Nothing Special   »   [go: up one dir, main page]

JP4438459B2 - Material for organic phosphorescent light emitting device and organic phosphorescent light emitting device using the same - Google Patents

Material for organic phosphorescent light emitting device and organic phosphorescent light emitting device using the same Download PDF

Info

Publication number
JP4438459B2
JP4438459B2 JP2004070731A JP2004070731A JP4438459B2 JP 4438459 B2 JP4438459 B2 JP 4438459B2 JP 2004070731 A JP2004070731 A JP 2004070731A JP 2004070731 A JP2004070731 A JP 2004070731A JP 4438459 B2 JP4438459 B2 JP 4438459B2
Authority
JP
Japan
Prior art keywords
group
light emitting
organic
organic phosphorescent
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004070731A
Other languages
Japanese (ja)
Other versions
JP2005255891A (en
Inventor
俊一 鬼久保
康政 須田
泰正 鳥羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Artience Co Ltd
Original Assignee
Toyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink Mfg Co Ltd filed Critical Toyo Ink Mfg Co Ltd
Priority to JP2004070731A priority Critical patent/JP4438459B2/en
Publication of JP2005255891A publication Critical patent/JP2005255891A/en
Application granted granted Critical
Publication of JP4438459B2 publication Critical patent/JP4438459B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Description

本発明は平面光源や表示に使用される有機燐光発光素子用材料および高輝度・高効率の発光素子に関するものである。   The present invention relates to a material for an organic phosphorescent light emitting device used for a flat light source and a display, and a light emitting device with high luminance and high efficiency.

有機物質を使用した有機エレクトロルミネッセンス(EL)素子は、固体発光型の安価な大面積フルカラー表示素子としての用途が有望視され、多くの開発が行われている。一般に有機EL素子は、発光層および該層をはさんだ一対の対向電極から構成されている。発光は、両電極間に電界が印加されると、陰極側から電子が注入され、陽極側から正孔が注入され、電子が発光層において正孔と再結合し、エネルギー準位が伝導帯から価電子帯に戻る際にエネルギーを光として放出する現象である。   An organic electroluminescence (EL) element using an organic substance is expected to be used as an inexpensive large-area full-color display element of a solid light emitting type and has been developed in many ways. In general, an organic EL element is composed of a light emitting layer and a pair of counter electrodes sandwiching the layer. In light emission, when an electric field is applied between both electrodes, electrons are injected from the cathode side, holes are injected from the anode side, the electrons recombine with holes in the light emitting layer, and the energy level starts from the conduction band. It is a phenomenon in which energy is released as light when returning to the valence band.

従来の有機EL素子は、無機EL素子に比べて駆動電圧が高く、発光輝度や発光効率も低かった。また、特性劣化も著しく実用化には至っていなかった。
近年、10V以下の低電圧で発光する高い蛍光量子効率を持った有機化合物を含有した薄膜を積層した有機EL素子が報告され、関心を集めている(非特許文献1参照)。この方法は、金属キレート錯体を発光層、アミン系化合物を正孔注入層に使用して、高輝度の緑色発光を得ており、6〜7Vの直流電圧で輝度は数1000cd/m2、最大発光効率は1.5lm/Wを達成して、実用領域に近い性能を持っている(非特許文献1参照)。
Conventional organic EL elements have a higher driving voltage and lower light emission luminance and light emission efficiency than inorganic EL elements. Further, the characteristic deterioration has been remarkably not put into practical use.
In recent years, organic EL elements in which thin films containing organic compounds having high fluorescence quantum efficiency that emit light at a low voltage of 10 V or less have been reported and attracted interest (see Non-Patent Document 1). This method uses a metal chelate complex as a light emitting layer and an amine compound as a hole injection layer to obtain a high luminance green light emission. The luminance is several thousand cd / m 2 at a direct current voltage of 6 to 7 V, maximum. The luminous efficiency is 1.5 lm / W, and the performance is close to the practical range (see Non-Patent Document 1).

さらには、従来の一重項励起状態を利用した有機EL素子に比べ、効率が大幅に改善された三重項励起状態からの発光を利用した有機EL素子(以下、有機燐光発光素子と略す)が報告され、注目を集めている(非特許文献2、3参照)。   Furthermore, an organic EL element using light emission from a triplet excited state (hereinafter, abbreviated as an organic phosphorescent light emitting element), which has greatly improved efficiency, compared to a conventional organic EL element using a singlet excited state, has been reported. It has attracted attention (see Non-Patent Documents 2 and 3).

これまでの有機燐光発光素子の多くは下記化合物(以下、CBPと省略する)に示されるようなカルバゾール骨格を有する化合物を含んでいる。しかし、これらの化合物は非常に結晶性が高く、安定した膜を得ることが困難である。よって、これらの材料を使った有機燐光発光素子は、寿命が短いといった問題を抱えている。また、これらの化合物は正孔輸送性を有しているが、イオン化ポテンシャルが高いために、注入された正孔が陰極側に抜けやすいという傾向があった。これを改良するために正孔ブロッキング層を陰極側に挿入することが行われるが、よく使用されるバソフェナントロリン、バソクプロインなども非常に結晶性が高く、不安定な膜になることが多かった。また、その他のブロッキング材料では充分な特性がなかなか得られなかった。そのため少なくともどちらかの材料の改良により寿命または初期の特性の大幅な改良が期待できる。   Many of the organic phosphorescent light emitting devices so far contain a compound having a carbazole skeleton as shown in the following compound (hereinafter abbreviated as CBP). However, these compounds have very high crystallinity and it is difficult to obtain a stable film. Therefore, organic phosphorescent light emitting devices using these materials have a problem that their lifetime is short. Further, these compounds have hole transport properties, but due to their high ionization potential, there is a tendency that injected holes tend to escape to the cathode side. In order to improve this, a hole blocking layer is inserted on the cathode side. However, commonly used bathophenanthroline, bathocuproine, etc. have very high crystallinity and often become unstable films. In addition, other blocking materials could not provide sufficient characteristics. Therefore, a significant improvement in lifetime or initial characteristics can be expected by improving at least one of the materials.

CBP

Figure 0004438459
CBP
Figure 0004438459

一方、7員環化合物であるトロポロンおよびその誘導体を配位子とする金属錯体は、光ルミネッセンス特性と電子輸送性を有し、さらに錯体化で立体的に嵩高い構造となっているため、成膜安定性が高いことが期待できる。このため、有機EL素子の電子注入・輸送層や電子輸送性発光層に好適に使用できることが期待され、実際に有機EL素子へ応用した例はすでに知られている(特許文献1参照)。しかし、蛍光発光を利用した有機EL素子についての僅かな例が記述されているのみで、有機燐光発光素子への応用例は見られない。
アプライド・フィジクス・レターズ、51巻、913ページ、1987年 ネイチャー、395巻、151ページ、1998年 アプライド・フィジクス・レターズ、75巻、4ページ、1999年 特開平9−157642号公報
On the other hand, a metal complex having tropolone, which is a seven-membered ring compound, and a derivative thereof as a ligand has photoluminescence characteristics and electron transport properties, and has a three-dimensionally bulky structure due to complexation. High film stability can be expected. For this reason, it is expected that it can be suitably used for an electron injection / transport layer and an electron transporting light emitting layer of an organic EL element, and examples of actual application to an organic EL element are already known (see Patent Document 1). However, only a few examples of organic EL elements using fluorescent emission are described, and no application examples to organic phosphorescent light emitting elements are found.
Applied Physics Letters, 51, 913, 1987 Nature, 395, 151 pages, 1998 Applied Physics Letters, 75, 4 pages, 1999 Japanese Patent Laid-Open No. 9-157642

本発明の目的は、高い発光輝度、発光効率を持ち、繰り返し使用時での安定性に優れた有機燐光発光素子用材料およびそれを用いた有機燐光発光素子を提供することである。   An object of the present invention is to provide an organic phosphorescent light emitting device material having high luminance and luminous efficiency and excellent stability during repeated use, and an organic phosphorescent light emitting device using the same.

本発明は、下記一般式[1]で示される金属錯体化合物(A)と、金属錯体化合物(A)以外の燐光発光材料(B)とを含んでなる有機燐光発光素子用材料に関する。 The present invention relates to a material for an organic phosphorescent device comprising a metal complex compound (A) represented by the following general formula [1] and a phosphorescent material (B) other than the metal complex compound (A) .

一般式[1]

Figure 0004438459
General formula [1]
Figure 0004438459

[式中、X1、X2はそれぞれ独立に、O、S、NRのいずれかであり、
RおよびR1〜R5は互いにそれぞれ独立に、水素原子、ハロゲン原子、シアノ基、ニトロ基、置換もしくは未置換のアルキル基、置換もしくは未置換のアルコキシ基、置換もしくは未置換のアリールオキシ基、置換もしくは未置換のアルキルチオ基、置換もしくは未置換のアリールチオ基、置換もしくは未置換のアミノ基、置換もしくは未置換のアシル基、置換もしくは未置換の炭素環基、置換もしくは未置換の複素環基である。近接する置換基同士で一体となって環を形成していても良い。
上記構造からなる7員環を含む配位子はアニオン性配位子となり、複数個配位する場合はそれぞれが同一でも異なるものを含んでいても良い。
nは、1以上、Mのカチオン価数までである。
Mは周期表1族ないしは14族から選ばれる金属を表し、7員環と二重結合したX1は金属原子Mと配位結合し、7員環と単結合したX2は金属原子Mと共有結合する。
Lは、上記配位子以外の有機化合物もしくは有機残基からなる単座または二座配位子か、あるいは酸素原子もしくは有機配位子を介して多核錯体におけるもう一方の金属と結合した部分構造を表す。Lは同一または異なるものを2個以上有していても良い。
n’はLの個数を表し、0でも良い。
上記7員環を含む配位子と配位子Lのアニオン価数の総和は、全体で電気的に中性の錯体を形成するよう、金属原子Mのカチオン価数と一致する。
上記7員環を含む配位子およびLは互いにそれぞれ独立に、配位子同士で金属原子M以外の部分で結合していても良い。]
[Wherein, X 1 and X 2 are each independently any one of O, S and NR;
R and R 1 to R 5 are each independently a hydrogen atom, a halogen atom, a cyano group, a nitro group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryloxy group, A substituted or unsubstituted alkylthio group, a substituted or unsubstituted arylthio group, a substituted or unsubstituted amino group, a substituted or unsubstituted acyl group, a substituted or unsubstituted carbocyclic group, a substituted or unsubstituted heterocyclic group; is there. The adjacent substituents may be integrated to form a ring.
A ligand containing a 7-membered ring having the above structure becomes an anionic ligand, and when a plurality of ligands are coordinated, each may be the same or different.
n is 1 or more and up to the cation valence of M.
M represents a metal selected from Group 1 or Group 14 of the periodic table, X 1 double-bonded to the seven-membered ring is coordinated to metal atom M, and X 2 single-bonded to the seven-membered ring is metal atom M Covalently join.
L is a monodentate or bidentate ligand composed of an organic compound or an organic residue other than the above ligand, or a partial structure bonded to the other metal in the polynuclear complex via an oxygen atom or an organic ligand. To express. L may have two or more of the same or different.
n ′ represents the number of L and may be 0.
The sum of the anion valences of the ligand containing the seven-membered ring and the ligand L matches the cation valence of the metal atom M so as to form an electrically neutral complex as a whole.
The ligand containing a 7-membered ring and L may be bonded to each other at a portion other than the metal atom M between the ligands. ]

また、本発明は、n’が、0である上記有機燐光発光素子用材料に関する。   The present invention also relates to the above organic phosphorescent light emitting device material wherein n ′ is 0.

また、本発明は、Mが、希土類または周期表6族ないしは11族のいずれかから選ばれる金属である上記有機燐光発光素子用材料に関する。   The present invention also relates to the material for an organic phosphorescent light emitting device, wherein M is a rare earth or a metal selected from any of Groups 6 to 11 of the periodic table.

また、本発明は、Mが、周期表8族ないしは10族、かつ第5周期または第6周期の白金族元素から選ばれる金属である上記有機燐光発光素子用材料に関する。   The present invention also relates to the above organic phosphorescent light emitting device material, wherein M is a metal selected from the group 8 or group 10 of the periodic table and the platinum group element of the fifth or sixth period.

また、本発明は、Mが、周期表1族、2族、3族、12族、または13族から選ばれる金属である上記有機燐光発光素子用材料に関する。   The present invention also relates to the above organic phosphorescent light emitting device material, wherein M is a metal selected from Group 1, Group 2, Group 3, Group 12, or Group 13 of the Periodic Table.

また、本発明は、Mが、Mg、Ca、Zn、Al、Gaのいずれかである上記有機燐光発光素子用材料に関する。   The present invention also relates to the above organic phosphorescent light emitting device material, wherein M is any one of Mg, Ca, Zn, Al, and Ga.

また、本発明は、燐光発光材料(B)が、有機化合物もしくは有機残基の配位子からなるイリジウムもしくは白金錯体を含んでなる上記有機燐光発光素子用材料に関する。   The present invention also relates to the above organic phosphorescent light emitting device material, wherein the phosphorescent light emitting material (B) comprises an iridium or platinum complex comprising an organic compound or a ligand of an organic residue.

また、本発明は、一対の電極間に発光層または発光層を含む複数層の有機化合物薄膜を形成してなる有機燐光発光素子において、発光層が上記有機燐光発光素子用材料を含有する有機燐光発光素子に関する。   The present invention also provides an organic phosphorescent light-emitting device in which a light-emitting layer or a plurality of organic compound thin films including a light-emitting layer is formed between a pair of electrodes, wherein the light-emitting layer contains the organic phosphorescent light-emitting device material. The present invention relates to a light emitting element.

また、本発明は、Mが周期表1族、2族、3族、12族、または13族から選ばれる金属である金属錯体化合物(A)の含有量が、発光層中において、発光層全体の50重量%以上を占める上記有機燐光発光素子に関する。   In the present invention, the content of the metal complex compound (A) in which M is a metal selected from Group 1, Group 2, Group 12, Group 12, or Group 13 of the periodic table is such that the entire light emitting layer is contained in the light emitting layer. The organic phosphorescent light-emitting device occupying 50% by weight or more of the above.

また、本発明は、Mが希土類または周期表6族ないしは11族のいずれかから選ばれる金属である金属錯体化合物(A)の含有量が、発光層中において、発光層全体の50重量%未満を占める上記有機燐光発光素子に関する。   In the present invention, the content of the metal complex compound (A) in which M is a rare earth or a metal selected from Group 6 or Group 11 of the periodic table is less than 50% by weight of the entire light emitting layer in the light emitting layer. The above organic phosphorescent light emitting device.

また、本発明は、さらに、陰極と発光層との間に電子注入層を形成することを特徴とする上記有機燐光発光素子に関する。   The present invention further relates to the above organic phosphorescent light emitting device, wherein an electron injection layer is formed between the cathode and the light emitting layer.

また、本発明は、さらに、電子注入層と発光層との間に正孔ブロッキング層を形成することを特徴とする上記有機燐光発光素子に関する。   The present invention further relates to the organic phosphorescent light emitting device, wherein a hole blocking layer is formed between the electron injection layer and the light emitting layer.

また、本発明は、さらに、陽極と発光層との間に正孔注入層を形成することを特徴とする上記有機燐光発光素子に関する。   The present invention further relates to the organic phosphorescent light emitting device, wherein a hole injection layer is formed between the anode and the light emitting layer.

本発明の有機燐光発光素子用材料は、特に安定性に優れ、それを使用した有機燐光発光素子は、輝度、発光効率等の初期特性に優れるとともに、長い発光寿命と良好な対環境特性を持つ有機燐光発光素子である。   The material for an organic phosphorescent light emitting device of the present invention is particularly excellent in stability, and an organic phosphorescent light emitting device using the material has excellent initial characteristics such as luminance and luminous efficiency, and has a long light emitting lifetime and good environmental characteristics. It is an organic phosphorescent light emitting device.

即ち、本発明は、発光領域を有する有機層が陽極と陰極との間に設けられ、電流の注入により三重項励起状態から発光する有機物質を構成要素として含む有機燐光発光素子において、前記有機層に本発明で示される化合物が含まれることにより、その電気的物性と化学的安定性によって、素子の性能と耐久性に優れることを特徴とする。   That is, the present invention provides an organic phosphorescent light-emitting device in which an organic layer having a light-emitting region is provided between an anode and a cathode, and includes an organic substance that emits light from a triplet excited state by current injection as a constituent element. When the compound shown in the present invention is contained, the device is characterized in that it has excellent device performance and durability due to its electrical properties and chemical stability.

以下、本発明の金属錯体化合物(A)について具体的に説明する。
本発明の金属錯体化合物(A)の特徴は、配位子が7員炭素環を有し、その隣り合う位置が孤立電子対を持つ2つのヘテロ原子(一般式[1]のX1、X2)で置換されていて、そのうちの一方(X1)が環と二重結合を有し、もう一方(X2)が環と単結合を有している構造である。金属と錯体を形成前の配位子はX2に水素原子が結合している。ヘテロ原子X1、X2は具体的には、O、S、NR(Rは一般的な置換基)のいずれかであり、この組み合わせには特に制限はない。この配位子構造の代表例がX1、X2ともに酸素原子であるトロポロンであり、誘導体としてはヒノキチオールという天然物がよく知られている。以下、本発明を特徴づける配位子をトロポロン系配位子と呼ぶ。
Hereinafter, the metal complex compound (A) of the present invention will be specifically described.
A feature of the metal complex compound (A) of the present invention is that the ligand has a seven-membered carbocyclic ring, and the adjacent positions thereof have two heteroatoms having a lone pair of electrons (X 1 , X 1 in the general formula [1] 2 ), one of which (X 1 ) has a ring and a double bond, and the other (X 2 ) has a ring and a single bond. Ligand before forming a complex with a metal is a hydrogen atom is bonded to X 2. Specifically, the heteroatoms X 1 and X 2 are any one of O, S, and NR (R is a general substituent), and the combination is not particularly limited. A typical example of this ligand structure is tropolone in which both X 1 and X 2 are oxygen atoms, and a natural product called hinokitiol is well known as a derivative. Hereinafter, the ligand that characterizes the present invention is referred to as a tropolone-based ligand.

本発明の金属錯体化合物(A)において、前述のヘテロ原子X1、X2の例としてのNRの置換基R、および一般式[1]のR1〜R5は水素原子または下記に挙げる一般的な置換基である。具体的な種類としては、ハロゲン原子、シアノ基、ニトロ基、置換もしくは未置換のアルキル基、置換もしくは未置換のアルコキシ基、置換もしくは未置換のアリールオキシ基、置換もしくは未置換のアルキルチオ基、置換もしくは未置換のアリールチオ基、置換もしくは未置換のアミノ基、置換もしくは未置換のアシル基、または置換もしくは未置換の炭素環基または複素環基などが挙げられる。以下にそれぞれの置換基についてさらに詳細な代表例を示すが、これらに限定されるものではなく、またこれらの置換基にはさらに置換基が結合していても良い。さらには、これらの置換基は近接する置換基同士で環を形成しても良い。 In the metal complex compound (A) of the present invention, the substituent R of NR as an example of the above-mentioned heteroatoms X 1 and X 2 , and R 1 to R 5 of the general formula [1] are hydrogen atoms or the following general ones Is a typical substituent. Specific types include halogen atoms, cyano groups, nitro groups, substituted or unsubstituted alkyl groups, substituted or unsubstituted alkoxy groups, substituted or unsubstituted aryloxy groups, substituted or unsubstituted alkylthio groups, substituted Alternatively, an unsubstituted arylthio group, a substituted or unsubstituted amino group, a substituted or unsubstituted acyl group, or a substituted or unsubstituted carbocyclic group or heterocyclic group can be mentioned. In the following, more detailed representative examples of each substituent will be shown, but the present invention is not limited thereto, and these substituents may further have a substituent bonded thereto. Furthermore, these substituents may form a ring with adjacent substituents.

本発明における置換基となるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子があげられる。   Examples of the halogen atom serving as a substituent in the present invention include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.

本発明における置換もしくは未置換のアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ステアリル基、2−フェニルイソプロピル基、トリクロロメチル基、トリフルオロメチル基、ベンジル基、α−フェノキシベンジル基、α,α−ジメチルベンジル基、α,α−メチルフェニルベンジル基、α,α−ジトリフルオロメチルベンジル基、トリフェニルメチル基、α−ベンジルオキシベンジル基等がある。   Examples of the substituted or unsubstituted alkyl group in the present invention include methyl group, ethyl group, propyl group, butyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, heptyl group, octyl group, stearyl group, 2-phenylisopropyl group, trichloromethyl group, trifluoromethyl group, benzyl group, α-phenoxybenzyl group, α, α-dimethylbenzyl group, α, α-methylphenylbenzyl group, α, α-ditrifluoromethylbenzyl group , Triphenylmethyl group, α-benzyloxybenzyl group and the like.

本発明における置換もしくは未置換のアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、tert−ブトキシ基、オクチルオキシ基、tert−オクチルオキシ基といった未置換のアルコキシ基や、3,3,3−トリフルオロエトキシ基、ベンジルオキシ基といった置換アルコキシ基があげられる。   Examples of the substituted or unsubstituted alkoxy group in the present invention include an unsubstituted alkoxy group such as a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a tert-butoxy group, an octyloxy group, and a tert-octyloxy group; , 3-trifluoroethoxy group, and substituted alkoxy group such as benzyloxy group.

本発明における置換もしくは未置換のアリールオキシ基としては、フェノキシ基、4−tert−ブチルフェノキシ基、1−ナフチルオキシ基、2−ナフチルオキシ基、9−アンスリルオキシ基といった未置換のアリールオキシ基や、4−ニトロフェノキシ基、3−フルオロフェノキシ基、ペンタフルオロフェノキシ基、3−トリフルオロメチルフェノキシ基等の置換アリールオキシ基があげられる。   Examples of the substituted or unsubstituted aryloxy group in the present invention include unsubstituted aryloxy groups such as phenoxy group, 4-tert-butylphenoxy group, 1-naphthyloxy group, 2-naphthyloxy group, and 9-anthryloxy group. And substituted aryloxy groups such as 4-nitrophenoxy group, 3-fluorophenoxy group, pentafluorophenoxy group and 3-trifluoromethylphenoxy group.

本発明における置換もしくは未置換のアルキルチオ基としては、メチルチオ基、エチルチオ基、tert−ブチルチオ基、ヘキシルチオ基、オクチルチオ基といった未置換のアルキルチオ基や、1,1,1−テトラフルオロエチルチオ基、べンジルチオ基、トリフルオロメチルチオ基といった置換アルキルチオ基があげられる。   Examples of the substituted or unsubstituted alkylthio group in the present invention include an unsubstituted alkylthio group such as methylthio group, ethylthio group, tert-butylthio group, hexylthio group, and octylthio group, 1,1,1-tetrafluoroethylthio group, And substituted alkylthio groups such as benzylthio group and trifluoromethylthio group.

本発明における置換もしくは未置換のアリールチオ基としては、フェニルチオ基、2−メチルフェニルチオ基、4−tert−ブチルフェニルチオ基といった未置換のアリールチオ基や、3−フルオロフェニルチオ基、ペンタフルオロフェニルチオ基、3−トリフルオロメチルフェニルチオ基等の置換アリールチオ基があげられる。   Examples of the substituted or unsubstituted arylthio group in the present invention include an unsubstituted arylthio group such as a phenylthio group, a 2-methylphenylthio group, and a 4-tert-butylphenylthio group, a 3-fluorophenylthio group, and a pentafluorophenylthio group. And substituted arylthio groups such as a 3-trifluoromethylphenylthio group.

本発明における置換もしくは未置換のアミノ基としては、アミノ基、モノまたはジアルキルアミノ基、モノまたはジアリールアミノ基、アルキルアリールアミノ基などがある。アルキルアミノ基の具体例としてはエチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基、ジブチルアミノ基、ベンジルアミノ基、ジベンジルアミノ基等があり、アリールアミノ基の具体例としては、フェニルアミノ基、(3−メチルフェニル)アミノ基、(4−メチルフェニル)アミノ基等があり、アリールアミノ基の具体例としては、フェニルアミノ基、フェニルメチルアミノ基、ジフェニルアミノ基、ジトリルアミノ基、ジビフェニリルアミノ基、ジ(4−メチルビフェニル)アミノ基、ジ(3−メチルフェニル)アミノ基、ジ(4−メチルフェニル)アミノ基、ナフチルフェニルアミノ基、ビス[4−(α,α’−ジメチルベンジル)フェニル]アミノ基等がある。アルキルアリールアミノ基の具体例としては、N−エチル−N−フェニルアミノ基、N−メチル−N−ナフチルアミノ基等がある。また、ビス(メトキシフェニル)アミノ基、ビス(アセトキシエチル)アミノ基等のアミノ基への置換基がさらに置換された構造も含む。   Examples of the substituted or unsubstituted amino group in the present invention include an amino group, a mono- or dialkylamino group, a mono- or diarylamino group, and an alkylarylamino group. Specific examples of the alkylamino group include an ethylamino group, a diethylamino group, a dipropylamino group, a dibutylamino group, a benzylamino group, and a dibenzylamino group. Specific examples of the arylamino group include a phenylamino group, ( 3-methylphenyl) amino group, (4-methylphenyl) amino group, etc. Specific examples of the arylamino group include phenylamino group, phenylmethylamino group, diphenylamino group, ditolylamino group, dibiphenylylamino group Di (4-methylbiphenyl) amino group, di (3-methylphenyl) amino group, di (4-methylphenyl) amino group, naphthylphenylamino group, bis [4- (α, α'-dimethylbenzyl) phenyl There are amino groups and the like. Specific examples of the alkylarylamino group include an N-ethyl-N-phenylamino group and an N-methyl-N-naphthylamino group. Also included are structures in which substituents to amino groups such as bis (methoxyphenyl) amino group and bis (acetoxyethyl) amino group are further substituted.

本発明における置換もしくは未置換のアシル基としては、ホルミル基、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、イソバレリル基、ピバロイル基、ヘキサノイル基、オクタノイル基、アクリロイル基、メタクリロイル基などのアルキル基置換のアシル基、ベンゾイル基、トルオイル基、ナフトイル基などのアリール置換のアシル基や、その他シクロヘキシルカルボニル基、クロロホルミル基、アルコキシカルボニル基、アリールオキシカルボニル基、(N−置換)カルバモイル基などがある。   Examples of the substituted or unsubstituted acyl group in the present invention include formyl group, acetyl group, propionyl group, butyryl group, isobutyryl group, valeryl group, isovaleryl group, pivaloyl group, hexanoyl group, octanoyl group, acryloyl group, and methacryloyl group. Alkyl-substituted acyl groups such as alkyl-substituted acyl groups, benzoyl groups, toluoyl groups, naphthoyl groups, and other cyclohexylcarbonyl groups, chloroformyl groups, alkoxycarbonyl groups, aryloxycarbonyl groups, (N-substituted) carbamoyl groups, etc. There is.

本発明における置換もしくは未置換の炭素環基としては、単環基もしくは縮合多環基がある。   The substituted or unsubstituted carbocyclic group in the present invention includes a monocyclic group or a condensed polycyclic group.

単環基の具体例としては、単環シクロアルキル基、単環アリール基がある。   Specific examples of the monocyclic group include a monocyclic cycloalkyl group and a monocyclic aryl group.

単環シクロアルキル基としては、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基等のシクロアルキル基がある。   Examples of the monocyclic cycloalkyl group include cycloalkyl groups such as a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group.

単環アリール基としては、フェニル基がある。   A monocyclic aryl group includes a phenyl group.

置換もしくは未置換の縮合多環基としては、縮合多環アリール基、縮合多環シクロアルキル基等がある。   Examples of the substituted or unsubstituted condensed polycyclic group include a condensed polycyclic aryl group and a condensed polycyclic cycloalkyl group.

縮合多環アリール基としては、ナフチル基、アンスリル基、フェナンスリル基、フルオレニル基、アセナフチル基、アズレニル基、ヘプタレニル基、ピレニル基、ペリレニル基、トリフェニレニル基等がある。   Examples of the condensed polycyclic aryl group include a naphthyl group, anthryl group, phenanthryl group, fluorenyl group, acenaphthyl group, azulenyl group, heptaenyl group, pyrenyl group, perylenyl group, and triphenylenyl group.

本発明における置換もしくは未置換の複素環基としては、単環複素環基もしくは縮合多環複素環基がある。   Examples of the substituted or unsubstituted heterocyclic group in the present invention include a monocyclic heterocyclic group and a condensed polycyclic heterocyclic group.

単環複素環基としては、チエニル基、フリル基、ピロリル基、イミダゾリル基、ピラゾリル基、ピリジニル基、ピラジニル基、ピリミジニル基、ピリダジニル基、トリアジニル基、トリアゾリル基、オキサゾリル基、チアゾリル基、オキサジアゾリル基、チアジアゾリル基、イミダジアゾリル基等がある。
縮合多環複素環基としては、インドリル基、キノリル基、イソキノリル基、フタラジニル基、キノキサリニル基、キナゾリニル基、カルバゾリル基、アクリジニル基、フェナジニル基、ベンゾフリル基、イソチアゾリル基、イソキサゾリル基、フラザニル基、フェノキサジニル基、ベンゾチアゾリル基、ベンゾオキサゾリル基、ベンゾイミダゾリル基、ベンゾトリアゾリル基、ピラニル基等がある。その他の縮合多環基として、1−テトラリル基、2−テトラリル基、テトラヒドロキノリル基等がある。
Examples of monocyclic heterocyclic groups include thienyl, furyl, pyrrolyl, imidazolyl, pyrazolyl, pyridinyl, pyrazinyl, pyrimidinyl, pyridazinyl, triazinyl, triazolyl, oxazolyl, thiazolyl, oxadiazolyl, There are thiadiazolyl and imidadiazolyl groups.
As the condensed polycyclic heterocyclic group, indolyl group, quinolyl group, isoquinolyl group, phthalazinyl group, quinoxalinyl group, quinazolinyl group, carbazolyl group, acridinyl group, phenazinyl group, benzofuryl group, isothiazolyl group, isoxazolyl group, furazanyl group, phenoxazinyl group Benzothiazolyl group, benzoxazolyl group, benzimidazolyl group, benzotriazolyl group, pyranyl group and the like. Examples of other condensed polycyclic groups include 1-tetralyl group, 2-tetralyl group, tetrahydroquinolyl group and the like.

ここで、前記構造からX2の水素原子が脱離することにより、トロポロン系配位子は1価のアニオン性配位子となり、金属原子と錯形成することができる。このとき、X1は金属原子と配位結合し、X2は金属原子と共有結合する。ただし、錯体形成後は結合を組替えずに共鳴構造によってX1とX2を入れ替えることができるので、通常では区別する必要は生じない。 Here, when the hydrogen atom of X 2 is desorbed from the structure, the tropolone-based ligand becomes a monovalent anionic ligand and can form a complex with a metal atom. At this time, X 1 is coordinated to a metal atom, and X 2 is covalently bonded to the metal atom. However, after complex formation, X 1 and X 2 can be interchanged by the resonance structure without recombination of the bonds, so that it is not usually necessary to distinguish them.

本発明における金属原子Mは、通常、何らかの錯形成を行う原子であれば何でもよい。具体的には周期表1族ないしは14族から選ばれる金属であり、アルカリ金属、アルカリ土類金属、希土類を含む遷移金属、亜鉛族、ホウ素族および炭素族に属する金属を含む。   In general, the metal atom M in the present invention may be anything as long as it is an atom that forms some complex. Specifically, it is a metal selected from Group 1 to Group 14 of the Periodic Table, and includes metals belonging to alkali metals, alkaline earth metals, rare earth-containing transition metals, zinc group, boron group and carbon group.

好ましくは、金属原子Mが、周期表1族、2族、3族、12族、または13族から選ばれる金属であり、さらに好ましくはMg、Ca、Zn、Al、Gaのいずれかである。なお、本発明において、特に好ましい金属から2族のBeを除いているのは、有毒性が指摘されているため工業的に広く用いることが好ましくないと思われるためであり、決して他の金属よりも特性的に劣ったり、技術的に問題があるということではない。これらの金属からなる錯体化合物(A)の場合は、後述する発光層中のホスト材料または電子注入材料、正孔ブロッキング材料として使用すると好適である。またホスト材料としての発光層中での比率は発光層全体に対して50重量%以上であることが好ましい。   Preferably, the metal atom M is a metal selected from Group 1, 2, 3, 12, or 13 of the periodic table, and more preferably Mg, Ca, Zn, Al, or Ga. In the present invention, the reason why the group 2 Be is excluded from the particularly preferable metal is that it is not preferable to use it widely industrially because toxicity is pointed out. However, it does not mean that the characteristics are inferior or technically problematic. In the case of the complex compound (A) composed of these metals, it is preferable to use it as a host material, an electron injection material, or a hole blocking material in a light emitting layer described later. The ratio in the light emitting layer as the host material is preferably 50% by weight or more based on the entire light emitting layer.

また、別の好ましい形態は、金属原子Mが、希土類または周期表6族ないしは11族のいずれかから選ばれる金属であり、より好ましくは周期表8族ないしは10族、かつ第5周期または第6周期の白金族元素から選ばれる金属である。さらに具体的にはイリジウムまたは白金が挙げられる。これらの金属からなる錯体化合物(A)の場合は、後述する発光層中のドーパント材料として使用すると好適であり、特に燐光発光を有するドーピング材料、つまり燐光発光材料(B)の1種として用いるのが良い。またドーピング材料としての発光層中での比率は発光層全体に対して50重量%未満であることが好ましい。   In another preferred embodiment, the metal atom M is a rare earth or a metal selected from any one of Groups 6 to 11 of the periodic table, more preferably the Groups 8 to 10 of the periodic table, and the 5th or 6th period. It is a metal selected from platinum group elements with a period. More specifically, iridium or platinum can be mentioned. In the case of the complex compound (A) composed of these metals, it is suitable to be used as a dopant material in a light emitting layer to be described later, and in particular, it is used as a doping material having phosphorescence, that is, one kind of phosphorescent light emitting material (B). Is good. Moreover, it is preferable that the ratio in the light emitting layer as a doping material is less than 50 weight% with respect to the whole light emitting layer.

本発明において、金属原子に複数個の配位子が配位する場合には、上記トロポロン系配位子は、全く同一でも、置換基の種類やヘテロ原子などの部分構造が一部異なっていても構わない。また、上記トロポロン系配位子の範疇ではない有機化合物もしくは有機残基からなる配位子Lを有していても良い。この配位子は、1原子のみで金属に配位する単座配位子か、2原子が配位するニ座配位子である。ただし、錯体の安定性の面からはニ座配位子の方が好ましい。また、3原子以上が1つの原子に同時に配位することも考えられるが、この場合は配位子同士が結合を作ったと見なすことができる。さらに、1つの配位子が2個またはそれ以上の金属原子に同時に配位する多核錯体も考えられる。この場合、2個以上の金属原子をつなぐ架橋配位子は有機配位子でも良いし、2価のアニオン性の酸素原子であっても良い。この多核錯体において、トロポロン系配位子は一方の金属のみに配位していても良いし、複数ないしは全ての金属上に存在しても良い。ただし、好ましくは架橋配位子以外がトロポロン系配位子であることである。   In the present invention, when a plurality of ligands are coordinated to a metal atom, the above tropolone-based ligands may be completely the same, but the partial types such as the types of substituents and heteroatoms may be partially different. It doesn't matter. Moreover, you may have the ligand L which consists of an organic compound or organic residue which is not the category of the said tropolone-type ligand. This ligand is a monodentate ligand that coordinates to the metal with only one atom, or a bidentate ligand that coordinates with two atoms. However, a bidentate ligand is preferred from the viewpoint of the stability of the complex. It is also conceivable that three or more atoms are coordinated to one atom at the same time. In this case, it can be considered that the ligands have formed a bond. Furthermore, a polynuclear complex in which one ligand is simultaneously coordinated to two or more metal atoms is also conceivable. In this case, the bridging ligand that connects two or more metal atoms may be an organic ligand or a divalent anionic oxygen atom. In this polynuclear complex, the tropolone-based ligand may be coordinated to only one metal, or may be present on a plurality or all of the metals. However, it is preferable that other than the bridging ligand is a tropolone-based ligand.

本発明において、どのような配位子がいくつ配位するかは、金属原子の配位数の他、配位子の空間に占める大きさや配位原子の位置関係など、各種の複雑な要素があり一言では言い表すことができないが、一般的にはカチオン価数が2価以上の金属原子の場合、配位数は4配位または6配位が多い。1価のアルカリ金属の場合は2配位で、トロポロン系配位子1個のみが配位する場合が殆どである。また、希土類金属では、8配位をとる場合もある。配位子によっては、空間的な制約や安定性から、同時に6原子が配位座に入ることができず、5配位になる場合もある。しかし、本発明の場合、蒸着で成膜する場合や、湿式塗工においても電気物性的に安定度の高い膜を作る観点から、錯体全体で電荷的に中性になることが望ましい。このため、トロポロン系配位子とそれ以外の配位子Lからなるアニオン価数の総和は、金属のカチオン価数と一致する必要がある。よって、配位数が価数の2倍の場合、即ち2価4配位のZnや3価6配位のAlの場合は1価のアニオン性配位子であるトロポロン系配位子のみ、あるいはその他の1価配位子とで中性錯体を形成できるが、配位数が価数の2倍にならない場合、例えば2価6配位のRuや3価8配位のEuの場合には電荷的中性の0価配位子を加える必要がある。また、単座配位子を用いた場合にも全体で価数調整が必要となる。   In the present invention, what kind of ligand is coordinated depends on various complex factors such as the number of coordination of metal atoms, the size in the space of the ligand, and the positional relationship of the coordination atoms. Although it cannot be expressed in a single word, generally, in the case of a metal atom having a cation valence of 2 or more, the coordination number is often 4-coordinate or 6-coordinated. In the case of a monovalent alkali metal, it is two-coordinated, and in most cases, only one tropolone-based ligand is coordinated. In addition, rare earth metals sometimes take eight coordination. Depending on the ligand, 6 atoms cannot enter the coordination site at the same time due to spatial restrictions and stability, and may be 5-coordinated. However, in the case of the present invention, it is desirable that the entire complex be neutral in terms of charge from the viewpoint of forming a film by vapor deposition or forming a film having high electrical properties in wet coating. For this reason, the sum total of the anion valence which consists of a tropolone-type ligand and the other ligand L needs to correspond with the cation valence of a metal. Therefore, when the coordination number is twice the valence, that is, in the case of divalent tetracoordinated Zn or trivalent hexacoordinated Al, only the tropolone-based ligand that is a monovalent anionic ligand, Alternatively, a neutral complex can be formed with other monovalent ligands, but in the case where the coordination number is not twice the valence, for example, in the case of divalent hexacoordinated Ru or trivalent octacoordinated Eu. Needs to add a charge neutral zero-valent ligand. In addition, when a monodentate ligand is used, valence adjustment is required as a whole.

本発明において、1金属原子に入る複数の配位子の種類が異なることは制約されてはいないが、錯体の安定性の面からは、性質の似通った配位子が入ることが、結合の弱い部分が出来難いので好ましい。つまり、中性錯体であることや空間的な制約を受けない限り、1価のアニオン性配位子だけで形成した錯体が好ましい。本発明においては、さらに好ましくは、トロポロン系配位子のみで形成した錯体である。   In the present invention, it is not restricted that the types of a plurality of ligands entering one metal atom are different, but from the viewpoint of the stability of the complex, it is possible that a ligand having similar properties may enter. The weak part is difficult because it is difficult to make. That is, a complex formed only with a monovalent anionic ligand is preferable as long as it is a neutral complex and is not subject to spatial restrictions. In the present invention, a complex formed only with a tropolone-based ligand is more preferable.

本発明において、トロポロン系配位子同士、それ以外の配位子同士、あるいはトロポロン系配位子とそれ以外の配位子とは、金属原子M以外の部分で結合していても良い。場合によっては連結によって1個の縮合環となっていても良い。   In the present invention, tropolone-based ligands, other ligands, or tropolone-based ligands and other ligands may be bonded at a portion other than the metal atom M. In some cases, one fused ring may be formed by linking.

本発明の金属錯体化合物(A)は、対応するトロポロン系配位子を有機溶媒に溶解した溶液に、中心原子となる金属の塩を溶解した水溶液などを加え、必要に応じてアルカリで中和することにより得ることができる。また、アルカリ金属錯体の場合はアルカリ金属水酸化物を使用することもできる。アルカリ金属以外の錯体の場合は、一度アルカリ金属錯体を合成した後、この水溶液と対応する金属塩の水溶液を混合することでも得ることができる。金属塩としては、金属無機塩もしくは金属有機塩を用いることができる。具体的には、金属無機塩として、塩酸塩、硫酸塩、亜硫酸塩、硝酸塩、亜硝酸塩、炭酸塩などがあげられ、金属有機塩としては、ギ酸塩、酢酸塩、プロピオン酸塩、シュウ酸塩、グルコン酸塩、ナフテン酸塩などがあげられるが特にこれらに限定されるものではない。また、トロポロン系配位子を溶解する有機溶媒としては、メタノール、エタノール、2−プロパノールなどのアルコール系溶媒が用いられる。アルコール類に難溶性の配位子の場合は、ジメチルホルムアミド、テトラヒドロフランなどの他の可溶性溶媒を用いても良い。   In the metal complex compound (A) of the present invention, an aqueous solution in which a metal salt as a central atom is dissolved is added to a solution in which a corresponding tropolone-based ligand is dissolved in an organic solvent, and neutralized with an alkali as necessary. Can be obtained. In the case of an alkali metal complex, an alkali metal hydroxide can also be used. In the case of a complex other than an alkali metal, it can also be obtained by once synthesizing an alkali metal complex and then mixing this aqueous solution with an aqueous solution of a corresponding metal salt. As the metal salt, a metal inorganic salt or a metal organic salt can be used. Specific examples of metal inorganic salts include hydrochlorides, sulfates, sulfites, nitrates, nitrites, and carbonates. Metal organic salts include formate, acetate, propionate, and oxalate. , Gluconate, naphthenate and the like, but are not particularly limited thereto. In addition, as the organic solvent for dissolving the tropolone-based ligand, alcohol-based solvents such as methanol, ethanol, and 2-propanol are used. In the case of a ligand that is hardly soluble in alcohols, other soluble solvents such as dimethylformamide and tetrahydrofuran may be used.

錯体の合成法の詳細は、例えば、H.Iinuma,J.Chem.Soc.Japan,64,742(1943)、B.E.Bryant et al.,J.Am.Chem.Soc.,75,3784(1953)などに記載がある。また、配位子となるトロポロン誘導体の合成については、大有機化学13巻「非ベンゼン系芳香環化合物」昭和35年、朝倉書店刊行の101ページ以降や、化学総説No.15「新しい芳香族系の化学」日本化学会編、昭和52年、学会出版センター刊行の101ページ以降に詳しい記載がある。   Details of the method for synthesizing the complex are described in, for example, H.C. Iinuma, J .; Chem. Soc. Japan, 64, 742 (1943), B.I. E. Bryant et al. , J .; Am. Chem. Soc. 75, 3784 (1953). As for the synthesis of the tropolone derivative serving as a ligand, Daigaku Organic Chemistry Vol. 13, “Non-benzene aromatic ring compounds”, 1960, published by Asakura Shoten et al. 15 “New Aromatic Chemistry” edited by the Chemical Society of Japan, 1977, published by the Society Publishing Center, page 101 and beyond.

2種以上のトロポロン系配位子からなる場合、トロポロン系以外の配位子を含む場合、多核錯体の場合は、配位子となる化合物の比率や、加える順番、金属や配位子の置換を利用することにより調製する。必要に応じて分離精製を行う。   When it is composed of two or more tropolone-based ligands, when it contains a ligand other than the tropolone-based ligand, in the case of a polynuclear complex, the ratio of compounds to be ligands, the order of addition, substitution of metals and ligands It is prepared by using. Separation and purification are performed as necessary.

以下に、本発明の金属錯体化合物(A)の代表例を具体的に例示するが、本発明は、この代表例に限定されるものではない。なお、構造式中の一般式X1、X2に相当するヘテロ原子(の単結合と二重結合、配位結合と共有結合)は、前述のように共鳴により入れ替わることが可能なため、区別して書き分けたものではなく、また原子種が異なる場合や(特に極性の強い)環置換基が存在する場合において、より安定な構造を選択したわけでもない。 Although the typical example of the metal complex compound (A) of this invention is specifically illustrated below, this invention is not limited to this representative example. Note that heteroatoms (single bonds and double bonds, coordination bonds and covalent bonds) corresponding to the general formulas X 1 and X 2 in the structural formula can be interchanged by resonance as described above. They are not separately written, nor are they more stable structures selected when the atomic species are different or when there are (especially highly polar) ring substituents.

Figure 0004438459
Figure 0004438459

Figure 0004438459
Figure 0004438459

Figure 0004438459
Figure 0004438459

Figure 0004438459
Figure 0004438459

Figure 0004438459
Figure 0004438459

Figure 0004438459
Figure 0004438459

Figure 0004438459
Figure 0004438459

Figure 0004438459
Figure 0004438459

Figure 0004438459
Figure 0004438459

Figure 0004438459
Figure 0004438459

Figure 0004438459
Figure 0004438459

Figure 0004438459
Figure 0004438459

Figure 0004438459
Figure 0004438459

Figure 0004438459
Figure 0004438459

本発明における金属錯体化合物(A)は、電子求引性基を持つため、概ね電子輸送性が良好である。また、カルボニル基などの二重結合を有する電子求引性基は、三重項励起状態を安定化させる効果が期待できる。この電子求引性基が、配位子内での共役と錯体化による共役の増強効果、さらには錯形成によって金属原子との間や金属原子を介して他の配位子との電子的相互作用が強められるため、電子求引性基同士の相互作用や、電子的影響の分子全体への波及がなされ、電子輸送性と三重項励起状態の安定性に対してより強い効果を発揮することになる。また、錯体化により、分子の剛直性が増し、構造的に高い安定性を有し、ガラス転移点や融点が高くなっている。このため、電界発光時における有機層中、有機層間もしくは、有機層と金属電極間で発生するジュール熱に対する耐性(耐熱性)が向上するので、有機燐光発光素子材料として使用した場合、高い発光輝度を示し、長時間発光させる際にも有利である。   Since the metal complex compound (A) in the present invention has an electron withdrawing group, the electron transport property is generally good. An electron-withdrawing group having a double bond such as a carbonyl group can be expected to stabilize the triplet excited state. This electron-withdrawing group has an effect of enhancing conjugation by conjugation and complexation in the ligand. Furthermore, it is possible to form an electronic interaction with other ligands through or through metal atoms. Because the action is strengthened, the interaction between electron-attracting groups and the influence of the electronic influence on the whole molecule are made, and the stronger effect is exerted on the electron transport property and the stability of the triplet excited state. become. Further, the complexation increases the molecular rigidity, has a high structural stability, and has a high glass transition point and melting point. For this reason, resistance to Joule heat (heat resistance) generated in the organic layer, between the organic layers, or between the organic layer and the metal electrode during electroluminescence is improved. Therefore, when used as an organic phosphorescent light emitting device material, high emission luminance This is also advantageous when light is emitted for a long time.

また、カルボニル基などの二重結合を有する電子求引性基は、三重項励起状態を安定化させる効果が想定できるため、一重項励起状態のみを利用する従来の蛍光型の有機EL素子よりも、有機燐光発光素子において燐光発光材料(B)と同時に用いる場合に発光を増強する効果が期待できるため、発光層や正孔ブロッキング層等に好適に使用できる。   In addition, since an electron withdrawing group having a double bond such as a carbonyl group can be expected to stabilize the triplet excited state, it is more than a conventional fluorescent organic EL element that uses only a singlet excited state. In the organic phosphorescent light emitting device, when used simultaneously with the phosphorescent light emitting material (B), an effect of enhancing the light emission can be expected, so that it can be suitably used for a light emitting layer, a hole blocking layer, and the like.

有機燐光発光素子は、陽極と陰極間に一層もしくは多層の有機薄膜を形成した素子である。基本構成は従来の有機EL素子と同様であるが、三重項励起状態のエネルギーを発光に利用できるよう材料の選択と層構成の工夫を施したところが特徴となる。なお、本発明において、「燐光発光素子」とは、発光材料またはドーピング材料が三重項状態から直接的に光を放出する場合だけでなく、両極から注入された電荷の再結合によって生じた三重項励起状態を光以外のエネルギー放出に回すことなく、素子中で有効に発光に利用するような機構、過程を有するように設計された構成の素子全般を含む。この意味において、本発明の金属錯体化合物(A)は、構造的、物性的に三重項励起状態を生成、保持しやすいため、各層を構成する材料として好適である。特に素子駆動中に三重項励起状態が最も多く存在する発光層の一成分に使用すると最大の効果を発揮する。   An organic phosphorescent light-emitting device is a device in which a single-layer or multilayer organic thin film is formed between an anode and a cathode. The basic configuration is the same as that of a conventional organic EL element, but is characterized in that material selection and layer configuration are devised so that triplet excited state energy can be used for light emission. In the present invention, the “phosphorescent light-emitting element” means not only a case where a light-emitting material or a doping material directly emits light from a triplet state, but also a triplet generated by recombination of charges injected from both electrodes. It includes all elements having a structure designed to have a mechanism and a process that can be effectively used for light emission in the element without turning the excited state into energy emission other than light. In this sense, the metal complex compound (A) of the present invention is suitable as a material constituting each layer because it easily generates and maintains a triplet excited state structurally and physically. In particular, when it is used as a component of a light emitting layer in which the triplet excited state is most present during device driving, the maximum effect is exhibited.

有機EL素子または有機燐光発光素子は、一層型の場合、陽極と陰極との間に発光層を設けている。発光層は、発光材料を含有し、それに加えて陽極から注入した正孔もしくは陰極から注入した電子を発光材料まで輸送させるために正孔注入材料もしくは電子注入材料を含有しても良い。電子注入材料とは陰極から電子を注入されうる能力を持つ材料であり、電子輸送材料とは注入された電子を発光層へ輸送する能力を持つ材料である。正孔注入材料とは、陽極から正孔を注入されうる能力を持つ材料であり、正孔輸送材料とは、注入された正孔を発光層へ輸送する能力を持つ材料である。多層型は、(陽極/正孔注入層/発光層/陰極)、(陽極/正孔注入層/正孔輸送層/発光層/陰極)、(陽極/発光層/電子注入層/陰極)、(陽極/発光層/電子輸送層/電子注入層/陰極)、(陽極/正孔注入層/発光層/電子注入層/陰極)、(陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極)、の多層構成で積層した有機燐光発光素子がある。多層型の正孔輸送層および電子輸送層は複数の層からなってもよい。ここで、正孔注入層と正孔輸送層、場合によっては正孔輸送性の強い発光層までを正孔注入帯域、電子注入層と電子輸送層、場合によっては電子輸送性の強い発光層までを電子注入帯域とそれぞれ呼ぶことがあり、各帯域に使用する材料を一括りで正孔注入材料(または正孔輸送材料)もしくは電子注入材料(または電子輸送材料)と呼ぶこともある。また、有機燐光発光素子の場合は、素子の特性や使用材料の点で、電子輸送層に要求される特性として、電子の輸送性より正孔が発光層から陰極側へ抜けてしまうことを阻止するブロック性をより重視するため、正孔ブロッキング層または正孔ブロック層と呼ばれることが多く、この層に用いられる材料を特に正孔ブロッキング材料と呼ぶことがある。これらの呼称は目的とする素子に対する材料の必要特性の一面を強調するために付けられているので、呼び方の違いにより材料の本質が異なることはない。これらの各層の材料とその構成は、材料のエネルギー準位、耐熱性、有機層もしくは金属電極との密着性等の各要因により選択され、決定される。   When the organic EL element or the organic phosphorescent light emitting element is a single layer type, a light emitting layer is provided between the anode and the cathode. The light emitting layer contains a light emitting material, and may further contain a hole injecting material or an electron injecting material in order to transport holes injected from the anode or electrons injected from the cathode to the light emitting material. The electron injection material is a material having the ability to inject electrons from the cathode, and the electron transport material is a material having the ability to transport the injected electrons to the light emitting layer. The hole injection material is a material having the ability to inject holes from the anode, and the hole transport material is a material having the ability to transport the injected holes to the light emitting layer. The multilayer type includes (anode / hole injection layer / light emitting layer / cathode), (anode / hole injection layer / hole transport layer / light emitting layer / cathode), (anode / light emitting layer / electron injection layer / cathode), (Anode / light emitting layer / electron transport layer / electron injection layer / cathode), (anode / hole injection layer / light emitting layer / electron injection layer / cathode), (anode / hole injection layer / hole transport layer / light emitting layer) There is an organic phosphorescent light emitting device laminated in a multilayer structure of / electron transport layer / electron injection layer / cathode). The multilayer hole transport layer and electron transport layer may be composed of a plurality of layers. Here, a hole injection layer and a hole transport layer, in some cases up to a light emitting layer having a strong hole transport property, up to a hole injection band, an electron injection layer and an electron transport layer, and in some cases to a light emitting layer having a strong electron transport property May be referred to as an electron injection band, and materials used in each band may be collectively referred to as a hole injection material (or hole transport material) or an electron injection material (or electron transport material). In the case of an organic phosphorescent light emitting device, the electron transporting layer is required to prevent holes from escaping from the light emitting layer to the cathode side due to the electron transportability in terms of device characteristics and materials used. In order to give more importance to the blocking property, it is often called a hole blocking layer or a hole blocking layer, and the material used for this layer is sometimes called a hole blocking material. Since these designations are given to emphasize one aspect of the necessary characteristics of the material for the target element, the essence of the material does not differ depending on the designation. The material of each of these layers and the structure thereof are selected and determined according to various factors such as the energy level of the material, heat resistance, and adhesion to the organic layer or metal electrode.

発光層には、必要があれば、本発明の材料に加えて、さらなる既存の有機蛍光色素を含む公知の発光材料、ドーピング材料および正孔注入材料や電子注入材料を使用することもできる。有機燐光発光素子は、多層構造にすることにより、クエンチングによる輝度や寿命の低下を防ぐことができる。必要があれば、発光材料、ドーピング材料、正孔注入材料や電子注入材料を組み合わせて使用することが出来る。また、ドーピング材料により、発光輝度や発光効率の向上、青色から赤色にわたる発光を得ることもできる。   If necessary, in addition to the material of the present invention, a known light emitting material, doping material, hole injecting material, and electron injecting material containing a further existing organic fluorescent dye can be used for the light emitting layer. The organic phosphorescent light emitting element can prevent a decrease in luminance and lifetime due to quenching by adopting a multilayer structure. If necessary, a light emitting material, a doping material, a hole injection material, and an electron injection material can be used in combination. Further, by using a doping material, emission luminance and luminous efficiency can be improved, and light emission ranging from blue to red can be obtained.

本発明の金属錯体化合物(A)と共に発光層に使用できる燐光発光材料(B)またはドーピング材料としては、有機化合物もしくは有機残基の配位子からなる金属錯体がある。金属原子は通常、遷移金属であり、好ましくは周期では第5周期または第6周期、族では6族から11族、さらに好ましくは8族から10族の元素が対象となる。具体的にはイリジウムや白金などである。また、配位子としては2−フェニルピリジンや2−(2’―ベンゾチエニル)ピリジンなどがあり、これらの配位子上の炭素原子が金属と直接結合しているのが特徴である。別の例としてはポルフィリンまたはテトラアザポルフィリン環錯体などがある。中心金属としては白金などが挙げられる。燐光発光材料の代表例を以下に具体的に例示するが、本発明はこの代表例に限定されるものではない。なお、本例は三重項励起状態から直接発光するとの知見が得られている材料の例であり、素子内で三重項励起エネルギーが失われずに有効に発光に利用できる何らかの機構が別に存在する場合には、さらに多くの材料を発光材料またはドーピング材料として用いることができ、既存の有機蛍光色素、有機EL発光材料、ドーピング材料をも有機燐光発光素子に利用できる可能性を否定するものではない。   Examples of the phosphorescent material (B) or doping material that can be used in the light emitting layer together with the metal complex compound (A) of the present invention include a metal complex composed of an organic compound or a ligand of an organic residue. The metal atom is usually a transition metal, and is preferably an element of the 5th or 6th period in the period, and from the 6th group to the 11th group in the group, and more preferably in the 8th to 10th group. Specific examples include iridium and platinum. Examples of the ligand include 2-phenylpyridine and 2- (2'-benzothienyl) pyridine, and the carbon atom on these ligands is directly bonded to the metal. Another example is a porphyrin or tetraazaporphyrin ring complex. Examples of the central metal include platinum. Although the typical example of a phosphorescent luminescent material is specifically illustrated below, this invention is not limited to this representative example. Note that this example is an example of a material for which it is known that light is emitted directly from a triplet excited state, and there is another mechanism that can be used for light emission effectively without losing triplet excitation energy in the device. In addition, more materials can be used as the light emitting material or the doping material, and the possibility that the existing organic fluorescent dye, the organic EL light emitting material, and the doping material can be used for the organic phosphorescent light emitting element is not denied.

Figure 0004438459
Figure 0004438459

Figure 0004438459
Figure 0004438459

共に発光層に使用できる上記の材料および本発明の化合物の発光層中での存在比はどれが主成分であってもよいが、好ましくは、上記、燐光発光材料(B)またはドーピング材料に対して本発明の金属化合物(A)の存在比が50重量%以上であるホスト材料として使用することである。  Any of the above-mentioned materials that can be used in the light-emitting layer and the abundance ratio of the compound of the present invention in the light-emitting layer may be the main component, but preferably the above-mentioned phosphorescent light-emitting material (B) or doping material In other words, the metal compound (A) of the present invention is used as a host material having an abundance ratio of 50% by weight or more.

本発明の金属錯体化合物(A)は、発光層中でホスト材料として用いる他にドーピング材料として用いることも可能である。その場合、化合物自体に強い発光を有すればどの化合物も使用可能であるが、本発明において好ましくは三重項励起状態など一重項以外の励起状態を経て発光する場合である。具体的には金属原子Mが、希土類または周期表6族ないしは11族のいずれかから選ばれる金属であり、より好ましくは周期表8族ないしは10族、かつ第5周期または第6周期の白金族元素から選ばれる金属である。さらに具体的にはイリジウムまたは白金が挙げられるまたドーピング材料としての発光層中での比率は50重量%以下であることが好ましい。 The metal complex compound (A) of the present invention can be used as a doping material in addition to being used as a host material in the light emitting layer. In that case, any compound can be used as long as the compound itself has strong light emission, but in the present invention, it is preferable that light is emitted through an excited state other than a singlet such as a triplet excited state. Specifically, the metal atom M is a rare earth or a metal selected from any of Groups 6 to 11 of the periodic table, more preferably a Group 8 or 10 of the periodic table, and a platinum group of the 5th or 6th period. It is a metal selected from elements. More specifically, iridium or platinum can be mentioned . Further, the ratio in the light emitting layer as a doping material is preferably 50% by weight or less.

金属錯体化合物(A)と併せて使用できるホスト材料としては、キノリン金属錯体、オキサジアゾール、ベンゾチアゾール金属錯体、ベンゾオキサゾール金属錯体、ベンゾイミダゾール金属錯体、トリアゾール、イミダゾール、オキサゾール、オキサジアゾール、スチルベン、ブタジエン、ベンジジン型トリフェニルアミン、スチリルアミン型トリフェニルアミン、ジアミン型トリフェニルアミンフルオレノン、ジアミノアントラセン型トリフェニルアミン、ジアミノフェナントレン型トリフェニルアミン、アントラキノジメタン、ジフェノキノン、チアジアゾール、テトラゾール、ペリレンテトラカルボン酸、フレオレニリデンメタン、アントラキノジメタン、トリフェニレン、アントロン等とそれらの誘導体、ポリビニルカルバゾール、ポリシラン等の導電性高分子の高分子材料等がある。   Host materials that can be used in combination with the metal complex compound (A) include quinoline metal complexes, oxadiazoles, benzothiazole metal complexes, benzoxazole metal complexes, benzimidazole metal complexes, triazoles, imidazoles, oxazoles, oxadiazoles, and stilbenes. , Butadiene, benzidine type triphenylamine, styrylamine type triphenylamine, diamine type triphenylamine fluorenone, diaminoanthracene type triphenylamine, diaminophenanthrene type triphenylamine, anthraquinodimethane, diphenoquinone, thiadiazole, tetrazole, perylenetetra Carboxylic acid, fluorenylidenemethane, anthraquinodimethane, triphenylene, anthrone and their derivatives, polyvinylcarbazole, There are polymeric materials such as a conductive polymer such as Rishiran.

しかし、本発明においては金属錯体化合物(A)が、燐光発光する場合、ホスト材料としては、三重項励起状態を安定化させ、ドーピング材料に有効にエネルギー移動可能な材料であることが好ましい。このような材料としては、複素環、特に含窒素環を有する化合物があり、具体的には、ピロール、オキサゾール、チアゾール、イミダゾール、ピリジン、ピリミジン、ピラジンなどの単環や、これらに他の環が縮合したインドール、カルバゾール、ベンゾオキサゾール、ベンゾイミダゾール、キノキサリンなどを構造内に有する化合物やこれらの構造を配位子とする金属錯体が挙げられる。この中でも、カルバゾール環を有する化合物は特に好適に用いることが出来る。また、カルボニル基もしくはカルボニル基から誘導される電子求引性二重結合を有する化合物も三重項励起状態を安定化させる効果があるため好適に用いることが出来る。また、2個以上の異なる種類の複素環を構造内に有する化合物、カルボニル基等の電子求引性二重結合と複素環をともに有する化合物も好適に用いることが出来る。また、本発明の金属錯体化合物(A)のうちの2種ないしはそれ以上をホスト材料とドーピング材料それぞれに用いることも可能である。   However, in the present invention, when the metal complex compound (A) emits phosphorescence, the host material is preferably a material that stabilizes the triplet excited state and can effectively transfer energy to the doping material. Examples of such materials include compounds having a heterocyclic ring, particularly a nitrogen-containing ring. Specifically, there are monocyclic rings such as pyrrole, oxazole, thiazole, imidazole, pyridine, pyrimidine, pyrazine, and other rings. Examples thereof include compounds having condensed indole, carbazole, benzoxazole, benzimidazole, quinoxaline and the like in the structure, and metal complexes having these structures as ligands. Among these, a compound having a carbazole ring can be particularly preferably used. In addition, a carbonyl group or a compound having an electron withdrawing double bond derived from a carbonyl group can be preferably used because it has an effect of stabilizing the triplet excited state. Further, compounds having two or more different types of heterocycles in the structure, and compounds having both an electron withdrawing double bond such as a carbonyl group and a heterocycle can also be suitably used. Also, two or more of the metal complex compounds (A) of the present invention can be used for the host material and the doping material, respectively.

正孔注入材料としては、正孔を輸送する能力を持ち、陽極からの正孔注入効果、発光層または発光材料に対して優れた正孔注入効果を有し、発光層で生成した励起子の電子注入帯域または電子注入材料への移動を防止し、かつ薄膜形成能力の優れた化合物が挙げられる。具体的には、フタロシアニン誘導体、ナフタロシアニン誘導体、ポルフィリン誘導体、オキサゾール、オキサジアゾール、トリアゾール、イミダゾール、イミダゾロン、イミダゾールチオン、ピラゾリン、ピラゾロン、テトラヒドロイミダゾール、オキサゾール、オキサジアゾール、ヒドラゾン、アシルヒドラゾン、ポリアリールアルカン、スチルベン、ブタジエン、ベンジジン型トリフェニルアミン、スチリルアミン型トリフェニルアミン、ジアミン型トリフェニルアミン等と、それらの誘導体、およびポリビニルカルバゾール、ポリシラン、導電性高分子等の高分子材料等があるが、これらに限定されるものではない。   As a hole injection material, it has the ability to transport holes, has a hole injection effect from the anode, an excellent hole injection effect for the light emitting layer or the light emitting material, and excitons generated in the light emitting layer. Examples thereof include compounds that prevent movement to an electron injection zone or an electron injection material and have an excellent thin film forming ability. Specifically, phthalocyanine derivatives, naphthalocyanine derivatives, porphyrin derivatives, oxazole, oxadiazole, triazole, imidazole, imidazolone, imidazolethione, pyrazoline, pyrazolone, tetrahydroimidazole, oxazole, oxadiazole, hydrazone, acyl hydrazone, polyaryl Alkane, stilbene, butadiene, benzidine type triphenylamine, styrylamine type triphenylamine, diamine type triphenylamine, etc., and their derivatives, and polymer materials such as polyvinyl carbazole, polysilane, conductive polymer, etc. However, it is not limited to these.

本発明の有機燐光発光素子において使用できる正孔注入材料の中で、さらに効果的な正孔注入材料は、アリールアミン誘導体、フタロシアニン化合物ないしはトリフェニレン誘導体である。アリールアミン誘導体の具体例としては、トリフェニルアミン、トリトリルアミン、トリルジフェニルアミン、N,N’−ジフェニル−N,N’−ジ−m−トリル−4,4’−ビフェニルジアミン、N,N,N’,N’−テトラ(p−トリル)−p−フェニレンジアミン、N,N,N’,N’−テトラ−p−トリル−4,4’−ビフェニルジアミン、N,N’−ジフェニル−N,N’−ジ(1−ナフチル)−4,4’−ビフェニルジアミン、N,N’−ジ(4−n−ブチルフェニル)−N,N’−ジ−p−トリル−9,10−フェナントレンジアミン、4,4’,4”−トリス(N−フェニル−N−m−トリルアミノ)トリフェニルアミン、1,1−ビス[4−(ジ−p−トリルアミノ)フェニル]シクロヘキサン等、もしくはこれらの芳香族三級アミン骨格を有したオリゴマーもしくはポリマー等があるが、これらに限定されるものではない。   Among the hole injection materials that can be used in the organic phosphorescent light emitting device of the present invention, more effective hole injection materials are arylamine derivatives, phthalocyanine compounds, or triphenylene derivatives. Specific examples of the arylamine derivative include triphenylamine, tolylamine, tolyldiphenylamine, N, N′-diphenyl-N, N′-di-m-tolyl-4,4′-biphenyldiamine, N, N, N ', N'-tetra (p-tolyl) -p-phenylenediamine, N, N, N', N'-tetra-p-tolyl-4,4'-biphenyldiamine, N, N'-diphenyl-N, N′-di (1-naphthyl) -4,4′-biphenyldiamine, N, N′-di (4-n-butylphenyl) -N, N′-di-p-tolyl-9,10-phenanthrenediamine 4,4 ′, 4 ″ -tris (N-phenyl-Nm-tolylamino) triphenylamine, 1,1-bis [4- (di-p-tolylamino) phenyl] cyclohexane, or the like There are oligomers or polymers having tertiary amine skeletons, though not particularly limited thereto.

フタロシアニン(Pc)化合物の具体例としては、H2Pc、CuPc、C oPc、NiPc、ZnPc、PdPc、FePc、MnPc、ClAlPc、ClGaPc、ClInPc、ClSnPc、Cl2SiPc、(HO)A lPc、(HO)GaPc、VOPc、TiOPc、MoOPc、GaPc−O−GaPc等のフタロシアニン誘導体およびナフタロシアニン誘導体等があるが、これらに限定されるものではない。 Specific examples of the phthalocyanine (Pc) compound include H 2 Pc, CuPc, CoPc, NiPc, ZnPc, PdPc, FePc, MnPc, ClAlPc, ClGaPc, ClInPc, ClSnPc, Cl 2 SiPc, (HO) AlPc, (HO) ) There are, but are not limited to, phthalocyanine derivatives and naphthalocyanine derivatives such as GaPc, VOPc, TiOPc, MoOPc, and GaPc-O-GaPc.

トリフェニレン誘導体の具体例としては、ヘキサメトキシトリフェニレン、ヘキサエトキシトリフェニレン、ヘキサヘキシルオキシトリフェニレン、ヘキサベンジルオキシトリフェニレン、トリメチレンジオキシトリフェニレン、トリエチレンジオキシトリフェニレンなどのヘキサアルコキシトリフェニレン類、ヘキサフェノキシトリフェニレン、ヘキサナフチルオキシトリフェニレン、ヘキサビフェニリルオキシトリフェニレン、トリフェニレンジオキシトリフェニレンなどのヘキサアリールオキシトリフェニレン類、ヘキサアセトキシトリフェニレン、ヘキサベンゾイルオキシトリフェニレンなどのヘキサアシロキシトリフェニレン類等があるが、これらに限定されるものではない。   Specific examples of triphenylene derivatives include hexaalkoxytriphenylenes such as hexamethoxytriphenylene, hexaethoxytriphenylene, hexahexyloxytriphenylene, hexabenzyloxytriphenylene, trimethylenedioxytriphenylene, triethylenedioxytriphenylene, hexaphenoxytriphenylene, hexanaphthyl. Examples include, but are not limited to, hexaaryloxytriphenylenes such as oxytriphenylene, hexabiphenylyloxytriphenylene, and triphenylenedioxytriphenylene, and hexaacyloxytriphenylenes such as hexaacetoxytriphenylene and hexabenzoyloxytriphenylene.

電子注入材料としては、電子を輸送する能力を持ち、陰極からの正孔注入効果、発光層または発光材料に対して優れた電子注入効果を有し、発光層で生成した励起子の正孔注入帯域への移動を防止し、かつ薄膜形成能力の優れた化合物が挙げられる。例えば、フルオレノン、アントラキノジメタン、ジフェノキノン、チオピランジオキシド、オキサゾール、オキサジアゾール、トリアゾール、イミダゾール、ペリレンテトラカルボン酸、フレオレニリデンメタン、アントラキノジメタン、アントロン等とそれらの誘導体があるが、これらに限定されるものではない。また、正孔注入材料に電子受容物質を、電子注入材料に電子供与性物質を添加することにより増感させることもできる。   As an electron injection material, it has the ability to transport electrons, has a hole injection effect from the cathode, and an excellent electron injection effect for the light-emitting layer or light-emitting material, and hole injection of excitons generated in the light-emitting layer Examples thereof include compounds that prevent migration to the zone and have an excellent thin film forming ability. For example, there are fluorenone, anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, fluorenylidenemethane, anthraquinodimethane, anthrone, and their derivatives. However, it is not limited to these. Further, it can be sensitized by adding an electron accepting substance to the hole injecting material and an electron donating substance to the electron injecting material.

本発明の有機燐光発光素子において、さらに効果的な電子注入材料は、金属錯体化合物もしくは含窒素五員環誘導体である。具体的には、金属錯体化合物としては、8−ヒドロキシキノリナートリチウム、ビス(8−ヒドロキシキノリナート)亜鉛、ビス(8−ヒドロキシキノリナート)銅、ビス(8−ヒドロキシキノリナート)マンガン、トリス(8−ヒドロキシキノリナート)アルミニウム、トリス(2−メチル−8−ヒドロキシキノリナート)アルミニウム、トリス(8−ヒドロキシキノリナート)ガリウム、ビス(10−ヒドロキシベンゾ[h]キノリナート)ベリリウム、ビス(10−ヒドロキシベンゾ[h]キノリナート)亜鉛、ビス(2−メチル−8−ヒドロキシキノリナート)クロロガリウム、ビス(2−メチル−8−ヒドロキシキノリナート)(o−クレゾラート)ガリウム、ビス(2−メチル−8−ヒドロキシキノリナート)(1−ナフトラート)アルミニウム、ビス(2−メチル−8−ヒドロキシキノリナート)(2−ナフトラート)ガリウム、ビス(2−メチル−8−ヒドロキシキノリナート)フェノラートガリウム、ビス(o−(2−ベンゾオキサゾリル)フェノラート)亜鉛、ビス(o−(2−ベンゾチアゾリル)フェノラート)亜鉛、ビス(o−(2−ベンゾトリアゾリル)フェノラート)亜鉛等があるが、これらに限定されるものではない。   In the organic phosphorescent light emitting device of the present invention, a more effective electron injection material is a metal complex compound or a nitrogen-containing five-membered ring derivative. Specifically, as the metal complex compound, 8-hydroxyquinolinate lithium, bis (8-hydroxyquinolinate) zinc, bis (8-hydroxyquinolinato) copper, bis (8-hydroxyquinolinato) manganese , Tris (8-hydroxyquinolinato) aluminum, tris (2-methyl-8-hydroxyquinolinato) aluminum, tris (8-hydroxyquinolinato) gallium, bis (10-hydroxybenzo [h] quinolinato) beryllium Bis (10-hydroxybenzo [h] quinolinato) zinc, bis (2-methyl-8-hydroxyquinolinato) chlorogallium, bis (2-methyl-8-hydroxyquinolinato) (o-cresolate) gallium, Bis (2-methyl-8-hydroxyquinolinate) (1-naphthlar ) Aluminum, bis (2-methyl-8-hydroxyquinolinato) (2-naphtholato) gallium, bis (2-methyl-8-hydroxyquinolinato) phenolate gallium, bis (o- (2-benzoxazolyl) (L) phenolate) zinc, bis (o- (2-benzothiazolyl) phenolate) zinc, bis (o- (2-benzotriazolyl) phenolate) zinc, and the like, but are not limited thereto.

また、含窒素五員環誘導体としては、オキサゾール、チアゾール、オキサジアゾール、チアジアゾールもしくはトリアゾール誘導体が好ましい。具体的には、2,5−ビス(1−フェニル)−1,3,4−オキサゾール、ジメチルPOPOP、2,5−ビス(1−フェニル)−1,3,4−チアゾール、2,5−ビス(1−フェニル)−1,3,4−オキサジアゾール、2−(4’−tert−ブチルフェニル)−5−(4”−ビフェニル)−1,3,4−オキサジアゾール、2,5−ビス(1−ナフチル)−1,3,4−オキサジアゾール、1,4−ビス[2−(5−フェニルオキサジアゾリル)]ベンゼン、1,4−ビス[2−(5−フェニルオキサジアゾリル)−4−tert−ブチルベンゼン]、2−(4’−tert−ブチルフェニル)−5−(4”−ビフェニル)−1,3,4−チアジアゾール、2,5−ビス(1−ナフチル)−1,3,4−チアジアゾール、1,4−ビス[2−(5−フェニルチアジアゾリル)]ベンゼン、2−(4’−tert−ブチルフェニル)−5−(4”−ビフェニル)−1,3,4−トリアゾール、2,5−ビス(1−ナフチル)−1,3,4−トリアゾール、1,4−ビス[2−(5−フェニルトリアゾリル)]ベンゼン等があるが、これらに限定されるものではない。   Further, as the nitrogen-containing five-membered ring derivative, an oxazole, thiazole, oxadiazole, thiadiazole or triazole derivative is preferable. Specifically, 2,5-bis (1-phenyl) -1,3,4-oxazole, dimethyl POPOP, 2,5-bis (1-phenyl) -1,3,4-thiazole, 2,5- Bis (1-phenyl) -1,3,4-oxadiazole, 2- (4′-tert-butylphenyl) -5- (4 ″ -biphenyl) -1,3,4-oxadiazole, 2, 5-bis (1-naphthyl) -1,3,4-oxadiazole, 1,4-bis [2- (5-phenyloxadiazolyl)] benzene, 1,4-bis [2- (5-phenyl) Oxadiazolyl) -4-tert-butylbenzene], 2- (4′-tert-butylphenyl) -5- (4 ″ -biphenyl) -1,3,4-thiadiazole, 2,5-bis (1- Naphthyl) -1,3,4-thiadiazole, 1,4-bis [2- (5 Phenylthiadiazolyl)] benzene, 2- (4′-tert-butylphenyl) -5- (4 ″ -biphenyl) -1,3,4-triazole, 2,5-bis (1-naphthyl) -1, Examples include, but are not limited to, 3,4-triazole and 1,4-bis [2- (5-phenyltriazolyl)] benzene.

正孔ブロッキング材料としては、正孔が陰極へ輸送されるのを阻止する能力を持ち、発光層で生成した励起子の電子注入帯域への移動を防止する効果を兼ね備え、かつ薄膜形成能力の優れた化合物が挙げられる。前記の電子注入材料の多くは正孔ブロッキング材料として使用できるが、例えば、2−(4−ビフェニル)−5−(4−tert−ブチルフェニル)−1,3,4−トリアゾールや2,5−ビス(1−フェニル)−1,3,4−オキサジアゾールに代表されるアゾール(含窒素五員環)類、バソクプロインに代表されるフェナントロリン誘導体、ビス(2−メチル−8−ヒドロキシキノリナート)(4−ビフェニルオキソラート)アルミニウム(III)、ビス(2−メチル−8−ヒドロキシキノリナート)フェノラートガリウムに代表される金属錯体などの含窒素六員環類とそれらを配位子に有する金属錯体、シラシクロブテン(シロール)誘導体等があるが、これらに限定されるものではない。   As a hole blocking material, it has the ability to prevent holes from being transported to the cathode, has the effect of preventing the exciton generated in the light emitting layer from moving to the electron injection zone, and has excellent thin film forming ability Compounds. Many of the electron injection materials can be used as hole blocking materials. For example, 2- (4-biphenyl) -5- (4-tert-butylphenyl) -1,3,4-triazole and 2,5- Azoles (nitrogen-containing five-membered rings) represented by bis (1-phenyl) -1,3,4-oxadiazole, phenanthroline derivatives represented by bathocuproine, bis (2-methyl-8-hydroxyquinolinate) ) (4-biphenyloxolate) aluminum (III), nitrogen-containing six-membered rings such as metal complexes represented by bis (2-methyl-8-hydroxyquinolinato) phenolate gallium and the ligands Metal complexes, silacyclobutene (silole) derivatives, and the like, but are not limited thereto.

また、本発明の金属錯体化合物(A)は、電子求引性基を有するため、電子輸送性の方が正孔輸送性より高く、上記の正孔ブロッキング材料または電子注入材料の一種として好適に使用することが可能である。   In addition, since the metal complex compound (A) of the present invention has an electron withdrawing group, the electron transporting property is higher than the hole transporting property, and is suitable as a kind of the above-described hole blocking material or electron injecting material. It is possible to use.

本発明により得られた有機燐光発光素子の、温度、湿度、雰囲気等に対する安定性の向上のために、素子の表面に保護層を設けたり、シリコンオイル、樹脂等により素子全体を保護することも可能である。   In order to improve the stability of the organic phosphorescent light-emitting device obtained by the present invention with respect to temperature, humidity, atmosphere, etc., a protective layer may be provided on the surface of the device, or the entire device may be protected with silicon oil, resin, etc. Is possible.

有機燐光発光素子の陽極に使用される導電性材料としては、4eVより大きな仕事関数を持つものが適しており、炭素、アルミニウム、バナジウム、鉄、コバルト、ニッケル、タングステン、銀、金、白金、パラジウム等およびそれらの合金、ITO基板、NESA基板に使用される酸化スズ、酸化インジウム等の酸化金属、さらにはポリチオフェンやポリピロール等の有機導電性樹脂が用いられる。   As the conductive material used for the anode of the organic phosphorescent light emitting device, a material having a work function larger than 4 eV is suitable, and carbon, aluminum, vanadium, iron, cobalt, nickel, tungsten, silver, gold, platinum, palladium And their alloys, metal oxides such as tin oxide and indium oxide used for ITO substrates and NESA substrates, and organic conductive resins such as polythiophene and polypyrrole.

陰極に使用される導電性物質としては、4eVより小さな仕事関数を持つものが適しており、マグネシウム、カルシウム、錫、鉛、チタニウム、イットリウム、リチウム、ルテニウム、マンガン、アルミニウム等およびそれらの合金が用いられるが、これらに限定されるものではない。合金としては、マグネシウム/銀、マグネシウム/インジウム、リチウム/アルミニウム等が代表例として挙げられるが、これらに限定されるものではない。合金の比率は、蒸着源の温度、雰囲気、真空度等により制御され、適切な比率に選択される。また、陰極としてフッ化リチウム、フッ化マグネシウム、酸化リチウムなどのアルカリ金属、アルカリ土類金属のフッ化物、酸化物を有機層上に1nm以下の膜厚で成膜し、その上にアルミニウム、銀などの比較的導電性の高い金属を成膜してもよい。また、陽極および陰極は、必要があれば二層以上の層構成により形成されていても良い。   As the conductive material used for the cathode, those having a work function smaller than 4 eV are suitable, and magnesium, calcium, tin, lead, titanium, yttrium, lithium, ruthenium, manganese, aluminum, and alloys thereof are used. However, it is not limited to these. Examples of alloys include magnesium / silver, magnesium / indium, lithium / aluminum, and the like, but are not limited thereto. The ratio of the alloy is controlled by the temperature of the vapor deposition source, the atmosphere, the degree of vacuum, etc., and is selected to an appropriate ratio. Further, as a cathode, an alkali metal such as lithium fluoride, magnesium fluoride, or lithium oxide, a fluoride of an alkaline earth metal, or an oxide is formed on the organic layer with a film thickness of 1 nm or less, and aluminum or silver is formed thereon. A metal having a relatively high conductivity such as, for example, may be formed. Moreover, the anode and the cathode may be formed with a layer structure of two or more layers if necessary.

有機燐光発光素子では、効率良く発光させるために、少なくとも一方は素子の発光波長領域において充分透明にすることが望ましい。また、基板も透明であることが望ましい。透明電極は、上記の導電性材料を使用して、蒸着やスパッタリング等の方法で所定の透光性が確保するように設定する。発光面の電極は、光透過率を10%以上にすることが望ましい。基板は、機械的、熱的強度を有し、透明性を有するものであれば限定されるものではないが、例示すると、ガラス基板、ポリエチレン板、ポリエチレンテレフテレート板、ポリエーテルサルフォン板、ポリプロピレン板等の透明樹脂があげられる。   In the organic phosphorescent light emitting device, in order to emit light efficiently, it is desirable that at least one of them is sufficiently transparent in the light emitting wavelength region of the device. The substrate is also preferably transparent. The transparent electrode is set using the above-described conductive material so as to ensure a predetermined translucency by a method such as vapor deposition or sputtering. The electrode on the light emitting surface preferably has a light transmittance of 10% or more. The substrate is not limited as long as it has mechanical and thermal strength and has transparency. For example, a glass substrate, a polyethylene plate, a polyethylene terephthalate plate, a polyethersulfone plate, Examples thereof include a transparent resin such as a polypropylene plate.

本発明に係わる有機燐光発光素子の各層の形成は、真空蒸着、スパッタリング、プラズマ、イオンプレーティング等の乾式成膜法やスピンコーティング、ディッピング、フローコーティング等の湿式成膜法のいずれの方法を適用することができる。膜厚は特に限定されるものではないが、適切な膜厚に設定する必要がある。膜厚が厚すぎると、一定の光出力を得るために大きな印加電圧が必要になり効率が悪くなる。膜厚が薄すぎるとピンホール等が発生して、電界を印加しても充分な発光輝度が得られない。通常の膜厚は5nmから10μmの範囲が適しているが、10nmから0.2μmの範囲がさらに好ましい。   The formation of each layer of the organic phosphorescent light emitting device according to the present invention applies any of dry deposition methods such as vacuum deposition, sputtering, plasma, and ion plating, and wet deposition methods such as spin coating, dipping, and flow coating. can do. The film thickness is not particularly limited, but must be set to an appropriate film thickness. If the film thickness is too thick, a large applied voltage is required to obtain a constant light output, resulting in poor efficiency. If the film thickness is too thin, pinholes and the like are generated, and sufficient light emission luminance cannot be obtained even when an electric field is applied. The normal film thickness is suitably in the range of 5 nm to 10 μm, but more preferably in the range of 10 nm to 0.2 μm.

湿式成膜法の場合、各層を形成する材料を、エタノール、クロロホルム、テトラヒドロフラン、ジオキサン等の適切な溶媒に溶解または分散させて薄膜を形成するが、その溶媒はいずれであっても良い。また、いずれの有機薄膜層においても、成膜性向上、膜のピンホール防止等のため適切な樹脂や添加剤を使用しても良い。使用の可能な樹脂としては、ポリスチレン、ポリカーボネート、ポリアリレート、ポリエステル、ポリアミド、ポリウレタン、ポリスルフォン、ポリメチルメタクリレート、ポリメチルアクリレート、セルロース等の絶縁性樹脂およびそれらの共重合体、ポリ−N−ビニルカルバゾール、ポリシラン等の光導電性樹脂、ポリチオフェン、ポリピロール等の導電性樹脂を挙げることができる。また、添加剤としては、酸化防止剤、紫外線吸収剤、可塑剤等を挙げることができる。   In the case of the wet film-forming method, the material for forming each layer is dissolved or dispersed in an appropriate solvent such as ethanol, chloroform, tetrahydrofuran, dioxane or the like to form a thin film, and any solvent may be used. In any organic thin film layer, an appropriate resin or additive may be used for improving film formability and preventing pinholes in the film. Usable resins include insulating resins such as polystyrene, polycarbonate, polyarylate, polyester, polyamide, polyurethane, polysulfone, polymethyl methacrylate, polymethyl acrylate, and cellulose, and copolymers thereof, poly-N-vinyl. Examples thereof include photoconductive resins such as carbazole and polysilane, and conductive resins such as polythiophene and polypyrrole. Examples of the additive include an antioxidant, an ultraviolet absorber, and a plasticizer.

以上のように、有機燐光発光素子の発光層に本発明の化合物を用いることにより、発光効率、最大発光輝度等の有機燐光発光素子特性を改良することができた。また、この素子は熱や電流に対して非常に安定であり、さらには低い駆動電圧で実用的に使用可能な発光輝度が得られるため、従来まで大きな問題であった劣化も大幅に低下させることができた。   As described above, by using the compound of the present invention in the light emitting layer of the organic phosphorescent light emitting device, the characteristics of the organic phosphorescent light emitting device such as the light emission efficiency and the maximum light emission luminance can be improved. In addition, this element is extremely stable against heat and current, and can be used for light emission brightness that can be used practically at a low driving voltage, so that deterioration that has been a major problem until now can be greatly reduced. I was able to.

以下、本発明を実施例に基づきさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail based on examples.

化合物(1)の合成方法
水20gに96%水酸化ナトリウム0.27gを溶解して水酸化ナトリウム水溶液を調製した。該水溶液にトロポロン1.2gを加え、50℃で10分間撹拌して溶解させ、トロポロンNa錯体の水溶液を得た。該水溶液に対し、塩化アルミニウム0.8gを水10gに溶解して調製した塩化アルミニウム水溶液を滴下し、固体を析出させた。析出物をろ過、乾燥し、3.3g(収率85%)の目的化合物(1)を得た。さらに昇華精製を行った。
Synthesis Method of Compound (1) A sodium hydroxide aqueous solution was prepared by dissolving 0.27 g of 96% sodium hydroxide in 20 g of water. To this aqueous solution, 1.2 g of tropolone was added and dissolved by stirring at 50 ° C. for 10 minutes to obtain an aqueous solution of tropolone Na complex. An aluminum chloride aqueous solution prepared by dissolving 0.8 g of aluminum chloride in 10 g of water was added dropwise to the aqueous solution to precipitate a solid. The precipitate was filtered and dried to obtain 3.3 g (yield 85%) of the target compound (1). Further sublimation purification was performed.

化合物(2)の合成方法
5.0g(0.03mol)の4−イソプロピルトロポロン(別名ヒノキチオ−ル)を50mlのメタノ−ルに溶解し、3.4g(0.015mol)のZn(CH3COO)2・2H2Oを150mlの水に溶解した水溶液を混合すると淡黄色の沈澱を生じた。塩化メチレン50mlで3回抽出し、溶媒および酢酸を減圧留去すると、淡黄色個体が残った。この固体をエタノ−ルから再結晶し、ロ過した後、100℃で減圧乾燥して、目的化合物(2)の淡黄色固体4.8gを得た(収率80%)。さらに昇華精製を行った。
Method of synthesizing compound (2) 5.0 g (0.03 mol) of 4-isopropyltropolone (also known as hinokitiol) was dissolved in 50 ml of methanol, and 3.4 g (0.015 mol) of Zn (CH 3 COO) was dissolved. ) When an aqueous solution in which 2 · 2H 2 O was dissolved in 150 ml of water was mixed, a pale yellow precipitate was formed. Extraction was performed 3 times with 50 ml of methylene chloride, and the solvent and acetic acid were distilled off under reduced pressure to leave a pale yellow solid. This solid was recrystallized from ethanol, filtered, and dried under reduced pressure at 100 ° C. to obtain 4.8 g of a pale yellow solid of the target compound (2) (yield 80%). Further sublimation purification was performed.

以下、実施例により本発明を具体的に説明するが、本発明は下記実施例に限定されるものではない。実施例においては、特に断りのない限り、混合比は全て重量比を示す。蒸着(真空蒸着)は10-6Torrの真空中で、基板加熱、冷却等の温度制御なしの条件下で行った。また、素子の発光特性評価においては、電極面積2mm×2mmの有機EL素子の特性を測定した。測定は1Vずつ上昇しながら各電圧で電流、輝度、色度を記録した。最大発光輝度および効率は各電圧ごとの測定値の最大値であり、その時の電圧は素子により異なる。 EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to the following Example. In the examples, all mixing ratios are weight ratios unless otherwise specified. Vapor deposition (vacuum deposition) was performed in a vacuum of 10 −6 Torr and under conditions without temperature control such as substrate heating and cooling. In the evaluation of the light emission characteristics of the element, the characteristics of an organic EL element having an electrode area of 2 mm × 2 mm were measured. The measurement recorded current, luminance, and chromaticity at each voltage while increasing by 1V. The maximum light emission luminance and efficiency are the maximum values measured for each voltage, and the voltage at that time varies depending on the element.

実施例1
洗浄したITO電極付きガラス板上に、化合物(2)、化合物(D2)、N,N’―(3―メチルフェニル)―N,N’―ジフェニル―1,1’―ビフェニル-4,4’―ジアミン(TPD)、2,5−ビス(1−ナフチル)−1,3,4−オキサジアゾール、ポリカーボネート樹脂(帝人化成:パンライトK−1300)を20:5:15:10:50の重量比でテトラヒドロフランに溶解させ、スピンコーティング法により膜厚100nmの発光層を得た。このとき得られた膜は非常に安定で、凝集し結晶化をおこすといった現象は観察されなかった。その上に、マグネシウムと銀を10:1で混合した合金で膜厚150nmの電極を形成して有機燐光発光素子を得た。この素子の発光特性は、直流電圧10Vでの発光輝度170(cd/m2)、最大発光輝度8800(cd/m2)、発光効率4.3(cd/A)の緑色発光が得られた。
Example 1
Compound (2), compound (D2), N, N ′-(3-methylphenyl) -N, N′-diphenyl-1,1′-biphenyl-4,4 ′ is placed on the cleaned glass plate with ITO electrode. -Diamine (TPD), 2,5-bis (1-naphthyl) -1,3,4-oxadiazole, polycarbonate resin (Teijin Chemicals: Panlite K-1300) at 20: 5: 15: 10: 50 A light emitting layer having a thickness of 100 nm was obtained by dissolving in tetrahydrofuran by weight and spin coating. The film obtained at this time was very stable, and the phenomenon of aggregation and crystallization was not observed. On top of this, an electrode having a thickness of 150 nm was formed from an alloy in which magnesium and silver were mixed at a ratio of 10: 1 to obtain an organic phosphorescent light emitting device. The light emission characteristics of this device were green light emission with a light emission luminance of 170 (cd / m 2 ) at a DC voltage of 10 V, a maximum light emission luminance of 8800 (cd / m 2 ), and a light emission efficiency of 4.3 (cd / A). .

実施例2
洗浄したITO電極付きガラス板上に、N,N’―(1―ナフチル)―N,N’―ジフェニル―1,1’―ビフェニル-4,4’―ジアミン(NPD)を真空蒸着して膜厚20nmの正孔注入層を得た。次いで、化合物(1)と化合物(D1)を93:7の比率で共蒸着し膜厚40nmの発光層を作成し、次いでビス(2−メチル−5−フェニル−8−ヒドロキシキノリナート)フェノラートガリウム錯体を蒸着して膜厚30nmの電子注入層を得た。その上に、マグネシウムと銀を10:1で混合した合金で膜厚100nmの電極を形成して有機燐光発光素子を得た。この素子は直流電圧10Vでの発光輝度2700(cd/m2)、最大発光輝度76500(cd/m2)、発光効率37(cd/A)の緑色発光が得られた。
Example 2
N, N '-(1-naphthyl) -N, N'-diphenyl-1,1'-biphenyl-4,4'-diamine (NPD) is vacuum-deposited on a cleaned glass plate with an ITO electrode. A hole injection layer having a thickness of 20 nm was obtained. Next, the compound (1) and the compound (D1) were co-evaporated at a ratio of 93: 7 to prepare a light-emitting layer having a thickness of 40 nm, and then bis (2-methyl-5-phenyl-8-hydroxyquinolinato) pheno An electron injection layer having a thickness of 30 nm was obtained by depositing a gallium complex. On top of this, an electrode having a thickness of 100 nm was formed from an alloy in which magnesium and silver were mixed at a ratio of 10: 1 to obtain an organic phosphorescent light emitting device. This device emitted green light with a light emission luminance of 2700 (cd / m 2 ), a maximum light emission luminance of 76500 (cd / m 2 ), and a light emission efficiency of 37 (cd / A) at a DC voltage of 10V.

実施例3
化合物(1)の代わりに化合物(44)を用いた他は実施例2と同様にして素子を作製した。この素子は直流電圧10Vでの発光輝度5200(cd/m2)、最大発光輝度56200(cd/m2)、発光効率32(cd/A)の緑色発光が得られた。
Example 3
A device was fabricated in the same manner as in Example 2 except that the compound (44) was used instead of the compound (1). This device emitted green light with a luminance of 5200 (cd / m 2 ), a maximum luminance of 56200 (cd / m 2 ), and a luminous efficiency of 32 (cd / A) at a DC voltage of 10V.

実施例4
洗浄したITO電極付きガラス板上に、NPDを真空蒸着して膜厚30nmの正孔注入層を得た。次いで、化合物(10)と化合物(D5)を95:5の比率で共蒸着し膜厚40nmの発光層を作成し、次いでビス(2−メチル−8−ヒドロキシキノリナート)(p−フェニルフェノラート)アルミニウム錯体を蒸着して膜厚10nmの正孔ブロッキング層、さらにトリス(8−ヒドロキシキノリナート)アルミニウム錯体(Alq3)を蒸着して膜厚30nmの電子注入層を得た。その上に、まずフッ化リチウムを1nm、次いでアルミニウムを200nm蒸着して電極を形成して有機燐光発光素子を得た。この素子は直流電圧10Vでの発光輝度810(cd/m2)、最大発光輝度31400(cd/m2)、発光効率8.7(cd/A)の赤色発光が得られた。
Example 4
NPD was vacuum-deposited on the cleaned glass plate with an ITO electrode to obtain a hole injection layer having a thickness of 30 nm. Next, the compound (10) and the compound (D5) were co-evaporated at a ratio of 95: 5 to prepare a light-emitting layer having a thickness of 40 nm, and then bis (2-methyl-8-hydroxyquinolinate) (p-phenylphenol) Lat) An aluminum complex was vapor-deposited to form a hole blocking layer having a thickness of 10 nm, and further tris (8-hydroxyquinolinato) aluminum complex (Alq3) was vapor-deposited to obtain an electron injection layer having a thickness of 30 nm. On top of this, first, 1 nm of lithium fluoride and then 200 nm of aluminum were vapor-deposited to form an electrode to obtain an organic phosphorescent light emitting device. This device emitted red light with a luminance of 810 (cd / m 2 ) at a DC voltage of 10 V, a maximum luminance of 31400 (cd / m 2 ), and a luminous efficiency of 8.7 (cd / A).

実施例5
洗浄したITO電極付きガラス板上に、化合物(56)と化合物(D6)を98:2の比率で塩化メチレンに溶解させ、スピンコーティング法により膜厚50nmの正孔注入型発光層を得た。次いでバソクプロインを蒸着して膜厚5nmの正孔ブロッキング層、さらにAlq3を蒸着して膜厚30nmの電子注入層を得た。その上に、まずフッ化リチウムを0.5nm、次いでアルミニウムを200nm蒸着して電極を形成して有機燐光発光素子を得た。この素子は、直流電圧10Vでの発光輝度290(cd/m2)、最大発光輝度9800(cd/m2)、発光効率5.2(cd/A)の赤色発光が得られた。
Example 5
On the washed glass plate with an ITO electrode, the compound (56) and the compound (D6) were dissolved in methylene chloride at a ratio of 98: 2, and a hole injection type light emitting layer having a thickness of 50 nm was obtained by a spin coating method. Next, bathocuproine was evaporated to form a hole blocking layer having a thickness of 5 nm, and further Alq3 was evaporated to obtain an electron injection layer having a thickness of 30 nm. On top of that, first, 0.5 nm of lithium fluoride and then 200 nm of aluminum were vapor-deposited to form an electrode to obtain an organic phosphorescent device. This device obtained red light emission with a light emission luminance of 290 (cd / m 2 ) at a DC voltage of 10 V, a maximum light emission luminance of 9800 (cd / m 2 ), and a light emission efficiency of 5.2 (cd / A).

実施例6
洗浄したITO電極付きガラス板上に、NPDを真空蒸着して膜厚30nmの正孔注入層を得た。次いで化合物(4)と化合物(D3)を94:6の比率で共蒸着して膜厚50nmの発光層を得た。次いで、ビス(2−メチル−8−ヒドロキシキノリナート)(p−シアノフェノラート)ガリウム錯体を真空蒸着して膜厚20nmの正孔ブロッキング層、さらにAlq3を蒸着して膜厚20nmの電子注入層を得た。その上に、マグネシウムと銀を10:1(重量比)で混合した合金で膜厚250nmの電極を形成して有機燐光発光素子を得た。この素子は、直流電圧10Vでの発光輝度5900(cd/m2)、最大発光輝度26700(cd/m2)、発光効率8.2(cd/A)の青色発光が得られた。
Example 6
NPD was vacuum-deposited on the cleaned glass plate with an ITO electrode to obtain a hole injection layer having a thickness of 30 nm. Next, the compound (4) and the compound (D3) were co-evaporated at a ratio of 94: 6 to obtain a light emitting layer having a thickness of 50 nm. Next, a bis (2-methyl-8-hydroxyquinolinate) (p-cyanophenolate) gallium complex is vacuum-deposited to form a 20-nm-thick hole blocking layer, and Alq3 is further deposited to deposit 20-nm-thick electrons. A layer was obtained. On top of this, an electrode having a thickness of 250 nm was formed from an alloy in which magnesium and silver were mixed at a ratio of 10: 1 (weight ratio) to obtain an organic phosphorescent device. This device obtained blue light emission with a light emission luminance of 5900 (cd / m 2 ), a maximum light emission luminance of 26700 (cd / m 2 ), and a light emission efficiency of 8.2 (cd / A) at a DC voltage of 10V.

実施例7
洗浄したITO電極付きガラス板上に、銅フタロシアニンを真空蒸着して、膜厚20nmの正孔注入層を得た。次いで、化合物(16)を真空蒸着して、膜厚30nmの正孔輸送層を得た。さらに、化合物(22)と化合物(D1)を93:7の比率で共蒸着して、膜厚40nmの発光層を作成し、次いでバソクプロインを蒸着して膜厚10nmの正孔ブロッキング層、さらにAlq3を真空蒸着して膜厚30nmの電子注入層を作成した。その上に、フッ化リチウム(LiF)を0.7nm、次いでアルミニウム(Al)を150nm真空蒸着することで電極を形成して、有機燐光発光素子を得た。この素子は、直流電圧10Vでの発光輝度2200(cd/m2)、最大発光輝度82500(cd/m2)、発光効率48(cd/A)の緑色発光が得られた。また、発光輝度500(cd/m2)で定電流駆動したときの半減寿命は5200時間であった。
Example 7
Copper phthalocyanine was vacuum-deposited on the washed glass plate with an ITO electrode to obtain a hole injection layer having a thickness of 20 nm. Subsequently, the compound (16) was vacuum-deposited to obtain a 30 nm-thick hole transport layer. Further, the compound (22) and the compound (D1) were co-evaporated at a ratio of 93: 7 to prepare a light emitting layer with a thickness of 40 nm, and then bathocuproine was evaporated to form a hole blocking layer with a thickness of 10 nm. Was vacuum-deposited to prepare an electron injection layer having a thickness of 30 nm. An electrode was formed thereon by vacuum deposition of 0.7 nm of lithium fluoride (LiF) and then 150 nm of aluminum (Al) to obtain an organic phosphorescent device. This device obtained green light emission with a light emission luminance of 2200 (cd / m 2 ) at a DC voltage of 10 V, a maximum light emission luminance of 82500 (cd / m 2 ), and a light emission efficiency of 48 (cd / A). Further, the half-life when driven at a constant current at an emission luminance of 500 (cd / m 2 ) was 5200 hours.

実施例8
洗浄したITO電極付きガラス板上に、銅フタロシアニンを真空蒸着して、膜厚10nmの正孔注入層を得た。次いで、4,4’−ビス[N−(9−フェナントリル)−N−フェニルアミノ]ビフェニルを真空蒸着して膜厚40nmの正孔輸送層を得た。次いで、化合物(60)と化合物(D4)を92:8の比率で共蒸着して膜厚50nmの発光層を作成し、さらに3−(4−ビフェニリル)−4−フェニル−5−(4−tert−ブチルフェニル)−1,2,4−トリアゾールを蒸着して膜厚5nmの正孔ブロッキング層を作成し、次に、ビス(2−メチル−8−ヒドロキシキノリナート)(p−シアノフェノラート)ガリウム錯体を蒸着して膜厚30nmの電子注入層を得た。さらにその上に、マグネシウムと銀を10:1(重量比)で混合した合金で膜厚250nmの電極を形成して有機燐光発光素子を得た。この素子は直流電圧10Vで発光輝度2410(cd/m2)、最大発光輝度32100(cd/m2)、発光効率11(cd/A)の発光が得られた。また、発光輝度500(cd/m2)で定電流駆動したときの半減寿命は4200時間であった。
Example 8
Copper phthalocyanine was vacuum-deposited on the washed glass plate with the ITO electrode to obtain a 10 nm-thick hole injection layer. Subsequently, 4,4′-bis [N- (9-phenanthryl) -N-phenylamino] biphenyl was vacuum-deposited to obtain a 40 nm-thick hole transport layer. Next, the compound (60) and the compound (D4) were co-evaporated at a ratio of 92: 8 to prepare a light-emitting layer having a thickness of 50 nm, and 3- (4-biphenylyl) -4-phenyl-5- (4- tert-Butylphenyl) -1,2,4-triazole was deposited to form a 5 nm thick hole blocking layer, and then bis (2-methyl-8-hydroxyquinolinate) (p-cyanopheno) Lat) gallium complex was deposited to obtain an electron injection layer having a thickness of 30 nm. Further, an electrode having a thickness of 250 nm was formed from an alloy in which magnesium and silver were mixed at a weight ratio of 10: 1 to obtain an organic phosphorescent device. This device emitted light with a direct current voltage of 10 V and a light emission luminance of 2410 (cd / m 2 ), a maximum light emission luminance of 32100 (cd / m 2 ), and a light emission efficiency of 11 (cd / A). Further, the half-life when driven at a constant current at an emission luminance of 500 (cd / m 2 ) was 4200 hours.

実施例9
洗浄したITO電極付きガラス板上に、NPDを真空蒸着して膜厚30nmの正孔注入層を得た。次いで、化合物(11)と化合物(D7)を97:3の比率で共蒸着して膜厚40nmの発光層を作成し、次いで、化合物(11)のみを単独で蒸着して膜厚30nmの正孔ブロッキング層、さらにAlq3を真空蒸着して膜厚20nmの電子注入層を作成した。その上にまず、フッ化リチウムを0.5nm、さらにアルミニウムを200nm真空蒸着によって電極を形成して有機燐光発光素子を得た。この素子は直流電圧10Vでの発光輝度1240(cd/m2)、最大発光輝度18300(cd/m2)、発光効率9.4(cd/A)の赤色発光が得られた。また、発光輝度500(cd/m2)で定電流駆動したときの半減寿命は4700時間であった。
Example 9
NPD was vacuum-deposited on the cleaned glass plate with an ITO electrode to obtain a hole injection layer having a thickness of 30 nm. Next, the compound (11) and the compound (D7) were co-evaporated at a ratio of 97: 3 to form a light emitting layer having a thickness of 40 nm, and then only the compound (11) was evaporated alone to form a positive film having a thickness of 30 nm. A hole blocking layer and further Alq3 were vacuum deposited to form an electron injection layer having a thickness of 20 nm. First, an electrode was formed by vacuum deposition of lithium fluoride at 0.5 nm and aluminum at 200 nm to obtain an organic phosphorescent device. This device produced red light emission with a light emission luminance of 1240 (cd / m 2 ) at a DC voltage of 10 V, a maximum light emission luminance of 18300 (cd / m 2 ), and a light emission efficiency of 9.4 (cd / A). Further, the half-life when driven at a constant current at an emission luminance of 500 (cd / m 2 ) was 4700 hours.

実施例10
洗浄したITO電極付きガラス板上に、NPDを真空蒸着して膜厚50nmの正孔注入層を得た。次いで、化合物(52)と化合物(D3)を85:15の重量比で共蒸着して膜厚40nmの発光層を作成し、次いで、ビス(2−メチル−8−ヒドロキシキノリナート)(p−フェニルフェノラート)アルミニウム錯体を蒸着して膜厚10nmの正孔ブロッキング層、さらにAlq3を蒸着して膜厚30nmの電子注入層を得た。さらにその上に、まず、フッ化マグネシウムを0.5nm、さらにアルミニウムを200nm真空蒸着によって電極を形成して有機燐光発光素子を得た。この素子は直流電圧10Vでの発光輝度1860(cd/m2)、最大発光輝度64800(cd/m2)、発光効率5.7(cd/A)の発光が得られた。また、発光輝度500(cd/m2)で定電流駆動したときの半減寿命は2400時間であった。
Example 10
NPD was vacuum-deposited on the cleaned glass plate with an ITO electrode to obtain a hole injection layer having a thickness of 50 nm. Next, the compound (52) and the compound (D3) were co-evaporated at a weight ratio of 85:15 to form a light-emitting layer having a thickness of 40 nm, and then bis (2-methyl-8-hydroxyquinolinate) (p -Phenylphenolate) An aluminum complex was vapor-deposited to form a hole blocking layer having a thickness of 10 nm, and further Alq3 was vapor-deposited to obtain an electron injection layer having a thickness of 30 nm. Furthermore, an electrode was first formed thereon by vacuum deposition of 0.5 nm of magnesium fluoride and 200 nm of aluminum, to obtain an organic phosphorescent light emitting device. This device emitted light with a luminance of 1860 (cd / m 2 ), a maximum luminance of 64800 (cd / m 2 ), and a luminous efficiency of 5.7 (cd / A) at a DC voltage of 10 V. Further, the half-life when driven at a constant current at an emission luminance of 500 (cd / m 2 ) was 2400 hours.

比較例1
化合物(2)に代わりに下記化合物(C1)を用いた他は実施例1と同様にして素子を作成した。そのスピンコート膜は容易に凝集し結晶化を起こしてしまうといった欠点を持っていた。この素子の発光特性は、直流電圧10Vでの発光輝度50(cd/m2)、最大発光輝度2300(cd/m2)、発光効率1.8(cd/A)の発光は得られたが、均一の発光ではなく明るい部分と暗い部分が混在していた。また発光輝度500(cd/m2)で定電流駆動すると1時間ほどで短絡してしまった。
化合物(C1)

Figure 0004438459
Comparative Example 1
A device was prepared in the same manner as in Example 1 except that the following compound (C1) was used instead of the compound (2). The spin coat film has the disadvantage that it easily aggregates and crystallizes. The light emission characteristics of this element were that light emission with a direct current voltage of 10 V was 50 (cd / m 2 ), the maximum light emission brightness was 2300 (cd / m 2 ), and the light emission efficiency was 1.8 (cd / A). The light and dark areas were mixed, not uniform light emission. Further, when the device was driven at a constant current with an emission luminance of 500 (cd / m 2 ), it was short-circuited in about 1 hour.
Compound (C1)
Figure 0004438459

比較例2
化合物(1)に代わりにCBPを用いた他は実施例2と同様にして素子を作成した。この素子の発光特性は、直流電圧10Vでの発光輝度1700(cd/m2)、最大発光輝度48000(cd/m2)、発光効率25(cd/A)の発光は得られた。しかし、発光輝度500(cd/m2)で定電流駆動したときの半減寿命は820時間であった。
Comparative Example 2
A device was prepared in the same manner as in Example 2 except that CBP was used instead of the compound (1). With respect to the light emission characteristics of this device, light emission with a direct current voltage of 10 V of light emission luminance of 1700 (cd / m 2 ), maximum light emission luminance of 48000 (cd / m 2 ), and light emission efficiency of 25 (cd / A) was obtained. However, the half-life when driven at a constant current with an emission luminance of 500 (cd / m 2 ) was 820 hours.

比較例3
化合物(52)に代わりに下記化合物(C2)を用いた他は実施例10と同様にして素子を作成した。この素子の発光特性は、直流電圧10Vでの発光輝度2560(cd/m2)、最大発光輝度30100(cd/m2)、発光効率4.5(cd/A)の発光は得られた。しかし、発光輝度500(cd/m2)で定電流駆動したときの半減寿命は180時間であった。
化合物(C2)

Figure 0004438459










Comparative Example 3
A device was prepared in the same manner as in Example 10 except that the following compound (C2) was used instead of the compound (52). With respect to the light emission characteristics of the device, light emission with a direct current voltage of 10 V of light emission luminance of 2560 (cd / m 2 ), maximum light emission luminance of 30100 (cd / m 2 ), and light emission efficiency of 4.5 (cd / A) was obtained. However, the half life when driven at a constant current at an emission luminance of 500 (cd / m 2 ) was 180 hours.
Compound (C2)
Figure 0004438459










実施例11
化合物(10)の代わりに化合物(31)を用いた他は実施例4と同様にして素子を作成した。この素子は直流電圧10Vでの発光輝度540(cd/m2)、最大発光輝度14100(cd/m2)、発光効率11.2(cd/A)の赤色発光が得られた。また発光輝度500(cd/m2)で定電流駆動したときの半減寿命は8700時間であった。
Example 11
A device was prepared in the same manner as in Example 4 except that the compound (31) was used instead of the compound (10). This device obtained red light emission with a light emission luminance of 540 (cd / m 2 ) at a DC voltage of 10 V, a maximum light emission luminance of 14100 (cd / m 2 ), and a light emission efficiency of 11.2 (cd / A). The half life when driven at a constant current at an emission luminance of 500 (cd / m 2 ) was 8700 hours.

実施例12
洗浄したITO電極付きガラス板上に、銅フタロシアニンを真空蒸着して、膜厚20nmの正孔注入層を得た。次いで、NPDを真空蒸着して、膜厚30nmの正孔輸送層を得た。さらに、化合物(51)と化合物(D2)を90:10の比率で共蒸着して、膜厚40nmの発光層を作成し、次いでビス(2−メチル−8−ヒドロキシキノリナート)(p−シアノフェノラート)アルミニウム錯体を蒸着して膜厚10nmの正孔ブロッキング層、さらにAlq3を真空蒸着して膜厚30nmの電子注入層を作成した。その上に、フッ化リチウムを0.7nm、次いでアルミニウムを200nm真空蒸着することで電極を形成して、有機燐光発光素子を得た。この素子は、直流電圧10Vでの発光輝度7810(cd/m2)、最大発光輝度87200(cd/m2)、発光効率44(cd/A)の発光が得られた。また、発光輝度500(cd/m2)で定電流駆動したときの半減寿命は4700時間であった。
Example 12
Copper phthalocyanine was vacuum-deposited on the washed glass plate with an ITO electrode to obtain a hole injection layer having a thickness of 20 nm. Subsequently, NPD was vacuum-deposited to obtain a hole transport layer having a thickness of 30 nm. Further, the compound (51) and the compound (D2) were co-evaporated at a ratio of 90:10 to prepare a light emitting layer having a thickness of 40 nm, and then bis (2-methyl-8-hydroxyquinolinate) (p- A 10-nm-thick hole blocking layer was formed by vapor-depositing a cyanophenolate) aluminum complex, and Alq3 was further vacuum-deposited to form an electron-injecting layer having a thickness of 30 nm. An electrode was formed thereon by vacuum-depositing lithium fluoride at 0.7 nm and then aluminum at 200 nm to obtain an organic phosphorescent device. This device emitted light with a luminance of 7810 (cd / m 2 ), a maximum luminance of 87200 (cd / m 2 ), and a luminous efficiency of 44 (cd / A) at a DC voltage of 10V. Further, the half-life when driven at a constant current at an emission luminance of 500 (cd / m 2 ) was 4700 hours.

実施例13
洗浄したITO電極付きガラス板上に、4,4’−ビス[N−(9−フェナントリル)−N−フェニルアミノ]ビフェニルを真空蒸着して膜厚30nmの正孔注入層を得た。次いで化合物(30)と化合物(D3)を95:5の比率で共蒸着して膜厚50nmの発光層を得た。次いで、ビス(2−メチル−8−ヒドロキシキノリナート)(p−フェニルフェノラート)アルミニウム錯体を真空蒸着して膜厚10nmの正孔ブロッキング層、さらにビス(2−メチル−5−フェニル−8−ヒドロキシキノリナート)フェノラートガリウム錯体を蒸着して膜厚30nmの電子注入層を得た。その上に、マグネシウムと銀を10:1(重量比)で混合した合金で膜厚250nmの電極を形成して有機燐光発光素子を得た。この素子は、直流電圧10Vでの発光輝度7100(cd/m2)、最大発光輝度69100(cd/m2)、発光効率8.2(cd/A)の青色発光が得られた。
Example 13
On the washed glass plate with an ITO electrode, 4,4′-bis [N- (9-phenanthryl) -N-phenylamino] biphenyl was vacuum-deposited to obtain a hole injection layer having a thickness of 30 nm. Next, the compound (30) and the compound (D3) were co-evaporated at a ratio of 95: 5 to obtain a light-emitting layer having a thickness of 50 nm. Next, a bis (2-methyl-8-hydroxyquinolinate) (p-phenylphenolate) aluminum complex was vacuum-deposited to form a 10 nm-thick hole blocking layer, and bis (2-methyl-5-phenyl-8). -Hydroxyquinolinato) phenolate gallium complex was evaporated to obtain an electron injection layer having a thickness of 30 nm. On top of this, an electrode having a thickness of 250 nm was formed from an alloy in which magnesium and silver were mixed at a ratio of 10: 1 (weight ratio) to obtain an organic phosphorescent device. This device obtained blue light emission with a light emission luminance of 7100 (cd / m 2 ), a maximum light emission luminance of 69100 (cd / m 2 ), and a light emission efficiency of 8.2 (cd / A) at a DC voltage of 10V.

実施例14
発光層において、化合物(22)の代わりに化合物(42)を用いた他は実施例7と同様にして素子を作成した。この素子は直流電圧10Vでの発光輝度6120(cd/m2)、最大発光輝度56700(cd/m2)、発光効率45(cd/A)の緑色発光が得られた。また、発光輝度500(cd/m2)で定電流駆動したときの半減寿命は7900時間であった。
Example 14
A device was prepared in the same manner as in Example 7 except that the compound (42) was used instead of the compound (22) in the light emitting layer. This device emitted green light with a luminance of 6120 (cd / m 2 ) at a DC voltage of 10 V, a maximum luminance of 56700 (cd / m 2 ), and a luminous efficiency of 45 (cd / A). Further, the half-life when driven at a constant current at an emission luminance of 500 (cd / m 2 ) was 7900 hours.

実施例15
洗浄したITO電極付きガラス板上に、4,4’,4”−トリス[N−(1−ナフチル)−N−フェニルアミノ]トリフェニルアミンを真空蒸着して膜厚20nmの正孔注入層を得た。次いで、NPDを真空蒸着して、膜厚30nmの正孔輸送層を得た。さらに、化合物(10)と化合物(D6)を97:3の比率で共蒸着して、膜厚40nmの発光層を作成し、次いでバソフェナントロリンを蒸着して膜厚5nmの正孔ブロッキング層、さらにAlq3を真空蒸着して膜厚30nmの電子注入層を作成した。その上に、フッ化リチウムを0.7nm、次いでアルミニウムを200nm真空蒸着することで電極を形成して、有機燐光発光素子を得た。この素子は、直流電圧10Vでの発光輝度5240(cd/m2)、最大発光輝度11800(cd/m2)、発光効率5.2(cd/A)の発光が得られた。また、発光輝度500(cd/m2)で定電流駆動したときの半減寿命は8200時間であった。
Example 15
4,4 ′, 4 ″ -tris [N- (1-naphthyl) -N-phenylamino] triphenylamine is vacuum-deposited on a cleaned glass plate with an ITO electrode to form a 20 nm-thick hole injection layer. Next, NPD was vacuum-deposited to obtain a 30 nm-thick hole transport layer, and compound (10) and compound (D6) were co-deposited at a ratio of 97: 3 to give a thickness of 40 nm. Then, a 5 nm-thick hole blocking layer was deposited by vapor deposition of bathophenanthroline, and an electron injection layer having a thickness of 30 nm was created by vacuum-depositing Alq3. An electrode was formed by vacuum deposition of 0.7 nm and then 200 nm of aluminum to obtain an organic phosphorescent light emitting device having an emission luminance of 5240 (cd / m 2 ) at a DC voltage of 10 V and a maximum emission luminance of 11800. (Cd / m 2 ), emission efficiency of 5.2 (cd / A) was obtained, and the half-life when driven at a constant current at an emission luminance of 500 (cd / m 2 ) was 8200 hours. .

実施例16
洗浄したITO電極付きガラス板上に、NPDを真空蒸着して膜厚30nmの正孔注入層を得た。次いで、化合物(18)と化合物(D5)を98:2の比率で共蒸着し膜厚40nmの発光層を作成し、次いでビス(2−メチル−8−ヒドロキシキノリナート)(p−フェニルフェノラート)アルミニウム錯体を蒸着して膜厚10nmの正孔ブロッキング層、さらにAlq3を蒸着して膜厚30nmの電子注入層を得た。その上に、まずフッ化リチウムを1nm、次いでアルミニウムを200nm蒸着して電極を形成して有機燐光発光素子を得た。この素子は直流電圧10Vでの発光輝度1550(cd/m2)、最大発光輝度19900(cd/m2)、発光効率6.2(cd/A)の赤色発光が得られた。
Example 16
NPD was vacuum-deposited on the cleaned glass plate with an ITO electrode to obtain a hole injection layer having a thickness of 30 nm. Next, the compound (18) and the compound (D5) were co-evaporated at a ratio of 98: 2 to prepare a light emitting layer having a film thickness of 40 nm, and then bis (2-methyl-8-hydroxyquinolinate) (p-phenylphenol) Lat) An aluminum complex was evaporated to form a hole blocking layer having a thickness of 10 nm, and further Alq3 was evaporated to obtain an electron injection layer having a thickness of 30 nm. On top of this, first, 1 nm of lithium fluoride and then 200 nm of aluminum were vapor-deposited to form an electrode to obtain an organic phosphorescent light emitting device. This device obtained red light emission with a light emission luminance of 1550 (cd / m 2 ) at a DC voltage of 10 V, a maximum light emission luminance of 19900 (cd / m 2 ), and a light emission efficiency of 6.2 (cd / A).

実施例17
洗浄したITO電極付きガラス板上に、NPDを真空蒸着して膜厚30nmの正孔注入層を得た。次いで、化合物(25)と化合物(D1)を95:5の比率で共蒸着し膜厚40nmの発光層を作成し、次いでビス(2−メチル−8−ヒドロキシキノリナート)フェノラートアルミニウム錯体を蒸着して膜厚10nmの正孔ブロッキング層、さらにAlq3を蒸着して膜厚30nmの電子注入層を得た。その上に、まずフッ化リチウムを1nm、次いでアルミニウムを200nm蒸着して電極を形成して有機燐光発光素子を得た。この素子は直流電圧10Vでの発光輝度3250(cd/m2)、最大発光輝度88400(cd/m2)、発光効率46(cd/A)の緑色発光が得られた。
Example 17
NPD was vacuum-deposited on the cleaned glass plate with an ITO electrode to obtain a hole injection layer having a thickness of 30 nm. Next, the compound (25) and the compound (D1) were co-evaporated at a ratio of 95: 5 to prepare a light emitting layer having a thickness of 40 nm, and then a bis (2-methyl-8-hydroxyquinolinato) phenolate aluminum complex was formed. A hole blocking layer having a thickness of 10 nm was deposited, and Alq3 was further deposited to obtain an electron injection layer having a thickness of 30 nm. On top of this, first, 1 nm of lithium fluoride and then 200 nm of aluminum were vapor-deposited to form an electrode to obtain an organic phosphorescent light emitting device. This device emitted green light with a luminance of 3250 (cd / m 2 ) at a DC voltage of 10 V, a maximum luminance of 88400 (cd / m 2 ), and a luminous efficiency of 46 (cd / A).

実施例18
洗浄したITO電極付きガラス板上に、4,4’−ビス[N−(9−フェナントリル)−N−フェニルアミノ]ビフェニルを真空蒸着して膜厚30nmの正孔注入層を得た。次いで、化合物(40)と化合物(D1)を93:7の比率で共蒸着し膜厚40nmの発光層を作成し、次いでビス(2−メチル−5−フェニル−8−ヒドロキシキノリナート)フェノラートアルミニウム錯体を蒸着して膜厚10nmの正孔ブロッキング層、さらにAlq3を蒸着して膜厚30nmの電子注入層を得た。その上に、まずフッ化リチウムを1nm、次いでアルミニウムを200nm蒸着して電極を形成して有機燐光発光素子を得た。この素子は直流電圧10Vでの発光輝度3250(cd/m2)、最大発光輝度98800(cd/m2)、発光効率51(cd/A)の緑色発光が得られた。また、発光輝度500(cd/m2)で定電流駆動したときの半減寿命は9500時間であった。
Example 18
On the washed glass plate with an ITO electrode, 4,4′-bis [N- (9-phenanthryl) -N-phenylamino] biphenyl was vacuum-deposited to obtain a hole injection layer having a thickness of 30 nm. Next, the compound (40) and the compound (D1) were co-evaporated at a ratio of 93: 7 to prepare a light emitting layer having a thickness of 40 nm, and then bis (2-methyl-5-phenyl-8-hydroxyquinolinato) pheno Lat aluminum complex was evaporated to form a hole blocking layer having a thickness of 10 nm, and Alq3 was further evaporated to obtain an electron injection layer having a thickness of 30 nm. On top of this, first, 1 nm of lithium fluoride and then 200 nm of aluminum were vapor-deposited to form an electrode to obtain an organic phosphorescent light emitting device. This device emitted green light with a luminance of 3250 (cd / m 2 ) at a DC voltage of 10 V, a maximum luminance of 98800 (cd / m 2 ), and a luminous efficiency of 51 (cd / A). Further, the half-life when driven at a constant current at an emission luminance of 500 (cd / m 2 ) was 9500 hours.

比較例4
化合物(40)の代わりに下記化合物(C3)を用いた他は実施例18と同様にして素子を作成した。この素子は直流電圧10Vでの発光輝度940(cd/m2)、最大発光輝度9800(cd/m2)、発光効率12(cd/A)であり、また、発光輝度500(cd/m2)で定電流駆動したときの半減寿命は580時間であった。
化合物(C3)

Figure 0004438459
Comparative Example 4
A device was prepared in the same manner as in Example 18 except that the following compound (C3) was used instead of the compound (40). This element has a light emission luminance of 940 (cd / m 2 ) at a DC voltage of 10 V, a maximum light emission luminance of 9800 (cd / m 2 ), a light emission efficiency of 12 (cd / A), and a light emission luminance of 500 (cd / m 2). ), The half-life when driven at a constant current was 580 hours.
Compound (C3)
Figure 0004438459

本実施例で半減寿命を明記した例以外の素子において、発光輝度500(cd/m2)で定電流駆動したところ、全ての実施例の素子において1000時間の時点で初期輝度の8割より低下したものはなかった。 In the devices other than the examples in which the half life was specified in this example, when the device was driven at a constant current with a light emission luminance of 500 (cd / m 2 ), all of the devices of the examples were reduced from 80% of the initial luminance at 1000 hours. There was nothing I did.

本発明の有機燐光発光素子は、壁掛けテレビ等のフラットパネルディスプレイや、平面発光体として、複写機やプリンター等の光源、液晶ディスプレイや計器類等の光源、表示板、標識灯等へ応用が考えられ、その工業的価値は非常に大きい。また、本発明の材料は、従来型の有機EL素子、電子写真感光体、光電変換素子、太陽電池、イメージセンサー等の分野においても使用できる。

The organic phosphorescent light emitting device of the present invention can be applied to flat panel displays such as wall-mounted televisions, flat light emitters, light sources such as copiers and printers, light sources such as liquid crystal displays and instruments, display boards, and indicator lights. And its industrial value is very large. The material of the present invention can also be used in the fields of conventional organic EL devices, electrophotographic photoreceptors, photoelectric conversion devices, solar cells, image sensors and the like.

Claims (13)

下記一般式[1]で示される金属錯体化合物(A)と、金属錯体化合物(A)以外の燐光発光材料(B)とを含んでなる有機燐光発光素子用材料。
一般式[1]
Figure 0004438459


[式中、X1、X2はそれぞれ独立に、O、S、NRのいずれかであり、
RおよびR1〜R5は互いにそれぞれ独立に、水素原子、ハロゲン原子、シアノ基、ニトロ基、置換もしくは未置換のアルキル基、置換もしくは未置換のアルコキシ基、置換もしくは未置換のアリールオキシ基、置換もしくは未置換のアルキルチオ基、置換もしくは未置換のアリールチオ基、置換もしくは未置換のアミノ基、置換もしくは未置換のアシル基、置換もしくは未置換の炭素環基、置換もしくは未置換の複素環基である。近接する置換基同士で一体となって環を形成していても良い。
上記構造からなる7員環を含む配位子はアニオン性配位子となり、複数個配位する場合はそれぞれが同一でも異なるものを含んでいても良い。
nは、1以上、Mのカチオン価数までである。
Mは周期表1族ないしは14族から選ばれる金属を表し、7員環と二重結合したX1は金属原子Mと配位結合し、7員環と単結合したX2は金属原子Mと共有結合する。
Lは、上記配位子以外の有機化合物もしくは有機残基からなる単座または二座配位子か、あるいは酸素原子もしくは有機配位子を介して多核錯体におけるもう一方の金属と結合した部分構造を表す。Lは同一または異なるものを2個以上有していても良い。
n'はLの個数を表し、0でも良い。
上記7員環を含む配位子と配位子Lのアニオン価数の総和は、全体で電気的に中性の錯体を形成するよう、金属原子Mのカチオン価数と一致する。
上記7員環を含む配位子およびLは互いにそれぞれ独立に、配位子同士で金属原子M以外の部分で結合していても良い。]
A material for an organic phosphorescent device comprising a metal complex compound (A) represented by the following general formula [1] and a phosphorescent material (B) other than the metal complex compound (A) .
General formula [1]
Figure 0004438459


[Wherein, X 1 and X 2 are each independently any one of O, S and NR;
R and R 1 to R 5 are each independently a hydrogen atom, a halogen atom, a cyano group, a nitro group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryloxy group, A substituted or unsubstituted alkylthio group, a substituted or unsubstituted arylthio group, a substituted or unsubstituted amino group, a substituted or unsubstituted acyl group, a substituted or unsubstituted carbocyclic group, a substituted or unsubstituted heterocyclic group; is there. The adjacent substituents may be integrated to form a ring.
A ligand containing a 7-membered ring having the above structure becomes an anionic ligand, and when a plurality of ligands are coordinated, each may be the same or different.
n is 1 or more and up to the cation valence of M.
M represents a metal selected from Group 1 or Group 14 of the periodic table, X 1 double-bonded to the 7-membered ring is coordinated to metal atom M, and X 2 single-bonded to the 7-membered ring is metal atom M Covalently join.
L is a monodentate or bidentate ligand composed of an organic compound or an organic residue other than the above ligand, or a partial structure bonded to the other metal in the polynuclear complex via an oxygen atom or an organic ligand. To express. L may have two or more of the same or different.
n ′ represents the number of L and may be 0.
The sum of the anion valences of the ligand containing the seven-membered ring and the ligand L matches the cation valence of the metal atom M so as to form an electrically neutral complex as a whole.
The ligand containing 7-membered ring and L may be bonded to each other at a portion other than the metal atom M between the ligands. ]
n’が、0である請求項1記載の有機燐光発光素子用材料。 The material for an organic phosphorescent device according to claim 1, wherein n ′ is 0. Mが、希土類または周期表6族ないしは11族のいずれかから選ばれる金属である請求項1または2記載の有機燐光発光素子用材料。 The material for an organic phosphorescent device according to claim 1 or 2, wherein M is a rare earth or a metal selected from any one of Groups 6 to 11 of the periodic table. Mが、周期表8族ないしは10族、かつ第5周期または第6周期の白金族元素から選ばれる金属である請求項3記載の有機燐光発光素子用材料。 4. The material for an organic phosphorescent light emitting device according to claim 3, wherein M is a metal selected from the group 8 or group 10 of the periodic table and the platinum group element of the fifth period or the sixth period. Mが、周期表1族、2族、3族、12族、または13族から選ばれる金属である請求項1または2記載の有機燐光発光素子用材料。 The material for an organic phosphorescent device according to claim 1 or 2, wherein M is a metal selected from Group 1, Group 2, Group 3, Group 12, or Group 13 of the Periodic Table. Mが、Mg、Ca、Zn、Al、Gaのいずれかである請求項5記載の有機燐光発光素子用材料。 The material for organic phosphorescent light emitting device according to claim 5, wherein M is any one of Mg, Ca, Zn, Al, and Ga. 燐光発光材料(B)が、有機化合物もしくは有機残基の配位子からなるイリジウムもしくは白金錯体を含んでなる請求項1〜6いずれか記載の有機燐光発光素子用材料。 The material for an organic phosphorescent device according to any one of claims 1 to 6 , wherein the phosphorescent material (B) comprises an iridium or platinum complex composed of an organic compound or a ligand of an organic residue. 一対の電極間に発光層または発光層を含む複数層の有機化合物薄膜を形成してなる有機燐光発光素子において、発光層が請求項1〜いずれか記載の有機燐光発光素子用材料を含有する有機燐光発光素子。 An organic phosphorescent light-emitting device formed by forming a light-emitting layer or a plurality of layers of organic compound thin films including a light-emitting layer between a pair of electrodes, wherein the light-emitting layer contains the material for an organic phosphorescent light-emitting device according to any one of claims 1 to 7. Organic phosphorescent light emitting device. Mが周期表1族、2族、3族、12族、または13族から選ばれる金属である金属錯体化合物(A)の含有量が、発光層中において、発光層全体の50重量%以上を占める請求項記載の有機燐光発光素子。 In the light emitting layer, the content of the metal complex compound (A) in which M is a metal selected from Group 1, Group 2, Group 12, Group 12 or Group 13 is 50% by weight or more of the entire light emitting layer. The organic phosphorescent light-emitting device according to claim 8 . Mが希土類または周期表6族ないしは11族のいずれかから選ばれる金属である金属錯体化合物(A)の含有量が、発光層中において、発光層全体の50重量%未満を占める請求項または記載の有機燐光発光素子。 M is a metal complex compound is a metal selected from any of the rare earth or the periodic table 6 or 11 aromatic content of (A) is, in the light emitting layer, claim occupy less than 50% by weight of the entire light emitting layer 8 or 9. The organic phosphorescent light emitting device according to 9 . さらに、陰極と発光層との間に電子注入層を形成することを特徴とする請求項10いずれか記載の有機燐光発光素子。 Further, cathode and organic phosphorescent device according to any one of claims 8 to 10, characterized in that to form an electron injection layer between the light emitting layer. らに、電子注入層と発光層との間に正孔ブロッキング層を形成することを特徴とする請求項8〜11いずれか記載の有機燐光発光素子 Et al of the organic phosphorescent device according to claim 8 to 11, wherein one of and forming a hole blocking layer between the electron injection layer and the light emitting layer. さらに、陽極と発光層との間に正孔注入層を形成することを特徴とする請求項12いずれか記載の有機燐光発光素子。 Furthermore, anode and an organic phosphorescent device according to any one of claims 8-12, characterized in that to form the hole injection layer between the light emitting layer.
JP2004070731A 2004-03-12 2004-03-12 Material for organic phosphorescent light emitting device and organic phosphorescent light emitting device using the same Expired - Fee Related JP4438459B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004070731A JP4438459B2 (en) 2004-03-12 2004-03-12 Material for organic phosphorescent light emitting device and organic phosphorescent light emitting device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004070731A JP4438459B2 (en) 2004-03-12 2004-03-12 Material for organic phosphorescent light emitting device and organic phosphorescent light emitting device using the same

Publications (2)

Publication Number Publication Date
JP2005255891A JP2005255891A (en) 2005-09-22
JP4438459B2 true JP4438459B2 (en) 2010-03-24

Family

ID=35081941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004070731A Expired - Fee Related JP4438459B2 (en) 2004-03-12 2004-03-12 Material for organic phosphorescent light emitting device and organic phosphorescent light emitting device using the same

Country Status (1)

Country Link
JP (1) JP4438459B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201223956A (en) * 2010-08-13 2012-06-16 Solvay Light emitting materials for electronics
JP6662297B2 (en) * 2014-11-25 2020-03-11 コニカミノルタ株式会社 Organic electroluminescence element, lighting device and display device provided with the same
CN115806478B (en) * 2021-09-14 2024-06-14 珠海市自然之旅生物技术有限公司 Metal salt of hinokitiol, and preparation method and application thereof

Also Published As

Publication number Publication date
JP2005255891A (en) 2005-09-22

Similar Documents

Publication Publication Date Title
JP4363133B2 (en) Organic electroluminescent device material and organic electroluminescent device using the same
JP3835454B2 (en) Composition for organic electroluminescent device and organic electroluminescent device using the same
JP4002040B2 (en) Organic electroluminescence device
US20070190356A1 (en) Material for organic electroluminescent element and organic electroluminescent element employing the same
JP3924943B2 (en) Organic electroluminescent device material and organic electroluminescent device using the same
JP2005082702A (en) Material for organic electroluminescent device and organic electroluminescent device using the same
JPH11111458A (en) Organic electroluminescent element material and organic electroluminescent element using the same
JP2002265938A (en) Material for organic electroluminescence device and organic electroluminescence device using the same
JP4306379B2 (en) Organic electroluminescent device material and organic electroluminescent device using the same
JP4026273B2 (en) Material for organic electroluminescence device and organic electroluminescence device using the same
JPH11273860A (en) Luminous material for organic electroluminescence and organic electroluminescent element using the same
JP4380277B2 (en) Material for organic electroluminescence device and organic electroluminescence device using the same
JP4525119B2 (en) Material for organic electroluminescence device and organic electroluminescence device using the same
JP3994573B2 (en) Material for organic electroluminescence device and organic electroluminescence device using the same
JP3969300B2 (en) Composition for organic electroluminescence device and organic electroluminescence device using the same
JP3899698B2 (en) Organic electroluminescent device material and organic electroluminescent device using the same
JP2002003833A (en) Luminous material for organic electroluminescence element and organic electroluminescence element using the same
JP2001019946A (en) Material for organic electroluminescent element and organic electroluminescent element using the same
JP3945032B2 (en) Luminescent material for organic electroluminescence device and organic electroluminescence device using the same
JP2005113072A (en) Material for organic electroluminescent element and organic electroluminescent element produced by using the same
JP4682503B2 (en) Material for organic electroluminescence device and organic electroluminescence device using the same
JP2001064640A (en) Material for organic electroluminescence element and organic electroluminescence element by using the same
JP2002012861A (en) Luminescent material for organic electroluminescence element and organic electroluminescence element produced by using the luminescent material
JP2001207167A (en) Light-emission material for organic electro-luminescent element and organic electro-luminescent element using the same
JP4438459B2 (en) Material for organic phosphorescent light emitting device and organic phosphorescent light emitting device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140115

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees