,L′を求めることができる。このため,第2面2回反射測定光の干渉波形を用いた場合の上記ピーク間幅の変化量(2W′−2W)は,第2面1回反射測定光の干渉波形を用いた場合の2倍の2tとなるので,測定精度を向上させることができる。 For example, the second surface twice reflected measurement light is reflected twice on both end faces S 1 and S 2 of the measurement object T as shown in FIG. The inter-peak width 2W of the interference waveform of the measurement light and the interference waveform of the first-surface once reflected measurement light is twice the optical path length L of the measurement light in the measurement target T as shown in FIG. It corresponds to 2L. Accordingly, the inter-peak widths 2W and 2W ′ of the interference waveform before and after the temperature change are measured, and the measurement light in this case is measured by 2 which is the number of round-trip reflections at both end faces S 1 and S 2 of the measurement target T. By dividing the peak-to-peak widths 2W and 2W ′, the optical path lengths L and L ′ of the measurement light of the measurement object T can be obtained. For this reason, the amount of change in the peak-to-peak width (2W′−2W) when using the interference waveform of the second surface twice reflected measurement light is the same as when the interference waveform of the second surface once reflected measurement light is used. Since it becomes twice 2t, the measurement accuracy can be improved.

また,第2面3回反射測定光は,図2(d)に示すように測定対象物Tの両端面S,Sで3回往復反射したものであるため,この第2面3回反射測定光の干渉波形と第1面1回反射測定光の干渉波形のピーク間幅3Wは,図3(a)に示すように測定対象物Tの測定光の光路長Lの3倍である3Lに相当する。従って,温度変化前後の干渉波形のピーク間幅3W,3W′を測定して,この場合の測定光の測定対象物Tの両端面S,Sでの往復反射回数である3で,測定したピーク間幅3W,3W′を割算することにより,測定対象物T内の測定光の光路長L,L′を求めることができる。このため,第2面3回反射測定光の干渉波形を用いた場合の上記ピーク間幅の変化量(3W′−3W)は,第2面1回反射測定光の干渉波形を用いた場合の3倍の3tとなるので,第2面2回反射測定光の干渉波形を用いた場合よりもさらに測定精度を向上させることができる。 Further, since the second surface three-time reflected measurement light is reflected back and forth three times at both end faces S 1 and S 2 of the measuring object T as shown in FIG. The peak-to-peak width 3W of the interference waveform of the reflected measurement light and the interference waveform of the first-surface once reflected measurement light is three times the optical path length L of the measurement light of the measurement object T as shown in FIG. It corresponds to 3L. Accordingly, the inter-peak widths 3W and 3W ′ of the interference waveform before and after the temperature change are measured, and the measurement light is measured with 3 which is the number of round-trip reflections at both end faces S 1 and S 2 of the measuring object T in this case. By dividing the peak-to-peak widths 3W and 3W ′, the optical path lengths L and L ′ of the measuring light in the measuring object T can be obtained. For this reason, the amount of change in the peak-to-peak width (3W'-3W) when the interference waveform of the second-surface three-time reflected measurement light is used is the same as when the interference waveform of the second-surface one-time reflected measurement light is used. Since 3 to 3 times, the measurement accuracy can be further improved as compared with the case of using the interference waveform of the second surface twice reflected measurement light.

このように,例えば測定対象物Tの第1面Sを1回反射する測定光の干渉波形を基準とし,測定対象物Tの第2面Sを1回反射する測定光の干渉波形の代りに,測定対象物Tの両端面S,Sで2回以上往復反射する測定光の干渉波形を選択し,基準干渉波形と選択干渉波形とのピーク間幅を測定するようにすれば,測定する各干渉波形のピーク間幅を長くとることができるので,その変化量も大きくなるため,各干渉波形のピーク間幅の測定精度を向上させることができる。しかも,測定対象物Tの各面S,Sを反射する回数が多いほど測定する各干渉波形のピーク間幅も長くとることができるので,各干渉波形のピーク間幅の測定精度も向上させることができる。ひいては測定対象物Tの温度測定精度を向上させることができる。 Thus, for example the interference waveform of the measurement light the first surface S 1 reflects a single measurement target T as a reference, the second side S 2 of the measuring light interference waveform which reflects a single measurement object T Instead, if an interference waveform of measurement light that is reflected twice or more at both end faces S 1 and S 2 of the measurement target T is selected, the width between peaks of the reference interference waveform and the selected interference waveform is measured. Since the peak-to-peak width of each interference waveform to be measured can be increased, the amount of change is also increased, so that the measurement accuracy of the peak-to-peak width of each interference waveform can be improved. Moreover, since the peak-to-peak width of each interference waveform to be measured can be increased as the number of reflections on the surfaces S 1 and S 2 of the measurement target T increases, the measurement accuracy of the peak-to-peak width of each interference waveform is also improved. Can be made. As a result, the temperature measurement accuracy of the measuring object T can be improved.

(第2実施形態にかかる温度測定システム)
次に,第2実施形態にかかる基板処理装置の温度測定システムについて図面を参照しながら説明する。第2実施形態にかかる基板処理装置の温度測定システムは,第1実施形態にかかる温度測定装置を基板処理装置に適用した場合の具体例である。図5は,第2実施形態にかかる温度測定システムの概略構成を示す図である。ここでは,例えばプラズマエッチング装置などの基板処理装置における温度測定対象物Tの例としてウエハTwの温度測定に適用する場合を例に挙げて説明する。
(Temperature measurement system according to the second embodiment)
Next, a temperature measurement system for a substrate processing apparatus according to a second embodiment will be described with reference to the drawings. The temperature measurement system of the substrate processing apparatus according to the second embodiment is a specific example when the temperature measurement apparatus according to the first embodiment is applied to the substrate processing apparatus. FIG. 5 is a diagram showing a schematic configuration of a temperature measurement system according to the second embodiment. Here, as an example of the temperature measurement target T in a substrate processing apparatus such as a plasma etching apparatus, a case where it is applied to the temperature measurement of the wafer Tw will be described as an example.

図5に示す温度測定システムは,大別すると,温度測定装置200,基板処理装置300,制御装置400から構成される。図5に示す温度測定装置200は,図1に示す光源110を低コヒーレンス光源例えば低コヒーレンス性を有する光を照射するSLD210により構成し,光源110からの光を測定光と参照光にスプリットするスプリッタ120を例えば2×2の光ファイバカプラ220により構成し,受光手段150を例えばGeフォトダイオードなどを用いたPD250により構成し,参照光反射手段140は例えば参照ミラー240により構成し,駆動手段142は例えば参照ミラー240を駆動するステッピングモータ242により構成したものである。   The temperature measurement system shown in FIG. 5 is roughly composed of a temperature measurement device 200, a substrate processing device 300, and a control device 400. A temperature measuring apparatus 200 shown in FIG. 5 includes a light source 110 shown in FIG. 1 as a low-coherence light source, for example, an SLD 210 that emits light having low coherence, and a splitter that splits the light from the light source 110 into measurement light and reference light. 120 includes, for example, a 2 × 2 optical fiber coupler 220, and the light receiving unit 150 includes, for example, a PD 250 using a Ge photodiode, the reference light reflecting unit 140 includes, for example, a reference mirror 240, and the driving unit 142 includes For example, the stepping motor 242 that drives the reference mirror 240 is used.

測定光の元になるSLD210などの光源110としては,測定対象物であるウエハTwの両端面S,Sを透過し反射する光であって,ウエハTwの両端面S,Sで少なくとも2回以上往復反射可能な光を照射可能なものを使用する。例えばウエハTwはシリコンで形成されるので,シリコンやシリコン酸化膜などのシリコン材を透過可能な1.0〜2.5μmの波長を有する光を照射可能なものを光源110として使用することが好ましい。 The light source 110 such as the SLD 210 that is the source of the measurement light is light that is transmitted through and reflected from both end faces S 1 and S 2 of the wafer Tw that is the measurement object, and is reflected at both end faces S 1 and S 2 of the wafer Tw. Use light that can irradiate light that can be reflected back and forth at least twice. For example, since the wafer Tw is formed of silicon, it is preferable to use a light source 110 that can irradiate light having a wavelength of 1.0 to 2.5 μm that can transmit a silicon material such as silicon or a silicon oxide film. .

基板処理装置300は,図5に示すように,例えばウエハTwに対してエッチング処理や成膜処理などの所定の処理を施す処理室310を備える。処理室310の内部には,上部電極350と,この上部電極350に対向する下部電極340とが配設されている。下部電極340は,ウエハTwを載置する載置台を兼ねている。下部電極340の上部には例えばウエハTwを静電吸着する静電チャック(図示しない)が設けられている。また,下部電極340には,冷却手段が設けられている。この冷却手段は,例えば下部電極340に冷媒流路は略環状に形成される冷媒流路342に冷媒を循環させて下部電極340の温度を制御することにより,ウエハTwの温度を制御するものである。ウエハTwは例えば処理室310の側面に設けられたゲートバルブ(図示しない)から処理室310内に搬入される。これら下部電極340,上部電極350にはそれぞれ所定の高周波電力を印加する高周波電源320,330が接続されている。   As shown in FIG. 5, the substrate processing apparatus 300 includes a processing chamber 310 that performs a predetermined process such as an etching process or a film forming process on the wafer Tw, for example. An upper electrode 350 and a lower electrode 340 facing the upper electrode 350 are disposed inside the processing chamber 310. The lower electrode 340 also serves as a mounting table for mounting the wafer Tw. For example, an electrostatic chuck (not shown) that electrostatically attracts the wafer Tw is provided on the lower electrode 340. The lower electrode 340 is provided with cooling means. This cooling means controls the temperature of the wafer Tw by, for example, controlling the temperature of the lower electrode 340 by circulating the coolant through the coolant channel 342 having a substantially annular coolant channel formed in the lower electrode 340. is there. The wafer Tw is loaded into the processing chamber 310 from a gate valve (not shown) provided on the side surface of the processing chamber 310, for example. The lower electrode 340 and the upper electrode 350 are connected to high-frequency power sources 320 and 330 for applying predetermined high-frequency power, respectively.

上部電極350は,その最下部に位置する電極板351を電極支持体352で支持するように構成されている。電極板351は例えばシリコン材(シリコン,シリコン酸化物など)で形成され,電極支持体352は例えばアルミ材で形成される。上部電極350の上部には,所定の処理ガスが導入される導入管(図示しない)が設けられている。この導入管から導入された処理ガスが下部電極340に載置されたウエハTwに向けて均一に吐出するように,電極板351には多数の吐出孔(図示しない)が穿設されている。   The upper electrode 350 is configured to support an electrode plate 351 located at the lowermost portion thereof with an electrode support 352. The electrode plate 351 is made of, for example, a silicon material (silicon, silicon oxide, etc.), and the electrode support 352 is made of, for example, an aluminum material. An introduction pipe (not shown) through which a predetermined processing gas is introduced is provided above the upper electrode 350. A large number of discharge holes (not shown) are formed in the electrode plate 351 so that the processing gas introduced from the introduction pipe is uniformly discharged toward the wafer Tw placed on the lower electrode 340.

上部電極350は,冷却手段が設けられている。この冷却手段は,例えば上部電極350の電極支持体352内に形成される冷媒流路に冷媒を循環させることにより,上部電極350の温度を制御するものである。冷媒流路は略環状に形成されており,例えば上部電極350の面内のうち外側を冷却するための外側冷媒流路353と,内側を冷却するための内側冷媒流路354の2系統に分けて形成される。これら外側冷媒流路353及び内側冷媒流路354はそれぞれ,図5に示す矢印で示すように冷媒が供給管から供給され,各冷媒流路353,354を流通して排出管から排出されて,外部の冷凍機(図示せず)へと戻り,循環するように構成されている。これら2系統の冷媒流路には同じ冷媒を循環させてもよく,また異なる冷媒を循環させてもよい。なお,上部電極350の冷却手段としては,図5に示す2系統の冷媒流路を備えるものに限られず,例えば1系統のみの冷媒流路を備えるものであってもよく,また1系統で2分岐する冷媒流路を備えるものであってもよい。   The upper electrode 350 is provided with cooling means. This cooling means controls the temperature of the upper electrode 350 by circulating a coolant through a coolant channel formed in the electrode support 352 of the upper electrode 350, for example. The refrigerant channel is formed in a substantially annular shape, and is divided into two systems, for example, an outer refrigerant channel 353 for cooling the outside of the upper electrode 350 and an inner refrigerant channel 354 for cooling the inner side. Formed. The outer refrigerant channel 353 and the inner refrigerant channel 354 are supplied from the supply pipe as indicated by the arrows shown in FIG. 5, flow through the refrigerant flow paths 353 and 354, and are discharged from the discharge pipe. It is configured to return to an external refrigerator (not shown) and circulate. The same refrigerant may be circulated in these two refrigerant flow paths, or different refrigerants may be circulated. Note that the cooling means for the upper electrode 350 is not limited to the one having the two refrigerant flow paths shown in FIG. 5, and may be one having only one refrigerant flow path. You may provide the refrigerant | coolant flow path which branches.

電極支持体352は,外側冷媒流路353が設けられる外側部位と,内側冷媒流路354が設けられる内側部位との間に,低熱伝達層356が設けられている。これにより,電極支持体352の外側部位と内側部位との間は低熱伝達層356の作用により熱が伝わり難いため,外側冷媒流路353と内側冷媒流路354との冷媒制御によって,外側部位と内側部位とが異なる温度になるように制御することも可能である。こうして,上部電極350の面内温度を効率よく的確に制御することが可能となる。   The electrode support 352 is provided with a low heat transfer layer 356 between an outer portion where the outer refrigerant channel 353 is provided and an inner portion where the inner refrigerant channel 354 is provided. Accordingly, heat is hardly transmitted between the outer portion and the inner portion of the electrode support 352 due to the action of the low heat transfer layer 356. Therefore, the refrigerant is controlled by the outer refrigerant passage 353 and the inner refrigerant passage 354, and the outer portion and the inner portion are separated. It is also possible to control the temperature so that the inner part is at a different temperature. Thus, the in-plane temperature of the upper electrode 350 can be controlled efficiently and accurately.

このような基板処理装置300では,ウエハTwは例えば搬送アームなどによりゲートバルブを介して搬入される。処理室310に搬入されたウエハTwは,下部電極340上に載置され,上部電極350と下部電極340には高周波電力が印加されるとともに,上部電極350から処理室310内へ所定の処理ガスが導入される。これにより,上部電極350から導入された処理ガスはプラズマ化され,ウエハTwの表面に例えばエッチング処理などが施される。   In such a substrate processing apparatus 300, the wafer Tw is loaded via a gate valve by a transfer arm, for example. The wafer Tw carried into the processing chamber 310 is placed on the lower electrode 340, high frequency power is applied to the upper electrode 350 and the lower electrode 340, and a predetermined processing gas is passed from the upper electrode 350 into the processing chamber 310. Is introduced. As a result, the processing gas introduced from the upper electrode 350 is turned into plasma, and the surface of the wafer Tw is subjected to, for example, an etching process.

上記温度測定装置200における光ファイバカプラ220からの参照光は,参照光伝送手段例えばコリメータ付光ファイバFを介して参照ミラー240へ照射する参照光照射位置まで伝送されるようになっている。また上記光ファイバカプラ220からの測定光は測定光伝送手段例えばコリメータ付光ファイバFを介して,下部電極340から測定対象物であるウエハTwへ向けて照射する測定光照射位置まで伝送されるようになっている。具体的には,コリメータ付光ファイバFは下部電極340の例えば中央部に形成された貫通孔344を介して,測定光がウエハTwへ向けて照射されるように配設される。なお,コリメータ付光ファイバFを配設するウエハTwの面内方向の位置としては,測定光がウエハTwへ照射される位置であれば,図5に示すようなウエハTwの中央部でなくてもよい。例えば測定光がウエハTwの端部へ照射されるようにコリメータ付光ファイバFを配設してもよい。 Reference light from the optical fiber coupler 220 in the temperature measuring device 200 is adapted to be transmitted reference beam transmission means for example via a collimator optical fiber with F Z to the reference mirror 240 to the reference beam irradiation position to be irradiated. Further, the measurement light from the optical fiber coupler 220 is transmitted to the measurement light irradiation position irradiated from the lower electrode 340 toward the wafer Tw as the measurement object via the measurement light transmission means, for example, the optical fiber F with a collimator. It has become. Specifically, the collimator-equipped optical fiber F is disposed so that the measurement light is irradiated toward the wafer Tw through a through hole 344 formed in, for example, the center of the lower electrode 340. Note that the position in the in-plane direction of the wafer Tw on which the collimator-equipped optical fiber F is disposed is not the central portion of the wafer Tw as shown in FIG. 5 as long as the measurement light is irradiated onto the wafer Tw. Also good. For example, the collimator-equipped optical fiber F may be disposed so that the measurement light is irradiated to the end of the wafer Tw.

上記制御装置400は,温度測定装置200及び基板処理装置300の各部を制御するものである。制御装置400は,その本体を構成するCPU(中央処理装置)410,参照ミラー240を駆動するステッピングモータ242をモータドライバ420を介して制御するモータコントローラ430,CPU410が各部を制御するためのプログラムデータ等を記憶したROM(リード・オンリ・メモリ)やCPU410が行う各種データ処理のために使用されるメモリエリア等を設けたRAM(ランダム・アクセス・メモリ)等を構成するメモリ440,バッファ450を介して入力されるPD250からの出力信号(測定光を照射して得られた光の干渉の測定結果)やモータコントローラ430から出力される制御信号(例えば駆動パルス)をアナログデジタル変換して入力するA/D変換器460,基板処理装置300の各部を制御する各種コントローラ470を備える。制御装置400は,モータコントローラ430から出力するステッピングモータ242の制御信号(例えば駆動パルス)に基づいて,参照ミラー240の移動位置や移動距離を測定してもよく,参照ミラー240にリニアエンコーダを取付けて,このリニアエンコーダからの出力信号に基づいて参照ミラー240の移動位置や移動距離を測定してもよい。また,モータ242としてはステッピングモータに限られず,ボイスコイルモータなどを用いてもよい。   The control device 400 controls each part of the temperature measuring device 200 and the substrate processing device 300. The control device 400 includes a CPU (central processing unit) 410 constituting the main body, a motor controller 430 for controlling a stepping motor 242 for driving the reference mirror 240 via a motor driver 420, and program data for the CPU 410 to control each part. Through a memory 440 and a buffer 450 constituting a ROM (Read Only Memory) storing a memory, a RAM (Random Access Memory) provided with a memory area used for various data processing performed by the CPU 410, and the like. The output signal from the PD 250 (the measurement result of the interference of light obtained by irradiating the measurement light) and the control signal (for example, drive pulse) output from the motor controller 430 are analog-digital converted and input A / D converter 460 and each part of substrate processing apparatus 300 are controlled. Equipped with a variety of controller 470. The control device 400 may measure the moving position and moving distance of the reference mirror 240 based on a control signal (for example, a driving pulse) of the stepping motor 242 output from the motor controller 430. A linear encoder is attached to the reference mirror 240. Thus, the movement position and movement distance of the reference mirror 240 may be measured based on the output signal from the linear encoder. Further, the motor 242 is not limited to a stepping motor, and a voice coil motor or the like may be used.

制御装置400は,参照ミラー240を移動制御することによりPD250から得られる参照光と測定光と光の干渉から温度測定に用いる基準干渉波形と選択干渉波形を決定し,これら基準干渉波形と選択干渉波形に基づいてウエハTwの光路長Lを測定し,その測定結果から上述したような温度換算方法に従ってウエハTwの温度を求める。具体的には例えば予めメモリ440に記憶された上述の温度換算用基準データなどに基づいてウエハTwの測定光の光路長Lを温度に換算する。この点で,制御装置400は,測定手段を構成する。   The control device 400 controls the movement of the reference mirror 240 to determine a standard interference waveform and a selective interference waveform to be used for temperature measurement from the interference between the reference light obtained from the PD 250, the measurement light, and the light. The optical path length L of the wafer Tw is measured based on the waveform, and the temperature of the wafer Tw is obtained from the measurement result according to the temperature conversion method as described above. Specifically, for example, the optical path length L of the measurement light on the wafer Tw is converted into temperature based on the above-described temperature conversion reference data stored in the memory 440 in advance. In this respect, the control device 400 constitutes a measuring unit.

次に,図5に示す温度測定システムにより得られる測定光と参照光との光の干渉の具体例を図6に示す。図6は,ウエハTwで反射した図2に示すような各測定光と,参照光反射手段140で反射した参照光との干渉波形を示したものである。図6において縦軸は干渉強度,縦軸は参照ミラーの移動距離をとっている。   Next, FIG. 6 shows a specific example of light interference between the measurement light and the reference light obtained by the temperature measurement system shown in FIG. FIG. 6 shows an interference waveform between each measurement light as shown in FIG. 2 reflected by the wafer Tw and the reference light reflected by the reference light reflecting means 140. In FIG. 6, the vertical axis represents the interference intensity, and the vertical axis represents the moving distance of the reference mirror.

図6によれば,参照ミラー240を一方向へ走査していくと,先ずウエハTwの裏面を構成する第1面Sで反射した測定光と参照光との干渉波形(第1面1回反射測定光又は0回往復反射測定光の干渉波形)ya0が現れ,次いでウエハTwの表面を構成する第2面Sで反射して,ウエハTwの両端面(第1面Sと第2面S)で1回往復反射した測定光と参照光との干渉波形(第2面1回反射測定光又は1回往復反射測定光の干渉波形)ya1が現れる。参照ミラー240をさらに走査していくと,ウエハTwの両端面S,Sで2回往復反射した測定光と参照光との干渉波形(第2面2回反射測定光又は2回往復反射測定光の干渉波形)ya2が現れ,次いでウエハTwの両端面S,Sで3回往復反射した測定光と参照光との干渉波形(第2面3回反射測定光又は3回往復反射測定光の干渉波形)ya3が現れる。 According to FIG. 6, when the reference mirror 240 continue to scan in one direction, first interference waveform of the measurement light reflected by the first surface S 1 which constitutes the rear surface of the wafer Tw and the reference beam (first surface once Interference waveform of reflected measurement light or zero-time reciprocation reflected measurement light) y a0 appears, and then is reflected by the second surface S 2 constituting the surface of the wafer Tw, and both end surfaces (the first surface S 1 and the first surface S 1 of the wafer Tw). An interference waveform (interference waveform of the second surface one-time reflected measurement light or one-time round-trip reflected measurement light) y a1 appears after the measurement light and the reference light reflected once on the second surface S 1 ). When the reference mirror 240 is further scanned, the interference waveform between the measurement light and the reference light reflected back and forth twice at both end faces S 1 and S 2 of the wafer Tw (second surface twice reflected measurement light or twice round-trip reflection). Interference waveform of measurement light) y a2 appears, and then the interference waveform of the measurement light and the reference light reflected back and forth three times on both end faces S 1 and S 2 of the wafer Tw (second surface three-time reflected measurement light or three times round-trip) Interference waveform of reflected measurement light) y a3 appears.

これらの干渉波形のうち,例えば第1面1回反射測定光の干渉波形ya0を基準とすれば,この基準干渉波形ya0と他の干渉波形ya1〜ya3とのピーク間幅Lw,2Lw,3Lwはそれぞれ,ウエハTwの厚さを構成する各面S,Sの間の測定光の光路長(ウエハTwの光路長)の1倍,2倍,3倍,すなわちL,2L,3Lに相当する。従って,他の干渉波形ya1〜ya3のどの干渉波形を選択して,その選択干渉波形と基準干渉波形ya0とのピーク間幅を測定しても,ウエハTwの光路長Lを求めることができる。ここでいう基準干渉波形とは測定対象物例えばウエハTwの光路長Lを求めるために基準とする干渉波形である。また,選択干渉波形とは基準干渉波形とのピーク間幅からウエハTwの光路長Lを求めるために選択された干渉波形をいう。 Of these interference waveforms, for example, if the first surface once based on the interference waveform y a0 of the reflected measuring light, the peak-to-peak width Lw between the reference interference waveform y a0 and other interference waveform y a1 ~y a3, 2Lw and 3Lw are 1 time, 2 times and 3 times the optical path length of the measuring light (the optical path length of the wafer Tw) between the surfaces S 1 and S 2 constituting the thickness of the wafer Tw, that is, L and 2L, respectively. , 3L. Thus, by selecting the other interference waveform y a1 ~y a3 throat interference waveform, it is measured peak-to-peak width of the selected interference waveform and the reference interference waveform y a0, to determine the optical path length L of the wafer Tw Can do. The reference interference waveform here is an interference waveform used as a reference for obtaining the optical path length L of the measurement object, for example, the wafer Tw. The selected interference waveform is an interference waveform selected for obtaining the optical path length L of the wafer Tw from the peak-to-peak width with respect to the reference interference waveform.

このような図6に示す干渉波形を利用して温度測定を行ってその温度測定誤差を算出した実験結果を図7に示す。具体的には,ウエハTwが40℃のときに得られた測定光と参照光との干渉波形のうち,干渉波形ya0を基準干渉波形とし,他の干渉波形ya1〜ya3をそれぞれ選択干渉波形として,基準干渉波形ya0と各選択干渉波形ya1〜ya3とのピーク間幅を測定し,測定した各ピーク間幅Lw,2Lw,3LwからそれぞれウエハTwの光路長Lを求めてこれを温度に換算する一連の温度測定処理をそれぞれ50回ずつ実行し,各選択干渉波形ya1〜ya3を用いて温度測定を行った場合の温度測定誤差の平均を求めてプロットしたものである。 FIG. 7 shows a result of an experiment in which temperature measurement is performed using the interference waveform shown in FIG. 6 and the temperature measurement error is calculated. Specifically, each selection of the interference waveform of the wafer Tw is the measuring light beam obtained when the 40 ° C. and the reference light, an interference waveform y a0 and the reference interference waveform, other interference waveforms y a1 ~y a3 as an interference wave, the peak-to-peak width of the reference interference waveform y a0 and each selected interference waveform y a1 ~y a3 measured, the measurement of the respective peak width Lw was, 2LW, seeking each optical path length L of the wafer Tw from 3Lw in which it was performed in terms of the temperature range of the temperature measurement processing by 50 times, respectively, were plotted to determine the average of the temperature measurement error when the temperature was measured by using the selected interference waveform y a1 ~y a3 is there.

図7では,横軸に各選択干渉波形ya1〜ya3についての測定光の往復反射回数をとり,横軸に温度測定誤差をとっている。また,図7に示す温度測定誤差は,各選択干渉波形ya1〜ya3を用いて得られた50回分の温度データの標準偏差をσとした場合の3σを求めた値である。従って,温度測定誤差の指標とした3σの値が大きいほど,実際の40℃からのばらつきが大きく,温度測定誤差も大きいことを示す。図7に示すPは干渉波形ya1を選択干渉波形として温度測定を行った場合の温度測定誤差であり,Pは干渉波形ya2を選択干渉波形として温度測定を行った場合の温度測定誤差であり,Pは干渉波形ya3を選択干渉波形として温度測定を行った場合の温度測定誤差である。 In FIG. 7, the horizontal axis represents the number of reciprocal reflections of the measurement light for each of the selected interference waveforms y a1 to ya 3 , and the horizontal axis represents the temperature measurement error. The temperature measurement error shown in FIG. 7 is a value determined with 3σ in the case of the standard deviation of 50 times of the temperature data obtained with each selected interference waveform y a1 ~y a3 and sigma. Therefore, the larger the value of 3σ as an index of the temperature measurement error, the greater the variation from the actual 40 ° C., and the greater the temperature measurement error. P 1 shown in FIG. 7 is a temperature measurement error when the temperature was measured as the selected interference waveform interference waveform y a1, temperature measurement when P 2 is subjected to temperature measurement as the selected interference waveform interference waveform y a2 an error, P 3 is the temperature measurement error when the temperature was measured as the selected interference waveform interference waveform y a3.

図7に示す実験結果によれば,干渉波形ya2を選択干渉波形とした場合(P)の方が,干渉波形ya1を選択干渉波形とした場合(P)よりも,温度測定誤差が小さくなっていることがわかる。従って,基準干渉波形ya0とのピーク間幅が長くなるように選択干渉波形を選択した方が,基準干渉波形と選択干渉波形とのピーク間幅の測定精度を向上させることができる。 According to the experimental result shown in FIG. 7, the interference waveform when the y a2 and selected interference waveform towards the (P 2), than (P 1) in which the interference waveform y a1 and the selected interference waveform, temperature measurement errors It can be seen that is smaller. Therefore, the measurement accuracy of the peak-to-peak width between the reference interference waveform and the selected interference waveform can be improved by selecting the selected interference waveform so that the peak-to-peak width with respect to the reference interference waveform ya0 is long.

基準干渉波形と選択干渉波形とのピーク間幅は,ウエハTwの両端面で往復反射する回数が多い測定光の干渉波形を選択干渉波形として選択するほど,長くとることができるので,このピーク間幅の測定精度も向上させることができるものと考えられる。   The peak-to-peak width between the reference interference waveform and the selected interference waveform can be made longer as the interference waveform of the measurement light having a large number of reciprocal reflections at both end faces of the wafer Tw is selected as the selected interference waveform. It is considered that the measurement accuracy of the width can be improved.

ところが,実際に温度測定を行った場合の実験結果では例えば図7に示すように,干渉波形ya3を選択干渉波形とした場合(P)については,干渉波形ya2を選択干渉波形とした場合よりも基準干渉波形と選択干渉波形のピーク間幅を長くとれるはずなのに,干渉波形ya2を選択干渉波形とした場合(P)よりも温度測定誤差が大きくなり,かえって温度測定精度が悪化していることがわかる。 However, as the experimental results in the case of performing actual temperature measurements are shown in FIG. 7, for example, for the case where the interference waveform y a3 and the selected interference waveform (P 3), the interference waveform y a2 was selected interference waveform but it should take longer peak width of the reference interference waveform and the selected interference waveform than the interference if the waveform y a2 was selected interference waveform temperature measurement error becomes larger than (P 2), rather the temperature measurement accuracy deteriorates You can see that

これはウエハTwの両端面で往復反射する回数が多い測定光の干渉波形ほど,例えばノイズに対する光強度(S/N比)の低下などにより,その波形の形が崩れる(歪む)ため,その干渉波形のピーク位置の測定誤差が生じ易いからである。従って,このような干渉波形を選択して基準干渉波形とのピーク間幅を測定すれば,選択干渉波形のピーク位置の測定誤差の分だけ,その選択干渉波形と基準干渉波形とのピーク間幅にも測定誤差が生じてしまうという問題がある。なお,ここでいうノイズとは,例えば電子回路から発生するノイズや上部電極350に高周波電力を印加する際の周囲の電磁波環境によるノイズなどが考えられる。   This is because the waveform of the measurement light interference waveform having a large number of reciprocal reflections on both end faces of the wafer Tw is deformed (distorted) due to, for example, a decrease in light intensity (S / N ratio) against noise. This is because a measurement error at the peak position of the waveform is likely to occur. Therefore, if such an interference waveform is selected and the peak-to-peak width from the reference interference waveform is measured, the peak-to-peak width between the selected interference waveform and the reference interference waveform is equal to the measurement error of the peak position of the selected interference waveform. There is also a problem that a measurement error occurs. Note that the noise referred to here may be, for example, noise generated from an electronic circuit or noise due to the surrounding electromagnetic environment when high frequency power is applied to the upper electrode 350.

(干渉波形のピーク位置の測定誤差)
ここで,上述したような干渉波形のピーク位置の測定誤差について図面を参照しながらさらに詳細に説明する。図8は,1つの干渉波形を参照ミラーの移動距離のレンジを広げて拡大して示した実測波形yと,この実測波形yに所定の加工処理を施した加工波形yとの具体例を示した図である。図8の横軸には参照ミラー移動距離をとり,縦軸の一方には実測波形のPD250からの出力電圧(V)をとり,縦軸の他方にはガウス分布(正規分布)のレンジをとっている。
(Measurement error of peak position of interference waveform)
Here, the measurement error of the peak position of the interference waveform as described above will be described in more detail with reference to the drawings. Figure 8 is a detail of the measured waveform y a showing, in enlarged to expand the range of movement distance of the reference mirror to one interference waveforms, the processing waveform y b subjected to predetermined processing to the measured waveform y a It is the figure which showed the example. The horizontal axis of FIG. 8 is the reference mirror movement distance, the vertical axis is the output voltage (V) from the PD 250 of the measured waveform, and the vertical axis is the Gaussian distribution (normal distribution) range. ing.

図8の実測波形yに示すように,各干渉波形の実測波形はそれぞれ波連と呼ばれる大きな山により構成される。波連は複数の繰返し波形により構成されており,各干渉波形の波連は相互に独立した位相と振幅を持っている。 As shown in the measured waveform y a in FIG. 8, the measured waveforms of the interference waveform is composed of a large mountain called respectively wave communication. The wave train is composed of a plurality of repetitive waveforms, and each interference waveform has a mutually independent phase and amplitude.

このような実測波形yに対してそのピーク位置を求め易くするために所定の加工処理を施す。例えば干渉波形の実測波形yの波形データからオフセットを差引き,これを2乗することによって負の部分を正の部分へ折返す処理を行う。すると,図8に示す加工波形yのようになる。 In order to make it easy to obtain the peak position of the actually measured waveform ya, a predetermined processing is performed. For example, offset from the waveform data of measured waveform y a of the interference wave subtracted, to do this the folded back the negative portion to the positive portion by squaring. Then, so the processing waveform y b shown in FIG.

こうして得られた干渉波形の加工波形yの波連全体を曲線近似する。このような波連の近似曲線としては,ガウス分布曲線(正規分布曲線)が挙げられる。干渉波形の加工波形yの波連全体をガウス分布曲線で近似する場合には,加工波形yの波形データ全体に対して例えば最小2乗法によりガウス分布(正規分布)を求める。こうして得られたガウス分布曲線yを干渉波形の加工波形yに重ねると図8に示すようになる。なお,干渉波形の加工波形yの波連全体を近似する近似曲線は,上述したようなガウス分布曲線に限られるものではない。 The entire wave trains of machining waveform y b of the thus obtained interference waveform curve approximation. As an approximate curve of such a wave train, there is a Gaussian distribution curve (normal distribution curve). The entire wave trains of machining waveform y b of the interference waveform when approximated by a Gaussian distribution curve to determine the Gaussian distribution (normal distribution), for example, by the method of least squares for the entire waveform data processing waveform y b. When the Gaussian distribution curve y c obtained in this way is superimposed on the processing waveform y b of the interference waveform, it is as shown in FIG. Incidentally, the approximate curve which approximates the entire wave trains of machining waveform y b of the interference waveform is not limited to the Gaussian distribution curve as described above.

このように干渉波形の加工波形yの波連全体をガウス分布曲線yに近似して,そのガウス分布曲線yの中心値(ピーク位置)を求め,これをその干渉波形のピーク位置とする。この場合,例えば干渉波形の加工波形yが崩れていると,その加工波形yとガウス分布曲線yにずれが生じるので,加工波形yとガウス分布曲線yとのピーク位置にもずれが生じ,結果として干渉波形のピーク位置の測定に誤差が生じる可能性が高い。 Thus the entire wave trains of machining waveform y b of the interference waveform is approximated to a Gaussian distribution curve y c, the center value of the Gaussian distribution curve y c (peak position) calculated, which the peak position of the interference waveform To do. In this case, for example, processed waveform y b of the interference waveform is collapsed, since the deviation in the processed waveform y b a Gaussian distribution curve y c occurs in the peak position of the machining waveform y b a Gaussian distribution curve y c There is a high possibility that a deviation occurs, resulting in an error in the measurement of the peak position of the interference waveform.

このような干渉波形の加工波形yとガウス分布曲線yとのずれについて,図6に示すような干渉波形を例に挙げてより具体的に説明する。図6に示す各干渉波形ya0〜ya3に対して上述したような加工処理を施した場合の加工波形yb0〜yb3を図9〜図12に示す。図9〜図12は,横軸に参照ミラー移動距離をとり,縦軸に加工波形の振幅をとっている。図9〜図12では,干渉波形の加工波形yb0〜yb3の崩れ度合が分りやすいように,干渉波形の干渉強度が低いほど横軸の振幅のレンジも大きくとっている。図9〜図12によれば,干渉波形の加工波形yb0〜yb3はガウス分布曲線yc0〜yc3と比較すると,干渉波形の加工波形yb0,yb1,yb2,yb3の順に,すなわちウエハTwの両端面S,Sで往復反射する回数が多い測定光の干渉波形ほど,その波形の形が崩れ,近似するガウス分布曲線yc0〜yc3からのずれも大きくなっていることがわかる。 The deviation between the machining waveform y b a Gaussian distribution curve y c of such interference waveform, an example of the interference waveform as shown in FIG. 6 will be described in more detail. 9 to 12 show the processing waveforms y b0 to y b3 when the above-described processing is performed on the interference waveforms y a0 to ya 3 shown in FIG. 9 to 12, the horizontal axis represents the reference mirror moving distance, and the vertical axis represents the amplitude of the machining waveform. In Figure 9-12, as collapse degree straightforward machining waveform y b0 ~y b3 interference waveforms, even taking large amplitude of the range of about horizontal axis low interference strength of the interference wave. According to FIGS. 9 to 12, the processed waveforms y b0 to y b3 of the interference waveform are compared with the Gaussian distribution curves y c0 to y c3 in the order of the processed waveforms y b0 , y b1 , y b2 , and y b3 of the interference waveform. That is, as the interference waveform of the measurement light having a large number of reciprocal reflections at both end faces S 1 and S 2 of the wafer Tw, the shape of the waveform collapses and the deviation from the approximated Gaussian distribution curves y c0 to y c3 increases. I understand that.

(干渉波形の崩れ度合の判定方法とこれを利用した干渉波形の選択)
次に,図9〜図12に示す干渉波形の加工波形yb0〜yb3とガウス分布曲線yc0〜yc3とのずれの度合を,干渉波形の加工波形yb0〜yb3の崩れ度合として定量化し,これを判定する方法を説明する。ここでは,干渉波形の加工波形yb0〜yb3の崩れ度合を定量化するため,例えば干渉波形の加工波形の波形データからこの干渉波形の波連を構成する個々の繰返し波形に基づいて干渉波形を例えば包絡線などにより曲線近似し,この包絡線と,上記ガウス分布曲線とのずれの度合を算出する。なお,干渉波形の波連を構成する個々の繰返し波形に基づく干渉波形の近似曲線は,上述したような包絡線に限られるものではない。例えば干渉波形の波連を構成する個々の繰返し波形を積分して得られる値を滑らかに繋げた曲線を干渉波形の近似曲線としてもよい。
(Judgment method of interference waveform collapse and selection of interference waveform using this)
Then, the degree of deviation between the machining waveform y b0 ~y b3 and Gaussian distribution curve y c0 ~y c3 interference waveforms shown in FIGS. 9 to 12, as a collapse degree of processing waveform y b0 ~y b3 interference waveform A method of quantifying and determining this will be described. Here, in order to quantify the degree of collapse of the processed waveforms y b0 to y b3 of the interference waveform, for example, the interference waveform is based on the individual repetitive waveforms that form the chain of the interference waveform from the waveform data of the processed waveform of the interference waveform. Is approximated by, for example, an envelope, and the degree of deviation between the envelope and the Gaussian distribution curve is calculated. Note that the approximate curve of the interference waveform based on the individual repetitive waveforms constituting the interference waveform series is not limited to the envelope as described above. For example, a curve obtained by smoothly connecting values obtained by integrating individual repetitive waveforms constituting a wave series of interference waveforms may be used as an approximate curve of the interference waveform.

ここで,図9〜図12に示す各干渉波形の加工波形yb0〜yb3を近似した包絡線yd0〜yd3とガウス分布曲線yc0〜yc3とを重ねたものをそれぞれ図13〜図16に示す。図13〜図16ではそれぞれ,干渉波形の包絡線yd0〜yd3を実線で表し,近似するガウス分布曲線yc0〜yc3を点線で表している。 Here, the envelopes y d0 to y d3 approximating the processed waveforms y b0 to y b3 of the interference waveforms shown in FIGS. 9 to 12 and the Gaussian distribution curves y c0 to y c3 are overlapped, respectively. As shown in FIG. In FIGS. 13 to 16, the envelopes y d0 to y d3 of the interference waveform are represented by solid lines, and the approximated Gaussian distribution curves y c0 to y c3 are represented by dotted lines.

図13〜図16によれば,包絡線yd0,yd1,yd2,yd3の順にそのピーク部分が崩れていき,包絡線とガウス分布曲線とがずれることがよくわかる。これは,ウエハTwの両端面S,Sで往復反射する回数が多い測定光の干渉波形の包絡線ほど,その包絡線とガウス分布曲線とがずれるので,包絡線とガウス分布曲線のピーク位置もずれることを示している。 According to FIGS. 13 to 16, it is well understood that the peak portions are broken in the order of envelopes y d0 , y d1 , y d2 , and y d3 , and the envelope and the Gaussian distribution curve are shifted. This is because the envelope of the interference waveform of the measurement light having a large number of reciprocal reflections at both end faces S 1 and S 2 of the wafer Tw is shifted from the envelope and the Gaussian distribution curve. The position is also shifted.

このような干渉波形の加工波形yとガウス分布曲線yとのずれの度合は,例えば次のような指標により定量化することができる。参照ミラー移動距離のある位置mにおける干渉波形の包絡線yの波形データをV(m)とし,同じ位置mにおけるガウス分布曲線yの強度をG(m)とし,ガウス分布曲線yのピーク位置における強度(ピーク強度)をGpとする。上記G(m)−V(m)の絶対値をとって,これをガウス分布曲線yのピーク強度Gpで割算して得られる値をk(m)とする。 The degree of deviation between the machining waveform y b a Gaussian distribution curve y c of such interference waveform can be quantified by an index, such as for example the following. The waveform data of the envelope y d of the interference waveform in a position m which a reference mirror moving distance and V (m), the intensity of the Gaussian distribution curve y c at the same position m and G (m), of a Gaussian distribution curve y c The intensity at the peak position (peak intensity) is Gp. A value obtained by taking the absolute value of G (m) −V (m) and dividing it by the peak intensity Gp of the Gaussian distribution curve y c is k (m).

こうして得られるk(m)を,干渉波形の加工波形yをガウス分布曲線yと近似する参照ミラー移動距離の範囲におけるすべての加工波形yの波形データについて求め,その全体の平均値KAVEを干渉波形の崩れ度合の指標Kとする。 K (m) is thus obtained, determined for waveform data of all the machining waveform y b in the range of the reference mirror moving distance approximating the working waveform y b of the interference waveform with a Gaussian distribution curve y c, the average value K of the whole Let AVE be an index K of the degree of collapse of the interference waveform.

このような干渉波形の崩れ度合の指標Kについては,その値が大きいほど干渉波形の包絡線yとガウス分布曲線yとのずれの度合が大きくなり,干渉波形の崩れ度合も大きくなる。このため,例えば図13〜図16に示す各干渉波形について上記干渉波形の崩れ度合の指標Kを求めれば,干渉波形の崩れ度合を定量的に判断することができる。 The index K of collapse degree of such interference waveforms, the degree of deviation of the envelope y d and the Gaussian distribution curve y c of larger the value of the interference waveform increases, collapsing the degree of interference waveform becomes large. For this reason, for example, if the index K of the degree of collapse of the interference waveform is obtained for each interference waveform shown in FIGS. 13 to 16, the degree of collapse of the interference waveform can be quantitatively determined.

ここで,図13〜図16に示す各干渉波形ya0〜ya3の包絡線yd0〜yd3について上記崩れ度合の指標Kを求めた結果を図17に示す。図17では,横軸に温度測定に用いた干渉波形ya1〜ya3についての測定光の往復反射回数をとり,横軸に干渉波形の崩れ度合の指標Kをとっている。図17に示すK〜Kはそれぞれ,第1面1回反射測定光の干渉波形ya0,第2面1回反射測定光の干渉波形ya1,第2面2回反射測定光の干渉波形ya2,第2面3回反射測定光の干渉波形ya3の崩れ度合の指標である。 Here, FIG. 17 shows the result of obtaining the collapse degree index K for the envelopes y d0 to y d3 of the interference waveforms y a0 to y a3 shown in FIGS. 13 to 16. In Figure 17, taking the reciprocal number of reflections of the measurement light on the interference waveform y a1 ~y a3 used in the temperature measurement on the horizontal axis, taking an indication K of the collapse degree of interference waveforms on the horizontal axis. K 0 to K 3 shown in FIG. 17 are the interference waveform y a0 of the first surface once reflected measurement light, the interference waveform ya 1 of the second surface once reflected measurement light, and the interference of the second surface twice reflected measurement light, respectively. The waveform y a2 is an indicator of the degree of collapse of the interference waveform ya 3 of the second-surface three-time reflected measurement light.

図17に示す実験結果によれば,干渉波形の崩れ度合の指標K〜Kまでは,ほぼ同様の低い値を示しており,干渉波形の崩れ度合の指標Kで大きくなる。すなわち,第1面1回反射測定光の干渉波形ya0,第2面1回反射測定光の干渉波形ya1,第2面2回反射測定光の干渉波形ya2までは,干渉波形とガウス分布とのずれも少なく,干渉波形の崩れはほとんど生じていないため,干渉波形のピーク位置の測定誤差も小さいことがわかる。これに対して,第2面3回反射測定光の干渉波形ya3については,干渉波形とガウス分布とのずれが大きく,干渉波形の崩れが生じて,干渉波形のピーク位置の測定誤差も大きいことがわかる。 According to the experimental results shown in FIG. 17, the indicators K 0 to K 2 for the degree of collapse of the interference waveform show substantially the same low values, and become larger at the index K 3 for the degree of collapse of the interference waveform. That is, the interference waveform y a0 of the first surface once reflected measurement light, the interference waveform y a1 of the second surface once reflected measurement light, and the interference waveform ya 2 of the second surface twice reflected measurement light are interfering with the interference waveform and Gaussian. Since the deviation from the distribution is small and there is almost no disruption of the interference waveform, it can be seen that the measurement error of the peak position of the interference waveform is also small. On the other hand, for the interference waveform ya3 of the second-surface three-time reflected measurement light, the deviation between the interference waveform and the Gaussian distribution is large, the interference waveform collapses, and the measurement error of the peak position of the interference waveform is also large. I understand that.

このように,ウエハTwの両端面S,Sを往復反射する回数が多い測定光の干渉波形を選択干渉波形として選択するほど,基準干渉波形と選択干渉波形とのピーク間幅を長くとることができる一方,そのような選択干渉波形の崩れも大きくなって選択干渉波形のピーク位置の測定誤差も大きくなってしまう。従って,基準干渉波形とのピーク間幅を測定するために選択する干渉波形は,その干渉波形の崩れ度合に応じて決定することが好ましい。 In this manner, the peak-to-peak width between the reference interference waveform and the selected interference waveform is increased as the interference waveform of the measurement light that is frequently reciprocated at both end faces S 1 and S 2 of the wafer Tw is selected as the selected interference waveform. On the other hand, such a disruption of the selected interference waveform increases, and the measurement error of the peak position of the selected interference waveform also increases. Therefore, it is preferable to determine the interference waveform selected for measuring the peak-to-peak width with the reference interference waveform according to the degree of collapse of the interference waveform.

この点,上述したような干渉波形の崩れ度合の指標Kを用いれば,干渉波形の崩れ度合が温度精度に影響するほど大きくならない範囲(例えば干渉波形の崩れ度合が干渉波形のピーク間幅の測定精度を低下させない範囲)で,基準干渉波形と選択干渉波形のピーク間幅をより長くとることができる干渉波形を容易に選択することができる。例えば図17に示す場合には,干渉波形の崩れ度合Kが所定値(例えば0.04)を超えない範囲で,最も往復反射回数の大きい干渉波形,すなわち干渉波形の崩れ度合の指標がKである第2面2回反射測定光の干渉波形ya2を選択干渉波形として選択する。こうして選択した選択干渉波形ya2と基準干渉波形ya0との波形をガウス分布曲線に近似してピーク位置を求め,これらのピーク位置の幅であるピーク間幅を測定することより,基準干渉波形と選択干渉波形のピーク間幅の測定精度を的確に向上させることができる。 In this regard, if the index K of the degree of collapse of the interference waveform as described above is used, a range in which the degree of collapse of the interference waveform does not become so large as to affect the temperature accuracy (eg, the degree of collapse of the interference waveform is a measurement of the peak-to-peak width of the interference waveform). It is possible to easily select an interference waveform that can take a longer peak-to-peak width between the reference interference waveform and the selected interference waveform within a range in which the accuracy is not lowered. For example, in the case shown in FIG. 17, the interference waveform having the largest number of round-trip reflections, that is, the index of the degree of collapse of the interference waveform is K 2 within a range where the degree K of collapse of the interference waveform does not exceed a predetermined value (for example, 0.04). The second-surface twice reflected measurement light interference waveform ya2 is selected as the selected interference waveform. The reference interference waveform is obtained by approximating the waveform of the selected interference waveform ya2 and the reference interference waveform ya0 selected in this way to a Gaussian distribution curve to determine the peak position and measuring the peak-to-peak width which is the width of these peak positions. And the measurement accuracy of the peak-to-peak width of the selected interference waveform can be improved accurately.

なお,以上説明したような干渉波形のピーク位置の算出,干渉波形のピーク間幅の測定,干渉波形の崩れ度合の指標Kの算出,温度測定に用いる干渉波形の選択などの各処理は,制御装置400のCPU410がプログラムに基づいて実行することができる。   It should be noted that each processing such as calculation of the peak position of the interference waveform, measurement of the peak-to-peak width of the interference waveform, calculation of the index K of the collapse degree of the interference waveform, selection of the interference waveform used for temperature measurement as described above is controlled. The CPU 410 of the device 400 can execute based on a program.

以上説明したような第2実施形態にかかる温度測定システムによれば,ウエハTwの一方側から測定光を照射することにより,ウエハTwから反射して戻ってくる測定光と参照光との複数の干渉波形(光の干渉)をPD250で受光する。これらの干渉波形のうちの1つ例えばウエハTwの第1面Sで反射する測定光の干渉波形を基準干渉波形とし,ウエハTwの両端面S,Sで2回以上往復反射する測定光を選択干渉波形として,基準干渉波形と選択干渉波形とのピーク間幅を求めることにより,基準干渉波形と選択干渉波形とのピーク間幅を長くとることができるので,測定対象の温度変化による上記ピーク間幅の変化量も大きくすることができる。これにより,各干渉波形のピーク間幅の測定精度を向上させることができる。 According to the temperature measurement system according to the second embodiment as described above, by irradiating the measurement light from one side of the wafer Tw, a plurality of measurement light and reference light reflected from the wafer Tw and returned. The interference waveform (light interference) is received by the PD 250. A reference interference waveform interference waveform of the measurement light reflected by the first surface S 1 of one example wafer Tw of these interference waveforms, both end faces S 1, S 2 in the measurement of round trip reflected more than once wafer Tw By determining the peak-to-peak width between the reference interference waveform and the selected interference waveform using light as the selected interference waveform, the peak-to-peak width between the reference interference waveform and the selected interference waveform can be increased. The amount of change in the peak-to-peak width can also be increased. Thereby, the measurement accuracy of the peak-to-peak width of each interference waveform can be improved.

特に厚みが薄く測定対象の両端面間における測定光の光路長が短い場合(例えば厚さの薄い半導体ウエハなどを測定対象とする場合)には,基準干渉波形と選択干渉波形との幅を長くとることにより,これら干渉波形のピーク間幅の測定精度を大幅に向上させることができる。これにより,測定対象の両端面間における測定光の光路長の測定精度も向上させることができるので,ひいては温度又は厚さの測定精度も向上させることができる。   In particular, when the optical path length of the measurement light between both end faces of the measurement target is small (for example, when a thin semiconductor wafer or the like is the measurement target), the width of the reference interference waveform and the selected interference waveform is increased. As a result, the measurement accuracy of the peak-to-peak width of these interference waveforms can be greatly improved. Thereby, since the measurement accuracy of the optical path length of the measurement light between both end faces of the measurement object can be improved, the measurement accuracy of temperature or thickness can also be improved.

また,上記選択干渉波形は,干渉波形の崩れ度合の指標Kに基づいて選択することにより,干渉波形の崩れ度合が干渉波形のピーク間幅の測定精度を低下させない範囲で,基準干渉波形と選択干渉波形との幅をより長くとることができる干渉波形を容易に選択することができる。   Further, the selected interference waveform is selected based on the index K of the degree of collapse of the interference waveform, so that it can be selected as the reference interference waveform within a range in which the degree of collapse of the interference waveform does not reduce the measurement accuracy of the peak-to-peak width of the interference waveform. It is possible to easily select an interference waveform that can have a longer width from the interference waveform.

なお,上記基準干渉波形は,測定対象物例えばウエハTwの第1面Sで反射する測定光の干渉波形を基準とした場合について説明したが,必ずしもこれに限定されるものではなく,PD250で測定される複数の干渉波形のどれを基準としてもよい。このような場合も,基準干渉波形の測定光よりもウエハTwの両端面を少なくとも2回以上多く往復反射する測定光の干渉波形を選択干渉波形とすることにより,基準干渉波形と選択干渉波形とのピーク間幅はウエハTwの両端面間における測定光の光路長の2倍以上長くとることができる。これにより,干渉波形のピーク間幅の測定精度を向上させることができるからである。 Note that the reference interference waveform, has been described relative to the measurement light interference waveform reflected by the first surface S 1 of the object to be measured for example wafer Tw, not necessarily limited thereto, in PD250 Any of a plurality of measured interference waveforms may be used as a reference. Even in such a case, the reference interference waveform and the selected interference waveform are obtained by setting the interference waveform of the measurement light that reciprocally reflects at both ends of the wafer Tw at least twice more than the measurement light of the reference interference waveform as the selective interference waveform. The peak-to-peak width can be longer than twice the optical path length of the measurement light between both end faces of the wafer Tw. This is because the measurement accuracy of the peak-to-peak width of the interference waveform can be improved.

(第3実施形態にかかる温度測定装置)
次に,第3実施形態にかかる基板処理装置の温度測定システムについて図面を参照しながら説明する。第3実施形態にかかる温度測定システムは,第2実施形態にかかる温度測定システムを改良し,参照ミラーの移動距離をより短くできるように構成したものである。
(Temperature measuring device according to the third embodiment)
Next, a temperature measurement system for a substrate processing apparatus according to a third embodiment will be described with reference to the drawings. The temperature measurement system according to the third embodiment is configured by improving the temperature measurement system according to the second embodiment so that the moving distance of the reference mirror can be further shortened.

上述したように,第2実施形態にかかる温度測定システムは,基準干渉波形の測定光よりも測定対象物Tであるウエハwの両端面を2回以上多く往復反射する測定光の干渉波形を選択干渉波形とし,その選択干渉波形と基準干渉波形のピーク間幅に基づいてウエハTwの光路長Lを求めるものである。   As described above, the temperature measurement system according to the second embodiment selects the interference waveform of the measurement light that reciprocates twice or more at both end faces of the wafer w, which is the measurement target T, than the measurement light of the reference interference waveform. An interference waveform is obtained, and the optical path length L of the wafer Tw is obtained based on the peak-to-peak width of the selected interference waveform and the reference interference waveform.

ところが,ウエハwの両端面を2回以上多く往復反射する測定光の干渉波形を選択するほど,その選択干渉波形と基準干渉波形のピーク間幅も長くなるので,その分だけ参照ミラー240の移動距離も長くしなければならない。参照ミラー240の移動距離が長いと,その分だけ温度測定にも時間がかかるので,参照ミラー240の移動距離はできる限り短い方がよい。   However, as the interference waveform of the measurement light that is reflected back and forth more than once at both end faces of the wafer w is selected, the peak-to-peak width of the selected interference waveform and the reference interference waveform becomes longer, and the reference mirror 240 is moved accordingly. The distance must also be increased. If the moving distance of the reference mirror 240 is long, it takes time to measure the temperature accordingly, so the moving distance of the reference mirror 240 is preferably as short as possible.

第3実施形態にかかる温度測定システムは,この点を踏まえて改良したものである。改良点としては,例えば測定光伝送手段を構成する測定光の光路の途中に,この測定光の光路に並列して接続した迂回光路を設けた点である。これにより,この迂回光路を通る測定光と通らない測定光の両方が測定対象物へ向けて照射されるため,測定光と参照光との複数の干渉波形が属する光の干渉の種類(パターン)を増やすことができる。これにより,例えば測定対象物Tの両端面で同じ回数だけ往復反射する測定光の干渉波形についても,迂回光路を介さない光路を通るものと,少なくとも一度は前記迂回光路を介する光路を通るものとを測定することができる。   The temperature measurement system according to the third embodiment is improved based on this point. As an improvement, for example, a detour optical path connected in parallel to the optical path of the measurement light is provided in the middle of the optical path of the measurement light constituting the measurement light transmission means. As a result, both the measurement light that passes through the detour optical path and the measurement light that does not pass are irradiated toward the measurement object. Therefore, the type of interference (pattern) of the light to which the plurality of interference waveforms of the measurement light and the reference light belong. Can be increased. As a result, for example, the interference waveform of the measurement light that is reflected back and forth the same number of times on both end faces of the measurement object T passes through the optical path that does not pass through the bypass optical path, and passes through the optical path that passes through the bypass optical path at least once. Can be measured.

従って,迂回光路の光路長を調整してそれぞれの光の干渉のずれ量を調整することにより,上記のように測定される干渉波形のうち,いずれか一方の光路を通る光の干渉に属する干渉波形から選択された基準干渉波形と,他方の光路を通る光の干渉に属する干渉波形から選択された選択干渉波形とがそれぞれ近傍で測定されるようにすることができる。このため,少なくともこれら基準干渉波形と選択干渉波形とが測定できる範囲だけ参照ミラー240を移動させれば足りる。これにより,参照ミラー240の移動距離を短くすることができるので,ウエハTwの温度測定にかかる時間も短縮することができる。   Therefore, by adjusting the optical path length of the detour optical path and adjusting the shift amount of the interference of each light, the interference belonging to the interference of the light passing through one of the optical paths among the interference waveforms measured as described above. The reference interference waveform selected from the waveform and the selected interference waveform selected from the interference waveform belonging to the interference of light passing through the other optical path can be measured in the vicinity. For this reason, it is sufficient to move the reference mirror 240 at least within a range in which the reference interference waveform and the selected interference waveform can be measured. Thereby, since the moving distance of the reference mirror 240 can be shortened, the time required for measuring the temperature of the wafer Tw can also be shortened.

このような第3実施形態にかかる温度測定システムの具体的な構成例を図18に示す。図18に示す温度測定システムにおける測定光伝送手段は,光ファイバカプラ220からの測定光の光路の途中に,迂回光路を構成する光ファイバeを並列接続するための迂回光路接続用スプリッタ例えば2×2の光ファイバカプラ230を備える。なお,光ファイバカプラ230は光ファイバカプラ220と同様の構成である。   A specific configuration example of such a temperature measurement system according to the third embodiment is shown in FIG. The measurement light transmission means in the temperature measurement system shown in FIG. 18 is a bypass optical path connecting splitter for connecting in parallel the optical fiber e constituting the bypass optical path in the middle of the optical path of the measurement light from the optical fiber coupler 220, for example 2 × Two optical fiber couplers 230 are provided. The optical fiber coupler 230 has the same configuration as the optical fiber coupler 220.

光ファイバカプラ230の一方の入力端子(入力ポート)には,光ファイバカプラ220からの一方の出力端子(出力ポート)が光ファイバbを介して接続されている。光ファイバカプラ230の一方の出力端子(出力ポート)には,光ファイバbの先端にコリメータを取付けたコリメータ付光ファイバFが接続されている。また,光ファイバカプラ230の他方の入力端子(入力ポート)と他方の出力端子(出力ポート)とは迂回光路を構成する光ファイバeを接続してループを形成する。 One output terminal (output port) from the optical fiber coupler 220 is connected to one input terminal (input port) of the optical fiber coupler 230 via the optical fiber b. To one output terminal of the optical fiber coupler 230 (the output port), an optical fiber b F collimator optical fiber with F fitted with a collimator at the tip of the are connected. Further, the other input terminal (input port) and the other output terminal (output port) of the optical fiber coupler 230 connect the optical fiber e constituting the bypass optical path to form a loop.

図18に示すような構成の測定光伝送手段によれば,光ファイバカプラ220からの一方の出力端子(出力ポート)から出射した測定光は,光ファイバカプラ230によって2つの出力端子(出力ポート)へ2分波される。このうち一方の出力端子(出力ポート)からの測定光は光ファイバbを通ってコリメータ付光ファイバFの先端からウエハTwへ向けて照射される。 According to the measurement light transmission means configured as shown in FIG. 18, the measurement light emitted from one output terminal (output port) from the optical fiber coupler 220 is output by the optical fiber coupler 230 to two output terminals (output ports). Is divided into two. Measuring light from the out one of the output terminals (output ports) are irradiated from the distal end of the optical fiber F with collimators to the wafer Tw through the optical fiber b F.

また,光ファイバカプラ230の他方の出力端子(出力ポート)からの測定光は光ファイバeを介して光ファイバカプラ230の他方の入力端子(入力ポート)へ戻され,さらに光ファイバカプラ230によって2つの出力端子(出力ポート)へ2分波される。このうち一方の出力端子(出力ポート)からの測定光は光ファイバbを通ってコリメータ付光ファイバFの先端からウエハTwへ向けて照射される。 Further, the measurement light from the other output terminal (output port) of the optical fiber coupler 230 is returned to the other input terminal (input port) of the optical fiber coupler 230 via the optical fiber e. Divided into two output terminals (output ports). Measuring light from the out one of the output terminals (output ports) are irradiated from the distal end of the optical fiber F with collimators to the wafer Tw through the optical fiber b F.

このように,測定光伝送手段を構成する測定光の光路の途中に,並列して接続した迂回光路を設けることにより,SLD210からスプリットされた測定光は,コリメータ付光ファイバFからウエハTwへ向けて照射される往路のみならず,ウエハTwから反射した測定光がコリメータ付光ファイバFを介して受光される復路についても,光ファイバカプラ230内の光路Uを介する経路を通ったり,光ファイバeによる迂回光路Uを介する経路を通ったりするので,測定光の光路の種類(パターン)が増える。これにより,測定光と参照光との複数の干渉波形が属する光の干渉の種類(パターン)も増える。 In this way, by providing a bypass optical path connected in parallel in the middle of the optical path of the measurement light that constitutes the measurement light transmission means, the measurement light split from the SLD 210 is directed from the collimated optical fiber F toward the wafer Tw. In addition to the forward path irradiated, the return path in which the measurement light reflected from the wafer Tw is received via the collimator-equipped optical fiber F passes through the path via the optical path U 1 in the optical fiber coupler 230, or the optical fiber. since or through the path through the bypass optical path U 2 by e, the type of the optical path of the measuring beam (pattern) is increased. As a result, the types (patterns) of interference of light to which a plurality of interference waveforms of the measurement light and the reference light belong are also increased.

ここで,このような測定光の光路について図面を参照しながら説明する。図19は,測定光の光路の種類(パターン)とそのときの測定光の経路との関係を示したものである。測定光の経路としては,光ファイバカプラ220から出力されウエハTwへ照射されるまでの往路と,ウエハTwから反射して測定光が光ファイバカプラ220へ入力されるまでの復路がある。   Here, the optical path of such measurement light will be described with reference to the drawings. FIG. 19 shows the relationship between the type (pattern) of the optical path of the measurement light and the path of the measurement light at that time. The measurement light path includes an outward path from the output from the optical fiber coupler 220 to the irradiation to the wafer Tw and a return path from the reflection from the wafer Tw to the input of the measurement light to the optical fiber coupler 220.

図18に示すような迂回光路を形成した場合における測定光の光路の種類(パターン)は,上記往路と復路との組合せで,図19に示すような光路A〜光路Dまでの4通りがある。光路Aは,測定光が往路と復路ともに光路Uを介する経路を通った場合であり,光路長が最も短くなる光路である。光路Bは,測定光が往路は光路Uを介する経路を通り,復路は迂回光路Uを介する経路を通った場合である。光路Cは,測定光が往路は迂回光路Uを介する経路を通り,復路は光路Uを介する経路を通った場合であり,光路長としては光路Bと同じ長さになる。光路Dは,測定光が往路と復路ともに迂回光路Uを介する経路を通った場合であり,光路長が最も長くなる光路である。 The types (patterns) of the optical paths of the measurement light when the detour optical path as shown in FIG. 18 is formed are four combinations from the optical path A to the optical path D as shown in FIG. . Optical path A is a case where the measurement light passes through the path through the forward path and the backward path both optical path U 1, the optical path length is shortest optical path. Optical path B, the forward measurement light passes through a path through the optical path U 1, the return path is a case where through the path via the bypass optical path U 2. Optical path C is measurement light forward path through the path through the bypass optical path U 2, return is when passing through a path through the optical path U 1, is the same length as the optical path B as the optical path length. The optical path D is a case where the measurement light passes through the path through the detour optical path U 2 in both the forward path and the return path, and is the optical path having the longest optical path length.

ここで,各光路A〜Dを通った測定光と参照光との光の干渉を図20に示す。図20は,参照ミラーを一方向へ一度だけ走査した場合に得られる干渉波形を示したものである。横軸には参照ミラーの移動距離をとり,縦軸には干渉強度をとっている。なお,図20では光路A〜Dによる光の干渉が区別し易いようにそれぞれを上下にずらしているが,実際には最も下段に示すように光路A〜Dによる光の干渉の波形がすべて合成された合成波形がPD250により受光される。   Here, FIG. 20 shows light interference between the measurement light and the reference light that have passed through the optical paths A to D. FIG. 20 shows an interference waveform obtained when the reference mirror is scanned only once in one direction. The horizontal axis represents the moving distance of the reference mirror, and the vertical axis represents the interference intensity. In FIG. 20, the light interferences caused by the light paths A to D are shifted up and down so that the light interferences can be easily distinguished. The combined waveform thus received is received by the PD 250.

図20に示すように,上記光路A〜Dによる光の干渉はともに図6に示す場合と同様に,第1面1回反射測定光の干渉波形ya0,第2面1回反射測定光の干渉波形ya1,第2面2回反射測定光の干渉波形ya2,第2面3回反射測定光の干渉波形ya3がそれぞれ等間隔で現れる。このため,実際に得られる光の干渉は各光路A〜Dによる光の干渉の合成となることから,各光の干渉の合成波形にはウエハTwの光路長Lを求めるための基準干渉波形(例えばya0)と選択干渉波形(例えばya2)についても複数現れることになる。 As shown in FIG. 20, the interference of the light along the optical paths A to D is similar to the case shown in FIG. 6, the interference waveform y a0 of the first surface once reflected measurement light, the second surface once reflected measurement light. An interference waveform y a1 , an interference waveform y a2 of the second surface twice reflected measurement light, and an interference waveform ya 3 of the second surface three reflected measurement light appear at equal intervals. For this reason, the actual interference of the light is a combination of the interferences of the light beams A to D. Therefore, the combined interference waveform of each light has a reference interference waveform (for determining the optical path length L of the wafer Tw ( For example, a plurality of y a0 ) and selected interference waveforms (for example, y a2 ) appear.

さらに,光路A〜Dは光路長が異なるので,光路A〜Dによる光の干渉はそれぞれ光路A〜Dの光路長に応じたずれが生じる。例えば光路Aによる光の干渉についての干渉波形ya0のピークが現れてから参照ミラー240が距離Mだけ移動したところで,光路B及び光路Cによる光の干渉についての干渉波形ya0のピークが現れる。また光路Aによる光の干渉についての干渉波形ya0のピークが現れてから参照ミラー240が距離Mだけ移動したところで光路Dについての干渉波形ya0のピークが現れる。これは光路Aの光路長は最も短いので,光路Aによる光の干渉についての最初の干渉波形ya0が現れるのが最も早いのに対して,光路B,C,Dの光路長は光路Aよりも長いので,これらの光の干渉はその光路長の長さの違いの分だけずれて最初の干渉波形ya0が現れるからである。なお,光路Bと光路Cの光路長は同じなので,これらの光の干渉についての最初の干渉波形ya0は同時に現れる。 Further, since the optical paths A to D have different optical path lengths, the light interference caused by the optical paths A to D is shifted according to the optical path lengths of the optical paths A to D, respectively. In example where the reference mirror 240 from the peak appears in the interference waveform y a0 for the light interference due to the optical path A is moved by a distance M 1, peak appears in the interference waveform y a0 for the light interference due to the optical path B and the optical path C . The peaks of the interference waveform y a0 of the optical path D appears at the reference mirror 240 from the peak appears in the interference waveform y a0 for the light interference due to the optical path A is moved by a distance M 2. This is because the optical path length of the optical path A is the shortest, so that the first interference waveform ya 0 regarding the light interference by the optical path A appears most quickly, whereas the optical path lengths of the optical paths B, C, and D are longer than the optical path A. This is because the interference of these lights is shifted by the difference in the length of the optical path length, and the first interference waveform ya0 appears. Since the optical path lengths of the optical path B and the optical path C are the same, the first interference waveform ya0 regarding the interference of these lights appears simultaneously.

しかも,このような光路A〜Dによる光の干渉のずれ量は,測定光の迂回光路の光路長(例えば光ファイバeの長さなど)を調整して光路A〜Dの光路長を調整することにより,調整可能である。従って,測定光の迂回光路の光路長(例えば光ファイバeの長さなど)を調整することにより,ある光路による光の干渉に属する基準干渉波形と,別の光路による光の干渉に属する選択干渉波形とが近傍に現れるようにすることができる。例えば干渉波形ya0を基準干渉波形とし,干渉波形ya2を選択干渉波形とした場合,図20に示す各光の干渉の合成波形において光路Aによる光の干渉に属する選択干渉波形ya2の近傍で,別の光路Bによる光の干渉に属する基準干渉波形ya0が現れるようにすることもできる。 Moreover, the amount of deviation of the light interference caused by the optical paths A to D is adjusted by adjusting the optical path length of the detour optical path of the measurement light (for example, the length of the optical fiber e). Can be adjusted. Therefore, by adjusting the optical path length (for example, the length of the optical fiber e) of the detour optical path of the measurement light, the reference interference waveform belonging to the light interference by one optical path and the selective interference belonging to the light interference by another optical path. The waveform can appear in the vicinity. For example, when the interference waveform ya0 is the reference interference waveform and the interference waveform ya2 is the selected interference waveform, the vicinity of the selected interference waveform ya2 belonging to the light interference by the optical path A in the combined waveform of each light shown in FIG. Thus, the reference interference waveform ya0 belonging to the interference of light by another optical path B can also appear.

このような異なる光の干渉にそれぞれ属する基準干渉波形と選択干渉波形のピーク間幅(例えばM)に,各光路による光の干渉に属する基準干渉波形のずれ量(例えばM)を加えたものが,1種類の光路による光の干渉に属する基準干渉波形と選択干渉波形のピーク間幅(例えば2Lw)に相当する。 What is obtained by adding a deviation amount (for example, M) of the reference interference waveform belonging to the optical interference by each optical path to the peak-to-peak width (for example, M S ) of the reference interference waveform and the selected interference waveform respectively belonging to such different light interference This corresponds to the peak-to-peak width (for example, 2 Lw) of the reference interference waveform and the selected interference waveform that belong to light interference by one type of optical path.

しかも,ウエハTwの温度が変化した場合に基準干渉波形の位置が変化しなければ,各光の干渉に属する基準干渉波形のずれ量Mは各光の干渉のずれ量(例えばM)に相当し,このずれ量MはウエハTwの温度変化前後で一定となる。一方,選択干渉波形は,ウエハTwの温度が変化した場合に干渉波形の位置が変化するので,異なる光の干渉にそれぞれ属する基準干渉波形と選択干渉波形のピーク間幅(例えばM)は温度変化前後で変化する。 In addition, if the position of the reference interference waveform does not change when the temperature of the wafer Tw changes, the deviation amount M of the reference interference waveform belonging to the interference of each light corresponds to the deviation amount of the interference of each light (for example, M 1 ). The deviation amount M is constant before and after the temperature change of the wafer Tw. On the other hand, since the position of the interference waveform of the selected interference waveform changes when the temperature of the wafer Tw changes, the peak-to-peak width (for example, M S ) of each of the reference interference waveform and the selected interference waveform belonging to different light interferences is the temperature. It changes before and after the change.

従って,本実施形態おける温度測定システムによれば,予め各光の干渉に属する基準干渉波形のずれ量Mを測定しておき,実際にウエハTwの温度を測定する際には,図20に示すような各光の干渉の合成波形で最も近傍に現れる基準干渉波形と選択干渉波形のピーク間幅Mを測定するだけで,1種類の光路による光の干渉に属する基準干渉波形と選択干渉波形のピーク間幅(例えば2Lw)を算出することができる。そして,このピーク間幅に基づいてウエハTwの光路長Lを求めて温度に換算することによって,ウエハTwの温度を測定することができる。 Therefore, according to the temperature measurement system in the present embodiment, when the amount of deviation M of the reference interference waveform belonging to the interference of each light is measured in advance and the temperature of the wafer Tw is actually measured, it is shown in FIG. only measures the width M S between the peaks of the reference interference waveform and the selected interference waveform that best appearing in the vicinity of a synthetic waveform of the interference of the light, such as, one reference interference waveforms belonging to the interference of light due to the optical path of the selected interference waveform The peak-to-peak width (for example, 2 Lw) can be calculated. Then, the temperature of the wafer Tw can be measured by obtaining the optical path length L of the wafer Tw based on this peak-to-peak width and converting it to a temperature.

このため,各光の干渉の合成波形において最も近傍に現れる基準干渉波形と選択干渉波形とのピーク間幅(例えばM)を測定できる範囲だけ参照ミラー240を移動させれば,ウエハTwの温度を測定することができる。これにより,1種類の光路による光の干渉に属する基準干渉波形と選択干渉波形のピーク間幅を測定するために参照ミラーを移動させる距離よりも短くすることができるので,ウエハTwの温度測定にかかる時間も短縮することができる。 For this reason, if the reference mirror 240 is moved within a range in which the peak-to-peak width (for example, M S ) between the reference interference waveform and the selected interference waveform that appear closest in the combined waveform of the interference of each light can be measured, the temperature of the wafer Tw. Can be measured. Accordingly, the distance between the reference mirror and the selected interference waveform, which belongs to the interference of light by one type of optical path, can be made shorter than the distance by which the reference mirror is moved to measure the temperature of the wafer Tw. Such time can also be shortened.

なお,上記各光の干渉の基準干渉波形のずれ量Mは,例えばウエハTwの温度測定を行うのに先立って測定して,例えば制御装置400のメモリ440に記憶しておき,実際にウエハTwの温度計測を行う際に取出して利用する。   The deviation amount M of the reference interference waveform of the interference of each light is measured before, for example, measuring the temperature of the wafer Tw, and is stored in, for example, the memory 440 of the control device 400, and actually the wafer Tw. Take out and use when measuring the temperature.

また,本実施形態にかかる基準干渉波形としては,上記各光の干渉の基準干渉波形のずれ量Mが測定対象物TであるウエハTwの温度変化によってできる限り変化しない干渉波形を基準とすることが好ましい。これにより,各光の干渉の基準干渉波形のずれ量Mを測定する頻度を少なくすることができる。例えばウエハTwの裏面を構成する第1面Sは,下部電極340に載置されているのでウエハTwの温度が変化しても,ウエハTwの裏面位置はほとんど変化しない。これに対して,ウエハTwの表面を構成する第2面Sは,空間に面しているのでウエハTwの温度変化により自由にその位置が変化する。従って,干渉波形ya0のようにウエハTwの裏面を反射する測定光の干渉波形を基準とすることが好ましい。 In addition, the reference interference waveform according to the present embodiment is based on an interference waveform in which the deviation amount M of the reference interference waveform of each light interference does not change as much as possible due to the temperature change of the wafer Tw as the measurement target T. Is preferred. Thereby, the frequency of measuring the deviation amount M of the reference interference waveform of the interference of each light can be reduced. For example, the first surface S 1 which constitutes the rear surface of the wafer Tw, even if the temperature of the wafer Tw is changed because it is placed on the lower electrode 340, the back surface position of the wafer Tw is hardly changed. In contrast, the second surface S 2 constituting the surface of the wafer Tw is free to its position is changed by the temperature change of the wafer Tw since faces the space. Therefore, it is preferable that the basis of the interference waveform of the measurement light reflected back surface of the wafer Tw as interference waveform y a0.

但し,ウエハTwの裏面から反射する干渉波形ya0を基準干渉波形とした場合であっても,例えばウエハTwの周囲温度などの環境変化により基準干渉波形の位置が変化する場合もあるので,そのような場合には異なる光路による光の干渉にそれぞれ属する基準干渉波形のずれ量Mは,ウエハTwの環境が変化するごとに測定するようにしてもよい。このようにしても,基準干渉波形のずれ量Mの測定頻度は,干渉波形のピーク間幅Mの測定頻度に比べればはるかに少ないものと考えられるので,ウエハTwの温度測定にかかる時間を短縮する効果がある。 However, even when the interference waveform ya0 reflected from the back surface of the wafer Tw is used as the reference interference waveform, the position of the reference interference waveform may change due to environmental changes such as the ambient temperature of the wafer Tw. In such a case, the deviation amount M of the reference interference waveform belonging to the light interference caused by different optical paths may be measured each time the environment of the wafer Tw changes. Even in this case, measurement frequency shift amount M of reference interference waveform, it is considered that much less compared to the measurement frequency of the peak-to-peak width M S of the interference waveforms, the time required for temperature measurement of the wafer Tw There is an effect of shortening.

また,本実施形態における基準干渉波形としては,各光の干渉の合成波形において選択干渉波形の最も近傍に現れるものであれば,その選択干渉波形の参照ミラー移動距離前後のどちら側に現れるものを用いてもよい。   In addition, as a reference interference waveform in the present embodiment, if it appears closest to the selected interference waveform in the combined waveform of each light interference, it appears on either side of the selected interference waveform before or after the reference mirror moving distance. It may be used.

例えば図20に示すように選択干渉波形ya2の参照ミラー移動距離の後側に現れる基準干渉波形ya0を用いて各干渉波形のピーク間幅2Lwを求める場合には,その選択干渉波形ya2に最も近い基準干渉波形ya0とのピーク間幅Mを正の値として,そのピーク間幅Mに各光の干渉に属する基準干渉波形ya0のずれ量Mを加えることにより,所望のピーク間幅2Lwを求めることができる。 When using the reference interference waveform y a0 appearing on the rear side of the reference mirror moving distance of the selected interference waveform y a2 as shown in FIG. 20 obtains a peak-to-peak width 2Lw of each interference waveform example, the selection interference waveform y a2 By making the peak-to-peak width M S with the reference interference waveform ya 0 closest to the positive value and adding the deviation amount M of the reference interference waveform ya 0 belonging to the interference of each light to the peak-to-peak width M S , a desired value is obtained. The peak-to-peak width 2Lw can be obtained.

これに対して,図示はしないが,選択干渉波形ya2の参照ミラー移動距離の前側に現れる基準干渉波形ya0を用いて各干渉波形のピーク間幅2Lwを求める場合には,その選択干渉波形ya2に最も近い基準干渉波形ya0とのピーク間幅Mを負の値として,そのピーク間幅Mに各光の干渉に属する基準干渉波形ya0のずれ量Mを加えることにより,所望のピーク間幅2Lwを求めることができる。 In contrast, although not shown, in case of obtaining the peak-to-peak width 2Lw of each of the interference waveform with the reference interference waveform y a0 appearing on the front side of the reference mirror moving distance of the selected interference waveform y a2, the selected interference waveform By making the peak-to-peak width M S with the reference interference waveform y a0 closest to y a2 a negative value, and adding the deviation amount M of the reference interference waveform ya 0 belonging to the interference of each light to the peak-to-peak width M S , A desired peak-to-peak width 2Lw can be obtained.

(第3実施形態にかかる温度測定システムの変形例)
次に,第3実施形態にかかる温度測定システムの変形例について図面を参照しながら説明する。図21は,第3実施形態にかかる温度測定システムの変形例についての概略構成を示すブロック図である。図21に示す温度測定システムは,図18に示すものとほぼ同様であるが,図18に示すものは1つの光ファイバカプラ230により,迂回光路を構成する光ファイバeを測定光の光路に並列に接続してループを形成するのに対して,図21に示すものは迂回光路接続用スプリッタとして2つのスプリッタ(例えば1×2の光ファイバカプラ232と2×1の光ファイバカプラ234)により,測定光の光路を構成する光ファイバeと迂回光路を構成する光ファイバeとを並列に接続してループを形成する。これにより,図21に示す温度測定システムについても,図18に示すものと同様に測定光伝送手段を構成する測定光の光路の途中に並列して接続した迂回光路を設けることができる。
(Modification of the temperature measurement system according to the third embodiment)
Next, a modification of the temperature measurement system according to the third embodiment will be described with reference to the drawings. FIG. 21 is a block diagram illustrating a schematic configuration of a modification of the temperature measurement system according to the third embodiment. The temperature measurement system shown in FIG. 21 is substantially the same as that shown in FIG. 18, but the one shown in FIG. 18 uses an optical fiber coupler 230 to parallel the optical fiber e constituting the detour optical path in the optical path of the measurement light. 21 to form a loop, while the one shown in FIG. 21 has two splitters (for example, a 1 × 2 optical fiber coupler 232 and a 2 × 1 optical fiber coupler 234) as detour optical path connecting splitters, The optical fiber e 1 constituting the optical path of the measurement light and the optical fiber e 2 constituting the bypass optical path are connected in parallel to form a loop. Accordingly, the temperature measurement system shown in FIG. 21 can also be provided with a bypass optical path connected in parallel in the middle of the optical path of the measurement light constituting the measurement light transmission means, similar to that shown in FIG.

より具体的に説明すると,図21に示す1×2の光ファイバカプラ232の入力端子(入力ポート)には,光ファイバカプラ220からの一方の出力端子(出力ポート)が光ファイバbを介して接続されている。1×2の光ファイバカプラ232の2つの出力端子(出力ポート)にはそれぞれ,経路Uを形成する短い光ファイバeの一端とこの光ファイバeよりも長い迂回光路の経路Uを形成する光ファイバeの一端とが接続されている。これら光ファイバeの他端と光ファイバeの他端とはそれぞれ,2×1の光ファイバカプラ234の2つの入力端子(入力ポート)に接続されている。2×1の光ファイバカプラ234の出力端子(出力ポート)には光ファイバbの先端にコリメータを取付けたコリメータ付光ファイバFが接続されている。 More specifically, one output terminal (output port) from the optical fiber coupler 220 is connected to the input terminal (input port) of the 1 × 2 optical fiber coupler 232 shown in FIG. It is connected. The two output terminals (output ports) of the 1 × 2 optical fiber coupler 232 respectively have one end of a short optical fiber e 1 forming a path U 1 and a path U 2 of a bypass optical path longer than the optical fiber e 1. and one end of the optical fiber e 2 that forms is connected. The other end of the optical fiber e 1 and the other end of the optical fiber e 2 are respectively connected to two input terminals (input ports) of a 2 × 1 optical fiber coupler 234. Optical fiber b F collimator optical fiber with F fitted with a collimator to the tip of the output terminal (output port) of the 2 × 1 optical fiber coupler 234 is connected.

図21に示すような構成の測定光伝送手段によれば,光ファイバカプラ220からの一方の出力端子(出力ポート)から出射した測定光は,光ファイバカプラ232によって2つの出力端子(出力ポート)へ2分波される。このうち一方の出力端子(出力ポート)からの測定光は短い光ファイバeを通って光ファイバカプラ234の入力端子(入力ポート)に入射する。一方,光ファイバカプラ232の他方の出力端子(出力ポート)からの測定光は迂回光路を構成する光ファイバeを通って,光ファイバカプラ234の入力端子(入力ポート)に入射する。光ファイバカプラ234では,光ファイバe及び光ファイバeからの測定光が合波されて,コリメータ付光ファイバFの先端からウエハTwへ向けて照射される。 According to the measurement light transmission means configured as shown in FIG. 21, the measurement light emitted from one output terminal (output port) from the optical fiber coupler 220 is output by the optical fiber coupler 232 to two output terminals (output ports). Is divided into two. Among these, the measurement light from one output terminal (output port) enters the input terminal (input port) of the optical fiber coupler 234 through the short optical fiber e 1 . On the other hand, the measurement light from the other output terminal (output port) of the optical fiber coupler 232 enters the input terminal (input port) of the optical fiber coupler 234 through the optical fiber e 2 constituting the bypass optical path. In the optical fiber coupler 234, the measurement light from the optical fiber e 1 and the optical fiber e 2 is multiplexed, is irradiated from the tip of the collimator optical fiber with F the wafer Tw.

なお,図21に示すような構成の測定光伝送手段による測定光の光路の種類(光路A〜D)とそのときの測定光の経路との関係は図19に示すものと同様であり,測定光が各光路A〜Dを通る場合の測定光と参照光との光の干渉は図20に示すものと同様である。すなわち,図21に示す構成の温度測定システムについても,各光路A〜Dを通る場合の測定光と参照光との光の干渉のずれ量は,測定光の迂回光路の光路長(例えば光ファイバeや光ファイバeの長さなど)を調整して光路A〜Dの光路長を調整することにより,調整可能である。 Note that the relationship between the type of optical path of the measurement light (optical paths A to D) by the measurement light transmission means configured as shown in FIG. 21 and the path of the measurement light at that time is the same as that shown in FIG. The light interference between the measurement light and the reference light when the light passes through the optical paths A to D is the same as that shown in FIG. That is, also in the temperature measurement system having the configuration shown in FIG. 21, the deviation amount of the interference between the measurement light and the reference light when passing through each of the optical paths A to D is the optical path length (for example, optical fiber) of the detour optical path of the measurement light. e 1 and the length of the optical fiber e 2 ) to adjust the optical path lengths of the optical paths A to D.

従って,測定光の迂回光路の光路長(例えば光ファイバeや光ファイバeの長さなど)を調整することにより,異なる光路による光の干渉にそれぞれ属する選択干渉波形(例えばya2)と基準干渉波形(例えばya0)が,各光の干渉の合成波形において近傍に現れるようにすることができる。このため,本実施形態の変形例によっても,光の干渉の合成波形において最も近くに現れる基準干渉波形(例えばya0)と選択干渉波形(例えばya2)のピーク間幅(例えばM)を測定できる範囲だけ参照ミラー240を移動させれば,ウエハTwの温度を測定することができる。これにより,参照ミラーの移動距離を短くすることができるので,ウエハTwの温度測定にかかる時間も短縮することができる。 Accordingly, by adjusting the optical path length of the detour optical path of the measurement light (for example, the length of the optical fiber e 1 or the optical fiber e 2 ), the selected interference waveform (for example, ya 2 ) respectively belonging to the interference of light by different optical paths A reference interference waveform (for example, y a0 ) can appear in the vicinity in the combined waveform of interference of each light. For this reason, even in the modification of the present embodiment, the peak-to-peak width (for example, M S ) of the reference interference waveform (for example, y a0 ) and the selected interference waveform (for example, y a2 ) that appear closest to each other in the combined waveform of light interference. If the reference mirror 240 is moved within the measurable range, the temperature of the wafer Tw can be measured. Thereby, since the moving distance of the reference mirror can be shortened, the time required for measuring the temperature of the wafer Tw can also be shortened.

また,先に説明した図18に示す迂回光路を構成する光ファイバeは,1つの光ファイバカプラ230の他方の入力端子(入力ポート)と他方の出力端子(出力ポート)を接続してループを形成するので,光ファイバeを曲げて配設する必要があるため,光ファイバの長さや太さによっては適さない場合もある。例えば光ファイバが短い場合や太い場合は曲げにくく,配設し難い。これに対して,図21に示す迂回光路を構成する光ファイバeは,2つの光ファイバカプラ232及び234との途中に接続するので,極端に曲げる必要がないため,光ファイバの長さや太さに拘らず配設が容易となる。 Further, the optical fiber e constituting the bypass optical path shown in FIG. 18 described above connects the other input terminal (input port) and the other output terminal (output port) of one optical fiber coupler 230 to form a loop. Since it is formed, it is necessary to bend and arrange the optical fiber e, which may not be suitable depending on the length and thickness of the optical fiber. For example, when the optical fiber is short or thick, it is difficult to bend and arrange. On the other hand, the optical fiber e 2 constituting the detour optical path shown in FIG. 21 is connected to the middle of the two optical fiber couplers 232 and 234, and therefore does not need to be bent extremely. Nevertheless, the arrangement is easy.

しかも,図18に示すものでは,迂回光路を構成する光ファイバeの長さを調整することにより,測定光の光路長を調整するのに対して,図21に示すものでは,迂回光路を構成する光ファイバeの長さのみならず,測定光の光路自体の長さも光ファイバeの長さにより調整することができるので,測定光の光路A〜Dの光路長の微調整も容易に行うことができる。 Moreover, in the case shown in FIG. 18, the optical path length of the measurement light is adjusted by adjusting the length of the optical fiber e constituting the bypass optical path, whereas in the case shown in FIG. 21, the bypass optical path is configured. Since not only the length of the optical fiber e 2 to be measured but also the length of the optical path itself of the measurement light can be adjusted by the length of the optical fiber e 1 , fine adjustment of the optical path lengths of the optical paths A to D of the measurement light is easy. Can be done.

(第4実施形態にかかる温度測定システム)
次に,第4実施形態にかかる基板処理装置の温度測定システムについて図面を参照しながら説明する。第4実施形態にかかる温度測定システムは,第2実施形態にかかる温度測定システムを改良し,参照ミラーの移動距離をより短くできるように構成したものである。上述した第3実施形態では測定光の光路長を調整するのに対して,第4実施形態では参照光の光路長を調整するものである。
(Temperature measurement system according to the fourth embodiment)
Next, a temperature measurement system for a substrate processing apparatus according to a fourth embodiment will be described with reference to the drawings. The temperature measurement system according to the fourth embodiment is configured by improving the temperature measurement system according to the second embodiment so that the moving distance of the reference mirror can be further shortened. In the third embodiment described above, the optical path length of the measurement light is adjusted, whereas in the fourth embodiment, the optical path length of the reference light is adjusted.

このような第4実施形態にかかる温度測定システムの構成例を図22に示す。図22に示す温度測定システムでは,参照ミラー240を反射面の位置が異なる第1参照ミラー244及び第2参照ミラー246により構成するものである。参照光伝送手段例えばコリメータ付光ファイバFからの参照光が第1及び第2参照ミラー244,246の両方へ照射される参照光照射位置にコリメータ付光ファイバFを配置して,各参照ミラー244,246から反射した参照光を同じコリメータ付光ファイバFで受光する。 FIG. 22 shows a configuration example of such a temperature measurement system according to the fourth embodiment. In the temperature measurement system shown in FIG. 22, the reference mirror 240 is configured by a first reference mirror 244 and a second reference mirror 246 that have different reflection surface positions. Reference light from the reference light transmitting means such as optical fiber F Z with collimator is a first and a collimator optical fiber with F Z to the reference light irradiation position irradiated to both the second reference mirror 244 arranged, each reference receiving reference light reflected from the mirror 244, 246 in the same collimator optical fiber with F Z.

このような構成の温度測定システムによれば,第1及び第2参照ミラー244,246をステッピングモータ242により一緒に移動することによって,SLD210からスプリットされてコリメータ付光ファイバFから照射される参照光が参照ミラー240により反射される際に,第1参照ミラー244から反射される光路Eを通る第1参照光と,第1参照ミラー246から反射される光路Fを通る第2参照光とに分けられるので,2通りの測定光と参照光との光の干渉を測定できる。 According to the temperature measurement system with such a configuration, the reference to be irradiated with first and second reference mirror 244 by moving together by the stepping motor 242, it is split from the collimator optical fiber with F Z from SLD210 When light is reflected by the reference mirror 240, the first reference light passing through the optical path E reflected from the first reference mirror 244 and the second reference light passing through the optical path F reflected from the first reference mirror 246 Since they are divided, it is possible to measure the light interference between the two types of measurement light and the reference light.

ここで,各光路E,Fを通った測定光と参照光との光の干渉を図23に示す。図23は,参照ミラー240を第1及び第2参照ミラー244,246ごと一方向へ一度だけ走査した場合に得られる干渉波形を示したものである。横軸には参照ミラーの移動距離をとり,縦軸には干渉強度をとっている。なお,図23では光路E,Fによる光の干渉が区別し易いようにそれぞれを上下にずらしているが,実際には最も下段に示すようにこれら光路E,Fによる光の干渉の波形がすべて合成された合成波形がPD250により受光される。   Here, FIG. 23 shows light interference between the measurement light and the reference light that have passed through the optical paths E and F. FIG. 23 shows an interference waveform obtained when the reference mirror 240 is scanned only once in one direction together with the first and second reference mirrors 244 and 246. The horizontal axis represents the moving distance of the reference mirror, and the vertical axis represents the interference intensity. In FIG. 23, the light paths E and F are shifted up and down so that the light interferences can be easily distinguished. In practice, however, the light interference waveforms due to these light paths E and F are all shown in the bottom row. The synthesized waveform is received by the PD 250.

図23に示すように,光路E,Fによる光の干渉はともに図6に示す場合と同様に,第1面1回反射測定光の干渉波形ya0,第2面1回反射測定光の干渉波形ya1,第2面2回反射測定光の干渉波形ya2,第2面3回反射測定光の干渉波形ya3がそれぞれ等間隔で現れる。このため,実際に得られる光の干渉は各光路E,Fによる光の干渉の合成となることから,各光の干渉の合成波形にはウエハTwの光路長Lを求めるための基準干渉波形(例えばya0)と選択干渉波形(例えばya2)についても複数現れることになる。 As shown in FIG. 23, the interference of light by the optical paths E and F is similar to the case shown in FIG. 6, the interference waveform y a0 of the first surface once reflected measurement light, and the interference of the second surface once reflected measurement light. The waveform y a1 , the interference waveform y a2 of the second-surface twice reflected measurement light, and the interference waveform ya 3 of the second-surface three-time reflected measurement light appear at equal intervals. For this reason, since the actual interference of the light is a combination of the light interferences by the optical paths E and F, the combined interference waveform of each light has a reference interference waveform (for determining the optical path length L of the wafer Tw ( For example, a plurality of y a0 ) and selected interference waveforms (for example, y a2 ) appear.

しかも,各光路E,Fによる光の干渉のずれ量Mは,例えば各参照ミラー244,246の反射面のずれ量を調整して第1,第2参照波の光路E,Fの光路長を調整することにより,調整可能である。従って,第1,第2参照光の光路E,Fの光路長を調整することにより,いずれかの反射面から反射する参照光と測定光との干渉波形から選択された基準干渉波形と,別の反射面から反射する参照光と測定光の干渉波形から選択された選択干渉波形とがそれぞれ近傍で測定されるようにすることができる。このため,少なくともこれらの干渉波形が測定できる範囲だけ参照ミラー240を移動させれば足りる。これにより,参照ミラー240の移動距離を短くすることができるので,ウエハTwの温度測定にかかる時間も短縮することができる。   Moreover, the amount of optical interference shift M due to each of the optical paths E and F is adjusted, for example, by adjusting the amount of shift of the reflecting surfaces of the reference mirrors 244 and 246 to obtain the optical path lengths of the optical paths E and F of the first and second reference waves. It can be adjusted by adjusting. Therefore, by adjusting the optical path lengths of the optical paths E and F of the first and second reference lights, the reference interference waveform selected from the interference waveforms of the reference light reflected from one of the reflecting surfaces and the measurement light is different from the reference interference waveform. It is possible to measure the reference light reflected from the reflection surface and the selected interference waveform selected from the interference waveform of the measurement light in the vicinity. For this reason, it is sufficient to move the reference mirror 240 at least within a range in which these interference waveforms can be measured. Thereby, since the moving distance of the reference mirror 240 can be shortened, the time required for measuring the temperature of the wafer Tw can also be shortened.

例えば干渉波形ya0を基準干渉波形とし,干渉波形ya2を選択干渉波形とした場合,図23に示す各光の干渉の合成波形において光路Eによる光の干渉に属する選択干渉波形ya2の近傍で,別の光路Fによる光の干渉に属する基準干渉波形ya0が現れるようにすることもできる。これらの干渉波形のピーク間幅(例えばM)を測定すれば,このピーク間幅Mに各光の干渉に属する基準干渉波形のずれ量Mを加えるだけで,1種類の光路による光の干渉に属する基準干渉波形ya0と選択干渉波形ya2とのピーク間幅2Lwを求めることができる。そして,このピーク間幅2Lwに基づいてウエハTwの光路長Lを求めて温度に換算することによって,ウエハTwの温度を測定することができる。 For example, when the interference waveform ya0 is the reference interference waveform and the interference waveform ya2 is the selected interference waveform, the vicinity of the selected interference waveform ya2 belonging to the light interference by the optical path E in the combined waveform of each light shown in FIG. Thus, the reference interference waveform ya0 belonging to the interference of light by another optical path F can also appear. If the peak-to-peak width (for example, M S ) of these interference waveforms is measured, the amount of light transmitted through one type of optical path can be determined by simply adding the deviation amount M of the reference interference waveform belonging to the interference of each light to the peak-to-peak width M S. peak width 2Lw the reference interference waveform y a0 belonging to interfere with selective interference waveform y a2 can be obtained. Then, the temperature of the wafer Tw can be measured by obtaining the optical path length L of the wafer Tw based on the inter-peak width 2Lw and converting it to a temperature.

(第4実施形態にかかる温度測定システムの変形例)
次に,第4実施形態にかかる温度測定システムの変形例について図面を参照しながら説明する。図24は,第4実施形態にかかる温度測定システムの変形例についての概略構成を示すブロック図である。図24に示す温度測定システムは,図22に示すものとほぼ同様であるが,図22に示すものは参照ミラーの反射面をずらすことにより,第1,第2参照光の光路長を調整するのに対して,図24に示すものは例えばSLD210から光源側スプリッタ例えば2×2の光ファイバカプラ220によりスプリットされた参照光を,参照光スプリッタ例えば1×2の光ファイバカプラ222によって第1参照光と第2参照光に2分波し,第1,第2参照光を参照ミラー240に照射させてその反射光を受光するように構成して,第1,第2参照光の光路長を調整する点で相違する。
(Modification of Temperature Measurement System According to Fourth Embodiment)
Next, a modification of the temperature measurement system according to the fourth embodiment will be described with reference to the drawings. FIG. 24 is a block diagram illustrating a schematic configuration of a modification of the temperature measurement system according to the fourth embodiment. The temperature measurement system shown in FIG. 24 is substantially the same as that shown in FIG. 22, but the one shown in FIG. 22 adjusts the optical path lengths of the first and second reference lights by shifting the reflecting surface of the reference mirror. 24, for example, the reference light split from the SLD 210 by the light source side splitter, for example, a 2 × 2 optical fiber coupler 220, is used as the first reference by the reference light splitter, for example, the 1 × 2 optical fiber coupler 222. The light and the second reference light are divided into two parts, and the reference mirror 240 is irradiated with the first and second reference lights to receive the reflected light. It is different in adjustment.

より具体的に説明すると,図24に示す1×2の光ファイバカプラ222の入力端子(入力ポート)には,光ファイバカプラ220からの他方の出力端子(出力ポート)が光ファイバcを介して接続されている。1×2の光ファイバカプラ222の2つの出力端子(出力ポート)にはそれぞれ,光ファイバcZ1の先端にコリメータを取付けたコリメータ付光ファイバFZ1と,光ファイバcZ2の先端にコリメータを取付けたコリメータ付光ファイバFZ2とが接続されている。 More specifically, the other output terminal (output port) from the optical fiber coupler 220 is connected to the input terminal (input port) of the 1 × 2 optical fiber coupler 222 shown in FIG. It is connected. Mounting each of the 1 × 2 of two output terminals of the optical fiber coupler 222 (output port), the optical fiber c collimator optical fiber with F Z1 fitted with a collimator tip of Z1, a collimator at the tip of the optical fiber c Z2 The collimator-equipped optical fiber FZ2 is connected.

図24に示すような構成の参照光伝送手段によれば,光ファイバカプラ220からの他方の出力端子(出力ポート)から出射した測定光は,光ファイバカプラ222によって2つの出力端子(出力ポート)へ2分波される。このうち一方の出力端子(出力ポート)からの第1参照光はコリメータ付光ファイバFZ1を介する光路Gにより参照ミラー240に向けて照射され,他方の出力端子(出力ポート)からの第2参照光はコリメータ付光ファイバFZ2を介する光路Hにより参照ミラー240に向けて照射される。 According to the reference light transmission means configured as shown in FIG. 24, the measurement light emitted from the other output terminal (output port) from the optical fiber coupler 220 is output by the optical fiber coupler 222 to two output terminals (output ports). Is divided into two. Of these, the first reference light from one output terminal (output port) is irradiated toward the reference mirror 240 by the optical path G through the collimator-equipped optical fiber FZ1, and the second reference from the other output terminal (output port). The light is irradiated toward the reference mirror 240 by the optical path H through the collimator-equipped optical fiber FZ2 .

なお,図24に示すような構成の参照光伝送手段による参照光と測定光の光の干渉は図23に示すものと同様である。すなわち,図24に示す構成の温度測定システムについても,各光路E,Fによる光の干渉のずれ量M1は,例えばコリメータ付光ファイバFZ1,FZ2の光ファイバcZ1,cZ2の長さを調整して第1,第2参照波の光路E,Fの光路長を調整することにより,調整可能である。 Note that the interference between the reference light and the measurement light by the reference light transmission unit configured as shown in FIG. 24 is the same as that shown in FIG. That is, for even temperature measurement system of the configuration shown in FIG. 24, the length of each optical path E, the deviation amount M1 of light interference by F, for example optical fiber c Z1, c Z2 of optical fiber with collimator F Z1, F Z2 Is adjusted to adjust the optical path lengths of the optical paths E and F of the first and second reference waves.

従って,第1,第2参照光の光路長(例えば光ファイバcZ1,cZ2の長さなど)を調整することにより,参照光スプリッタ222からスプリットされた複数の参照光のうち,いずれかの参照光と測定光との干渉波形から選択された基準干渉波形と,別の参照光と測定光の干渉波形から選択された選択干渉波形とがそれぞれ近傍で測定されるようにすることができる。このため,少なくともこれらの干渉波形が測定できる範囲だけ参照ミラー240を移動させれば足りる。これにより,参照ミラー240の移動距離を短くすることができるので,ウエハTwの温度測定にかかる時間も短縮することができる。 Therefore, by adjusting the optical path lengths of the first and second reference lights (for example, the lengths of the optical fibers c Z1 and c Z2 ), any one of the plurality of reference lights split from the reference light splitter 222 is selected. The reference interference waveform selected from the interference waveform of the reference light and the measurement light and the selected interference waveform selected from the interference waveform of another reference light and the measurement light can be measured in the vicinity. For this reason, it is sufficient to move the reference mirror 240 at least within a range in which these interference waveforms can be measured. Thereby, since the moving distance of the reference mirror 240 can be shortened, the time required for measuring the temperature of the wafer Tw can also be shortened.

(第4実施形態にかかる温度測定システムの他の変形例)
次に,第4実施形態にかかる温度測定システムの他の変形例について図面を参照しながら説明する。上述した第3実施形態では測定光伝送手段を構成する測定光の光路の途中に,この測定光の光路に並列して接続した迂回光路を設けるようにしたのに対して,第4実施形態の他の変形例では参照光伝送手段を構成する参照光の光路の途中に並列して接続した迂回光路を設けるようにしたものである。
(Other Modifications of Temperature Measurement System According to Fourth Embodiment)
Next, another modification of the temperature measurement system according to the fourth embodiment will be described with reference to the drawings. In the third embodiment described above, a bypass optical path connected in parallel to the optical path of the measurement light is provided in the middle of the optical path of the measurement light that constitutes the measurement light transmission means. In another modification, a bypass optical path connected in parallel is provided in the middle of the optical path of the reference light constituting the reference light transmission means.

このように構成しても,上記迂回光路を通る参照光と通らない参照光の両方が参照ミラー240へ向けて照射されるため,第3実施形態の場合と同様に測定光と参照光との光の干渉のパターンを増やすことができ,迂回光路の光路長を調整してそれぞれの光の干渉のずれ量を調整することにより,ウエハTwの温度測定に用いる基準干渉波形と選択干渉波形が近傍に現れるようにすることができる。これにより,参照ミラーの移動距離をより短くすることができる。   Even in this configuration, since both the reference light passing through the detour optical path and the reference light not passing through are radiated toward the reference mirror 240, the measurement light and the reference light are similar to those in the third embodiment. The interference pattern of light can be increased, and the reference interference waveform used for the temperature measurement of the wafer Tw and the selected interference waveform are close by adjusting the optical path length of the detour optical path and adjusting the deviation amount of the interference of each light. Can appear in Thereby, the moving distance of the reference mirror can be further shortened.

以下,このような第4実施形態の他の変形例にかかる温度測定システムの具体的な構成を図25又は図26に示す。図25に示す温度測定システムは,図18に示す場合と同様に迂回光路を接続する例である。すなわち,図25に示す温度測定システムにおける参照光伝送手段は,光ファイバカプラ220からの参照光の光路の途中に,迂回光路を構成する光ファイバeを並列接続するための迂回光路接続用スプリッタ例えば2×2の光ファイバカプラ230を備える。   Hereinafter, a specific configuration of a temperature measurement system according to another modification of the fourth embodiment is shown in FIG. 25 or FIG. The temperature measurement system shown in FIG. 25 is an example in which a bypass optical path is connected as in the case shown in FIG. That is, the reference light transmission means in the temperature measurement system shown in FIG. 25 is a bypass optical path connecting splitter for connecting in parallel the optical fiber e constituting the bypass optical path in the middle of the optical path of the reference light from the optical fiber coupler 220. A 2 × 2 optical fiber coupler 230 is provided.

具体的には,光ファイバカプラ230の一方の入力端子(入力ポート)には,光ファイバカプラ220からの他方の出力端子(出力ポート)が光ファイバcを介して接続されている。光ファイバカプラ230の一方の出力端子(出力ポート)には,光ファイバcの先端にコリメータを取付けたコリメータ付光ファイバFが接続されている。また,光ファイバカプラ230の他方の入力端子(入力ポート)と他方の出力端子(出力ポート)とは迂回光路を構成する光ファイバeを接続してループを形成する。 Specifically, the other output terminal (output port) from the optical fiber coupler 220 is connected to one input terminal (input port) of the optical fiber coupler 230 via the optical fiber c. To one output terminal of the optical fiber coupler 230 (the output port), the optical fiber c Z tip collimator optical fiber with F Z fitted with collimator the are connected. Further, the other input terminal (input port) and the other output terminal (output port) of the optical fiber coupler 230 connect the optical fiber e constituting the bypass optical path to form a loop.

図25に示すような構成の参照光伝送手段によれば,光ファイバカプラ220からの他方の出力端子(出力ポート)から出射した参照光は,光ファイバカプラ230によって2つの出力端子(出力ポート)へ2分波される。このうち一方の出力端子(出力ポート)からの参照光は光ファイバcを通ってコリメータ付光ファイバFの先端から参照ミラー240へ向けて照射される。また,光ファイバカプラ230の他方の出力端子(出力ポート)からの参照光は光ファイバeを介して光ファイバカプラ230の他方の入力端子(入力ポート)へ戻され,さらに光ファイバカプラ230によって2つの出力端子(出力ポート)へ2分波される。このうち一方の出力端子(出力ポート)からの参照光は光ファイバcを通ってコリメータ付光ファイバFの先端から参照ミラー240へ向けて照射される。 According to the reference light transmission means configured as shown in FIG. 25, the reference light emitted from the other output terminal (output port) from the optical fiber coupler 220 is output by the optical fiber coupler 230 to two output terminals (output ports). Is divided into two. Reference light from these one output terminal (output port) is irradiated from the tip of the optical fiber F Z with collimator to the reference mirror 240 passes through the optical fiber c Z. Further, the reference light from the other output terminal (output port) of the optical fiber coupler 230 is returned to the other input terminal (input port) of the optical fiber coupler 230 via the optical fiber e. Divided into two output terminals (output ports). Reference light from these one output terminal (output port) is irradiated from the tip of the optical fiber F Z with collimator to the reference mirror 240 passes through the optical fiber c Z.

一方,図26に示す温度測定システムは,図21に示す場合と同様に迂回光路を接続する例である。すなわち,迂回光路接続用スプリッタとして2つのスプリッタ(例えば1×2の光ファイバカプラ232と2×1の光ファイバカプラ234)により,参照光の光路を構成する光ファイバeと迂回光路を構成する光ファイバeとを並列に接続してループを形成する。これにより,図26に示す温度測定システムについても,図21に示すものと同様に参照光伝送手段を構成する参照光の光路の途中に並列して接続した迂回光路を設けることができる。 On the other hand, the temperature measurement system shown in FIG. 26 is an example in which a bypass optical path is connected as in the case shown in FIG. That is, the bypass optical path is composed of two splitters (for example, a 1 × 2 optical fiber coupler 232 and a 2 × 1 optical fiber coupler 234) as the bypass optical path connecting splitter, and the optical fiber e 1 that forms the optical path of the reference light. by connecting the optical fiber e 2 in parallel to form a loop. Thereby, also in the temperature measurement system shown in FIG. 26, a bypass optical path connected in parallel in the middle of the optical path of the reference light constituting the reference light transmission means can be provided as in the case shown in FIG.

より具体的に説明すると,図26に示す1×2の光ファイバカプラ232の入力端子(入力ポート)には,光ファイバカプラ220からの他方の出力端子(出力ポート)が光ファイバcを介して接続されている。1×2の光ファイバカプラ232の2つの出力端子(出力ポート)にはそれぞれ,経路Uを形成する短い光ファイバeの一端とこの光ファイバeよりも長い迂回光路の経路Uを形成する光ファイバeの一端とが接続されている。これら光ファイバeの他端と光ファイバeの他端とはそれぞれ,2×1の光ファイバカプラ234の2つの入力端子(入力ポート)に接続されている。2×1の光ファイバカプラ234の出力端子(出力ポート)には光ファイバcの先端にコリメータを取付けたコリメータ付光ファイバFが接続されている。 More specifically, the other output terminal (output port) from the optical fiber coupler 220 is connected to the input terminal (input port) of the 1 × 2 optical fiber coupler 232 shown in FIG. It is connected. The two output terminals (output ports) of the 1 × 2 optical fiber coupler 232 respectively have one end of a short optical fiber e 1 forming a path U 1 and a path U 2 of a bypass optical path longer than the optical fiber e 1. and one end of the optical fiber e 2 that forms is connected. The other end of the optical fiber e 1 and the other end of the optical fiber e 2 are respectively connected to two input terminals (input ports) of a 2 × 1 optical fiber coupler 234. 2 × 1 optical fiber c Z tip collimator optical fiber with F Z fitted with collimator to the output terminal (output port) of the optical fiber coupler 234 is connected.

図26に示すような構成の参照光伝送手段によれば,光ファイバカプラ220からの他方の出力端子(出力ポート)から出射した参照光は,光ファイバカプラ232によって2つの出力端子(出力ポート)へ2分波される。このうち一方の出力端子(出力ポート)からの参照光は短い光ファイバeを通って光ファイバカプラ234の入力端子(入力ポート)に入射する。一方,光ファイバカプラ232の他方の出力端子(出力ポート)からの参照光は迂回光路を構成する光ファイバeを通って,光ファイバカプラ234の入力端子(入力ポート)に入射する。光ファイバカプラ234では,光ファイバe及び光ファイバeからの参照光が合波されて,コリメータ付光ファイバFの先端から参照ミラー240へ向けて照射される。 According to the reference light transmission means configured as shown in FIG. 26, the reference light emitted from the other output terminal (output port) from the optical fiber coupler 220 is output by the optical fiber coupler 232 to two output terminals (output ports). Is divided into two. Reference light from these one of the output terminals (output ports) through the short optical fiber e 1 incident on the input terminal of the optical fiber coupler 234 (input port). On the other hand, the reference light from the other output terminal (output port) of the optical fiber coupler 232 enters the input terminal (input port) of the optical fiber coupler 234 through the optical fiber e 2 constituting the bypass optical path. In the optical fiber coupler 234, the reference light from the optical fiber e 1 and the optical fiber e 2 is multiplexed, is irradiated from the tip of the collimator optical fiber with F Z to the reference mirror 240.

上述したような図25又は図26に示す構成の参照光伝送手段による参照光の光路の種類を光路A〜Dとすれば,これら光路A〜Dとそのときの参照光の経路との関係は図19に示すものと同様であり,参照光が各光路A〜Dを通る場合の測定光と参照光との光の干渉は図20に示すものと同様である。すなわち,図25又は図26に示す構成の温度測定システムについても,各光路A〜Dを通る場合の測定光と参照光との光の干渉のずれ量は,参照光の迂回光路の光路長(例えば光ファイバe又は光ファイバe,eの長さなど)を調整して光路A〜Dの光路長を調整することにより,調整可能である。 If the type of the optical path of the reference light by the reference light transmission means having the configuration shown in FIG. 25 or FIG. 26 as described above is optical paths A to D, the relationship between these optical paths A to D and the path of the reference light at that time is The light interference between the measurement light and the reference light when the reference light passes through the optical paths A to D is the same as that shown in FIG. That is, also in the temperature measurement system having the configuration shown in FIG. 25 or FIG. 26, the deviation amount of the interference between the measurement light and the reference light when passing through each of the optical paths A to D is the optical path length of the detour optical path of the reference light ( For example, adjustment is possible by adjusting the optical path length of the optical paths A to D by adjusting the optical fiber e or the length of the optical fibers e 1 and e 2 .

従って,参照光の迂回光路の光路長(例えば光ファイバe又は光ファイバe,eの長さなど)を調整することにより,迂回光路を介さない光路(例えば光路A)を通る参照光と測定光の干渉波形と少なくとも一度は迂回光路(例えば光路B)を介する光路を通る参照光と測定光の干渉波形のうち,いずれか一方の光路(例えば光路B)を通る参照光と測定光の干渉波形から選択された基準干渉波形(例えばya0)と,他方の光路(例えば光路A)を通る参照光と測定光の干渉波形(例えばya2)から選択された選択干渉波形とがそれぞれ近傍で測定されるようにすることができる。このため,少なくともこれらの干渉波形が測定できる範囲だけ参照ミラー240を移動させれば足りる。これにより,参照ミラー240の移動距離を短くすることができるので,ウエハTwの温度測定にかかる時間も短縮することができる。 Therefore, by adjusting the optical path length of the detour optical path of the reference light (for example, the length of the optical fiber e or the optical fibers e 1 and e 2 ), the reference light passing through the optical path (for example, the optical path A) that does not pass through the detour optical path Between the interference waveform of the measurement light and the reference light that passes through the optical path that passes through the detour optical path (for example, the optical path B) and the interference waveform of the measurement light at least once, the reference light and the measurement light that pass through one of the optical paths (for example, the optical path B) The reference interference waveform selected from the interference waveform (for example, y a0 ), the reference light passing through the other optical path (for example, optical path A), and the selected interference waveform selected from the interference waveform of the measurement light (for example, ya 2 ) are close to each other. Can be measured in For this reason, it is sufficient to move the reference mirror 240 at least within a range in which these interference waveforms can be measured. Thereby, since the moving distance of the reference mirror 240 can be shortened, the time required for measuring the temperature of the wafer Tw can also be shortened.

(第5実施形態にかかる温度測定装置)
次に,第5実施形態にかかる温度測定装置について図面を参照しながら説明する。上述した第1〜第4実施形態では,測定光を測定対象物Tの一方側から照射したときに測定対象物Tから反射する測定光を同じ側から受光するように構成したのに対して,第5実施形態では測定光を測定対象物Tの一方側から照射したときに測定対象物Tを透過する測定光を測定対象物Tの他方側から受光するように構成したものである。
(Temperature measuring device according to the fifth embodiment)
Next, a temperature measuring apparatus according to a fifth embodiment will be described with reference to the drawings. In the first to fourth embodiments described above, the measurement light reflected from the measurement target T when the measurement light is irradiated from one side of the measurement target T is configured to be received from the same side. In the fifth embodiment, the measurement light transmitted through the measurement target T when the measurement light is irradiated from one side of the measurement target T is received from the other side of the measurement target T.

このような第5実施形態にかかる温度測定装置の概略構成を図27に示す。温度測定装置200は図27に示すように,光源110からの光を測定対象物Tの一方側へ向けて照射する測定光と参照光とにスプリット(分波)する光源スプリッタ510と,この光源スプリッタ510からの参照光を参照光反射手段140へ中継するとともに,参照光反射手段140から反射した参照光を受光手段150側へ中継する中継スプリッタ520と,中継スプリッタ520からの参照光と測定対象物Tを透過する測定光とを合波したものを受光手段へ出力する受光スプリッタ530とを備える。   FIG. 27 shows a schematic configuration of such a temperature measuring apparatus according to the fifth embodiment. As shown in FIG. 27, the temperature measurement apparatus 200 includes a light source splitter 510 that splits (demultiplexes) the light from the light source 110 into measurement light that irradiates one side of the measurement target T and reference light, and the light source. The reference light from the splitter 510 is relayed to the reference light reflecting means 140 and the reference light reflected from the reference light reflecting means 140 is relayed to the light receiving means 150 side, the reference light from the relay splitter 520 and the measurement object And a light receiving splitter 530 for outputting the combined measurement light transmitted through the object T to the light receiving means.

(第5実施形態にかかる温度測定装置の動作)
このような構成の温度測定装置200においては,図1に示すように,光源110からの光は,例えば光ファイバaを介して光源スプリッタ510の入力端子(入力ポート)に入射され,光源スプリッタ510により2つの出力端子(出力ポート)へ2分波される。このうち,一方の出力端子(出力ポート)からの光は測定光として,照射測定光伝送手段例えば光ファイバbの先端にコリメータを取付けたコリメータ付光ファイバFb1を介して測定対象物Tの一方側へ照射される。本実施形態では,このように測定光が測定対象物Tへ照射されたときに,図28に示すように測定対象物Tから透過して他方側へ抜けてくる測定光を受光手段150で受光する。
(Operation of Temperature Measuring Device According to Fifth Embodiment)
In the temperature measuring apparatus 200 having such a configuration, as shown in FIG. 1, light from the light source 110 is incident on an input terminal (input port) of the light source splitter 510 via, for example, an optical fiber a, and the light source splitter 510 Is divided into two output terminals (output ports). Among these, the light from one output terminal (output port) is used as measurement light, and the measurement target T is transmitted through irradiation measurement light transmission means, for example, a collimator-equipped optical fiber F b1 having a collimator attached to the tip of the optical fiber b 1 . Irradiated to one side. In the present embodiment, when the measurement light is irradiated onto the measurement target T in this way, the measurement light transmitted through the measurement target T and exits to the other side as shown in FIG. To do.

一方,光源スプリッタ510により2分波された他方の出力端子(出力ポート)からの光は参照光として,例えば光ファイバc1を介して中継スプリッタ520の2つの入力端子(入力ポート)のうちの一方に入射され,中継スプリッタ520の出力端子(出力ポート)から出射される。中継スプリッタ520からの参照光は,参照光伝送手段例えば光ファイバcの先端にコリメータを取付けたコリメータ付光ファイバFから照射され,参照光反射手段(例えば参照ミラー)140によって反射される。 On the other hand, light from the other output terminal (output port) divided by the light source splitter 510 is used as reference light, for example, one of two input terminals (input ports) of the relay splitter 520 via the optical fiber c1. And output from the output terminal (output port) of the relay splitter 520. Reference light from the relay splitter 520, is emitted from the reference light transmitting means such as an optical fiber c Z distal optical fiber with collimator F attaching the collimator to Z of, it is reflected by the reference light reflecting means (e.g., a reference mirror) 140.

そして,測定対象物Tを透過した測定光は,受光測定光伝送手段例えば光ファイバb2の先端にコリメータを取付けたコリメータ付光ファイバFb2を介して受光されて受光スプリッタ530への2つの入力端子(入力ポート)のうちの一方へ入射するとともに,参照光反射手段(例えば参照ミラー)140で反射した参照光もコリメータ付光ファイバFを介して受光スプリッタ530の他方の入力端子(入力ポート)に入射する。これら測定光と参照光は受光スプリッタ530で合波されて出力端子(出力ポート)から出射され,例えばSiフォトダイオード,InGaAsフォトダイオード,Geフォトダイオードなどを用いたPDで構成された受光手段150へ例えば光ファイバdを介して入射し,受光手段150で測定光と参照光との干渉波形が検出される。 Then, the measurement light transmitted through the measurement object T is received via a collimator-equipped optical fiber F b2 in which a collimator is attached to the tip of the received light measurement light transmission means, for example, the optical fiber b2 , and two input terminals to the light reception splitter 530. while make incidence to one of the (input port), the reference beam reflecting means (e.g., a reference mirror) the other input terminal of the reference light reflected by the 140 even through the optical fiber F Z with collimator light splitter 530 (input port) Is incident on. The measurement light and the reference light are combined by a light receiving splitter 530 and emitted from an output terminal (output port). For example, the light and the reference light 150 are constituted by a PD using a Si photodiode, an InGaAs photodiode, a Ge photodiode, or the like. For example, the light enters through the optical fiber d, and the light receiving means 150 detects the interference waveform between the measurement light and the reference light.

(第5実施形態にかかる温度測定装置による測定光の種類)
このような温度測定装置500において,光源110からの測定光を測定対象物Tに照射した際に測定対象物Tを透過する測定光の主な種類について図面を参照しながら説明する。図28は測定光の種類を説明するための観念図であり,図28に示す矢印は測定対象物Tから透過する測定光を示している。なお,図28では測定光における測定対象物Tの両端面間での往復反射回数がわかり易いように測定光の反射位置をずらして表現しているが,実際には測定対象物Tに測定光を照射する角度に応じて反射角度も変わる。例えば測定対象物Tに対してほぼ直行するように測定光を照射すれば,各端面S,Sでの反射位置もその測定光の光軸上にほぼ重なる。
(Types of measuring light by the temperature measuring device according to the fifth embodiment)
In such a temperature measurement apparatus 500, main types of measurement light that passes through the measurement target T when the measurement target T is irradiated with the measurement light from the light source 110 will be described with reference to the drawings. FIG. 28 is a conceptual diagram for explaining the types of measurement light, and the arrows shown in FIG. 28 indicate the measurement light transmitted from the measurement object T. FIG. In FIG. 28, the measurement light reflection position is shifted so that the number of round-trip reflections between the both end faces of the measurement object T in the measurement light is easy to understand. The reflection angle also changes according to the irradiation angle. For example, if the measurement light is irradiated so as to be almost perpendicular to the measurement target T, the reflection positions at the end faces S 1 and S 2 also substantially overlap the optical axis of the measurement light.

測定対象物Tから反射する測定光としては,図28(a)に示すように測定対象物T内を一度も往復反射することなく,測定対象物Tの両端面(ウエハTwの表面を構成する第1面SとウエハTwの裏面を構成する第2面S)を透過し,測定対象物T内を往方向だけ透過(0.5回往復)する測定光(両端面透過測定光又は0.5回往復反射測定光)及び図28(b)に示すように測定対象物Tの第1面Sを透過し,第2面Sで1回反射した後さらに第1面Sで1回反射する測定光,すなわち測定対象物Tの両端面S,Sで1.5回往復反射する測定光(第2面1回反射測定光又は1.5回往復反射測定光)がある。 As the measurement light reflected from the measurement object T, as shown in FIG. 28A, both end surfaces of the measurement object T (the surface of the wafer Tw are formed without being reciprocally reflected in the measurement object T). Measurement light that passes through the first surface S 1 and the second surface S 2 that constitutes the back surface of the wafer Tw and passes through the measurement object T only in the forward direction (reciprocates 0.5 times) 0.5 times the reciprocating reflection measurement light) and transmitted through the first surface S 1 of the measurement target T as shown in FIG. 28 (b), further first surface S 1 after being reflected once at the second surface S 2 Measurement light that is reflected once at the measurement surface, that is, measurement light that is reflected back and forth 1.5 times at both end faces S 1 and S 2 of the measurement object T (second surface one-time reflection measurement light or 1.5-time round-trip reflection measurement light). There is.

その他,例えば図28(c)に示すように測定対象物Tの第1面Sを透過した後,第2面Sと第1面Sでそれぞれ2回ずつ反射する測定光,すなわち測定対象物Tの両端面S,Sで2.5回往復反射する測定光(第2面2回反射測定光又は2.5回往復反射測定光),図28(d)に示すように測定対象物Tの第1面Sを透過した後,第2面Sと第1面Sでそれぞれ3回ずつ反射する測定光,すなわち測定対象物Tの両端面S,Sで3.5回往復反射する測定光(第2面3回反射測定光又は3.5回往復反射測定光)などのように,測定対象物Tの各面S,Sで複数回反射することによって,測定対象物T内を複数回往復する測定光(第2面複数回反射測定光又は複数回往復反射測定光)もある。従って,受光手段150ではこれらの測定光と参照光との干渉波形がそれぞれ測定できる。 Others, for example, passes through the first surface S 1 of the measurement target T as shown in FIG. 28 (c), measuring light reflected twice respectively the second surface S 2 and the first surface S 1, i.e. the measurement As shown in FIG. 28 (d), the measurement light (second surface two-time reflection measurement light or 2.5-time round-trip reflection measurement light) reflected back and forth 2.5 times at both end faces S 1 and S 2 of the object T. after passing through the first surface S 1 of the measurement target object T, the measurement light reflected three times respectively at the second surface S 2 and the first surface S 1, i.e. at both end faces S 1, S 2 of the measurement target T Reflected multiple times on each surface S 1 , S 2 of the measurement object T, such as measurement light that reflects 3.5 times (second surface 3 times reflection measurement light or 3.5 times round reflection measurement light). Accordingly, there is also measurement light that reciprocates a plurality of times within the measurement target T (second surface multiple reflection measurement light or multiple reciprocation reflection measurement light). Therefore, the light receiving means 150 can measure the interference waveforms of these measurement light and reference light.

(測定光と参照光との干渉波形の具体例)
ここで,温度測定装置500により得られる測定光と参照光との光の干渉の具体例を図29に示す。図29は,測定対象物Tを透過する図28に示すような各測定光と,参照光反射手段140で反射する参照光との干渉波形を示したものである。図29において縦軸は干渉強度,縦軸は参照ミラーの移動距離をとっている。また,光源110としては,測定対象物TであるウエハTwを透過し反射可能な低コヒーレンス光源を用いる。
(Specific example of interference waveform between measurement light and reference light)
Here, a specific example of light interference between the measurement light and the reference light obtained by the temperature measurement device 500 is shown in FIG. FIG. 29 shows an interference waveform between each measurement light as shown in FIG. 28 that passes through the measurement target T and the reference light reflected by the reference light reflecting means 140. In FIG. 29, the vertical axis represents the interference intensity, and the vertical axis represents the moving distance of the reference mirror. Further, as the light source 110, a low coherence light source capable of transmitting and reflecting the wafer Tw as the measurement target T is used.

図29によれば,参照光反射手段(例えば参照ミラー)140を一方向へ走査していくと,先ず図28(a)に示すような両端面透過測定光(0.5回往復反射測定光)と参照光との干渉波形ya0が現れ,次いで図28(b)に示すような第2面1回反射測定光(1.5回往復反射測定光)と参照光との干渉波形ya1が現れる。参照光反射手段140をさらに走査していくと,図28(c)に示すような第2面2回反射測定光(2.5回往復反射測定光)と参照光との干渉波形ya2が現れ,次いで図28(d)に示すような第2面3回反射測定光(3.5回往復反射測定光)と参照光との干渉波形ya3が現れる。その後も,参照光反射手段140をさらに走査すれば,図示はしないが第2面4回反射測定光(4.5回往復反射測定光),第2面5回反射測定光(5.5回往復反射測定光)…というように,各測定光の干渉波形が連続して等間隔で現れることになる。 According to FIG. 29, when the reference light reflecting means (for example, a reference mirror) 140 is scanned in one direction, first, both-end-surface transmission measurement light (0.5 round-trip reflection measurement light) as shown in FIG. ) And reference light interference waveform y a0 , and then the second surface 1-time reflected measurement light (1.5 times round-trip reflected measurement light) and reference light interference waveform ya 1 as shown in FIG. Appears. When the reference light reflecting means 140 is further scanned, an interference waveform ya2 between the second surface twice reflected measurement light (2.5 times round-trip reflected measurement light) and the reference light as shown in FIG. Next, an interference waveform ya3 between the second surface three-time reflected measurement light (3.5 times round-trip reflection measurement light) and the reference light appears as shown in FIG. Thereafter, if the reference light reflecting means 140 is further scanned, the second surface 4 times reflection measurement light (4.5 times reciprocation reflection measurement light) and the second surface 5 times reflection measurement light (5.5 times) although not shown. Thus, the interference waveform of each measurement light appears continuously at equal intervals.

図29に示すような測定光と参照光との光の干渉における各干渉波形ya0〜ya3は,図6に示すような測定光と参照光との光の干渉における各干渉波形ya0〜ya3との関係と同様になる。従って,図29に示すような測定光と参照光との光の干渉においても,測定対象物Tの光路長Lを求めるための基準干渉波形と選択干渉波形を,基準干渉波形と選択干渉波形とのピーク間幅ができる限り長くなるように選択することにより,基準干渉波形と選択干渉波形とのピーク間幅の測定精度を向上させることができる。 Each interference waveform y a0 ~y in the interference of light of the measurement light and the reference light as shown in FIG. 29 a3, each interference waveform y a0 ~ in the interference light between the reference light and the measurement light as shown in FIG. 6 This is the same as the relationship with ya3 . Accordingly, even in the interference between the measurement light and the reference light as shown in FIG. 29, the standard interference waveform and the selective interference waveform for obtaining the optical path length L of the measurement target T are represented by the standard interference waveform and the selective interference waveform. By selecting such that the peak-to-peak width is as long as possible, it is possible to improve the measurement accuracy of the peak-to-peak width between the reference interference waveform and the selected interference waveform.

例えば図29に示す干渉波形ya0を基準干渉波形とするとともに干渉波形ya2を選択干渉波形とすることにより,干渉波形ya0を基準干渉波形とするとともに干渉波形ya1を選択干渉波形とした場合に比して,基準干渉波形と選択干渉波形とのピーク間幅が長くなるため,その測定精度も向上させることができる。こうして得られた基準干渉波形と選択干渉波形とのピーク間幅に基づいて測定対象物T例えばウエハTwの光路長Lを求めることができるので,上述したのと同様の方法で温度に換算することができる。 For example, the interference waveform y a0 shown in FIG. 29 is set as the reference interference waveform and the interference waveform ya2 is set as the selected interference waveform, whereby the interference waveform ya0 is set as the reference interference waveform and the interference waveform ya1 is set as the selected interference waveform. Compared to the case, since the peak-to-peak width between the reference interference waveform and the selected interference waveform becomes longer, the measurement accuracy can be improved. Since the optical path length L of the measurement object T, for example, the wafer Tw, can be obtained based on the peak-to-peak width between the reference interference waveform and the selected interference waveform obtained in this way, it is converted into temperature by the same method as described above. Can do.

なお,図29に示す各干渉波形についても,上述したような干渉波形の崩れ度合の指標Kに基づいて選択干渉波形を選択することにより,干渉波形の崩れ度合が干渉波形のピーク間幅の測定精度を低下させない範囲で,基準干渉波形と選択干渉波形との幅をより長くとることができる干渉波形を容易に選択することができる。   For each interference waveform shown in FIG. 29 as well, by selecting the selected interference waveform based on the index K of the degree of collapse of the interference waveform as described above, the degree of collapse of the interference waveform is measured by measuring the peak-to-peak width of the interference waveform. It is possible to easily select an interference waveform that can take a longer width between the reference interference waveform and the selected interference waveform within a range in which the accuracy is not lowered.

(第6実施形態にかかる温度測定システム)
次に,第6実施形態にかかる基板処理装置の温度測定システムについて図面を参照しながら説明する。第6実施形態にかかる基板処理装置の温度測定システムは,第5実施形態にかかる温度測定装置を基板処理装置に適用した場合の具体例である。図30は,第6実施形態にかかる温度測定システムの概略構成を示す図である。ここでは,例えばプラズマエッチング装置などの基板処理装置における温度測定対象物Tの例としてウエハTwの温度測定に適用する場合を例に挙げて説明する。
(Temperature Measurement System According to Sixth Embodiment)
Next, a temperature measurement system for a substrate processing apparatus according to a sixth embodiment will be described with reference to the drawings. The temperature measurement system for a substrate processing apparatus according to the sixth embodiment is a specific example when the temperature measurement apparatus according to the fifth embodiment is applied to a substrate processing apparatus. FIG. 30 is a diagram illustrating a schematic configuration of a temperature measurement system according to the sixth embodiment. Here, as an example of the temperature measurement target T in a substrate processing apparatus such as a plasma etching apparatus, a case where it is applied to the temperature measurement of the wafer Tw will be described as an example.

図30に示す温度測定システムは,大別すると,温度測定装置600,基板処理装置300,制御装置400から構成される。図30に示す温度測定装置600は,図27に示す光源110を低コヒーレンス光源例えば低コヒーレンス性を有する光を照射するSLD210により構成し,受光手段150を例えばGeフォトダイオードなどを用いたPD250により構成し,参照光反射手段140は例えば参照ミラー240により構成し,駆動手段142は例えば参照ミラー240を駆動するステッピングモータ242により構成し,さらに光源スプリッタ510,中継スプリッタ520,受光スプリッタ530をそれぞれ例えば1×2の光ファイバカプラ610,2×1の光ファイバカプラ620,1×2の光ファイバカプラ630で構成したものである。   The temperature measurement system shown in FIG. 30 is roughly composed of a temperature measurement device 600, a substrate processing device 300, and a control device 400. In the temperature measuring apparatus 600 shown in FIG. 30, the light source 110 shown in FIG. 27 is configured by a low coherence light source, for example, an SLD 210 that emits light having low coherence, and the light receiving means 150 is configured by a PD 250 using, for example, a Ge photodiode. The reference light reflecting means 140 is composed of, for example, a reference mirror 240, the driving means 142 is composed of, for example, a stepping motor 242 that drives the reference mirror 240, and the light source splitter 510, the relay splitter 520, and the light receiving splitter 530 are each set to, for example, 1 A × 2 optical fiber coupler 610, a 2 × 1 optical fiber coupler 620, and a 1 × 2 optical fiber coupler 630 are configured.

図30に示す基板処理装置300,制御装置400の構成は図5に示すものとほぼ同様であるが,図5に示す基板処理装置300ではウエハTwの裏面側へ測定光を照射して反射する光を受光するためのコリメータ付光ファイバFを下部電極340に配置するのに対して,図30に示す基板処理装置300ではウエハTwの表面を構成する第1面Sへ測定光を照射するためのコリメータ付光ファイバFb1を上部電極350に配設するとともに,ウエハTwの裏面を構成する第2面Sからの測定光を受光するためのコリメータ付光ファイバFb2をの下部電極340に配設する点で相違する。 The configurations of the substrate processing apparatus 300 and the control apparatus 400 shown in FIG. 30 are almost the same as those shown in FIG. 5, but the substrate processing apparatus 300 shown in FIG. 5 reflects and reflects the measurement light on the back side of the wafer Tw. whereas arranging the collimator optical fiber with F for receiving light on the lower electrode 340 is irradiated with measurement light to the first surface S 1 which constitutes a surface of a substrate processing apparatus 300, wafer Tw shown in FIG. 30 the collimator optical fiber with F b1 while disposed in the upper electrode 350 for the lower electrode 340 of the collimator optical fiber with F b2 for receiving the measurement light from the second surface S 2 which constitutes the rear surface of the wafer Tw It differs in the point arrange | positioned.

具体的には,コリメータ付光ファイバFb1は上部電極350の電極支持体352の例えば中央部に形成された貫通孔358を介して,測定光がウエハTwへ向けて照射できるように配設され,コリメータ付光ファイバFb2は下部電極340の例えば中央部に形成された貫通孔344を介して,ウエハTwからの測定光を受光できるように配設される。なお,これらコリメータ付光ファイバFb1,Fb2を配設するウエハTwの面内方向の位置としては,コリメータ付光ファイバFb1から照射された測定光がウエハTwを介してコリメータ付光ファイバFb2で受光できる位置であれば,図30に示すようなウエハTwの中央部でなくてもよい。例えば測定光がウエハTwの端部へ照射されるようにコリメータ付光ファイバFb1,Fb2を配設してもよい。 Specifically, the collimator-equipped optical fiber Fb1 is arranged so that the measurement light can be irradiated toward the wafer Tw through a through-hole 358 formed in, for example, the center of the electrode support 352 of the upper electrode 350. , optical fiber F b2 with collimator through the through-hole 344 formed in the example central portion of the lower electrode 340 are arranged to allow receiving the measurement light from the wafer Tw. The position in the in-plane direction of the wafer Tw on which the collimator-equipped optical fibers F b1 and F b2 are disposed is the measurement light irradiated from the collimator-equipped optical fiber F b1 via the wafer Tw. If it is a position where light can be received at b2 , it may not be the central portion of the wafer Tw as shown in FIG. For example, the collimator-equipped optical fibers F b1 and F b2 may be disposed so that the measurement light is irradiated to the end of the wafer Tw.

このような構成の図30に示す温度測定システムによれば,制御装置400により参照ミラー240を一方向へ移動させることにより,図29と同様の測定光と参照光との光の干渉を得ることができる。従って,図30に示すような温度測定システムによっても,PD250で測定される複数の干渉波形から基準干渉波形と選択干渉波形をこれらのピーク間幅ができる限り長くなるように選択することにより,基準干渉波形と選択干渉波形とのピーク間幅の測定精度を向上させることができるので,ウエハTwの温度測定精度を向上させることができる。   According to the temperature measurement system shown in FIG. 30 configured as described above, the control device 400 moves the reference mirror 240 in one direction, thereby obtaining the same light interference between the measurement light and the reference light as in FIG. Can do. Therefore, even by the temperature measurement system as shown in FIG. 30, by selecting the reference interference waveform and the selected interference waveform from the plurality of interference waveforms measured by the PD 250 so that the peak-to-peak width is as long as possible, Since the measurement accuracy of the peak-to-peak width between the interference waveform and the selected interference waveform can be improved, the temperature measurement accuracy of the wafer Tw can be improved.

また,本実施形態にかかる温度測定システムにおいても,上述したような干渉波形の崩れ度合の指標Kに基づいて選択干渉波形を選択することにより,干渉波形の崩れ度合が干渉波形のピーク間幅の測定精度を低下させない範囲で,基準干渉波形と選択干渉波形との幅をより長くとることができる干渉波形を容易に選択することができる。   Also in the temperature measurement system according to the present embodiment, by selecting the selected interference waveform based on the index K of the degree of collapse of the interference waveform as described above, the degree of collapse of the interference waveform can be reduced to the peak-to-peak width of the interference waveform. It is possible to easily select an interference waveform that can take a longer width between the reference interference waveform and the selected interference waveform within a range that does not reduce the measurement accuracy.

(光ファイバなどを使用しない温度測定システム)
なお,上述した第2〜第6実施形態に示す温度測定システムは,測定光伝送手段及び参照光伝送手段として光ファイバを利用し,温度測定で使用する測定光や参照光などの光を光ファイバにより伝送するものについて説明したが,必ずしもこれに限定されるものではなく,温度測定で使用する測定光や参照光などの光を光ファイバやコリメートファイバを用いずに,図31に示すような原理に基づいて空中を伝送させるようにしてもよい。
(Temperature measurement system that does not use optical fiber)
Note that the temperature measurement system shown in the second to sixth embodiments described above uses an optical fiber as the measurement light transmission means and the reference light transmission means, and transmits light such as measurement light and reference light used in the temperature measurement to the optical fiber. However, the present invention is not necessarily limited to this, and the principle as shown in FIG. 31 is used without using optical fiber or collimated fiber for measuring light or reference light used in temperature measurement. The air may be transmitted based on the above.

図31は,光ファイバやコリメートファイバの用いずに空中を利用して光を伝送させる温度測定装置700の原理を示す。このような温度測定装置700においては,光源(例えばSLD)110からの光が空中を伝送してスプリッタ(例えばハーフミラー)710へ照射され,スプリッタ710により参照光と測定光との2つに分けられる。測定光は空中を伝送して対向配置された測定対象物Tへ向けて照射されて測定対象物Tの表面や裏面で反射される。一方,参照光は空中を伝送して参照光反射手段(例えば参照ミラー)140へ向けて照射され,参照光反射手段のミラー表面で反射される。そして,それぞれ反射された測定光と参照光が空中を伝送して再びスプリッタ710に入射して受光手段150に受光される。その際,参照光の光路長によっては重なり合って干渉を起こして,その干渉波が受光手段150で検出される。このような原理を用いることにより,光ファイバやコリメートファイバを用いずに光を伝送させることができる。これにより,光ファイバやコリメートファイバを通らない波長(例えば2.5μm以上の波長)の光であっても,測定光や参照光の光源110として利用することができる。   FIG. 31 shows the principle of a temperature measuring apparatus 700 that transmits light using the air without using an optical fiber or a collimating fiber. In such a temperature measuring device 700, light from a light source (for example, SLD) 110 is transmitted through the air and applied to a splitter (for example, half mirror) 710, and is divided into reference light and measurement light by the splitter 710. It is done. The measurement light is transmitted through the air and irradiated to the measurement target T arranged opposite to the measurement light, and is reflected by the front and back surfaces of the measurement target T. On the other hand, the reference light is transmitted through the air and irradiated onto the reference light reflecting means (for example, the reference mirror) 140, and is reflected by the mirror surface of the reference light reflecting means. Then, the reflected measurement light and reference light are transmitted through the air, enter the splitter 710 again, and are received by the light receiving means 150. At that time, depending on the optical path length of the reference light, they overlap and cause interference, and the interference wave is detected by the light receiving means 150. By using such a principle, light can be transmitted without using an optical fiber or a collimating fiber. As a result, even light having a wavelength that does not pass through the optical fiber or collimate fiber (for example, a wavelength of 2.5 μm or more) can be used as the light source 110 for measurement light or reference light.

(基板処理装置の制御システム)
また,上述した第2〜第6実施形態に示す温度測定システムは,各種コントローラ470として例えば上部電極350の電極板351やウエハTwの温度を制御するコントローラを設けることにより,上部電極350の電極板351やウエハTwについて,温度測定装置により温度測定を行いながら,その測定結果に応じて各種コントローラ470により温度を制御する基板処理装置の制御システムとして構成することもできる。
(Control system for substrate processing equipment)
In the temperature measurement system shown in the second to sixth embodiments described above, the electrode plate of the upper electrode 350 is provided by providing, for example, an electrode plate 351 of the upper electrode 350 or a controller for controlling the temperature of the wafer Tw as the various controllers 470. It is also possible to configure the control system of the substrate processing apparatus that controls the temperature of the 351 and the wafer Tw by various controllers 470 according to the measurement result while measuring the temperature by the temperature measuring apparatus.

この場合,各種コントローラ470は,上部電極350の電極板351の温度を制御するものとして,例えば内側冷媒コントローラ,外側冷媒コントローラを備えるようにしてもよい。内側冷媒コントローラは,内側冷媒流路354へ循環させる冷媒の温度や流量を制御することにより,上部電極350の内側部位の温度を制御するものである。外側冷媒コントローラは,外側冷媒流路353へ循環させる冷媒の温度や流量を制御することにより,上部電極350の外側部位の温度を制御するものである。   In this case, the various controllers 470 may include, for example, an inner refrigerant controller and an outer refrigerant controller as those for controlling the temperature of the electrode plate 351 of the upper electrode 350. The inner refrigerant controller controls the temperature of the inner part of the upper electrode 350 by controlling the temperature and flow rate of the refrigerant circulated to the inner refrigerant flow path 354. The outer refrigerant controller controls the temperature of the outer portion of the upper electrode 350 by controlling the temperature and flow rate of the refrigerant circulated to the outer refrigerant flow path 353.

さらに,各種コントローラ470は,ウエハTwの温度を制御するものとして,例えばESC(electrostatic chuck:静電チャック)系コントローラ,FR(フォーカスリング)系コントローラを備えるようにしてもよい。ESC系コントローラは,下部電極340にウエハを静電吸着させるための図示しない静電チャック(ESC)へ印加する電圧,静電チャックを介してウエハTwへ供給されるバックサイドガスのガス流量やガス圧力,下部電極340内に形成される冷媒流路に循環させる冷媒の温度などを制御するものである。また,FR系コントローラは,ウエハの周囲を囲むように設けられた図示しない周辺リング例えばフォーカスリングへ印加する電圧,フォーカスリングを介してウエハTwへ供給されるバックサイドガスのガス流量やガス圧力などを制御するものである。   Furthermore, the various controllers 470 may include, for example, an ESC (electrostatic chuck) system controller and an FR (focus ring) system controller as a controller for controlling the temperature of the wafer Tw. The ESC system controller applies a voltage applied to an electrostatic chuck (ESC) (not shown) for electrostatically attracting the wafer to the lower electrode 340, the gas flow rate of the backside gas supplied to the wafer Tw via the electrostatic chuck, and the gas The pressure and the temperature of the refrigerant to be circulated through the refrigerant flow path formed in the lower electrode 340 are controlled. Further, the FR system controller includes a voltage applied to a peripheral ring (not shown) provided to surround the periphery of the wafer, for example, a focus ring, a gas flow rate and a gas pressure of a backside gas supplied to the wafer Tw via the focus ring, and the like. Is to control.

このように,第2〜第6実施形態に示す温度測定システムを基板処理装置の制御システムとして構成することにより,上部電極350の温度を制御したり,ウエハTwの温度を制御したりできるので,ウエハTwのプロセス特性を的確に制御することができ,また基板処理装置の安定性を向上させることができる。   Thus, by configuring the temperature measurement system shown in the second to sixth embodiments as a control system for the substrate processing apparatus, the temperature of the upper electrode 350 or the temperature of the wafer Tw can be controlled. The process characteristics of the wafer Tw can be accurately controlled, and the stability of the substrate processing apparatus can be improved.

(厚み測定装置及び厚み測定システム)
また,上記第1〜第6実施形態では,測定対象物の温度の測定を行う場合について説明したが,必ずしもこれに限定されるものではなく,測定対象物の厚さの測定を行う場合について適用してもよい。すなわち,上記第1〜第5実施形態では,例えば測定対象物Tへ照射したときに測定対象物から透過又は反射した測定光と参照光との干渉波形のピーク間幅がその測定対象物の光路長に相当することを利用して,干渉波形のピーク間幅を参照光反射手段(例えば参照ミラー)の移動距離として測定して測定対象物の光路長を求め,この光路長を測定対象物の温度に換算する場合について説明した。
(Thickness measuring device and thickness measuring system)
In the first to sixth embodiments, the case of measuring the temperature of the measurement object has been described. However, the present invention is not necessarily limited to this, and is applied to the case of measuring the thickness of the measurement object. May be. That is, in the first to fifth embodiments, for example, when the measurement target T is irradiated, the width between peaks of the interference waveform between the measurement light transmitted or reflected from the measurement target and the reference light is the optical path of the measurement target. By utilizing the fact that it corresponds to the length, the inter-peak width of the interference waveform is measured as the moving distance of the reference light reflecting means (for example, the reference mirror) to obtain the optical path length of the measurement object. The case of converting to temperature has been described.

ところが,この光路長Lは厚みd×屈折率nで表され,屈折率nは温度に依存するため,光路長Lを測定したときの温度での屈折率nがわかれば,測定した光路長Lを屈折率nで割り算することにより,測定対象物の厚みdを求めることができる。従って,例えば測定対象物の温度と屈折率nの関係を予め厚さ用基準換算データとして制御装置400のメモリ440などに記憶しておき,測定対象物の光路長Lを測定したときの温度を別の温度測定手段(例えば抵抗温度計や蛍光式温度計等)により測定して厚さ用基準換算データによりその温度のときの屈折率nを求め,この屈折率nで上記光路長Lを割り算することにより,測定対象物の厚みdを求めることができる。   However, since this optical path length L is expressed by thickness d × refractive index n and refractive index n depends on temperature, if the refractive index n at the temperature when the optical path length L is measured is known, the measured optical path length L Is divided by the refractive index n to obtain the thickness d of the object to be measured. Therefore, for example, the relationship between the temperature of the measurement object and the refractive index n is previously stored in the memory 440 of the control device 400 as thickness reference conversion data, and the temperature when the optical path length L of the measurement object is measured is calculated. Measured by another temperature measuring means (for example, resistance thermometer, fluorescent thermometer, etc.), the refractive index n at that temperature is obtained from the reference conversion data for thickness, and the optical path length L is divided by this refractive index n. By doing so, the thickness d of the measurement object can be obtained.

このように,測定光と参照光との干渉波形を利用して測定対象物の厚みを求めることができるので,この原理を利用することにより,上記第1〜第5実施形態における温度測定装置,基板処理装置の温度測定システムはそれぞれ,厚さ測定装置,基板処理装置の厚さ測定システムとして構成することもできる。このような厚さ測定装置,基板処理装置の厚さ測定システムにより,例えば基板処理装置300の上部電極350の電極板351などを測定対象物Tとして消耗部品の厚さを定期的に測定することにより,電極板351などの消耗部品の消耗量を測定することができる。これにより,電極板351の交換時期などを予測することもできる。   Thus, since the thickness of the measurement object can be obtained using the interference waveform between the measurement light and the reference light, the temperature measurement device according to the first to fifth embodiments can be obtained by using this principle. The temperature measuring system of the substrate processing apparatus can also be configured as a thickness measuring apparatus and a thickness measuring system of the substrate processing apparatus, respectively. By using such a thickness measuring apparatus and a thickness measuring system for a substrate processing apparatus, for example, the thickness of a consumable part is periodically measured by using, for example, the electrode plate 351 of the upper electrode 350 of the substrate processing apparatus 300 as a measurement target T. Thus, the amount of consumption of consumable parts such as the electrode plate 351 can be measured. Accordingly, it is possible to predict the replacement time of the electrode plate 351 and the like.

なお,厚さの測定は,基板処理装置300の電源投入時やメンテナンス後などのように同じ温度状態のときに行うことにより,その温度での屈折率nを,制御装置400のメモリ440などに記憶しておけば,厚みを測定する度にそのときの測定対象物の温度を測定しなくても済むので,別の温度測定手段を不要とすることができ,厚み測定にかかる手間や時間も極力軽減することができる。なお,制御装置400を厚さ算出手段又は制御手段として機能させることにより,制御装置400により測定光と参照光との光の干渉測定の結果に基づいて測定対象物Tの厚さを求めることができる。   The thickness is measured when the substrate processing apparatus 300 is in the same temperature state, such as when the power is turned on or after maintenance, and the refractive index n at that temperature is stored in the memory 440 of the control apparatus 400 or the like. If it is memorized, it is not necessary to measure the temperature of the object to be measured each time the thickness is measured, so there is no need for another temperature measuring means, and the time and labor for measuring the thickness are also eliminated. It can be reduced as much as possible. In addition, by causing the control device 400 to function as a thickness calculating unit or a control unit, the thickness of the measurement target T can be obtained based on the result of interference measurement between the measurement light and the reference light by the control device 400. it can.

(光源の光強度)
上記第1〜第6実施形態における温度測定装置はさらに,光源例えばSLD210の光強度を調整できる光強度調整手段を設け,制御装置400により例えば各種コントローラに設けた光強度コントローラを介して光強度調整手段を制御して,測定光と参照光との光の干渉の測定中に光源110の光強度を変えるようにしてもよい。
(Light intensity of light source)
The temperature measuring apparatus in the first to sixth embodiments further includes a light intensity adjusting unit that can adjust the light intensity of the light source, for example, the SLD 210, and the controller 400 adjusts the light intensity via, for example, the light intensity controllers provided in various controllers. The light intensity of the light source 110 may be changed during measurement of light interference between the measurement light and the reference light by controlling the means.

こうすることにより,測定光と参照光との光の干渉の測定中に,測定光が測定対象物T内を透過し複数回反射することによる測定光の光強度の低下を防止することにより,その測定光と参照光との干渉波形についてのS/N比の低下を防止してその干渉波形が崩れないようにすることができる。これにより,例えば干渉波形のピーク位置の検出精度を向上させることができるので,干渉波形のピーク間幅に基づく温度や厚みの測定精度を向上させることができる。   In this way, during measurement of the interference between the measurement light and the reference light, the measurement light is prevented from being reduced in light intensity due to being transmitted through the measurement object T and reflected multiple times. It is possible to prevent a decrease in the S / N ratio of the interference waveform between the measurement light and the reference light so that the interference waveform does not collapse. Thereby, for example, since the detection accuracy of the peak position of the interference waveform can be improved, the measurement accuracy of temperature and thickness based on the peak-to-peak width of the interference waveform can be improved.

より具体的な光源の光強度調整方法としては,例えば測定光と参照光との光の干渉の測定中に,参照光反射手段(例えば参照ミラー)140の移動距離に応じて光源の光強度を徐々に大きくすることが挙げられる。これによれば,測定対象物Tの両端面S,Sでの往復反射回数が多い測定光ほど光強度を大きくすることができるので,そのような測定光と参照光との干渉波形のS/N比の低下を防止することができる。 As a more specific light intensity adjustment method of the light source, for example, during the measurement of the light interference between the measurement light and the reference light, the light intensity of the light source is adjusted according to the moving distance of the reference light reflecting means (for example, the reference mirror) 140. Increasing gradually. According to this, since the light intensity can be increased as the measurement light having a larger number of round-trip reflections at the both end faces S 1 and S 2 of the measurement target T, the interference waveform between the measurement light and the reference light can be increased. A decrease in the S / N ratio can be prevented.

また,測定光と参照光との光の干渉の測定中に,測定光の測定対象物Tの両端面S,Sでの往復反射回数に応じて光源の光強度を変えるようにしてもよい。測定光の光強度は測定光の測定対象物Tの両端面S,Sでの往復反射回数が多いほど減少するので,例えば測定光の測定対象物Tの両端面S,Sでの往復反射回数が多いほど光源の光強度を大きくすることにより,測定光の光強度の低下を的確に防止することができるので,そのような測定光と参照光との干渉波形のS/N比の低下も的確に防止することができる。 Further, during the measurement of the light interference between the measurement light and the reference light, the light intensity of the light source may be changed in accordance with the number of round-trip reflections at both end faces S 1 and S 2 of the measurement object T of the measurement light. Good. Since the light intensity of the measurement light decreases as the number of round-trip reflections at both end faces S 1 and S 2 of the measurement object T of the measurement light increases, for example, at both end faces S 1 and S 2 of the measurement object T of the measurement light By increasing the light intensity of the light source as the number of reciprocal reflections increases, the light intensity of the measurement light can be accurately prevented from decreasing. Therefore, the S / N of the interference waveform between such measurement light and the reference light can be prevented. A decrease in the ratio can also be prevented accurately.

また,測定光の測定対象物Tからの反射強度を予め測定しておき,測定対象物Tの測定光と参照光との光の干渉の測定する際に,予め測定した測定光の反射強度(例えば測定光と参照光との干渉波形の干渉強度)に応じて光源の光強度を変えることにより,その測定光の反射強度が小さいほど光源の光強度を大きくすることができるので,測定光と参照光との干渉波形のS/N比の低下を的確に防止することができる。   In addition, the reflection intensity of the measurement light from the measurement object T is measured in advance, and when measuring the interference between the measurement light of the measurement object T and the reference light, the reflection intensity of the measurement light measured in advance ( For example, by changing the light intensity of the light source in accordance with the interference intensity of the interference waveform between the measurement light and the reference light), the light intensity of the light source can be increased as the measurement light reflection intensity decreases. A decrease in the S / N ratio of the interference waveform with the reference light can be accurately prevented.

このように,光源の光強度を調整することによって,測定光と参照光との干渉波形のS/N比の低下を防止することができるので,そのような干渉波形のピーク位置の測定精度の低下を防止できる。これにより,基準干渉波形と選択干渉波形とのピーク間幅がより長くなる干渉波形を選択干渉波形として選択することができるようになるため,温度測定精度もより向上させることができる。   As described above, by adjusting the light intensity of the light source, it is possible to prevent a decrease in the S / N ratio of the interference waveform between the measurement light and the reference light. Decline can be prevented. As a result, an interference waveform having a longer peak-to-peak width between the reference interference waveform and the selected interference waveform can be selected as the selected interference waveform, and the temperature measurement accuracy can be further improved.

なお,上述したような測定光と参照光との干渉波形の崩れ度合の指標Kに基づいて,この指標Kが所定値を越えない範囲の干渉波形を選択干渉波形として選択するという干渉波形の選択方法に,上記光源の光強度を調整する方法を組み合わせるようにしてもよい。これによれば,測定光と参照光との光の干渉の測定中に,光源の光強度を調整することにより,干渉波形のS/N比が改善された干渉波形を受光することができるので,そのような干渉波形の崩れ度合の指標Kも改善されていることになる。従って,光源の光強度を調整することにより,干渉波形の崩れ度合の指標Kが所定値を越えない範囲の干渉波形を増やすことができる。これにより,基準干渉波形と選択干渉波形とのピーク間幅がより長くなり,かつ干渉波形の崩れが最小となる干渉波形を容易に選択干渉波形として選択することができるようになる。このため,温度測定精度もより向上させることができる。   In addition, based on the index K of the degree of collapse of the interference waveform between the measurement light and the reference light as described above, the interference waveform is selected such that an interference waveform in a range where the index K does not exceed a predetermined value is selected as the selected interference waveform. You may make it combine the method of adjusting the light intensity of the said light source with the method. According to this, an interference waveform with an improved S / N ratio of the interference waveform can be received by adjusting the light intensity of the light source during measurement of the interference between the measurement light and the reference light. Thus, the index K of the degree of collapse of the interference waveform is also improved. Therefore, by adjusting the light intensity of the light source, it is possible to increase the interference waveform in a range where the index K of the degree of collapse of the interference waveform does not exceed a predetermined value. This makes it possible to easily select an interference waveform in which the peak-to-peak width between the reference interference waveform and the selected interference waveform is longer and the collapse of the interference waveform is minimized as the selected interference waveform. For this reason, the temperature measurement accuracy can be further improved.

以上,添付図面を参照しながら本発明の好適な実施形態について説明したが,本発明は係る例に限定されないことは言うまでもない。当業者であれば,特許請求の範囲に記載された範疇内において,各種の変更例または修正例に想到し得ることは明らかであり,それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to the example which concerns. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Understood.

例えば,上記実施形態では測定対象物となる被処理基板として,基板処理装置300の処理室310内で処理されるウエハTwを例に挙げて説明したが,これに限られるものではなく,測定対象物とする被処理基板としては例えばガラス基板などの液晶基板であってもよい。また,例えば基板処理装置300の処理室310内に配置される電極板(例えば下部電極340又は上部電極350の電極板),ウエハの周囲に配設される周辺リング(例えばフォーカスリングなど)などのように,基板処理装置内の様々な構成部品や構成部分を測定対象物Tとして温度又は厚みを測定することができる。   For example, in the above-described embodiment, the wafer Tw to be processed in the processing chamber 310 of the substrate processing apparatus 300 is described as an example of the substrate to be measured as the measurement target. The substrate to be processed may be a liquid crystal substrate such as a glass substrate. In addition, for example, an electrode plate (for example, an electrode plate for the lower electrode 340 or the upper electrode 350) disposed in the processing chamber 310 of the substrate processing apparatus 300, a peripheral ring (for example, a focus ring) disposed around the wafer, or the like. As described above, the temperature or thickness can be measured using various components and components in the substrate processing apparatus as the measurement object T.

また,上記実施形態ではウエハTwなどの1つの測定対象物Tを測定対象とする場合について説明したが,必ずしもこれに限定されるものではなく,複数の測定対象物Tを測定対象とする場合や,ウエハTwなどの1つの物体内における複数の測定ポイントを測定対象としてもよい。   In the above-described embodiment, the case where one measurement target T such as the wafer Tw is a measurement target has been described. However, the present invention is not necessarily limited to this. A plurality of measurement points in one object such as the wafer Tw may be measured.

この場合には光源からの測定光をさらに分波して各測定対象物T又は各測定ポイントへ照射するようにしてもよい。これにより,各測定対象物又は各測定ポイントの測定光と参照光との干渉波形が一度に測定できるので,これらの温度又は厚さも一度に測定することができ,各測定対象物又は各測定ポイントの温度又は厚さを測定する時間を大幅に短縮することができる。   In this case, the measurement light from the light source may be further demultiplexed and applied to each measurement object T or each measurement point. As a result, since the interference waveform between the measurement light and the reference light of each measurement object or each measurement point can be measured at one time, these temperatures or thicknesses can also be measured at one time, and each measurement object or each measurement point can be measured. The time for measuring the temperature or thickness of the film can be greatly shortened.

また,互いに対向するように配置された複数の測定対象物へ測定光を照射することにより,先に配置された測定対象物を透過した光を次に配置された測定対象物の測定光として,各測定対象物から反射した測定光を受光手段で受光するようにしてもよい。これによれば,1つの測定光によって複数の測定対象物の温度又は厚さを一度に測定することができるので,温度又は厚さの測定時間を短縮することができるとともに,測定光伝送手段例えば光ファイバの取り回しが容易となり,温度測定装置を例えば基板処理装置などに取付ける際の手間を軽減することができる。   In addition, by irradiating a plurality of measurement objects arranged to face each other with measurement light, light transmitted through the measurement object arranged first is used as measurement light for the next measurement object, The measurement light reflected from each measurement object may be received by the light receiving means. According to this, since the temperature or thickness of a plurality of measurement objects can be measured at one time with one measurement light, the measurement time of temperature or thickness can be shortened, and the measurement light transmission means, for example, The handling of the optical fiber is facilitated, and the time required for attaching the temperature measuring apparatus to, for example, a substrate processing apparatus can be reduced.

さらに,本発明における測定対象としては,ウエハTwなどのような物体としての測定対象物Tの他,例えばウエハTwの内部層などのような物体の一部を構成する測定対象層であってもよい。   Further, the measurement target in the present invention may be a measurement target layer constituting a part of an object such as an inner layer of the wafer Tw in addition to the measurement target T as an object such as the wafer Tw. Good.

また,上記実施形態では,基板処理装置として例えばプラズマ処理装置に適用した場合について説明したが,必ずしもこれに限定されるものではなく,プラズマを使用しない成膜装置や熱処理装置のような膜改質装置など様々な基板処理装置に適用することができ,さらに本発明にかかる温度/厚さ測定装置は,基板処理装置に限られず,その他の様々な処理装置に適用できる。   In the above-described embodiment, the case where the substrate processing apparatus is applied to, for example, a plasma processing apparatus has been described. However, the present invention is not necessarily limited to this, and film reforming such as a film forming apparatus or a heat treatment apparatus that does not use plasma. The temperature / thickness measuring apparatus according to the present invention is not limited to the substrate processing apparatus and can be applied to various other processing apparatuses.

本発明は,例えば半導体ウエハ,液晶基板などの温度を測定する温度/厚さ測定装置,温度測定方法,温度/厚さ測定システムに適用可能であり,また基板処理装置を制御する制御システム,制御方法に適用可能である。   The present invention can be applied to, for example, a temperature / thickness measuring apparatus, a temperature measuring method, and a temperature / thickness measuring system for measuring the temperature of a semiconductor wafer, a liquid crystal substrate, etc., and a control system and control for controlling a substrate processing apparatus Applicable to the method.

本発明の第1実施形態にかかる温度測定装置の概略構成を示すブロック図である。It is a block diagram showing a schematic structure of a temperature measuring device concerning a 1st embodiment of the present invention. 同実施形態において測定対象物へ測定光を照射した際に受光される測定光の種類を説明するための観念図である。It is an idea figure for demonstrating the kind of measurement light received when irradiating measurement light to a measuring object in the embodiment. 同実施形態にかかる温度測定装置により得られる測定光と参照光との光の干渉波の具体例を示す図であり,同図(a)は各温度測定対象物の温度が変化する前の光の干渉波の1例を示し,同図(b)は各温度測定対象物の温度が変化した後の光の干渉波の1例を示す。It is a figure which shows the specific example of the interference wave of the light of the measurement light and reference light which are obtained by the temperature measuring device concerning the embodiment, The figure (a) is the light before the temperature of each temperature measurement object changes FIG. 2B shows an example of the interference wave of light after the temperature of each temperature measurement object has changed. 測定対象物の温度と光路長との関係の具体例を示す実験結果である。It is an experimental result which shows the specific example of the relationship between the temperature of a measuring object, and optical path length. 本発明の第2実施形態にかかる基板処理装置の温度測定システムの具体例についての概略構成を示すブロック図である。It is a block diagram which shows schematic structure about the specific example of the temperature measurement system of the substrate processing apparatus concerning 2nd Embodiment of this invention. 同実施形態にかかる温度測定装置により得られる測定光と参照光との光の干渉波の具体例を示す図である。It is a figure which shows the specific example of the interference wave of the light of the measurement light and reference light which are obtained with the temperature measuring device concerning the embodiment. 図6に示す干渉波形を利用して温度測定を行ってその温度測定誤差を算出した実験結果を示す図である。It is a figure which shows the experimental result which performed the temperature measurement using the interference waveform shown in FIG. 6, and computed the temperature measurement error. 1つの干渉波形を拡大して示した実測波形と,この実測波形に対して所定の加工処理を施した加工波形との具体例を示す図である。It is a figure which shows the specific example of the actual measurement waveform which expanded and showed one interference waveform, and the processing waveform which performed predetermined processing with respect to this actual measurement waveform. 図6に示す干渉波形ya0についての加工波形yb0を示す図である。It is a diagram illustrating a processing waveform yb0 for interference waveform y a0 shown in Fig. 図6に示す干渉波形ya1についての加工波形yb1を示す図である。It is a diagram illustrating a processing waveform yb1 of interference waveforms y a1 shown in FIG. 図6に示す干渉波形ya2についての加工波形yb2を示す図である。It is a diagram illustrating a processing waveform yb2 for interference waveform y a2 shown in FIG. 図6に示す干渉波形ya3についての加工波形yb3を示す図である。It is a diagram illustrating a processing waveform yb3 for interference waveform y a3 shown in FIG. 図6に示す干渉波形ya0についての包絡線yd0を示す図である。Is a diagram showing an envelope yd0 for interference waveform y a0 shown in Fig. 図6に示す干渉波形ya1についての包絡線yd1を示す図である。Is a diagram showing an envelope yd1 for interference waveform y a1 shown in FIG. 図6に示す干渉波形ya2についての包絡線yd2を示す図である。Is a diagram showing an envelope yd2 for interference waveform y a2 shown in FIG. 図6に示す干渉波形ya3についての包絡線yd3を示す図である。Is a diagram showing an envelope yd3 for interference waveform y a3 shown in FIG. 図13〜図16に示す各干渉波形ya0〜ya3の包絡線yd0〜yd3について崩れ度合の指標Kを求めた結果を示す図である。It is a diagram illustrating a result of obtaining an index K of degree collapse the envelope y d0 ~y d3 of each of the interference waveform y a0 ~y a3 shown in FIGS. 13 to 16. 本発明の第3実施形態にかかる基板処理装置の温度測定システムの具体例についての概略構成を示すブロック図である。It is a block diagram which shows schematic structure about the specific example of the temperature measurement system of the substrate processing apparatus concerning 3rd Embodiment of this invention. 同実施形態にかかる温度測定装置による測定光の光路の種類を示す図である。It is a figure which shows the kind of optical path of the measurement light by the temperature measuring device concerning the embodiment. 同実施形態にかかる温度測定装置により得られる測定光と参照光との光の干渉波の具体例を示す図である。It is a figure which shows the specific example of the interference wave of the light of the measurement light and reference light which are obtained with the temperature measuring device concerning the embodiment. 同実施形態にかかる基板処理装置の温度測定システムの変形例についての概略構成を示すブロック図である。It is a block diagram which shows schematic structure about the modification of the temperature measurement system of the substrate processing apparatus concerning the embodiment. 本発明の第4実施形態にかかる基板処理装置の温度測定システムの具体例についての概略構成を示すブロック図である。It is a block diagram which shows schematic structure about the specific example of the temperature measurement system of the substrate processing apparatus concerning 4th Embodiment of this invention. 同実施形態にかかる温度測定装置により得られる測定光と参照光との光の干渉波の具体例を示す図である。It is a figure which shows the specific example of the interference wave of the light of the measurement light and reference light which are obtained with the temperature measuring device concerning the embodiment. 同実施形態にかかる基板処理装置の温度測定システムの変形例についての概略構成を示すブロック図である。It is a block diagram which shows schematic structure about the modification of the temperature measurement system of the substrate processing apparatus concerning the embodiment. 同実施形態にかかる基板処理装置の温度測定システムの他の変形例についての概略構成を示すブロック図である。It is a block diagram which shows schematic structure about the other modification of the temperature measurement system of the substrate processing apparatus concerning the embodiment. 同実施形態にかかる基板処理装置の温度測定システムの他の変形例についての概略構成を示すブロック図である。It is a block diagram which shows schematic structure about the other modification of the temperature measurement system of the substrate processing apparatus concerning the embodiment. 本発明の第5実施形態にかかる基板処理装置の温度測定装置についての概略構成を示すブロック図である。It is a block diagram which shows schematic structure about the temperature measurement apparatus of the substrate processing apparatus concerning 5th Embodiment of this invention. 同実施形態において測定対象物へ測定光を照射した際に受光される測定光の種類を説明するための観念図である。It is an idea figure for demonstrating the kind of measurement light received when irradiating measurement light to a measuring object in the embodiment. 同実施形態にかかる温度測定装置により得られる測定光と参照光との光の干渉波の具体例を示す図である。It is a figure which shows the specific example of the interference wave of the light of the measurement light and reference light which are obtained with the temperature measuring device concerning the embodiment. 本発明の第6実施形態にかかる基板処理装置の温度測定システムについての概略構成を示すブロック図である。It is a block diagram which shows schematic structure about the temperature measurement system of the substrate processing apparatus concerning 6th Embodiment of this invention. 空中を利用して測定光や参照光などの光を伝送する温度測定装置の原理を説明するための図である。It is a figure for demonstrating the principle of the temperature measuring apparatus which transmits light, such as measurement light and reference light, using the air. 従来の温度測定装置の原理を説明するための図である。It is a figure for demonstrating the principle of the conventional temperature measuring apparatus. 図32に示す温度測定装置により計測された干渉波形を観念的に示した図である。It is the figure which showed notionally the interference waveform measured by the temperature measuring apparatus shown in FIG.

符号の説明Explanation of symbols

100 温度測定装置
110 光源
120 スプリッタ
140 参照光反射手段
142 駆動手段
150 受光手段
200 温度測定装置
210 SLD
220 光ファイバカプラ(スプリッタ)
222 光ファイバカプラ(参照光スプリッタ)
230 光ファイバカプラ(迂回光路接続用スプリッタ)
232 光ファイバカプラ(迂回光路接続用スプリッタ)
234 光ファイバカプラ(迂回光路接続用スプリッタ)
240 参照ミラー
242 モータ
244 参照ミラー
246 参照ミラー
250 PD
300 基板処理装置
310 処理室
320 高周波電源
330 高周波電源
340 下部電極
342 冷媒流路
344 貫通孔
350 上部電極
351 電極板
352 電極支持体
353 外側冷媒流路
354 内側冷媒流路
356 低熱伝達層
358 貫通孔
400 制御装置
410 CPU
420 モータドライバ
430 モータコントローラ
440 メモリ
450 バッファ
460 A/D変換器
470 各種コントローラ
500 温度測定装置
510 光源スプリッタ
520 中継スプリッタ
530 受光スプリッタ
600 温度測定装置
610 光ファイバカプラ(光源スプリッタ)
620 光ファイバカプラ(中継スプリッタ)
630 光ファイバカプラ(受光スプリッタ)
700 温度測定装置
710 スプリッタ
T 測定対象物
Tw ウエハ
DESCRIPTION OF SYMBOLS 100 Temperature measuring device 110 Light source 120 Splitter 140 Reference light reflection means 142 Driving means 150 Light receiving means 200 Temperature measuring device 210 SLD
220 Optical fiber coupler (splitter)
222 Optical fiber coupler (reference beam splitter)
230 Optical fiber coupler (diverter optical path connection splitter)
232 Optical fiber coupler (diverter optical path splitter)
234 Optical fiber coupler (diverter optical path splitter)
240 Reference mirror 242 Motor 244 Reference mirror 246 Reference mirror 250 PD
300 Substrate processing apparatus 310 Processing chamber 320 High-frequency power source 330 High-frequency power source 340 Lower electrode 342 Refrigerant channel 344 Through hole 350 Upper electrode 351 Electrode plate 352 Electrode support 353 Outer refrigerant channel 354 Inner refrigerant channel 356 Low heat transfer layer 358 Through hole 400 Controller 410 CPU
420 Motor driver 430 Motor controller 440 Memory 450 Buffer 460 A / D converter 470 Various controllers 500 Temperature measuring device 510 Light source splitter 520 Relay splitter 530 Light receiving splitter 600 Temperature measuring device 610 Optical fiber coupler (light source splitter)
620 Optical fiber coupler (relay splitter)
630 Optical fiber coupler (light receiving splitter)
700 Temperature Measuring Device 710 Splitter T Measurement Object Tw Wafer

Claims (35)

測定対象の両端面を透過し反射する光であって,前記測定対象の両端面で少なくとも2回以上往復反射可能な光を照射する光源と,
前記光源からの光を測定光と参照光とにスプリットするためのスプリッタと,
前記スプリッタからの参照光を反射するための参照光反射手段と,
前記参照光反射手段から反射する参照光の光路長を変化させるための光路長変化手段と,
前記スプリッタからの参照光を前記参照光反射手段へ向けて照射する参照光照射位置まで伝送する参照光伝送手段と,
前記スプリッタからの測定光を前記測定対象へ向けて照射する測定光照射位置まで伝送する測定光伝送手段と,
前記測定対象を透過又は反射する測定光と前記参照光反射手段から反射する参照光とが干渉して得られる複数の測定光の干渉波形を測定するための受光手段と,
前記受光手段で測定された測定光の干渉波形のうち,ある干渉波形を基準とし,この基準干渉波形の測定光よりも前記測定対象の両端面を少なくとも2回以上多く往復反射する測定光の干渉波形を選択干渉波形として,前記基準干渉波形と前記選択干渉波形とに基づいて前記測定対象の両端面間における測定光の光路長を測定し,その光路長に基づいて前記測定対象の温度又は厚さを測定する測定手段と,
を備えたことを特徴とする温度/厚さ測定装置。
A light source that irradiates and reflects light that is transmitted through and reflected from both end faces of the measurement object and that can be reflected back and forth at least twice at both end faces of the measurement object;
A splitter for splitting light from the light source into measurement light and reference light;
Reference light reflecting means for reflecting reference light from the splitter;
An optical path length changing means for changing an optical path length of the reference light reflected from the reference light reflecting means;
Reference light transmission means for transmitting the reference light from the splitter to a reference light irradiation position for irradiating the reference light to the reference light reflection means;
Measurement light transmission means for transmitting the measurement light from the splitter to the measurement light irradiation position for irradiating the measurement object toward the measurement object;
A light receiving means for measuring an interference waveform of a plurality of measurement lights obtained by interference between the measurement light transmitted or reflected by the measurement object and the reference light reflected from the reference light reflection means;
Interference of measurement light that reciprocally reflects at least two times at both end faces of the measurement object with respect to the measurement light of the reference interference waveform, with reference to a certain interference waveform among the interference waveforms of the measurement light measured by the light receiving means. Using the waveform as a selective interference waveform, the optical path length of the measurement light between both end faces of the measurement object is measured based on the reference interference waveform and the selective interference waveform, and the temperature or thickness of the measurement object is measured based on the optical path length. Measuring means for measuring the thickness;
A temperature / thickness measuring apparatus comprising:
前記測定手段は,前記受光手段で受光された測定光の干渉波形の崩れ度合に基づいて選択干渉波形を選択することを特徴とする請求項1に記載の温度/厚さ測定装置。 2. The temperature / thickness measuring apparatus according to claim 1, wherein the measuring unit selects a selected interference waveform based on a degree of collapse of the interference waveform of the measurement light received by the light receiving unit. 前記干渉波形の崩れ度合は,その干渉波形を構成する波連全体を曲線近似した近似曲線と,その干渉波形の波連を構成する個々の繰返し波形に基づいてその干渉波形を曲線近似した近似曲線とのずれ量であることを特徴とする請求項2に記載の温度/厚さ測定装置。 The degree of collapse of the interference waveform includes an approximate curve obtained by curve approximation of the entire wave train constituting the interference waveform, and an approximate curve obtained by curve approximation of the interference waveform based on the individual repetitive waveforms constituting the wave series of the interference waveform. The temperature / thickness measuring apparatus according to claim 2, wherein the temperature / thickness measuring apparatus is a deviation amount. 前記干渉波形を構成する波連全体の基準近似曲線は正規分布曲線であり,前記干渉波形の波連を構成する個々の繰返し波形に基づく近似曲線は前記各繰返し波形に基づいて得られる包絡線であることを特徴とする請求項3に記載の温度/厚さ測定装置。 The reference approximate curve of the entire wave series constituting the interference waveform is a normal distribution curve, and the approximate curve based on the individual repetitive waveforms constituting the wave series of the interference waveform is an envelope obtained based on each repetitive waveform. The temperature / thickness measurement apparatus according to claim 3, wherein the temperature / thickness measurement apparatus is provided. 前記測定光伝送手段は,測定光の光路の途中に,この測定光の光路に並列して接続した迂回光路を設けたことを特徴とする請求項1に記載の温度/厚さ測定装置。 2. The temperature / thickness measuring apparatus according to claim 1, wherein the measuring light transmission means includes a bypass optical path connected in parallel with the measuring light optical path in the middle of the measuring light optical path. 前記受光手段において前記測定光の基準干渉波形と選択干渉波形とがそれぞれ近傍で測定されるように,前記測定光の迂回光路の光路長を調整したことを特徴とする請求項5に記載の温度/厚さ測定装置。 6. The temperature according to claim 5, wherein an optical path length of a bypass optical path of the measurement light is adjusted so that a reference interference waveform and a selective interference waveform of the measurement light are respectively measured in the vicinity in the light receiving unit. / Thickness measuring device. 前記参照光反射手段は,複数の反射面を設け,前記スプリッタからの参照光を前記各反射面で反射させることにより,光路長の異なる複数の参照光を反射可能としたことを特徴とする請求項1に記載の温度/厚さ測定装置。 The reference light reflecting means is provided with a plurality of reflecting surfaces, and the reference light from the splitter is reflected by the reflecting surfaces so that a plurality of reference lights having different optical path lengths can be reflected. Item 2. The temperature / thickness measuring apparatus according to Item 1. 前記受光手段において前記測定光の基準干渉波形と選択干渉波形とがそれぞれ近傍で測定されるように,前記参照光反射手段の複数の反射面の位置を調整したことを特徴とする請求項7に記載の温度/厚さ測定装置。 8. The position of a plurality of reflecting surfaces of the reference light reflecting means is adjusted so that a reference interference waveform and a selective interference waveform of the measuring light are respectively measured in the vicinity in the light receiving means. The temperature / thickness measuring apparatus as described. 前記スプリッタからの参照光をさらに複数の参照光にスプリットするための参照光スプリッタを設け,この参照光スプリッタからの複数の参照光をそれぞれ異なる光路長で前記参照光反射手段へ照射することを特徴とする請求項1に記載の温度/厚さ測定装置。 A reference light splitter for further splitting the reference light from the splitter into a plurality of reference lights is provided, and the reference light reflecting means is irradiated with the plurality of reference lights from the reference light splitter with different optical path lengths. The temperature / thickness measuring apparatus according to claim 1. 前記受光手段において前記測定光の基準干渉波形と選択干渉波形とがそれぞれ近傍で測定されるように,前記参照光スプリッタからの複数の参照光の光路長を調整したことを特徴とする請求項9に記載の温度/厚さ測定装置。 10. The optical path lengths of a plurality of reference lights from the reference light splitter are adjusted so that a reference interference waveform and a selective interference waveform of the measurement light are respectively measured in the vicinity in the light receiving means. The temperature / thickness measuring apparatus according to 1. 前記参照光伝送手段は,参照光の光路の途中に,この参照光の光路に並列して接続した迂回光路を設けたことを特徴とする請求項1に記載の温度/厚さ測定装置。 2. The temperature / thickness measuring apparatus according to claim 1, wherein the reference light transmission means includes a bypass optical path connected in parallel to the optical path of the reference light in the middle of the optical path of the reference light. 前記受光手段において前記測定光の基準干渉波形と選択干渉波形とがそれぞれ近傍で測定されるように,前記参照光の迂回光路の光路長を調整したことを特徴とする請求項11に記載の温度/厚さ測定装置。 12. The temperature according to claim 11, wherein the optical path length of the detour optical path of the reference light is adjusted so that the reference interference waveform and the selective interference waveform of the measurement light are respectively measured in the vicinity in the light receiving means. / Thickness measuring device. 前記測定光伝送手段は,前記測定対象の一方側に配置され,前記光源からの測定光を伝送して前記測定対象の一方側の端面へ向けて照射するとともに,前記測定対象の両端面で往復反射して又は往復せずに一方側の端面で反射して,戻ってくる測定光を受光して前記受光手段へ向けて伝送することを特徴とする請求項1に記載の温度/厚さ測定装置。 The measurement light transmission means is arranged on one side of the measurement object, transmits the measurement light from the light source, irradiates the measurement object on one end surface, and reciprocates on both end surfaces of the measurement object. 2. The temperature / thickness measurement according to claim 1, wherein the measurement light that is reflected or reflected by one end face without reciprocating and received and transmitted is transmitted to the light receiving means. apparatus. 前記測定光伝送手段は,前記測定対象の一方側に配置され,前記光源からの測定光を伝送して前記測定対象の一方側の端面へ向けて照射する照射光伝送手段と,前記測定対象の他方側に配置され,前記測定対象の両端面で往復反射して又は往復せずに一方側の端面を透過して,他方側の端面を透過する測定光を受光して前記受光手段へ向けて伝送する受光伝送手段とを別個に設けたことを特徴とする請求項1に記載の温度/厚さ測定装置。 The measurement light transmission means is disposed on one side of the measurement object, transmits the measurement light from the light source, and irradiates the measurement light on one end surface of the measurement object; and It is arranged on the other side, reciprocally reflects at both end faces of the measurement object, transmits through one end face without reciprocating, and receives measurement light that passes through the other end face, toward the light receiving means 2. The temperature / thickness measuring apparatus according to claim 1, wherein a light receiving / transmitting means for transmitting is provided separately. 前記各光はそれぞれ,空中を介して伝送されることを特徴とする請求項1〜14のいずれかに記載の温度/厚さ測定装置。 The temperature / thickness measuring apparatus according to claim 1, wherein each of the lights is transmitted through the air. 前記測定対象は,シリコン又はシリコン酸化膜により形成され,
前記光源は,1.0〜2.5μmの波長を有する光を照射可能なものであることを特徴とする請求項1〜15のいずれかに記載の温度/厚さ測定装置。
The measurement object is formed of silicon or silicon oxide film,
The temperature / thickness measuring apparatus according to claim 1, wherein the light source is capable of emitting light having a wavelength of 1.0 to 2.5 μm.
前記測定対象は,基板処理装置内で処理される被処理基板又は前記基板処理装置内に前記被処理基板に対向して配設される電極板であることを特徴とする請求項16に記載の温度/厚さ測定装置。 The measurement object is a substrate to be processed in a substrate processing apparatus or an electrode plate disposed in the substrate processing apparatus so as to face the substrate to be processed. Temperature / thickness measuring device. 前記測定対象の両端面を透過し反射する光を照射する光源からスプリットされた測定光を前記測定対象へ向けて照射するとともに,参照光を参照光反射手段へ向けて照射する工程と,
前記参照光反射手段を一方向へ走査することによって前記参照光反射手段から反射する参照光の光路長を変化させながら,前記測定対象を透過又は反射する測定光と前記参照光反射手段から反射する参照光とが干渉して得られる複数の測定光の干渉波形を測定する工程と,
前記受光手段で測定された測定光の干渉波形のうち,ある干渉波形を基準とし,この基準干渉波形の測定光よりも前記測定対象の両端面を少なくとも2回以上多く往復反射する測定光の干渉波形を選択干渉波形として,前記基準干渉波形と前記選択干渉波形とに基づいて前記測定対象の両端面間における測定光の光路長を測定し,その光路長に基づいて前記測定対象の温度又は厚さを測定する工程と,
を有することを特徴とする温度/厚さ測定方法。
Irradiating measurement light split from a light source that irradiates light that is transmitted through and reflected from both end faces of the measurement target toward the measurement target, and irradiating reference light toward reference light reflecting means;
By scanning the reference light reflecting means in one direction, while changing the optical path length of the reference light reflected from the reference light reflecting means, the measuring light that is transmitted or reflected by the measurement object and reflected from the reference light reflecting means Measuring interference waveforms of a plurality of measurement lights obtained by interference with reference light;
Interference of measurement light that reciprocally reflects at least two times at both end faces of the measurement object with respect to the measurement light of the reference interference waveform, with reference to a certain interference waveform among the interference waveforms of the measurement light measured by the light receiving means. Using the waveform as a selective interference waveform, the optical path length of the measurement light between both end faces of the measurement object is measured based on the reference interference waveform and the selective interference waveform, and the temperature or thickness of the measurement object is measured based on the optical path length. Measuring the thickness,
A temperature / thickness measuring method characterized by comprising:
前記測定手段は,前記受光手段で受光された測定光の干渉波形の崩れ度合に基づいて選択干渉波形を選択することを特徴とする請求項18に記載の温度/厚さ測定方法。 19. The temperature / thickness measuring method according to claim 18, wherein the measuring unit selects the selected interference waveform based on the degree of collapse of the interference waveform of the measurement light received by the light receiving unit. 前記干渉波形の崩れ度合は,その干渉波形を構成する波連全体を曲線近似した近似曲線と,その干渉波形の波連を構成する個々の繰返し波形に基づいてその干渉波形を曲線近似した近似曲線とのずれ量であることを特徴とする請求項18に記載の温度/厚さ測定方法。 The degree of collapse of the interference waveform includes an approximate curve obtained by curve approximation of the entire wave train constituting the interference waveform, and an approximate curve obtained by curve approximation of the interference waveform based on the individual repetitive waveforms constituting the wave series of the interference waveform. The temperature / thickness measurement method according to claim 18, wherein the temperature / thickness measurement method is a deviation amount from 前記干渉波形を構成する波連全体の基準近似曲線は正規分布曲線であり,前記干渉波形の波連を構成する個々の繰返し波形に基づく近似曲線は各繰返し波形に基づいて得られる包絡線であることを特徴とする請求項20に記載の温度/厚さ測定方法。 The reference approximate curve of the entire wave train constituting the interference waveform is a normal distribution curve, and the approximate curve based on each repeated waveform constituting the wave series of the interference waveform is an envelope obtained based on each repeated waveform. The temperature / thickness measuring method according to claim 20, wherein 前記測定光の光路の途中に,この測定光の光路に並列して接続した迂回光路を設け,
前記温度又は厚さを測定する工程は,前記迂回光路を介さない光路を通る測定光の干渉波形と少なくとも一度は前記迂回光路を介する光路を通る測定光の干渉波形のうち,いずれか一方の光路を通る測定光の干渉波形から選択された前記基準干渉波形と,他方の光路を通る測定光の干渉波形から選択された前記選択干渉波形とに基づいて前記測定対象の両端面間における測定光の光路長を測定することを特徴とする請求項18に記載の温度/厚さ測定方法。
In the middle of the optical path of the measurement light, a bypass optical path connected in parallel with the optical path of the measurement light is provided,
The step of measuring the temperature or thickness includes either one of an interference waveform of the measurement light passing through the optical path not passing through the bypass optical path and an interference waveform of the measurement light passing through the optical path passing through the bypass optical path at least once. Based on the reference interference waveform selected from the interference waveform of the measurement light passing through and the selected interference waveform selected from the interference waveform of the measurement light passing through the other optical path. 19. The temperature / thickness measuring method according to claim 18, wherein the optical path length is measured.
前記参照光反射手段は,複数の反射面を設け,
前記温度又は厚さを測定する工程は,前記光源からスプリットされた参照光が前記各反射面から反射する複数の参照光のうち,いずれかの反射面から反射する参照光と測定光との干渉波形から選択された前記基準干渉波形と,別の反射面から反射する参照光と測定光の干渉波形から選択された前記選択干渉波形と基づいて前記測定対象の両端面間における測定光の光路長を測定することを特徴とする請求項18に記載の温度/厚さ測定方法。
The reference light reflecting means is provided with a plurality of reflecting surfaces,
In the step of measuring the temperature or thickness, the reference light split from the light source reflects the interference between the reference light reflected from any one of the plurality of reference lights reflected from each of the reflection faces and the measurement light. Based on the reference interference waveform selected from the waveform and the selected interference waveform selected from the interference waveform of the reference light and the measurement light reflected from another reflection surface, the optical path length of the measurement light between both end faces of the measurement target The temperature / thickness measurement method according to claim 18, wherein the temperature is measured.
前記スプリッタからの参照光をさらに光路長の異なる複数の参照光にスプリットするための参照光スプリッタを設け,
前記干渉を測定する工程は,前記参照光スプリッタからスプリットされた複数の参照光のうち,いずれかの参照光と測定光との干渉波形から選択された前記基準干渉波形と,別の参照光と測定光の干渉波形から選択された前記選択干渉波形と基づいて前記測定対象の両端面間における測定光の光路長を測定することを特徴とする請求項18に記載の温度/厚さ測定方法。
A reference light splitter for splitting the reference light from the splitter into a plurality of reference lights having different optical path lengths;
The step of measuring the interference includes the reference interference waveform selected from the interference waveform of any one of the reference light and the measurement light among the plurality of reference lights split from the reference light splitter, another reference light, 19. The temperature / thickness measurement method according to claim 18, wherein the optical path length of the measurement light between both end faces of the measurement object is measured based on the selected interference waveform selected from the interference waveform of the measurement light.
前記参照光の光路の途中に,この参照光の光路に並列して接続した迂回光路を設け,
前記温度又は厚さを測定する工程は,前記迂回光路を介さない光路を通る参照光と測定光の干渉波形と少なくとも一度は前記迂回光路を介する光路を通る参照光と測定光の干渉波形のうち,いずれか一方の光路を通る参照光と測定光の干渉波形から選択された前記基準干渉波形と,他方の光路を通る参照光と測定光の干渉波形から選択された前記選択干渉波形とに基づいて前記測定対象の両端面間における測定光の光路長を測定することを特徴とする請求項18に記載の温度/厚さ測定方法。
In the middle of the optical path of the reference light, a bypass optical path connected in parallel with the optical path of the reference light is provided,
The step of measuring the temperature or the thickness includes an interference waveform of the reference light and the measurement light passing through the optical path not passing through the bypass optical path, and an interference waveform of the reference light and the measurement light passing through the optical path passing through the bypass optical path at least once. , Based on the reference interference waveform selected from the interference waveform of the reference light passing through one of the optical paths and the measurement light, and the selected interference waveform selected from the interference waveform of the reference light passing through the other optical path and the measurement light 19. The temperature / thickness measuring method according to claim 18, wherein an optical path length of the measuring light between both end faces of the measuring object is measured.
前記各光はそれぞれ,空中を介して伝送されることを特徴とする請求項18〜25のいずれかに記載の温度/厚さ測定方法。 26. The temperature / thickness measuring method according to claim 18, wherein each of the lights is transmitted through the air. 前記測定対象は,シリコン又はシリコン酸化膜により形成され,
前記光源は,1.0〜2.5μmの波長を有する光を照射可能なものであることを特徴とする請求項18〜26のいずれかに記載の温度/厚さ測定方法。
The measurement object is formed of silicon or silicon oxide film,
27. The temperature / thickness measuring method according to claim 18, wherein the light source is capable of irradiating light having a wavelength of 1.0 to 2.5 [mu] m.
前記測定対象は,基板処理装置内で処理される被処理基板又は前記基板処理装置内に前記被処理基板に対向して配設される電極板であることを特徴とする請求項27に記載の温度/厚さ測定方法。 28. The measurement object according to claim 27, wherein the measurement object is a substrate to be processed in a substrate processing apparatus or an electrode plate disposed to face the substrate to be processed in the substrate processing apparatus. Temperature / thickness measurement method. 前記測定光と前記参照光と干渉波形の測定中に前記光源の光強度を変えることを特徴とする請求項18〜28のいずれかに記載の温度/厚さ測定方法。 29. The temperature / thickness measuring method according to claim 18, wherein the light intensity of the light source is changed during measurement of the measurement light, the reference light, and an interference waveform. 前記参照光反射手段の移動距離に応じて前記光源の光強度を徐々に大きくすることを特徴とする請求項29に記載の温度/厚さ測定方法。 30. The temperature / thickness measurement method according to claim 29, wherein the light intensity of the light source is gradually increased in accordance with a moving distance of the reference light reflecting means. 前記測定対象の両端面を往復反射する回数が多い測定光の干渉波形ほど前記光源の光強度を大きくすることを特徴とする請求項29に記載の温度/厚さ測定方法。 30. The temperature / thickness measurement method according to claim 29, wherein the light intensity of the light source is increased as the interference waveform of the measurement light has a greater number of reciprocal reflections at both end faces of the measurement target. 前記受光手段で受光される測定光の反射強度を予め測定し,その反射強度に応じて前記光源の光強度を変えることを特徴とする請求項29に記載の温度/厚さ測定方法。 30. The temperature / thickness measurement method according to claim 29, wherein the reflection intensity of the measurement light received by the light receiving means is measured in advance, and the light intensity of the light source is changed according to the reflection intensity. 処理室内の被処理基板に所定の処理を施す基板処理装置と,この基板処理装置に取付けられる温度/厚さ測定装置と,前記温度/厚さ測定装置を制御する制御装置とを備える温度/厚さ測定システムであって,
前記温度/厚さ測定装置は,測定対象となる前記被処理基板の両端面を透過し反射する光であって,前記被処理基板の両端面で少なくとも2回以上往復反射可能な光を照射する光源と,前記光源からの光を測定光と参照光とにスプリットするためのスプリッタと,前記スプリッタからの参照光を反射するための参照光反射手段と,前記参照光反射手段から反射する参照光の光路長を変化させるための光路長変化手段と,前記スプリッタからの参照光を前記参照光反射手段へ向けて照射する参照光照射位置まで伝送する参照光伝送手段と,前記スプリッタからの測定光を前記被処理基板へ向けて照射する測定光照射位置まで伝送する測定光伝送手段と,前記被処理基板を透過又は反射する測定光と前記参照光反射手段から反射する参照光とが干渉して得られる複数の測定光の干渉波形を測定するための受光手段とを備え,
前記制御装置は,前記温度/厚さ測定装置の受光手段で測定された測定光の干渉波形のうち,ある干渉波形を基準とし,この基準干渉波形の測定光よりも前記被処理基板の両端面を少なくとも2回以上多く往復反射する測定光の干渉波形を選択干渉波形として,前記基準干渉波形と前記選択干渉波形とに基づいて前記被処理基板の両端面間における測定光の光路長を測定し,その光路長に基づいて前記被処理基板の温度又は厚さを測定することを特徴とする温度/厚さ測定システム。
A temperature / thickness comprising a substrate processing apparatus for performing a predetermined process on a substrate to be processed in a processing chamber, a temperature / thickness measuring apparatus attached to the substrate processing apparatus, and a control device for controlling the temperature / thickness measuring apparatus. Measuring system,
The temperature / thickness measuring apparatus emits light that is transmitted through and reflected from both end surfaces of the substrate to be measured and that can be reflected back and forth at least twice at both end surfaces of the substrate to be processed. A light source, a splitter for splitting light from the light source into measurement light and reference light, reference light reflecting means for reflecting the reference light from the splitter, and reference light reflected from the reference light reflecting means An optical path length changing means for changing the optical path length of the light source, a reference light transmitting means for transmitting the reference light from the splitter to the reference light irradiating position for irradiating the reference light to the reference light reflecting means, and a measuring light from the splitter Measurement light transmitting means for transmitting the measurement light to the processing substrate, the measurement light transmitting or reflecting the processing substrate, and the reference light reflected from the reference light reflecting means. And a light receiving means for measuring the interference waveforms of a plurality of measurement light obtained by,
The control device uses a certain interference waveform as a reference among the interference waveforms of the measurement light measured by the light receiving means of the temperature / thickness measurement device, and the both end surfaces of the substrate to be processed are more than the measurement light of the reference interference waveform. And measuring the optical path length of the measurement light between both end faces of the substrate to be processed based on the reference interference waveform and the selected interference waveform, with the interference waveform of the measurement light that reciprocally reflects at least twice as a selected interference waveform. , A temperature / thickness measuring system for measuring the temperature or thickness of the substrate to be processed based on the optical path length.
処理室内の被処理基板に所定のプロセス処理を施す基板処理装置と,この基板処理装置に設置される温度/厚さ測定装置と,前記温度/厚さ測定装置及び前記基板処理装置を制御するとともに,前記被処理基板の温度制御とプロセス制御のうち少なくとも一方の制御を行う制御装置とを備える制御システムであって,
前記温度/厚さ測定装置は,測定対象となる前記被処理基板の両端面を透過し反射する光であって,前記被処理基板の両端面で少なくとも2回以上往復反射可能な光を照射する光源と,前記光源からの光を測定光と参照光とにスプリットするためのスプリッタと,前記スプリッタからの参照光を反射するための参照光反射手段と,前記参照光反射手段から反射する参照光の光路長を変化させるための光路長変化手段と,前記スプリッタからの参照光を前記参照光反射手段へ向けて照射する参照光照射位置まで伝送する参照光伝送手段と,前記スプリッタからの測定光を前記被処理基板へ向けて照射する測定光照射位置まで伝送する測定光伝送手段と,前記被処理基板を透過又は反射する測定光と前記参照光反射手段から反射する参照光とが干渉して得られる複数の測定光の干渉波形を測定するための受光手段とを備え,
前記制御装置は,前記温度/厚さ測定装置の受光手段で測定された測定光の干渉波形のうち,ある干渉波形を基準とし,この基準干渉波形の測定光よりも前記被処理基板の両端面を少なくとも2回以上多く往復反射する測定光の干渉波形を選択干渉波形として,前記基準干渉波形と前記選択干渉波形とに基づいて前記被処理基板の両端面間における測定光の光路長を測定し,その光路長に基づいて前記被処理基板の温度又は厚さを測定し,これらの温度又は厚さに基づいて前記基板処理装置の処理室内にある前記被処理基板の温度制御とプロセス制御のうち少なくとも一方の制御を行うことを特徴とする制御システム。
A substrate processing apparatus for performing a predetermined process on a substrate to be processed in a processing chamber, a temperature / thickness measuring apparatus installed in the substrate processing apparatus, the temperature / thickness measuring apparatus, and the substrate processing apparatus are controlled. , A control system comprising a control device for controlling at least one of temperature control and process control of the substrate to be processed,
The temperature / thickness measuring apparatus emits light that is transmitted through and reflected from both end surfaces of the substrate to be measured and that can be reflected back and forth at least twice at both end surfaces of the substrate to be processed. A light source, a splitter for splitting light from the light source into measurement light and reference light, reference light reflecting means for reflecting the reference light from the splitter, and reference light reflected from the reference light reflecting means An optical path length changing means for changing the optical path length of the light source, a reference light transmitting means for transmitting the reference light from the splitter to the reference light irradiating position for irradiating the reference light to the reference light reflecting means, and a measuring light from the splitter Measurement light transmitting means for transmitting the measurement light to the processing substrate, the measurement light transmitting or reflecting the processing substrate, and the reference light reflected from the reference light reflecting means. And a light receiving means for measuring the interference waveforms of a plurality of measurement light obtained by,
The control device uses a certain interference waveform as a reference among the interference waveforms of the measurement light measured by the light receiving means of the temperature / thickness measurement device, and the both end surfaces of the substrate to be processed are more than the measurement light of the reference interference waveform. And measuring the optical path length of the measurement light between both end faces of the substrate to be processed based on the reference interference waveform and the selected interference waveform, with the interference waveform of the measurement light that reciprocally reflects at least twice as a selected interference waveform. The temperature or thickness of the substrate to be processed is measured based on the optical path length, and the temperature control and the process control of the substrate to be processed in the processing chamber of the substrate processing apparatus are based on the temperature or thickness. A control system that performs at least one control.
処理室内の被処理基板に所定のプロセス処理を施す基板処理装置の制御システムについて制御方法であって,
前記測定対象の両端面を透過し反射する光を照射する光源からスプリットされた測定光を前記測定対象へ向けて照射するとともに,参照光を参照光反射手段へ向けて照射する工程と,
前記参照光反射手段を一方向へ走査することによって前記参照光反射手段から反射する参照光の光路長を変化させながら,前記測定対象を透過又は反射する測定光と前記参照光反射手段から反射する参照光とが干渉して得られる複数の測定光の干渉波形を測定する工程と,
前記受光手段で測定された測定光の干渉波形のうち,ある干渉波形を基準とし,この基準干渉波形の測定光よりも前記測定対象の両端面を少なくとも2回以上多く往復反射する測定光の干渉波形を選択干渉波形として,前記基準干渉波形と前記選択干渉波形とに基づいて前記測定対象の両端面間における測定光の光路長を測定し,その光路長に基づいて前記測定対象の温度又は厚さを測定する工程と,
測定した前記測定対象物の温度又は厚さに基づいて,前記基板処理装置における前記被処理基板の温度制御とプロセス制御のうち少なくとも一方の制御を行う工程と,
を有することを特徴とする制御方法。
A control method for a control system of a substrate processing apparatus for performing a predetermined process on a substrate to be processed in a processing chamber,
Irradiating measurement light split from a light source that irradiates light that is transmitted through and reflected from both end faces of the measurement target toward the measurement target, and irradiating reference light toward reference light reflecting means;
By scanning the reference light reflecting means in one direction, while changing the optical path length of the reference light reflected from the reference light reflecting means, the measuring light that is transmitted or reflected by the measurement object and reflected from the reference light reflecting means Measuring interference waveforms of a plurality of measurement lights obtained by interference with reference light;
Interference of measurement light that reciprocally reflects at least two times at both end faces of the measurement object with respect to the measurement light of the reference interference waveform, with reference to a certain interference waveform among the interference waveforms of the measurement light measured by the light receiving means. Using the waveform as a selective interference waveform, the optical path length of the measurement light between both end faces of the measurement object is measured based on the reference interference waveform and the selective interference waveform, and the temperature or thickness of the measurement object is measured based on the optical path length. Measuring the thickness,
Performing at least one of temperature control and process control of the substrate to be processed in the substrate processing apparatus based on the measured temperature or thickness of the measurement object;
A control method characterized by comprising:
JP2005032223A 2005-02-08 2005-02-08 Temperature / thickness measuring device, temperature / thickness measuring method, temperature / thickness measuring system, control system, control method Expired - Fee Related JP4553308B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005032223A JP4553308B2 (en) 2005-02-08 2005-02-08 Temperature / thickness measuring device, temperature / thickness measuring method, temperature / thickness measuring system, control system, control method
US11/349,276 US7379189B2 (en) 2005-02-08 2006-02-08 Temperature/thickness measuring apparatus, temperature/thickness measuring method, temperature/thickness measuring system, control system and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005032223A JP4553308B2 (en) 2005-02-08 2005-02-08 Temperature / thickness measuring device, temperature / thickness measuring method, temperature / thickness measuring system, control system, control method

Publications (2)

Publication Number Publication Date
JP2006220461A JP2006220461A (en) 2006-08-24
JP4553308B2 true JP4553308B2 (en) 2010-09-29

Family

ID=36982891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005032223A Expired - Fee Related JP4553308B2 (en) 2005-02-08 2005-02-08 Temperature / thickness measuring device, temperature / thickness measuring method, temperature / thickness measuring system, control system, control method

Country Status (1)

Country Link
JP (1) JP4553308B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5274862B2 (en) 2008-03-10 2013-08-28 東京エレクトロン株式会社 Temperature measuring apparatus and temperature measuring method
JP5752454B2 (en) 2011-03-23 2015-07-22 東京エレクトロン株式会社 Plasma processing apparatus and temperature measuring method
JP2013007665A (en) * 2011-06-24 2013-01-10 Tokyo Electron Ltd Temperature measuring device, substrate processing device and temperature measuring method
US9046417B2 (en) 2011-06-24 2015-06-02 Tokyo Electron Limited Temperature measuring system, substrate processing apparatus and temperature measuring method
JP5805498B2 (en) 2011-06-24 2015-11-04 東京エレクトロン株式会社 Temperature measurement system, substrate processing apparatus, and temperature measurement method
JP6231370B2 (en) * 2013-12-16 2017-11-15 東京エレクトロン株式会社 Consumption amount measuring device, temperature measuring device, consumption amount measuring method, temperature measuring method, and substrate processing system
JP6271243B2 (en) 2013-12-20 2018-01-31 東京エレクトロン株式会社 Thickness / temperature measuring device, thickness / temperature measuring method and substrate processing system
JP6232311B2 (en) * 2014-02-24 2017-11-15 株式会社ディスコ Polishing equipment
KR102421732B1 (en) * 2018-04-20 2022-07-18 삼성전자주식회사 Semiconductor substrate measuring apparatus and plasma treatment apparatus using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002243416A (en) * 2001-02-13 2002-08-28 Tochigi Nikon Corp Method and instrument for thickness measurement and wafer
JP2003065722A (en) * 2001-08-29 2003-03-05 Semiconductor Leading Edge Technologies Inc Film thickness monitor and method for measuring thickness of film
WO2003087744A1 (en) * 2002-04-15 2003-10-23 Tokyo Electron Limited Method and device for measuring temperature of base material
JP2004340680A (en) * 2003-05-14 2004-12-02 Toray Eng Co Ltd Method for measuring surface profile and/or film thickness, and its apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3279815B2 (en) * 1994-06-07 2002-04-30 株式会社日立製作所 Displacement / tilt detection method and automatic focusing device using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002243416A (en) * 2001-02-13 2002-08-28 Tochigi Nikon Corp Method and instrument for thickness measurement and wafer
JP2003065722A (en) * 2001-08-29 2003-03-05 Semiconductor Leading Edge Technologies Inc Film thickness monitor and method for measuring thickness of film
WO2003087744A1 (en) * 2002-04-15 2003-10-23 Tokyo Electron Limited Method and device for measuring temperature of base material
JP2004340680A (en) * 2003-05-14 2004-12-02 Toray Eng Co Ltd Method for measuring surface profile and/or film thickness, and its apparatus

Also Published As

Publication number Publication date
JP2006220461A (en) 2006-08-24

Similar Documents

Publication Publication Date Title
US7379189B2 (en) Temperature/thickness measuring apparatus, temperature/thickness measuring method, temperature/thickness measuring system, control system and control method
JP4761774B2 (en) Temperature / thickness measuring device, temperature / thickness measuring method, temperature / thickness measuring system, control system, control method
US7355715B2 (en) Temperature measuring apparatus, temperature measurement method, temperature measurement system, control system and control method
US7446881B2 (en) System, apparatus, and method for determining temperature/thickness of an object using light interference measurements
JP2023183421A (en) Optical metrology tool equipped with modulated illumination sources
US7416330B2 (en) Method and apparatus for measuring temperature of substrate
JP4553308B2 (en) Temperature / thickness measuring device, temperature / thickness measuring method, temperature / thickness measuring system, control system, control method
US8144332B2 (en) Temperature measurement apparatus and method
JP4842176B2 (en) Temperature measuring apparatus and temperature measuring method
JP4842175B2 (en) Temperature measuring apparatus and temperature measuring method
JP2002156206A (en) Interferometer system, interference measuring method, object provision method and object manufacturing method
JP5214513B2 (en) Plasma processing apparatus, temperature measuring method, and temperature measuring apparatus
US20170115110A1 (en) Compact Portable Double Differential Fiber Optic Sagnac Interferometer
JP5993111B2 (en) Temperature control system
JP4756845B2 (en) Temperature measuring device, temperature measuring method, temperature measuring system, control system, control method
JP2010038558A (en) Method and apparatus for measuring distance by optoical wave interference
JP5657444B2 (en) Temperature measuring apparatus and temperature measuring method
US8500326B2 (en) Probe for temperature measurement, temperature measuring system and temperature measuring method using the same
JP2021044288A (en) System and method for inspecting processing device
CN105548052A (en) Testing cavity with continuously adjustable length applied to cavity ring-down spectroscope technology
JP5397817B2 (en) Interference measuring apparatus and measuring method
US20220206145A1 (en) Optical distance measurement device and machining device
JP2016127087A (en) Substrate processing apparatus and substrate temperature measurement device
WO2024157700A1 (en) Measurement device and measurement method
CN103499338A (en) Method for guaranteeing measuring range of laser range measurer and improving measuring precision

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100709

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4553308

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees