Nothing Special   »   [go: up one dir, main page]

JP4427522B2 - Method for producing high strength thick steel plate with tensile strength of 780 MPa excellent in weldability and low temperature toughness - Google Patents

Method for producing high strength thick steel plate with tensile strength of 780 MPa excellent in weldability and low temperature toughness Download PDF

Info

Publication number
JP4427522B2
JP4427522B2 JP2006103917A JP2006103917A JP4427522B2 JP 4427522 B2 JP4427522 B2 JP 4427522B2 JP 2006103917 A JP2006103917 A JP 2006103917A JP 2006103917 A JP2006103917 A JP 2006103917A JP 4427522 B2 JP4427522 B2 JP 4427522B2
Authority
JP
Japan
Prior art keywords
less
toughness
steel plate
weldability
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006103917A
Other languages
Japanese (ja)
Other versions
JP2007277623A (en
Inventor
学 星野
政昭 藤岡
洋一 田中
達也 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006103917A priority Critical patent/JP4427522B2/en
Publication of JP2007277623A publication Critical patent/JP2007277623A/en
Application granted granted Critical
Publication of JP4427522B2 publication Critical patent/JP4427522B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、予熱フリーの高溶接性と継手低温靭性に優れる引張強さ780MPa級の高張力厚鋼板を、高価なNiを使用せず、かつ、圧延後の再加熱焼戻し処理を必要としない高い生産性と低コストのもとに製造する方法に関するものである。本発明鋼は、建設機械、産業機械、橋梁、建築、造船などの溶接構造物の構造部材として、板厚12〜40mmの厚鋼板の形態で用いられるものである。   The present invention is a high-tensile steel plate having a tensile strength of 780 MPa that is excellent in preheating-free high weldability and joint low temperature toughness, does not use expensive Ni, and does not require reheating and tempering after rolling. The present invention relates to a method for manufacturing with low productivity and low cost. The steel of the present invention is used in the form of a thick steel plate having a thickness of 12 to 40 mm as a structural member of a welded structure such as a construction machine, an industrial machine, a bridge, a building, or a shipbuilding.

建設機械、産業機械、橋梁、建築、造船などの溶接構造部材として用いられる引張強さ780MPa級の高張力鋼板には、母材の高強度・高靭性の両立に加えて、構造部材の高強度化ニーズの増大、寒冷地での使用増加に伴い、予熱フリーの高溶接性と継手低温靭性、そしてこれら特性を全て満足し、かつ、廉価で、短工期で製造可能な780MPa級の厚鋼板が板厚40mm程度まで要求されるようになってきた。すなわち、(a)母材高強度・高靭性、(b)小入熱溶接時の予熱フリー化、(c)継手低温靭性、の3つの特性全てを、廉価成分系で、短工期+廉価製造プロセスにて満足する必要がある。   High tensile strength steel sheets with a tensile strength of 780MPa used as welded structural members for construction machinery, industrial machinery, bridges, architecture, shipbuilding, etc., in addition to the high strength and toughness of the base material, the high strength of the structural members 780MPa class heavy steel sheet that satisfies all of these characteristics, is inexpensive, and can be manufactured in a short construction period. The plate thickness has been required to be about 40 mm. That is, (a) high strength and high toughness of base metal, (b) free preheating during small heat input welding, and (c) low temperature toughness of joints, all with the low cost component system, short construction period + low cost manufacturing Need to be satisfied with the process.

高溶接性を付与した780MPa級の高張力厚鋼板の従来の製造方法としては、例えば、特許文献1〜3に開示があるように、鋼板の圧延直後にオンラインで直接焼入れを行い、その後に焼戻し処理を行う、直接焼入れ、焼戻しによる方法がある。   For example, as disclosed in Patent Documents 1 to 3, a conventional method of manufacturing a high-strength thick steel plate of 780 MPa class imparted with high weldability is directly quenched immediately after rolling of the steel plate, and then tempered. There are methods by direct quenching and tempering.

非調質での780MPa級の高張力厚鋼板の製造方法に関しては、例えば、特許文献4〜8に開示があり、いずれも再加熱焼戻し熱処理が省略できる点では製造工期、生産性に優れる製造方法である。このうち、特許文献4〜7は、鋼板の圧延後の加速冷却を途中で停止する、加速冷却−途中停止プロセスによる製造方法であり、特許文献8は圧延後空冷で室温まで冷却する製造方法である。   Regarding the method for producing a high-strength thick steel plate of 780 MPa class with non-tempering, for example, there are disclosures in Patent Documents 4 to 8, both of which are excellent in terms of production period and productivity in that reheating and tempering heat treatment can be omitted. It is. Among these, patent documents 4-7 are the manufacturing methods by the accelerated cooling-intermediate stop process which stops the accelerated cooling after rolling of a steel plate on the way, and patent document 8 is a manufacturing method which cools to room temperature by air cooling after rolling. is there.

特開平03−232923号公報Japanese Patent Laid-Open No. 03-232923 特開平09−263828号公報JP 09-263828 A 特開2000−160281号公報JP 2000-160281 A 特開2000−319726号公報JP 2000-319726 A 特開2005−15859号公報JP 2005-15859 A 特開2004−052063号公報JP 2004-052063 A 特開2001−226740号公報JP 2001-226740 A 特開平08−188823号公報Japanese Patent Laid-Open No. 08-188823

しかしながら、特許文献1〜3に開示の従来技術では再加熱焼戻し熱処理が必要となり、製造工期、生産性、製造コストに問題があるため、再加熱焼戻し熱処理が省略できるいわゆる非調質の製造方法への要求が強い。また、特許文献4に開示された製造方法ではその実施例に記載があるように溶接時に50℃以上での予熱が必要であり、予熱フリーの高溶接性を満足することができない。さらに、特許文献5に開示された製造方法では0.6%以上のNi添加が必要なため高価な成分系となり製造コスト上問題がある。特許文献6に開示された製造方法では、実施例に記載の板厚15mmまでしか製造できず、板厚40mmまでの板厚要求を満足できない。さらに、板厚15mmにおいても、C含有量が少なく継手のミクロ組織が粗粒となり十分な継手低温靭性が得られない問題もある。特許文献7に開示された製造方法では、実施例に記載があるように1.0%程度のNi添加が必要なため高価な成分系となり製造コスト上問題がある。特許文献8に開示された製造方法は実施例に記載の板厚12mmまでしか製造できず、板厚40mmまでの板厚要求を満足できない。さらに、その圧延条件の特徴としてフェライトとオーステナイトの二相温度範囲で累積圧下率16〜30%の圧延を行うため、フェライト粒が粗大化しやすく板厚12mmの製造においても強度、靭性が低下しやすい問題もある。   However, since the conventional techniques disclosed in Patent Documents 1 to 3 require reheating and tempering heat treatment, and there are problems in the manufacturing period, productivity, and manufacturing cost, a so-called non-tempered manufacturing method in which the reheating and tempering heat treatment can be omitted. The demand for is strong. Moreover, in the manufacturing method disclosed in Patent Document 4, preheating at 50 ° C. or higher is necessary at the time of welding as described in the examples, and high weldability without preheating cannot be satisfied. Furthermore, since the manufacturing method disclosed in Patent Document 5 requires addition of 0.6% or more of Ni, it is an expensive component system and has a problem in manufacturing cost. In the manufacturing method disclosed in Patent Document 6, it is possible to manufacture only a plate thickness of 15 mm described in the examples, and it is not possible to satisfy a plate thickness requirement up to a plate thickness of 40 mm. Furthermore, even when the plate thickness is 15 mm, there is a problem that the C content is small and the microstructure of the joint becomes coarse and sufficient joint low temperature toughness cannot be obtained. In the manufacturing method disclosed in Patent Document 7, since about 1.0% of Ni addition is necessary as described in the examples, it becomes an expensive component system and has a problem in manufacturing cost. The manufacturing method disclosed in Patent Document 8 can only manufacture up to a plate thickness of 12 mm described in the examples, and cannot satisfy the plate thickness requirement up to a plate thickness of 40 mm. Furthermore, as a feature of the rolling conditions, rolling is performed at a cumulative reduction ratio of 16 to 30% in the two-phase temperature range of ferrite and austenite, so that the ferrite grains are likely to be coarsened and the strength and toughness are likely to be reduced even in the production of a sheet thickness of 12 mm. There is also a problem.

以上のように、母材の高強度と高靭性、高溶接性、継手の低温靭性の全てを、高価合金元素のNiを無添加で、かつ、圧延冷却後の再加熱焼戻し熱処理を省略した上で満足可能な高張力厚鋼板の製造方法は、需要家の要望が強いにもかかわらず、未だ発明されていないのが現状である。母材強度780MPa級の厚鋼板では、予熱フリー化に及ぼす板厚の影響は非常に大きい。板厚12mm未満では、予熱フリー化が比較的容易に達成できる。これは板厚12mm未満であれば水冷時の鋼板の冷却速度を板厚中心部でも100℃/sec以上と非常に大きくすることが物理的に可能なことによる。この場合、Cや合金元素を多量に添加しなくとも、高冷却速度により硬いマルテンサイトやベイナイト組織が得られ、780MPa級の強度が得られる。そして合金元素添加量の少ない薄手780MPa鋼では予熱しなくても溶接熱影響部の硬さを低く抑えることができ、予熱フリーでも溶接割れを防止できる。一方で、板厚が厚くなると、水冷時の冷却速度は小さくなる。このため薄手鋼板と同一成分では焼入れ不足から厚手鋼板の強度は低下し、780MPa級の強度を満足できなくなる。特に冷却速度が最も小さくなる板厚中心部(1/2t部)での強度低下が顕著である。冷却速度が8℃/secを下回るような板厚40mmを超える厚手鋼板になると母材強度確保に合金元素の多量添加が必須となり、予熱フリー化は極めて困難となる。   As described above, all of the high strength and high toughness of the base metal, high weldability, and low temperature toughness of the joint, without adding the expensive alloy element Ni, and omitting reheating and tempering heat treatment after rolling cooling In spite of the strong demand of consumers, the present situation is that the method for producing a high-tensile thick steel plate that can be satisfied with the present invention has not yet been invented. In the case of a thick steel plate having a base material strength of 780 MPa, the influence of the plate thickness on making the preheating free is very large. If the plate thickness is less than 12 mm, preheating-free can be achieved relatively easily. This is because if the sheet thickness is less than 12 mm, the cooling rate of the steel sheet during water cooling can be physically increased to 100 ° C./sec or more even at the center of the sheet thickness. In this case, a hard martensite or bainite structure can be obtained at a high cooling rate without adding a large amount of C or an alloy element, and a strength of 780 MPa can be obtained. With thin 780 MPa steel with a small amount of alloying element added, the hardness of the weld heat affected zone can be kept low without preheating, and weld cracking can be prevented even without preheating. On the other hand, as the plate thickness increases, the cooling rate during water cooling decreases. For this reason, with the same component as the thin steel plate, the strength of the thick steel plate decreases due to insufficient quenching, and the strength of the 780 MPa class cannot be satisfied. In particular, the strength reduction is remarkable at the center of the plate thickness (1/2 t portion) where the cooling rate is the smallest. When the steel plate is thicker than 40 mm and the cooling rate is less than 8 ° C./sec, it is essential to add a large amount of alloying elements to ensure the strength of the base material, and preheating becomes extremely difficult.

そこで、本発明は、母材の高強度と高靭性、高溶接性、継手低温靭性の全てを、高価合金元素のNi無添加で、かつ、圧延冷却後の再加熱焼戻し熱処理を省略した上で満足可能な、溶接性と低温靭性に優れる引張強さ780MPa級高張力厚鋼板の製造方法を提供することを目的とするものである。   Therefore, the present invention has all the high strength and toughness of the base metal, high weldability, and low temperature toughness of the joint, without adding the expensive alloy element Ni, and omitting the reheating and tempering heat treatment after rolling cooling. It is an object of the present invention to provide a satisfactory method for producing a high-tensile steel plate having a tensile strength of 780 MPa which is excellent in weldability and low-temperature toughness.

なお、本発明が対象とする具体的な鋼板の特性は、以下のとおりである。
(a)母材の板厚中心部において、引張強さ780MPa以上、降伏応力685MPa以上、−80℃でのシャルピー吸収エネルギーが100J以上
(b)y割れ試験時の必要予熱温度が25℃以下
(c)溶接入熱3.0kJ/mmでのサブマージアーク溶接(SAW)継手の溶接熱影響部(HAZ部)のシャルピー吸収エネルギーが−40℃で60J以上
In addition, the characteristic of the specific steel plate which this invention makes object is as follows.
(A) At the center of the thickness of the base metal, the tensile strength is 780 MPa or more, the yield stress is 685 MPa or more, the Charpy absorbed energy at −80 ° C. is 100 J or more. (B) The necessary preheating temperature during the y-cracking test is 25 ° C. or less ( c) Charpy absorbed energy of the weld heat affected zone (HAZ zone) of submerged arc welding (SAW) joint at welding heat input of 3.0 kJ / mm is 60 J or more at −40 ° C.

また、本発明が対象とする鋼板の板厚は、12〜40mmである。   Moreover, the plate | board thickness of the steel plate which this invention makes object is 12-40 mm.

本発明者らは、上述した課題を解決するために、Ni無添加の成分系で圧延後直接焼入れによる製造を前提に、母材、溶接継手につき数多くの検討を行った。解決が困難であった課題は2つあり、その1つは、Ni無添加での継手低温靭性の確保である。この課題に対し、溶接入熱3.0kJ/mm程度でのサブマージアーク溶接(SAW)継手の熱影響部(HAZ)靭性における添加成分の影響につき種々検討を行った結果、C添加量を0.03%以上、0.055%以下に厳格に規制し、Bを添加した上で、焼入れ性指数DI値で評価し得る鋼の焼入れ性を1.70以上、2.50以下の最適範囲とし、その上さらに、Mo、V、Siの3元素を3元素とも極力添加しない場合に限り、Ni無添加で、−40℃で良好な継手靭性が得られることを新規に知見した。   In order to solve the above-described problems, the present inventors have made many studies on the base metal and the welded joint on the premise of manufacturing by direct quenching after rolling with a component system containing no Ni. There are two problems that have been difficult to solve, and one of them is to secure joint low temperature toughness without adding Ni. As a result of various investigations on the influence of the additive component on the heat affected zone (HAZ) toughness of the submerged arc welding (SAW) joint at a welding heat input of about 3.0 kJ / mm with respect to this problem, the amount of C added was set to be 0.1. Strictly regulated to 03% or more and 0.055% or less, and after adding B, the hardenability of steel that can be evaluated by the hardenability index DI value is set to an optimal range of 1.70 or more and 2.50 or less, Furthermore, it was newly found that good joint toughness can be obtained at −40 ° C. without addition of Ni only when the three elements of Mo, V, and Si are not added as much as possible.

この新規知見に基づき、Ni、Mo、V、Siを添加せず、上述のC量、DI値の範囲を満足するB添加成分系につき、小入熱溶接時の予熱フリーの実現に向け、添加成分に関する検討を行った結果、Pcm値で評価し得る溶接割れ感受性指数を0.22%以下に規制することで、y割れ試験時の必要予熱温度を25℃以下とすることができ、予熱フリー化が可能となることがわかった。   Based on this new knowledge, Ni, Mo, V, and Si are not added, but the B additive component system that satisfies the above-mentioned C content and DI value ranges is added to achieve preheating free during small heat input welding. As a result of examining the components, by limiting the weld cracking susceptibility index that can be evaluated by the Pcm value to 0.22% or less, the required preheating temperature during the y cracking test can be 25 ° C or less, and preheating is free. It became clear that it became possible.

しかしながら、解決が困難であった課題のもう1つは、Pcm値0.22%以下を前提にした場合の、板厚40mmまでの板厚方向全厚に亘る母材強度・靭性の両立であった。これに対し、B添加鋼におけるNb添加量と圧延条件につき種々検討した結果、Nb添加量を0.02%以上、0.05%以下とした上で、圧延条件をオーステナイト再結晶温度域である930℃以上と、未再結晶温度域である760℃以上、900℃以下の、2つの温度域での累積圧下率を、夫々厳格に規制し、さらに、Mnを1.2%以上、かつ、Crを0.6%以上添加した上で、Pcm値にて0.19%以上を満足するようにMnとCrを添加し、圧延直後に700℃以上から室温以上350℃以下まで冷却速度8℃/sec以上、80℃/sec以下にて冷却することで、初めて、板厚40mmまでの板厚方向全厚に亘る母材強度・靭性の両立、具体的には、引張強さ780MPa以上、降伏応力685MPa以上、−80℃でのシャルピー吸収エネルギーが100J以上を満足可能となることを新規に知見した。   However, another problem that has been difficult to solve is the compatibility of the base material strength and toughness over the entire thickness in the thickness direction up to a thickness of 40 mm, assuming a Pcm value of 0.22% or less. It was. On the other hand, as a result of various investigations on the Nb addition amount and rolling conditions in the B-added steel, the Nb addition amount is set to 0.02% or more and 0.05% or less, and the rolling conditions are within the austenite recrystallization temperature range. 930 ° C. or higher, and the unrecrystallized temperature range of 760 ° C. or higher and 900 ° C. or lower, the cumulative rolling reduction in two temperature ranges are strictly regulated, and Mn is 1.2% or higher, and After adding 0.6% or more of Cr, Mn and Cr are added so that the Pcm value satisfies 0.19% or more. Immediately after rolling, the cooling rate is 8O 0 C from 700 ° C or more to room temperature to 350 ° C or less. For the first time by cooling at 80 ° C./sec or more and 80 ° C./sec or less, both the strength and toughness of the base material over the entire thickness in the thickness direction up to a thickness of 40 mm, specifically, tensile strength of 780 MPa or more, yield Stress 685 MPa or more, at -80 ° C Charpy absorbed energy has knowledge to the new to be a possible satisfaction more than 100J.

本発明は、以上のような新規知見に基づき成されたものであって、その要旨は次のとおりである。
(1) 質量%で、C:0.03〜0.055%、Mn:1.2〜2.3%、Cr:0.6〜1.5%、Nb:0.02〜0.05%、Ti:0.005〜0.015%、Al:0.003〜0.08%、B:0.0005〜0.0020%、N:0.0015〜0.0060%を含有し、さらに、P:0.02%以下、S:0.0050%以下、Mo:0.09%以下、Si:0.09%以下、V:0.03%以下に制限し、下記に示される溶接割れ感受性指数Pcm値が0.19〜0.22%であり、かつ、下記に示される焼入れ性指数DI値が1.70〜2.50であり、残部Feおよび不可避的不純物からなる成分組成を有する鋼片または鋳片を、1000〜1170℃に加熱し、930℃以上の温度範囲での累積圧下率を40〜80%とする粗圧延の後、760〜900℃の範囲での累積圧下率を50〜70%とする仕上圧延を760℃以上で行い、これに引き続き、700℃以上から冷却速度が8〜80℃/secとなる加速冷却を開始し、室温〜350℃で該加速冷却を停止することを特徴とする、溶接性と継手低温靭性に優れる引張強さ780MPa級の高張力厚鋼板の製造方法。
Pcm=[C]+[Si]/30+[Mn]/20+[Cu]/20+[Ni]/60+[Cr]/20+[Mo]/15+[V]/10+5[B]
DI=0.367([C]1/2)(1+0.7[Si])(1+3.33[Mn])(1+0.35[Cu])(1+0.36[Ni])(1+2.16[Cr])(1+3.0[Mo])(1+1.75[V])(1+1.77[Al])
ここで、[C]、[Si]、[Mn]、[Cu]、[Ni]、[Cr]、[Mo]、[V]、[Al]、[B]は、それぞれC、Si、Mn、Cu、Ni、Cr、Mo、V、Al、Bの質量%で表した含有量を意味する。
(2) さらに、質量%で、Cu:0.20%以下を含有することを特徴とする、上記(1)に記載の溶接性と継手低温靭性に優れる引張強さ780MPa級の高張力厚鋼板の製造方法。
(3) さらに、質量%で、Mg:0.0005〜0.01%、Ca:0.0005〜0.01%の1種または2種を含有することを特徴とする、請求項1または2に記載の溶接性と継手低温靭性に優れる引張強さ780MPa級の高張力厚鋼板の製造方法。
The present invention has been made on the basis of the above novel findings, and the gist thereof is as follows.
(1) By mass%, C: 0.03-0.055%, Mn: 1.2-2.3%, Cr: 0.6-1.5%, Nb: 0.02-0.05% Ti: 0.005-0.015%, Al: 0.003-0.08%, B: 0.0005-0.0020%, N: 0.0015-0.0060%, P: 0.02% or less, S: 0.0050% or less, Mo: 0.09% or less, Si: 0.09% or less, V: 0.03% or less, and weld crack sensitivity shown below Steel having an index Pcm value of 0.19 to 0.22%, a hardenability index DI value shown below of 1.70 to 2.50, and a composition composed of the balance Fe and inevitable impurities The piece or slab is heated to 1000 to 1170 ° C, and the cumulative rolling reduction in the temperature range of 930 ° C or higher is 40 to 80. After the rough rolling, the finish rolling is performed at 760 ° C. or higher, and the cooling rate is from 8 ° C. to 80 ° C. from 700 ° C. or higher. A method for producing a high-tensile steel plate having a tensile strength of 780 MPa, which is excellent in weldability and joint low-temperature toughness, characterized by starting accelerated cooling at / sec and stopping the accelerated cooling at room temperature to 350 ° C.
Pcm = [C] + [Si] / 30 + [Mn] / 20 + [Cu] / 20 + [Ni] / 60 + [Cr] / 20 + [Mo] / 15 + [V] / 10 + 5 [B]
DI = 0.367 ([C] 1/2 ) (1 + 0.7 [Si]) (1 + 3.33 [Mn]) (1 + 0.35 [Cu]) (1 + 0.36 [Ni]) (1 + 2.16 [ Cr]) (1 + 3.0 [Mo]) (1 + 1.75 [V]) (1 + 1.77 [Al])
Here, [C], [Si], [Mn], [Cu], [Ni], [Cr], [Mo], [V], [Al], and [B] are C, Si, and Mn, respectively. , Cu, Ni, Cr, Mo, V, Al, and the content expressed by mass% of B.
(2) Furthermore, Cu: 0.20% or less in mass%, the high strength thick steel plate having a tensile strength of 780 MPa and excellent weldability and joint low temperature toughness according to (1) above Manufacturing method.
(3) The composition further comprises one or two of Mg: 0.0005 to 0.01% and Ca: 0.0005 to 0.01% by mass%. The manufacturing method of the high strength thick steel plate of 780 MPa class which is excellent in the weldability and joint low temperature toughness as described in 1 above.

本発明によれば、高強度化ニーズの強い建設機械、産業機械、橋梁、建築、造船などの溶接構造物の構造部材として好適な、予熱フリーの高溶接性と継手低温靭性に優れる引張強さ780MPa級の板厚12〜40mmの高張力厚鋼板を、高価なNiを使用せず、かつ、圧延後の再加熱焼戻し処理を必要としない高い生産性と低コストのもとに製造することができ、その産業界へもたらす効果は極めて大きい。   According to the present invention, tensile strength excellent in preheating-free high weldability and joint low-temperature toughness suitable as a structural member for welded structures such as construction machines, industrial machines, bridges, buildings, shipbuilding and the like with strong needs for high strength. It is possible to manufacture a high-strength steel plate having a thickness of 12 to 40 mm of 780 MPa class with high productivity and low cost without using expensive Ni and requiring no reheating and tempering after rolling. It has a great effect on the industry.

以下に、本発明における各成分および圧延条件等の製造方法の限定理由を説明する。   Below, the reason for limitation of manufacturing methods, such as each component and rolling conditions in this invention, is demonstrated.

Cは、継手の低温靭性を良好とするために、その添加量を0.03%以上、0.055%以下の範囲に限定する。   In order to improve the low temperature toughness of the joint, C is added in an amount of 0.03% or more and 0.055% or less.

Mnは、母材強度・靭性の両立のために、1.2%以上の添加が必要である。2.3%を超えて添加すると中心偏析部において靭性に有害な粗大なMnSが生成する傾向にあり、板厚中心部の母材靭性の低下をもたらす場合があるので、上限を2.3%とする。   Mn needs to be added in an amount of 1.2% or more in order to achieve both the strength and toughness of the base material. If added over 2.3%, coarse MnS that is harmful to toughness tends to be generated in the center segregation portion, which may lead to a decrease in the base metal toughness in the center portion of the plate thickness, so the upper limit is 2.3%. And

Crは、母材強度・靭性の両立のために、0.6%以上の添加が必要である。1.5%を超えて添加すると板厚中心部の母材靭性の低下をもたらす場合があるので、上限を1.5%とする。   Cr needs to be added in an amount of 0.6% or more in order to achieve both the strength and toughness of the base material. If added over 1.5%, the base material toughness of the central portion of the plate thickness may be lowered, so the upper limit is made 1.5%.

Nbは、母材の強度・靭性の両立のために、0.02%以上の添加が必要である。0.05%を超えて添加すると、Nb(C,N)としての析出C量が増加し、固溶C量減少による焼入性低下のため、特に厚手材の板厚中心部において目標とする母材強度が得られない場合があるので、上限を0.05%とする。   Nb needs to be added in an amount of 0.02% or more in order to achieve both strength and toughness of the base material. If added over 0.05%, the amount of precipitated C as Nb (C, N) increases, and the hardenability decreases due to the decrease in the amount of solid solution C. Since the base material strength may not be obtained, the upper limit is made 0.05%.

Bは、焼入れ性を高め、良好な継手低温靭性と母材高強度・高靭性を得るため、0.0005%以上の添加が必要である。0.0020%を超えて添加すると焼入れ性が低下し、良好な継手低温靭性や十分な母材高強度・高靭性が得られない場合があるので、上限を0.0020%とする。   B is required to be added in an amount of 0.0005% or more in order to improve hardenability and to obtain good joint low temperature toughness and high strength and high toughness of the base material. If added over 0.0020%, the hardenability decreases, and good joint low-temperature toughness and sufficient base metal high strength and high toughness may not be obtained, so the upper limit is made 0.0020%.

Alは、通常脱酸元素として添加される範囲の0.003%以上、0.08%以下を含有範囲とする。   Al is contained in a range of 0.003% to 0.08% of the range usually added as a deoxidizing element.

TiとNは、微細なTiN粒子を形成し、溶接熱影響部のオーステナイト粒粗大化防止を通して継手靭性を良好にするのに有効である。また、Tiは、B添加鋼の焼入性安定化に一定の効果を有する。これは、固溶Nが、BN形成による固溶B量減少を通して焼入性低下を招くが、Tiを添加し固溶NをTiNとして析出させることで固溶Bの焼入性向上効果が安定して得られることによる。これら効果を両立させて得るためには、0.005%以上のTiと0.0015%以上のNの添加が必要である。粗大なTiN粒子による継手低温靭性低下と過剰Nによる焼入性低下の両方を抑制するため、Ti添加量は0.015%、N添加量は0.0060%を上限とする。   Ti and N are effective for forming fine TiN particles and improving joint toughness through preventing austenite grain coarsening in the weld heat affected zone. Further, Ti has a certain effect on stabilizing the hardenability of the B-added steel. This is because solid solution N causes a decrease in hardenability by reducing the amount of solid solution B due to BN formation, but the effect of improving the hardenability of solid solution B is stable by adding Ti and precipitating solid solution N as TiN. It depends on what is obtained. In order to obtain both of these effects, it is necessary to add 0.005% or more of Ti and 0.0015% or more of N. In order to suppress both the joint low-temperature toughness drop due to coarse TiN particles and the hardenability drop due to excess N, the upper limit is 0.015% for Ti addition and 0.0060% for N addition.

Pは、母材および継手の低温靭性を低下させるため含有しないことが望ましい。不可避的に混入する不純物元素としての許容値は0.02%以下である。   It is desirable not to contain P in order to lower the low temperature toughness of the base material and the joint. The allowable value as an impurity element inevitably mixed is 0.02% or less.

Sは、母材および継手の低温靭性を低下させるため含有しないことが望ましい。不可避的に混入する不純物元素としての許容値は0.0050%以下である。   It is desirable not to contain S in order to reduce the low temperature toughness of the base material and the joint. The allowable value as an impurity element inevitably mixed is 0.0050% or less.

Mo、Si、Vは、本発明において特に重要な意味を持つ元素であり、これら3元素を3元素とも極力含有しない場合に限り、Ni無添加で、−40℃で良好な継手靭性が得られる。これら3元素のうち、1元素でも添加するとHAZ部に脆化組織である島状マルテンサイトが1μm程度以下の微細な形態で生成し易くなるのに対し、3元素とも無添加の場合はこの微細な島状マルテンサイトが生成しない。これが、3元素とも無添加の場合に限り、継手の低温靭性が良好となる理由と考えられる。これら3元素は極力含有しないことが望ましいが、不可避的に混入する不純物元素として、あるいはPcm値、DI値の最適化等のための極微量添加の許容上限値は、Mo、Siが0.09%以下、Vが0.03%以下である。より好ましくは、Mo、Siは0.05%以下、Vは0.01%以下である。なお、Mo、VはNiと同様に高価な元素であるので、Ni、Mo、Vを添加せずに良好な特性が得られる本発明は、合金コストの点から、単にNi無添加とする以上に大きなメリットがある。   Mo, Si, and V are elements having a particularly important meaning in the present invention, and only when these three elements are not contained as much as possible, good joint toughness can be obtained at −40 ° C. without adding Ni. . When one of these three elements is added, island martensite, which is an embrittled structure, easily forms in the HAZ part in a fine form of about 1 μm or less, whereas this is fine when all three elements are not added. Island martensite is not generated. This is considered to be the reason why the low temperature toughness of the joint is good only when all three elements are not added. These three elements are preferably not contained as much as possible, but the allowable upper limit of addition of trace amounts as impurity elements inevitably mixed or for optimization of Pcm value, DI value, etc. is 0.09 for Mo and Si. % Or less and V is 0.03% or less. More preferably, Mo and Si are 0.05% or less, and V is 0.01% or less. In addition, since Mo and V are expensive elements like Ni, the present invention in which good characteristics can be obtained without adding Ni, Mo and V is more than simply adding Ni from the viewpoint of alloy cost. Has a great advantage.

Cuは、Pcm値、DI値の規制範囲内で添加しても良い。ただし、Ni無添加でCuを0.2%以上添加すると、鋼片、鋼板の表面割れの発生による製造工期、生産性、製造コストが問題となる懸念があるため、添加量は0.20%以下とする。   Cu may be added within the regulation range of the Pcm value and the DI value. However, if Ni is not added and Cu is added in an amount of 0.2% or more, there is a concern that the manufacturing period, productivity, and manufacturing cost due to the occurrence of surface cracks in steel slabs and steel plates may cause problems. The following.

MgおよびCaの1種または2種を添加することにより、硫化物や酸化物を形成して母材靭性および継手低温靭性を高めることができる。この効果を得るためにはMgあるいはCaはそれぞれ0.0005%以上の添加が必要である。しかし、0.01%を超えて過剰に添加すると粗大な硫化物や酸化物が生成するためかえって靭性を低下させることがある。したがって、添加量をそれぞれ0.0005%以上、0.01%以下とする。   By adding one or two of Mg and Ca, sulfides and oxides can be formed to increase the base metal toughness and joint low temperature toughness. In order to obtain this effect, Mg or Ca needs to be added in an amount of 0.0005% or more. However, excessive addition over 0.01% may produce coarse sulfides and oxides, which may reduce toughness. Therefore, the addition amount is set to 0.0005% or more and 0.01% or less, respectively.

本発明ではNiは添加しない。しかし、Niが、スクラップ原料等から不可避的に混入する場合は、含有していても高コストとはならないため本発明の範囲内である。   In the present invention, Ni is not added. However, when Ni is inevitably mixed from scrap raw materials or the like, it is within the scope of the present invention because it is not expensive even if Ni is contained.

溶接割れ感受性指数Pcm値は0.22%以下にしないと溶接時の予熱をフリーにできないので、その上限を0.22%以下とする。Pcm値が0.19%未満となると、母材の高強度・高靭性を満足できないので、その下限を0.19%とする。
ここで、Pcm=[C]+[Si]/30+[Mn]/20+[Cu]/20+[Ni]/60+[Cr]/20+[Mo]/15+[V]/10+5[B]であり、この式中の[C]、[Si]、[Mn]、[Cu]、[Ni]、[Cr]、[Mo]、[V]、[B]は、それぞれC、Si、Mn、Cu、Ni、Cr、Mo、V、Bの質量%で表した含有量を意味する。
If the weld crack sensitivity index Pcm value is not 0.22% or less, preheating during welding cannot be made free, so the upper limit is made 0.22% or less. If the Pcm value is less than 0.19%, the high strength and high toughness of the base material cannot be satisfied, so the lower limit is made 0.19%.
Here, Pcm = [C] + [Si] / 30 + [Mn] / 20 + [Cu] / 20 + [Ni] / 60 + [Cr] / 20 + [Mo] / 15 + [V] / 10 + 5 [B] [C], [Si], [Mn], [Cu], [Ni], [Cr], [Mo], [V], and [B] in this formula are C, Si, Mn, Cu, It means the content expressed by mass% of Ni, Cr, Mo, V, B.

焼入れ性指数DI値は1.70未満ではHAZ部の焼入れ性が不十分となり、脆化組織である島状マルテンサイトを含む粗大なベイナイト組織が生成し継手低温靭性が低下する。このため1.70を下限とする。DI値が2.50を超えるとHAZ部の組織そのものが低靭性のマルテンサイトとなり継手低温靭性が低下するため、その上限を2.50とする。
ここで、DI=0.367([C]1/2)(1+0.7[Si])(1+3.33[Mn])(1+0.35[Cu])(1+0.36[Ni])(1+2.16[Cr])(1+3.0[Mo])(1+1.75[V])(1+1.77[Al])
ここで、[C]、[Si]、[Mn]、[Cu]、[Ni]、[Cr]、[Mo]、[V]、[Al]、[B]は、それぞれC、Si、Mn、Cu、Ni、Cr、Mo、V、Al、Bの質量%で表した含有量を意味する。
When the hardenability index DI value is less than 1.70, the hardenability of the HAZ part becomes insufficient, and a coarse bainite structure including island martensite, which is an embrittled structure, is generated and the joint low temperature toughness is lowered. For this reason, 1.70 is set as the lower limit. If the DI value exceeds 2.50, the structure of the HAZ part itself becomes martensite with low toughness and the joint low-temperature toughness decreases, so the upper limit is made 2.50.
Here, DI = 0.367 ([C] 1/2 ) (1 + 0.7 [Si]) (1 + 3.33 [Mn]) (1 + 0.35 [Cu]) (1 + 0.36 [Ni]) (1 + 2 .16 [Cr]) (1 + 3.0 [Mo]) (1 + 1.75 [V]) (1 + 1.77 [Al])
Here, [C], [Si], [Mn], [Cu], [Ni], [Cr], [Mo], [V], [Al], and [B] are C, Si, and Mn, respectively. , Cu, Ni, Cr, Mo, V, Al, and the content expressed by mass% of B.

次に、成分組成以外の製造方法について述べる。   Next, manufacturing methods other than the component composition will be described.

鋼片または鋳片の加熱温度は、Nbの炭窒化物であるNb(C,N)を十分に固溶させるために、1000℃以上とする必要がある。1170℃を超えるとオーステナイト粒が粗大化して靭性低下の原因になる。特に本発明のNi無添加でBとNbを添加したC含有量の少ない成分系では加熱時の初期オーステナイト粒を細粒にしておかないと、良好な母材靭性が得られない。このため、その上限を1170℃とする。   The heating temperature of the steel slab or slab needs to be 1000 ° C. or higher in order to sufficiently dissolve Nb (C, N), which is Nb carbonitride. When the temperature exceeds 1170 ° C., austenite grains become coarse and cause toughness reduction. In particular, in a component system with a low C content in which B and Nb are added without adding Ni according to the present invention, good base material toughness cannot be obtained unless the initial austenite grains during heating are made fine. For this reason, the upper limit is set to 1170 ° C.

オーステナイト再結晶温度域での累積圧下率は、オーステナイト粒を十分に等方的に細粒化して、母材の高強度と高靭性を得るために40%以上とする必要がある。本発明鋼の十分なオーステナイト再結晶温度域は930℃以上である。このため、930℃以上での累積圧下率を40%以上とする必要がある。ここで、累積圧下率とは、930℃以上での粗圧延の総圧下厚を、粗圧延開始厚すなわち鋼片または鋳片厚で除し%表示したものである。累積圧下率が80%を超えると圧延時間が長時間となり生産性が低下するため、その上限を80%とする。   The cumulative rolling reduction in the austenite recrystallization temperature range needs to be 40% or more in order to finely austenite grains and obtain high strength and toughness of the base material. The sufficient austenite recrystallization temperature range of the steel of the present invention is 930 ° C. or higher. For this reason, it is necessary to set the cumulative rolling reduction at 930 ° C. or higher to 40% or higher. Here, the cumulative rolling reduction is a percentage expressed by dividing the total rolling thickness of rough rolling at 930 ° C. or higher by the starting thickness of the rough rolling, that is, the thickness of the steel slab or slab. If the cumulative rolling reduction exceeds 80%, the rolling time becomes long and the productivity decreases, so the upper limit is made 80%.

オーステナイト未再結晶温度域での累積圧下率は、オーステナイト粒を十分に板厚方向に細粒化して、母材の高強度と高靭性を得るために50%以上とする必要がある。本発明鋼の十分なオーステナイト未再結晶温度域は900℃以下である。このため、900℃以下での累積圧下率を50%以上とする必要がある。ここで、累積圧下率とは、900℃以下での仕上圧延の総圧下厚を、仕上圧延開始厚で除し%表示したものである。累積圧下率が70%を超えると過剰な圧延歪の蓄積により局部的にフェライトが生成し母材の高強度・高靭性が得られないので、その上限を70%とする。同じように、圧延温度が760℃を下回ると過剰な圧延歪の蓄積により局部的にフェライトが生成し母材の高強度・高靭性が得られないので、圧延温度の下限を760℃に規制する。   The cumulative reduction ratio in the austenite non-recrystallization temperature region needs to be 50% or more in order to sufficiently austenite grains in the plate thickness direction to obtain high strength and high toughness of the base material. The sufficient austenite non-recrystallization temperature range of the steel of the present invention is 900 ° C. or less. For this reason, it is necessary to make the cumulative rolling reduction at 900 ° C. or less 50% or more. Here, the cumulative rolling reduction is a percentage expressed by dividing the total rolling thickness of finish rolling at 900 ° C. or less by the finish rolling start thickness. If the cumulative rolling reduction exceeds 70%, ferrite is locally generated due to accumulation of excessive rolling strain, and the high strength and high toughness of the base material cannot be obtained. Therefore, the upper limit is set to 70%. Similarly, if the rolling temperature is lower than 760 ° C., ferrite is locally generated due to accumulation of excessive rolling strain, and the high strength and high toughness of the base material cannot be obtained, so the lower limit of the rolling temperature is restricted to 760 ° C. .

圧延後の加速冷却の開始温度は、700℃未満の場合、局部的にフェライトが生成し、母材の高強度・高靭性が得られないので、その下限温度を700℃とする。   When the starting temperature of accelerated cooling after rolling is less than 700 ° C., ferrite is locally generated and the high strength and high toughness of the base material cannot be obtained, so the lower limit temperature is set to 700 ° C.

加速冷却の冷却速度が8℃/sec未満の場合、局部的にフェライトが生成し、母材の高強度・高靭性が得られないので、その下限値を8℃/secとする。上限は水冷により安定して実現可能な80℃/secとする。   When the cooling rate of accelerated cooling is less than 8 ° C./sec, ferrite is locally generated and the high strength and high toughness of the base material cannot be obtained. Therefore, the lower limit is set to 8 ° C./sec. The upper limit is 80 ° C./sec, which can be stably realized by water cooling.

加速冷却の停止温度が350℃より高いと、特に板厚30mm以上の厚手材の板厚中心部において、焼入れ不足によるフェライト、上部ベイナイトや島状マルテンサイトの生成量が増加し、母材の高強度・高靭性が得られないので、停止温度の上限を350℃とする。停止温度の下限は室温であるが、鋼板の脱水素の点で、より好ましい停止温度は100℃以上である。   When the accelerated cooling stop temperature is higher than 350 ° C, the amount of ferrite, upper bainite, and island martensite generated due to insufficient quenching increases, especially in the thickness center of thick materials with a thickness of 30 mm or more. Since strength and high toughness cannot be obtained, the upper limit of the stop temperature is set to 350 ° C. The lower limit of the stop temperature is room temperature, but the more preferable stop temperature is 100 ° C. or higher in terms of dehydrogenation of the steel sheet.

表1〜3に示す成分組成の鋼を溶製して得られた鋼片を、表4〜7に示す製造条件にて板厚12〜40mmの鋼板とした。これらのうち表4の1−A〜20―Tは本発明鋼であり、表5〜7の21―U〜74−Qは比較例である。表中、下線で示す数字と記号は成分または圧延条件等の製造条件が特許範囲を逸脱しているか、あるいは特性が下記の目標値を満足していないものである。なお、表1〜3のNi量は不可避的不純物元素としての含有量である。   Steel pieces obtained by melting steels having the component compositions shown in Tables 1 to 3 were made into steel plates having a thickness of 12 to 40 mm under the manufacturing conditions shown in Tables 4 to 7. Of these, 1-A to 20-T in Table 4 are steels of the present invention, and 21-U to 74-Q in Tables 5 to 7 are comparative examples. In the table, underlined numbers and symbols indicate that manufacturing conditions such as components or rolling conditions deviate from the patent scope, or the characteristics do not satisfy the following target values. In addition, the amount of Ni in Tables 1 to 3 is the content as an unavoidable impurity element.

Figure 0004427522
Figure 0004427522

Figure 0004427522
Figure 0004427522

Figure 0004427522
Figure 0004427522

Figure 0004427522
Figure 0004427522

Figure 0004427522
Figure 0004427522

Figure 0004427522
Figure 0004427522

Figure 0004427522
Figure 0004427522

これらの鋼板についての母材強度、靭性と、溶接性、継手低温靭性の評価結果を表4〜7に示す。母材強度は、JIS Z 2201に規定の、1A号全厚引張試験片あるいは4号丸棒引張試験片を採取し、JIS Z 2241に規定の方法で測定した。引張試験片は板厚20mm以下では1A号全厚引張試験片を採取し、板厚20mm超では4号丸棒引張試験片を板厚の1/4部(1/4t部)と板厚中心部(1/2t部)より採取した。母材靭性は、板厚中心部から圧延方向に直角な方向にJIS Z 2202に規定の衝撃試験片を採取し、JIS Z 2242に規定の方法で−80℃でのシャルピー吸収エネルギー(vE−80)を求めて評価した。溶接性はJIS Z 3158に規定の方法で、入熱1.7kJ/mmで被覆アーク溶接を行い、ルート割れ防止に必要な予熱温度を求めて評価した。溶接熱影響部靭性は、ルートギャップを有する角度20°のV型開先を用いて入熱量3kJ/mmのSAW溶接(電流500A、電圧30V、速度30cm/min)を行い、板厚中心部(1/2t部)よりノッチ底が溶融線(フュージョン・ライン)をできるだけ多く含むようにJIS Z 2202に規定の衝撃試験片を採取して、−40℃での吸収エネルギー(vE−40)にて評価した。各特性の目標値はそれぞれ母材降伏応力が685MPa以上、母材引張強さが780MPa以上、母材のvE−80が100J以上、必要予熱温度が25℃以下、継手の低温靭性がvE−40にて60J以上とした。   Tables 4 to 7 show the evaluation results of the base material strength, toughness, weldability, and joint low temperature toughness for these steel plates. The base material strength was measured by taking a 1A full thickness tensile test piece or a No. 4 round bar tensile test piece specified in JIS Z 2201 and measuring it according to JIS Z 2241. Tensile test specimens are sampled from No. 1A full-thickness specimens with a thickness of 20 mm or less, and No. 4 round bar tensile specimens with a thickness of more than 20 mm and a thickness center of 1/4 (1/4 t). Part (1/2 t part). The base material toughness is obtained by taking an impact test piece specified in JIS Z 2202 in a direction perpendicular to the rolling direction from the center of the plate thickness, and by using the method specified in JIS Z 2242, Charpy absorbed energy (vE-80 at −80 ° C.). ) Was evaluated. Weldability was evaluated by obtaining a preheating temperature necessary for preventing root cracking by performing coated arc welding with a heat input of 1.7 kJ / mm by the method prescribed in JIS Z 3158. The weld heat-affected zone toughness was obtained by performing SAW welding (current 500 A, voltage 30 V, speed 30 cm / min) with a heat input of 3 kJ / mm using a V-shaped groove having a root gap and an angle of 20 °, JIS Z 2202 with an impact test piece specified in JIS Z 2202 so that the bottom of the notch contains as much melt line (fusion line) as possible from 1 / 2t part), and the absorbed energy at -40 ° C (vE-40) evaluated. The target values of each characteristic are a base material yield stress of 685 MPa or more, a base material tensile strength of 780 MPa or more, a base material of vE-80 of 100 J or more, a required preheating temperature of 25 ° C. or less, and a joint low temperature toughness of vE-40. 60 J or more.

実施例1−A〜20−Tは、いずれも母材降伏応力が685MPa以上、母材引張強さが780MPa以上、母材のvE−80が100J以上、必要予熱温度が25℃以下、継手の低温靭性がvE−40にて60J以上である。   In Examples 1-A to 20-T, the base material yield stress is 685 MPa or more, the base material tensile strength is 780 MPa or more, the base material vE-80 is 100 J or more, the required preheating temperature is 25 ° C. or less, Low temperature toughness is 60 J or more at vE-40.

これに対して、以下の比較例は、母材の降伏応力や引張強さが不足する。すなわち、比較例21−UはC添加量が少ないため、25−YはMn添加量が少ないため、29−ACはCr添加量が少ないため、34−AHはNb添加量が多いため、44−AR、45−AS、48−AVはPcm値が低いため、53−Aは加熱温度が低いため、59−D、60−Dは760℃以上900℃以下での累積圧下率が70%を超えるため、61−E、62−E、69−Qは圧延終了温度が760℃を下回るため、63−F、64−F、70−Qは水冷開始温度が700℃を下回るため、65−G、66−G、71−Qは冷却速度が8℃/secを下回るため、67−H、68−H、72−Q、73−Qは冷却停止温度が350℃を上回るため、母材の降伏応力や引張強さが不足する。   On the other hand, the following comparative examples lack the yield stress and tensile strength of the base material. That is, since Comparative Example 21-U has a small amount of C added, 25-Y has a small amount of Mn added, 29-AC has a small amount of Cr added, and 34-AH has a large amount of Nb added. Since AR, 45-AS, and 48-AV have low Pcm values, and 53-A has low heating temperature, 59-D and 60-D have a cumulative rolling reduction of 760 ° C to 900 ° C exceeding 70%. Therefore, since 61-E, 62-E, and 69-Q have rolling end temperatures below 760 ° C, 63-F, 64-F, and 70-Q have water cooling start temperatures below 700 ° C, so 65-G, Since 66-G and 71-Q have cooling rates below 8 ° C / sec, 67-H, 68-H, 72-Q and 73-Q have cooling stop temperatures above 350 ° C. And the tensile strength is insufficient.

また、以下の比較例は、母材靭性が不足する。すなわち、比較例22−VはC添加量が多いため、26−ZはMn添加量が多いため、28−ABはS含有量が多いため、30−ADはCr添加量が多いため、33−AGはNb添加量が少ないため、34−AHはNb添加量が多いため、41−AO、42−AP、43−AQはそれぞれN、Ca、Mg添加量が多いため、44−AR、45−AS、48−AVはPcm値が低いため、53−Aは加熱温度が低いため、54−Aは加熱温度が高いため、55−B、56−Bは930℃以上での累積圧下率が40%を下回るため、57−C、58−Cは760℃以上900℃以下での累積圧下率が50%を下回るため、59−D、60−Dは760℃以上900℃以下での累積圧下率が70%を超えるため、61−E、62−E、69−Qは圧延終了温度が760℃を下回るため、63−F、64−F、70−Qは水冷開始温度が700℃を下回るため、65−G、66−G、71−Qは冷却速度が8℃/secを下回るため、67−H、68−H、72−Q、73−Qは冷却停止温度が350℃を上回るため、母材靭性が不足する。   Moreover, the following comparative examples lack base material toughness. That is, since Comparative Example 22-V has a large amount of C added, 26-Z has a large amount of Mn added, 28-AB has a large S content, and 30-AD has a large amount of Cr added. Since AG has a small Nb addition amount, 34-AH has a large Nb addition amount, and 41-AO, 42-AP, and 43-AQ have a large amount of N, Ca, and Mg, respectively. AS, 48-AV has a low Pcm value, 53-A has a low heating temperature, 54-A has a high heating temperature, and 55-B and 56-B have a cumulative rolling reduction of 40 at 930 ° C. or higher. 57-C, 58-C is less than 50% of cumulative rolling reduction at 760 ° C. to 900 ° C., and 59-D, 60-D is cumulative rolling reduction at 760 ° C. to 900 ° C. 61-E, 62-E, 69-Q are pressure Since the end temperature is below 760 ° C., the cooling rate of 63-F, 64-F, and 70-Q is below 700 ° C., and the cooling rate of 65-G, 66-G, and 71-Q is 8 ° C./sec. Therefore, since 67-H, 68-H, 72-Q, and 73-Q have a cooling stop temperature exceeding 350 ° C., the base material toughness is insufficient.

また、比較例46−AT、47−AU、52−AZはPcm値が高いため、必要予熱温度を満足しない。   Further, Comparative Examples 46-AT, 47-AU, and 52-AZ do not satisfy the necessary preheating temperature because of the high Pcm value.

また、以下の比較例は、継手低温靭性を満足しない。すなわち、比較例21−UはC添加量が少ないため、22−VはC添加量が多いため、23−W、24−XはSi添加量が多いため、27−AA、28−ABはそれぞれP、S含有量が多いため、31−AE、32−AFはMo添加量が多いため、35−AI、36−AJはV添加量が多いため、37−AKはTi添加量が少ないため、38−ALはTi添加量が多いため、39−AMはB添加量が少ないため、40−AN、41−AO、42−AP、43−AQはそれぞれB、N、Ca、Mg添加量が多いため、48−AV、49−AWはDI値が低いため、46−AT、50−AX、51−AY、52−AZはDI値が高いため、いずれも継手低温靭性を満足しない。   Moreover, the following comparative examples do not satisfy the joint low temperature toughness. That is, since Comparative Example 21-U has a small amount of added C, 22-V has a large amount of added C, 23-W and 24-X have a large amount of Si, 27-AA and 28-AB are respectively Since P- and S-contents are large, 31-AE and 32-AF have a large Mo addition amount, 35-AI and 36-AJ have a large V addition amount, and 37-AK has a small Ti addition amount. Since 38-AL has a large Ti addition amount and 39-AM has a small B addition amount, 40-AN, 41-AO, 42-AP and 43-AQ each have a large addition amount of B, N, Ca and Mg. Therefore, since 48-AV and 49-AW have low DI values, 46-AT, 50-AX, 51-AY, and 52-AZ have high DI values, so none of them satisfies the joint low temperature toughness.

Claims (3)

質量%で、
C :0.03〜0.055%、
Mn:1.2〜2.3%、
Cr:0.6〜1.5%、
Nb:0.02〜0.05%、
Ti:0.005〜0.015%、
Al:0.003〜0.08%、
B :0.0005〜0.0020%、
N :0.0015〜0.0060%
を含有し、さらに
P :0.02%以下、
S :0.0050%以下、
Mo:0.09%以下、
Si:0.09%以下、
V :0.03%以下
に制限し、下記に示される溶接割れ感受性指数Pcm値が0.19〜0.22%であり、かつ、下記に示される焼入れ性指数DI値が1.70〜2.50であり、残部Feおよび不可避的不純物からなる成分組成を有する鋼片または鋳片を、1000〜1170℃に加熱し、930℃以上の温度範囲での累積圧下率を40〜80%とする粗圧延の後、760〜900℃の範囲での累積圧下率を50〜70%とする仕上圧延を760℃以上で行い、これに引き続き、700℃以上から冷却速度が8〜80℃/secとなる加速冷却を開始し、室温〜350℃で該加速冷却を停止することを特徴とする、溶接性と継手低温靭性に優れる引張強さ780MPa級の高張力厚鋼板の製造方法。
Pcm=[C]+[Si]/30+[Mn]/20+[Cu]/20+[Ni]/60+[Cr]/20+[Mo]/15+[V]/10+5[B]
DI=0.367([C]1/2)(1+0.7[Si])(1+3.33[Mn])(1+0.35[Cu])(1+0.36[Ni])(1+2.16[Cr])(1+3.0[Mo])(1+1.75[V])(1+1.77[Al])
ここで、[C]、[Si]、[Mn]、[Cu]、[Ni]、[Cr]、[Mo]、[V]、[Al]、[B]は、それぞれC、Si、Mn、Cu、Ni、Cr、Mo、V、Al、Bの質量%で表した含有量を意味する。
% By mass
C: 0.03-0.055%,
Mn: 1.2 to 2.3%
Cr: 0.6 to 1.5%
Nb: 0.02 to 0.05%,
Ti: 0.005 to 0.015%,
Al: 0.003 to 0.08%,
B: 0.0005 to 0.0020%,
N: 0.0015 to 0.0060%
In addition, P: 0.02% or less,
S: 0.0050% or less,
Mo: 0.09% or less,
Si: 0.09% or less,
V: limited to 0.03% or less, weld crack sensitivity index Pcm value shown below is 0.19 to 0.22%, and hardenability index DI value shown below is 1.70 to 2 The steel slab or slab having a composition of the balance Fe and the inevitable impurities is heated to 1000 to 1170 ° C., and the cumulative rolling reduction in the temperature range of 930 ° C. or higher is set to 40 to 80%. After rough rolling, finish rolling is performed at 760 ° C. or higher, with a cumulative reduction rate in the range of 760 to 900 ° C. being 50 to 70%, and subsequently, the cooling rate is 8 to 80 ° C./sec from 700 ° C. or higher. A method for producing a high-tensile thick steel plate having a tensile strength of 780 MPa that is excellent in weldability and joint low-temperature toughness, characterized in that the accelerated cooling is started and the accelerated cooling is stopped at room temperature to 350 ° C.
Pcm = [C] + [Si] / 30 + [Mn] / 20 + [Cu] / 20 + [Ni] / 60 + [Cr] / 20 + [Mo] / 15 + [V] / 10 + 5 [B]
DI = 0.367 ([C] 1/2 ) (1 + 0.7 [Si]) (1 + 3.33 [Mn]) (1 + 0.35 [Cu]) (1 + 0.36 [Ni]) (1 + 2.16 [ Cr]) (1 + 3.0 [Mo]) (1 + 1.75 [V]) (1 + 1.77 [Al])
Here, [C], [Si], [Mn], [Cu], [Ni], [Cr], [Mo], [V], [Al], and [B] are C, Si, and Mn, respectively. , Cu, Ni, Cr, Mo, V, Al, and the content expressed by mass% of B.
さらに、質量%で、
Cu:0.20%以下
を含有することを特徴とする、請求項1に記載の溶接性と継手低温靭性に優れる引張強さ780MPa級の高張力厚鋼板の製造方法。
Furthermore, in mass%,
Cu: 0.20% or less is contained, The manufacturing method of the high strength thick steel plate of the tensile strength 780MPa class which is excellent in the weldability and joint low temperature toughness of Claim 1 characterized by the above-mentioned.
さらに、質量%で、
Mg:0.0005〜0.01%、
Ca:0.0005〜0.01%
の1種または2種を含有することを特徴とする、請求項1または2に記載の溶接性と継手低温靭性に優れる引張強さ780MPa級の高張力厚鋼板の製造方法。
Furthermore, in mass%,
Mg: 0.0005 to 0.01%,
Ca: 0.0005 to 0.01%
The method for producing a high-tensile thick steel plate having a tensile strength of 780 MPa class excellent in weldability and joint low-temperature toughness according to claim 1 or 2, wherein
JP2006103917A 2006-04-05 2006-04-05 Method for producing high strength thick steel plate with tensile strength of 780 MPa excellent in weldability and low temperature toughness Expired - Fee Related JP4427522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006103917A JP4427522B2 (en) 2006-04-05 2006-04-05 Method for producing high strength thick steel plate with tensile strength of 780 MPa excellent in weldability and low temperature toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006103917A JP4427522B2 (en) 2006-04-05 2006-04-05 Method for producing high strength thick steel plate with tensile strength of 780 MPa excellent in weldability and low temperature toughness

Publications (2)

Publication Number Publication Date
JP2007277623A JP2007277623A (en) 2007-10-25
JP4427522B2 true JP4427522B2 (en) 2010-03-10

Family

ID=38679366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006103917A Expired - Fee Related JP4427522B2 (en) 2006-04-05 2006-04-05 Method for producing high strength thick steel plate with tensile strength of 780 MPa excellent in weldability and low temperature toughness

Country Status (1)

Country Link
JP (1) JP4427522B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100851189B1 (en) * 2006-11-02 2008-08-08 주식회사 포스코 Steel plate for linepipe having ultra-high strength and excellent low temperature toughness and manufacturing method of the same
JP4358898B1 (en) 2008-04-01 2009-11-04 新日本製鐵株式会社 Method for producing high-tensile thick steel plate having a tensile strength of 780 MPa or more, excellent in weldability and joint low-temperature toughness
JP5151693B2 (en) * 2008-05-29 2013-02-27 新日鐵住金株式会社 Manufacturing method of high-strength steel
JP5157748B2 (en) * 2008-08-25 2013-03-06 新日鐵住金株式会社 Steel plate with small welding deformation
EP2241646B1 (en) * 2008-10-23 2012-09-05 Nippon Steel Corporation High tensile strength steel thick plate having excellent weldability and tensile strength of 780mpa or above, and process for manufacturing same
JP5720447B2 (en) * 2011-07-11 2015-05-20 Jfeスチール株式会社 Steel sheet with excellent toughness of weld heat affected zone
CN114700600B (en) * 2022-03-31 2024-04-26 马鞍山钢铁股份有限公司 Connection method of 1800 MPa-level hot-formed steel substrate
CN114752724B (en) * 2022-05-25 2023-05-16 宝武集团鄂城钢铁有限公司 750 MPa-grade bridge steel with excellent low internal stress welding performance and preparation method thereof
CN115679081A (en) * 2022-11-01 2023-02-03 山东黑旋风锯业有限公司 Ultrathin marble frame saw blade substrate with thickness of 1.0mm and production method thereof

Also Published As

Publication number Publication date
JP2007277623A (en) 2007-10-25

Similar Documents

Publication Publication Date Title
JP4427522B2 (en) Method for producing high strength thick steel plate with tensile strength of 780 MPa excellent in weldability and low temperature toughness
JP4551492B2 (en) High-tensile steel plate having a tensile strength of 780 MPa or more with excellent weldability and a method for producing the same
JP6807690B2 (en) Square steel pipe
CN108291287B (en) High strength steel having excellent embrittlement prevention and embrittlement initiation resistance of welded portion and method for producing the same
JP5407478B2 (en) High-strength thick steel plate with excellent toughness of heat-affected zone of single layer large heat input welding and method for producing the same
JP2012122111A (en) Method for producing tmcp and tempering process type high-strength thick steel plate having both excellent productivity and weldability, and excellent in drop-weight characteristic after pwht
JP6245352B2 (en) High-tensile steel plate and manufacturing method thereof
WO2014199488A1 (en) Ultrahigh-tensile-strength steel plate for welding
JP5098210B2 (en) Refractory steel and method for producing the same
JP4358898B1 (en) Method for producing high-tensile thick steel plate having a tensile strength of 780 MPa or more, excellent in weldability and joint low-temperature toughness
WO2008075443A1 (en) Steel excelling in toughness at region affected by welding heat
TW200827459A (en) A steel excellent in high toughness at weld heat-affect zone
JP2005187853A (en) Method for producing high strength thick steel plate excellent in toughness in extra-high heat input welded-heat affected part
JP4427521B2 (en) Method for producing high strength thick steel plate with tensile strength of 780 MPa excellent in weldability
JP2004124113A (en) Non-water-cooled thin low yield ratio high tensile steel, and production method therefor
JP5515954B2 (en) Low yield ratio high-tensile steel plate with excellent weld crack resistance and weld heat-affected zone toughness
JP5526685B2 (en) High heat input welding steel
JP4418391B2 (en) High tensile strength steel sheet having yield strength of 650 MPa or more with small acoustic anisotropy and method for producing the same
JPH06316723A (en) Production of weather resistant refractory steel material for building construction, excellent in gas cutting property and weldability
JP4770415B2 (en) High tensile steel plate excellent in weldability and method for producing the same
JP5223295B2 (en) Refractory H-shaped steel with excellent reheat embrittlement resistance and method for producing the same
WO2016068094A1 (en) High-tensile steel sheet having excellent low-temperature toughness in weld heat-affected zone, and method for manufacturing same
JP7272471B2 (en) steel plate
JP2543459B2 (en) High strength hot rolled steel sheet with good workability and weldability
JPH07278653A (en) Production of steel excellent in cold toughness on welding heat affected zone

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091214

R151 Written notification of patent or utility model registration

Ref document number: 4427522

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees