Nothing Special   »   [go: up one dir, main page]

JP4545631B2 - Method for producing high-purity urea water - Google Patents

Method for producing high-purity urea water Download PDF

Info

Publication number
JP4545631B2
JP4545631B2 JP2005123491A JP2005123491A JP4545631B2 JP 4545631 B2 JP4545631 B2 JP 4545631B2 JP 2005123491 A JP2005123491 A JP 2005123491A JP 2005123491 A JP2005123491 A JP 2005123491A JP 4545631 B2 JP4545631 B2 JP 4545631B2
Authority
JP
Japan
Prior art keywords
urea
water
urea water
producing high
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005123491A
Other languages
Japanese (ja)
Other versions
JP2006298828A (en
Inventor
新哉 折原
山本  彰
一成 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2005123491A priority Critical patent/JP4545631B2/en
Publication of JP2006298828A publication Critical patent/JP2006298828A/en
Application granted granted Critical
Publication of JP4545631B2 publication Critical patent/JP4545631B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は、高純度尿素水に関する。   The present invention relates to high-purity urea water.

尿素の製造方法については成書も多く出版され(例えば、化学史研究 VOL20 NO3(1993)、Chemical Economics Handboook−SRI(2001年))、アンモニアと炭酸ガスから高圧法で製造されている。生成した尿素を水に溶解させ尿素水とするにことについても記載されている。例えば特許文献;特開平8−57261号公報等。
化学史研究 VOL20 NO3(1993) Chemical Economics Handboook−SRI(2001年) 特開平8−57261号公報
Numerous books have been published on the production method of urea (for example, Chemical History Research VOL20 NO3 (1993), Chemical Economics Handboook-SRI (2001)), and it is produced from ammonia and carbon dioxide by a high pressure method. It also describes that the produced urea is dissolved in water to form urea water. For example, patent literature; JP-A-8-57261.
Chemical History Research VOL20 NO3 (1993) Chemical Economics Handboook-SRI (2001) JP-A-8-57261

近年、尿素水に関しても従前の用途である焼却場の脱硝触媒のアンモニア源としてではなく、さらに高純度が要求される高度な用途に用いられる高純度尿素水の社会的要請が高まっている。特に尿素水の導入配管の詰まりを誘引する物質を含まず、かつ、臭気の原因となるアンモニアの生成が少ない尿素水は内燃機関排気処理用NOx還元触媒においてそのアンモニア源として切望されている(特開2004−290836)。   In recent years, there has been an increasing social demand for high-purity urea water that is used not only as an ammonia source for a denitration catalyst in an incineration plant, which is a conventional application, but also for advanced applications that require higher purity. In particular, urea water that does not contain a substance that induces clogging of the urea water introduction pipe and generates less ammonia that causes odor is highly desired as an ammonia source in the NOx reduction catalyst for exhaust gas treatment of internal combustion engines (special feature). Open 2004-290836).

本発明は上記状況に鑑みてなされたもので、SCR触媒を用いたスパーク点火やディーゼルエンジンなどの燃焼エンジンにおいて、NOxを浄化する装置に連続的に供給するのに適した尿素水に係るものである。ディーゼルエンジン排気処理用SCR触媒の長期連続運転に不具合を生じさせる可能性をミニマイズするための高純度尿素の製造方法に関わる。   The present invention has been made in view of the above situation, and relates to urea water suitable for continuous supply to a device for purifying NOx in a combustion engine such as a spark ignition using a SCR catalyst or a diesel engine. is there. The present invention relates to a method for producing high-purity urea for minimizing the possibility of causing problems in long-term continuous operation of a SCR catalyst for diesel engine exhaust treatment.

本発明は20重量%〜60重量%、10〜60℃で固体状尿素を電気伝導度が0.3ms/m以下の水に溶解させ、かかる尿素水をろ過する工程及びオイル吸着剤で処理する工程からなることを特徴とする高純度尿素水の製造方法。   In the present invention, solid urea is dissolved in water having an electric conductivity of 0.3 ms / m or less at 20 to 60% by weight and 10 to 60 ° C., and the urea water is filtered and treated with an oil adsorbent. A method for producing high-purity urea water, comprising a step.

本発明により例えば内燃機関排気処理用NOx還元触媒におけるアンモニア源として用いられる高純度の尿素水を製造することができる。   According to the present invention, for example, high-purity urea water used as an ammonia source in an NOx reduction catalyst for exhaust gas treatment of an internal combustion engine can be produced.

本発明に用いる固体状尿素は周知の方法(例えば、化学史研究 VOL20 NO3(1993)、Chemical Economics Handboook−SRI(2001年))で工業的に生産され市販されているものを特別な制限なく用いることができる。   As the solid urea used in the present invention, those commercially produced and marketed by a known method (for example, chemical history research VOL20 NO3 (1993), Chemical Economics Handboook-SRI (2001)) are used without any particular limitation. be able to.

用いられる形状としては粒条、パウダー状いずれでも特に制限はないが、輸送の便宜や工業スケールでの取り扱いの容易さ等から粒状の尿素を用いることが好ましい。また、水に溶解させる速度を向上させるため適宜好ましい粒子径に調節することが好ましい。
尿素水の製造は尿素を水に溶解させることで行われる。一般的には尿素水は尿素濃度20〜60重量%、好ましくは25〜55重量%である。
There are no particular restrictions on the shape used, either in the form of granules or powder, but it is preferable to use granular urea for convenience of transportation and ease of handling on an industrial scale. Moreover, it is preferable to adjust to a preferable particle diameter as appropriate in order to improve the speed of dissolution in water.
The production of urea water is performed by dissolving urea in water. In general, urea water has a urea concentration of 20 to 60% by weight, preferably 25 to 55% by weight.

溶解後の温度は、好ましくは10ないし60℃、更に好ましくは10ないし50℃である。この濃度範囲の尿素をこの温度範囲で溶解させることで初めて高純度の尿素水が製造され、内燃機関排気処理用NOx還元触媒のアンモニア源として使用可能な尿素水が得られることがわかった。尿素を水に添加すると尿素の溶解熱により温度が低下する。溶解温度が10℃より低い場合には、尿素の溶解速度が小さくなり、極端な場合には尿素水そのものが凍結する危険性がある。溶解時の温度が60℃よりはるかに高い場合には内燃機関排気処理用NOx還元触媒のアンモニア源として用いた場合に臭気の点などで問題となることがわかった。これは、尿素の加水分解が促進されアンモニアの発生量が大きくなるものと推測している。作業環境上の問題から気相部のアンモニア濃度は日本産業衛生学会の許容濃度25ppmを超えない事が望ましい。ここで気相部のアンモニア濃度は一般的な検知管で測定する。   The temperature after dissolution is preferably 10 to 60 ° C, more preferably 10 to 50 ° C. It was found that high-purity urea water was produced for the first time by dissolving urea in this concentration range in this temperature range, and urea water that could be used as an ammonia source for the NOx reduction catalyst for internal combustion engine exhaust treatment was obtained. When urea is added to water, the temperature decreases due to the heat of dissolution of urea. When the dissolution temperature is lower than 10 ° C., the dissolution rate of urea decreases, and in an extreme case, there is a risk that the urea water itself freezes. It has been found that when the temperature during melting is much higher than 60 ° C., it becomes a problem in terms of odor when used as an ammonia source for a NOx reduction catalyst for internal combustion engine exhaust treatment. This is presumed that urea hydrolysis is accelerated and the amount of ammonia generated is increased. Due to problems in the working environment, it is desirable that the ammonia concentration in the gas phase does not exceed the allowable concentration of 25 ppm of the Japan Society for Occupational Health. Here, the ammonia concentration in the gas phase is measured with a general detector tube.

尿素を溶解させる水は、電気伝導度が0.3mS/m以下の純水を用いる。この電気伝導度を有する水を内燃機関排気処理用NOx還元触媒のアンモニア源として用いた場合には、ディーゼルエンジンを連続運転した場合に尿素の供給配管に詰まりが発生しない点において好ましい。ここで、この純水は通常の製造方法、例えばイオン交換樹脂、逆浸透膜等を用いる周知の方法により得ることが出来る。水の電気伝導度が0.3mS/mよりはるかに高くなると無機電解質の増加により尿素の水への溶解度が影響されるため好ましくない。   As water for dissolving urea, pure water having an electric conductivity of 0.3 mS / m or less is used. When water having this electrical conductivity is used as the ammonia source of the NOx reduction catalyst for internal combustion engine exhaust treatment, it is preferable in that the urea supply pipe is not clogged when the diesel engine is continuously operated. Here, the pure water can be obtained by an ordinary production method, for example, a known method using an ion exchange resin, a reverse osmosis membrane or the like. If the electrical conductivity of water is much higher than 0.3 mS / m, the solubility of urea in water is affected by the increase in inorganic electrolyte, which is not preferable.

また、本発明の態様として上記で得られた尿素水をろ過する工程が必須である。これらの固形物は配管等から混入する僅かな異物、或いは上記処理により極微量混入する処理剤等と推定している。内燃機関排気処理用アンモニア還元触媒装置では排気ガス中のNOxを還元する触媒の上流側に尿素水を含む還元剤を供給する還元剤供給装置が含まれている。この還元剤供給装置ではろ過することによりしない場合に比べて、一層、還元剤供給装置に装備されている導入配管の詰まりが軽減される。従って、ろ過した尿素水を用いることにより内燃機関処理用アンモニア還元装置の負荷を軽減することができる。ろ過器としては、ストレーナー等で十分である。ストレーナーとしてはバケット型等を使用でき、異物の大きさによりメッシュ型スクリーン、繊維成型型、不織布プリーツ型等のエレメントを用いる。好ましくはろ過精度0.5〜500μmのエレメント等を用いることができる。   Moreover, the process of filtering the urea water obtained above as an aspect of this invention is essential. These solids are presumed to be a slight amount of foreign matter mixed in from pipes or the like, or a processing agent mixed in a trace amount by the above processing. The ammonia reduction catalyst device for exhaust gas treatment of an internal combustion engine includes a reducing agent supply device that supplies a reducing agent containing urea water upstream of a catalyst that reduces NOx in exhaust gas. In this reducing agent supply device, clogging of the introduction pipe equipped in the reducing agent supply device is further reduced as compared with a case where the reducing agent supply device does not perform filtration. Therefore, the load of the ammonia reduction device for internal combustion engine processing can be reduced by using the filtered urea water. A strainer or the like is sufficient as the filter. As the strainer, a bucket type or the like can be used, and an element such as a mesh type screen, a fiber molding type, or a nonwoven fabric pleat type is used depending on the size of the foreign matter. Preferably, an element having a filtration accuracy of 0.5 to 500 μm can be used.

本発明の態様として20重量%〜60重量%、10〜60℃で固体状尿素を電気伝導度が0.3ms/m以下の水に溶解させることで得られた尿素水をオイル吸着剤で処理する工程が必須である。これにより一層、高純度の尿素水を得ることが可能である。オイル吸着剤で処理することにより尿素水の表面に油膜を形成し、長期にわたる貯蔵において貯蔵容器表面での薄膜状の析出を阻止できる。このオイル含量は当該炭化水素系オイルは塩酸酸性下、四塩化炭素に油分を抽出分離した後に赤外吸収を測定することで定量することができる。オイル吸着剤(例えばケイソウ土、活性炭、オイル吸着樹脂)で処理することによりオイル含量は50ppm以下、好ましくは5ppm以下、さらに好ましくは3ppm以下とするのが好ましい。   As an aspect of the present invention, urea water obtained by dissolving solid urea in water having an electric conductivity of 0.3 ms / m or less at 20 to 60% by weight and 10 to 60 ° C. is treated with an oil adsorbent. The process to do is essential. As a result, it is possible to obtain a highly pure urea solution. By treating with an oil adsorbent, an oil film is formed on the surface of the urea water, and thin film deposition on the surface of the storage container can be prevented during long-term storage. The oil content can be quantified by measuring the infrared absorption after extracting and separating the oil from carbon tetrachloride under acidity of hydrochloric acid. By treating with an oil adsorbent (for example, diatomaceous earth, activated carbon, oil adsorbing resin), the oil content is preferably 50 ppm or less, preferably 5 ppm or less, and more preferably 3 ppm or less.

ここで気相部のアンモニア濃度は一般的な検知管で測定した。また、尿素水中の異物は尿素水をろ紙でろ過し、ろ紙を水洗後、乾燥させ、顕微鏡により観察することで、その数を確認する事ができる。   Here, the ammonia concentration in the gas phase was measured with a general detector tube. The number of foreign substances in urea water can be confirmed by filtering the urea water with a filter paper, washing the filter paper with water, drying it, and observing it with a microscope.

32.5%になるように尿素を電気伝導度0.3mS/m未満の水に溶解させた。その時の温度を溶解後で30℃とし、2時間及び5時間同温度で放置した。   Urea was dissolved in water having an electric conductivity of less than 0.3 mS / m so as to be 32.5%. The temperature at that time was 30 ° C. after dissolution and left at the same temperature for 2 hours and 5 hours.

温度を50℃とした以外は実施例1と同様に行った。   The same operation as in Example 1 was performed except that the temperature was 50 ° C.

温度を60℃とした以外は実施例1と同様に行った。   The same operation as in Example 1 was performed except that the temperature was 60 ° C.

実施例1により調整した尿素水を室温で空間速度 10h−1で活性炭(F−400(東洋カルゴン社製))に通した。   The urea water prepared in Example 1 was passed through activated carbon (F-400 (manufactured by Toyo Calgon)) at room temperature and a space velocity of 10 h-1.

実施例1により調整した尿素水を室温で空間速度 2000h−1で珪藻土を通過させた。   The urea water prepared by Example 1 was allowed to pass through diatomaceous earth at a space velocity of 2000 h-1 at room temperature.

実施例1により調整した尿素水を室温で空間速度 2000h−1でオイル除去フィルター(タフネルオイルブロッター(三井化学製))を通過させた。   The urea water prepared in Example 1 was passed through an oil removal filter (Toughnel Oil Blotter (Mitsui Chemicals)) at room temperature at a space velocity of 2000 h-1.

実施例3で調整した尿素水を更に、5μmのフィルターを通過させた。   The urea water prepared in Example 3 was further passed through a 5 μm filter.

[比較例1]
温度を70℃とした以外は実施例1と同様に行った。
実施例1〜2及び比較例1〜2での尿素溶解後の気相のアンモニア濃度を測定した結果を示した。尚、アンモニア濃度は室温に冷却後に測定した。
[Comparative Example 1]
The same operation as in Example 1 was performed except that the temperature was 70 ° C.
The result of having measured the ammonia concentration of the gaseous phase after urea melt | dissolution in Examples 1-2 and Comparative Examples 1-2 was shown. The ammonia concentration was measured after cooling to room temperature.

Figure 0004545631
Figure 0004545631

また、実施例1〜2及び4〜7の分析結果を表2に示した。   In addition, Table 2 shows the analysis results of Examples 1-2 and 4-7.

Figure 0004545631
Figure 0004545631

Claims (1)

20重量%〜60重量%、10〜60℃で固体状尿素を電気伝導度が0.3mS/m以下の水に溶解させ、かかる尿素水をろ過する工程及びオイル吸着剤で処理する工程からなることを特徴とする高純度尿素水の製造法。   20% to 60% by weight, consisting of a step of dissolving solid urea in water having an electric conductivity of 0.3 mS / m or less at 10 to 60 ° C., and filtering the urea water and a step of treating with an oil adsorbent A method for producing high-purity urea water characterized by the above.
JP2005123491A 2005-04-21 2005-04-21 Method for producing high-purity urea water Active JP4545631B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005123491A JP4545631B2 (en) 2005-04-21 2005-04-21 Method for producing high-purity urea water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005123491A JP4545631B2 (en) 2005-04-21 2005-04-21 Method for producing high-purity urea water

Publications (2)

Publication Number Publication Date
JP2006298828A JP2006298828A (en) 2006-11-02
JP4545631B2 true JP4545631B2 (en) 2010-09-15

Family

ID=37467324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005123491A Active JP4545631B2 (en) 2005-04-21 2005-04-21 Method for producing high-purity urea water

Country Status (1)

Country Link
JP (1) JP4545631B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007145796A (en) * 2005-03-17 2007-06-14 Mitsui Chemicals Inc Urea water and denitrification apparatus using the same
JP5066852B2 (en) * 2006-07-10 2012-11-07 日本化成株式会社 Method for removing oil from solid urea containing oil
JP2008280263A (en) * 2007-05-09 2008-11-20 Mitsui Chemicals Inc Method for producing highly pure urea water
JP5833313B2 (en) * 2009-02-10 2015-12-16 クラリアント触媒株式会社 Detoxifying agent and method for exhaust gas containing metal hydride
JP5338488B2 (en) * 2009-06-03 2013-11-13 日本化成株式会社 Method for producing high-purity urea water
JP2010280595A (en) * 2009-06-03 2010-12-16 Nippon Kasei Chem Co Ltd Method for producing high-purity urea
JP6043398B2 (en) * 2015-04-03 2016-12-14 クラリアント触媒株式会社 Detoxifying agent and method for exhaust gas containing metal hydride
JP2016169236A (en) * 2016-06-27 2016-09-23 日本化成株式会社 Method for producing high-purity urea water
CN112520919B (en) * 2020-11-17 2022-05-27 珠海格力智能装备有限公司 Water purification method and device based on urea machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0857261A (en) * 1994-08-24 1996-03-05 Babcock Hitachi Kk Denitrification apparatus using aqueous solution of reducing agent
JP2004290835A (en) * 2003-03-27 2004-10-21 Mitsubishi Fuso Truck & Bus Corp Urea water and denitrification apparatus using it
JP2006068680A (en) * 2004-09-03 2006-03-16 Purearth Inc Denitrating reductant composition and producing method therefor
JP2006111602A (en) * 2004-10-18 2006-04-27 Purearth Inc Stabilized aqueous solution of urea and method for producing the same
JP2007145796A (en) * 2005-03-17 2007-06-14 Mitsui Chemicals Inc Urea water and denitrification apparatus using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0857261A (en) * 1994-08-24 1996-03-05 Babcock Hitachi Kk Denitrification apparatus using aqueous solution of reducing agent
JP2004290835A (en) * 2003-03-27 2004-10-21 Mitsubishi Fuso Truck & Bus Corp Urea water and denitrification apparatus using it
JP2006068680A (en) * 2004-09-03 2006-03-16 Purearth Inc Denitrating reductant composition and producing method therefor
JP2006111602A (en) * 2004-10-18 2006-04-27 Purearth Inc Stabilized aqueous solution of urea and method for producing the same
JP2007145796A (en) * 2005-03-17 2007-06-14 Mitsui Chemicals Inc Urea water and denitrification apparatus using the same

Also Published As

Publication number Publication date
JP2006298828A (en) 2006-11-02

Similar Documents

Publication Publication Date Title
Xu et al. Removal of elemental mercury from flue gas using CuOx and CeO2 modified rice straw chars enhanced by ultrasound
JP4545631B2 (en) Method for producing high-purity urea water
TW201505972A (en) Methods and apparatus for treatment of liquids containing contaminants using zero valent nanoparticles
CA2619369A1 (en) Co2 recovery system and solid-particles removing method for use in the same
WO2018019636A1 (en) Method for preparing nano alpha-fe2o3 modified activated carbon and use thereof
Wang et al. Harsh environmental-tolerant ZIF-8@ polyphenylene sulfide membrane for efficient oil/water separation and air filtration under extreme conditions
JP6077730B2 (en) Dewatering system and method for improving combined cycle efficiency of coal power plant
Gupta et al. Adsorption of Cr (VI) by a low-cost adsorbent prepared from neem leaves
CN105597740A (en) Heterogeneous catalysis wet oxidation catalyst and preparation method thereof
Afshar et al. Removal of Hg (I) and Hg (II) ions from aqueous solutions, using TiO2 nanoparticles
JP2008188493A (en) Water treatment apparatus
Mizan et al. Low cost adsorbent for mitigation of water pollution caused by tannery effluents at Hazaribagh
JP2014008477A (en) Method for removing fluoride ion
JP5338488B2 (en) Method for producing high-purity urea water
JP2007290012A (en) Manufacturing method of anisotropy porous material
CN205294996U (en) A novel small -size water purifier for family
JP2011528412A (en) Plant for reducing nitrogen oxides in exhaust gas
Georgaka et al. Study of the Cu (II) removal from aqueous solutions by adsorption on titania
JP5727269B2 (en) Wastewater treatment catalyst containing nitrogen-containing compound and wastewater treatment method using the same
US20130004395A1 (en) Processes and apparatuses for oxidizing elemental mercury in flue gas using oxychlorination catalysts
CN103506108B (en) Waste gas purification catalysts for treating
Rahbar Shahrouzi et al. Investigation of effective parameters on adsorption of amoxicillin from aqueous medium onto activated carbon
JP2014008460A (en) Catalyst carrying bag filter
US20130004396A1 (en) Processes and apparatuses for eliminating elemental mercury from flue gas using deacon reaction catalysts at low temperatures
KR20170104587A (en) Exhaust gas post-treatment method and exhaust gas post-treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070709

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100630

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4545631

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250