Nothing Special   »   [go: up one dir, main page]

JP4426253B2 - Representative section travel time prediction device, representative section travel time prediction method and program - Google Patents

Representative section travel time prediction device, representative section travel time prediction method and program Download PDF

Info

Publication number
JP4426253B2
JP4426253B2 JP2003372571A JP2003372571A JP4426253B2 JP 4426253 B2 JP4426253 B2 JP 4426253B2 JP 2003372571 A JP2003372571 A JP 2003372571A JP 2003372571 A JP2003372571 A JP 2003372571A JP 4426253 B2 JP4426253 B2 JP 4426253B2
Authority
JP
Japan
Prior art keywords
time
section travel
travel time
transition
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003372571A
Other languages
Japanese (ja)
Other versions
JP2005135282A (en
Inventor
良太 堀口
弘和 赤羽
秀喜 高橋
一 田中
寛信 尾▲高▼
正則 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
West Nippon Expressway Co Ltd
Original Assignee
West Nippon Expressway Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by West Nippon Expressway Co Ltd filed Critical West Nippon Expressway Co Ltd
Priority to JP2003372571A priority Critical patent/JP4426253B2/en
Publication of JP2005135282A publication Critical patent/JP2005135282A/en
Application granted granted Critical
Publication of JP4426253B2 publication Critical patent/JP4426253B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Navigation (AREA)
  • Traffic Control Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

本発明は、高速道路における2地点間の車両の代表区間旅行時間を予測する旅行時間予測装置に関する。   The present invention relates to a travel time prediction apparatus for predicting a travel time of a representative section of a vehicle between two points on an expressway.

従来、道路における2地点間の車両の区間旅行(移動)時間を算出する場合には、車両検知装置が車両の地点速度を検出し、その地点速度に基づいて、特定時刻における当該車両検知装置の受け持つ一定区間の代表旅行時間(以下、代表区間旅行時間と呼ぶ)を推定し、前記特定時刻における前記2地点間に含まれる複数の代表区間旅行時間を合算している。ここで、車両の地点速度に基づいて区間旅行時間を算出する手法では、その車両検知装置の受け持つ一定区間の何れかの場所で渋滞しているけれども車両検知装置が設置されている付近では渋滞していないといった場合(一定区間の全てにおいて、地点速度が一定でない)が考えられるので、区間旅行時間の精度が悪い。従って最終的に予測した代表区間旅行時間の精度も悪くなるという問題がある。
また、高速道路における料金所間を移動した所要時間(代表区間旅行時間と同意)を予測する技術が公開されている(例えば、非特許文献1参照)。この技術では、近接する料金所の区間で出入りする車両をサンプルとして用いるが、近距離で高速道理を利用する人が少ないので、場所によっては十分な数のサンプルを確保することが難しく、十分に精度の良い代表区間旅行時間を算出することが出来ないという問題や、また、料金所出口での渋滞に起因する遅れ時間を算出した区間旅行時間から分離できず、本線の区間旅行時間として算出されてしまう問題があるので、高速道路の2点間の所要時間を精度良く予測できないという問題がある。
上野秀樹、他2名、「料金所データを用いた所要時間予測方法の比較」、第1回ITSシンポジウム2002予稿集、ITS−Japan、2002年12月14日、p.515−520
Conventionally, when calculating the section travel (movement) time of a vehicle between two points on a road, the vehicle detection device detects the spot speed of the vehicle, and based on the spot speed of the vehicle detection device at a specific time. A representative travel time of a certain section in charge (hereinafter referred to as a representative section travel time) is estimated, and a plurality of representative section travel times included between the two points at the specific time are added up. Here, in the method of calculating the section travel time based on the vehicle spot speed, the vehicle detection device is congested in a certain section of the fixed section, but it is congested in the vicinity where the vehicle detection device is installed. Since the point speed is not constant in all the constant sections, the accuracy of the section travel time is poor. Therefore, there is a problem that the accuracy of the travel time of the representative section that is finally predicted is deteriorated.
In addition, a technique for predicting the time required to travel between toll booths on a highway (consent with representative section travel time) is disclosed (for example, see Non-Patent Document 1). In this technology, vehicles that enter and exit in nearby tollgate sections are used as samples, but there are few people who use high-speed reasoning at short distances, so it is difficult to secure a sufficient number of samples depending on the location. It is not possible to calculate the representative section travel time with high accuracy, and it cannot be separated from the section travel time calculated due to the congestion time at the tollgate exit, and is calculated as the section travel time of the main line Therefore, there is a problem that the required time between two points on the expressway cannot be accurately predicted.
Hideki Ueno and two others, “Comparison of required time prediction methods using toll gate data”, 1st ITS Symposium 2002 Proceedings, ITS-Japan, December 14, 2002, p. 515-520

従来より、高速道路における2地点間の代表区間旅行時間を、高速道路の利用者に通知する高速道路の情報提供サービスが存在するが、当該サービスは情報提供時点の交通状況における代表区間旅行時間であり、将来の交通状況の変化を加味したものではない。従って、その代表区間旅行時間を将来の交通状況の変化を加味した精度の良い予測サービスが望まれている。そこでこの発明は、車両の地点速度を用いた現行の代表区間旅行時間よりも、高速道路における任意の2地点間の将来の代表区間旅行時間を精度良く算出することができる代表区間旅行時間予測装置及び代表区間旅行時間予測方法ならびにそのプログラムを提供することを特徴する。   Conventionally, there is an expressway information providing service that notifies the expressway users of the representative section travel time between two points on the expressway, but the service is the representative section travel time in the traffic situation at the time of information provision Yes, it does not take into account future changes in traffic conditions. Therefore, there is a demand for an accurate prediction service in which the travel time of the representative section is taken into consideration in the future traffic situation. Therefore, the present invention provides a representative section travel time prediction device capable of accurately calculating the future representative section travel time between any two points on the expressway rather than the current representative section travel time using the vehicle spot speed. And a representative section travel time prediction method and a program thereof.

本発明は、上述の課題を解決すべくなされたもので、道路上の2地点間における車両の区間旅行時間と前記車両の識別情報と当該車両識別情報の取得時刻とを対応付けて保持するサンプル記憶手段と、所定の時刻帯における前記車両の区間旅行時間のうち、上限値以上と下限値未満の区間旅行時間と前記所定時刻帯を外れる区間旅行時間とを無効サンプルと決定しそれ以外を有効サンプルと決定するサンプル選別手段と、前記有効サンプルの各区間旅行時間を平均して、前記所定の時刻帯における代表区間旅行時間を算出する処理を、所定の時間間隔で繰り返し、前記代表区間旅行時間を算出した特定時刻における2地点間の代表区間旅行時間をそれぞれ算出する代表区間旅行時間算出手段と、前記特定時刻とその特定時刻において前記2地点のうちの下流地点に設置された累積交通量検知装置から得られた累積交通量とに基づいて、前記下流地点における累積交通量と時刻の対応関係の推移を示す下流情報を作成する下流情報作成手段と、前記特定時刻における前記下流地点の累積交通量と前記特定時刻からその特定時刻における代表区間旅行時間を差引いた時刻とに基づいて、前記2地点のうちの上流地点における累積交通量と時刻の対応関係の推移を示す上流情報を作成する上流情報作成手段と、前記下流情報が示す累積交通量と時刻の対応関係の推移と、前記上流情報が示す累積交通量と時刻の対応関係の推移と、将来推移算出手法とを用いて、前記上流地点における将来の累積交通量と時刻の対応関係の推移と前記下流地点における将来の累積交通量と時刻の対応関係の推移とを予測する対応関係推移予測手段と、前記上流地点と前記下流地点の2つの将来の対応関係の推移に基づいて、同一の累積交通量に対応する前記上流地点の時刻と前記下流地点の時刻の差を、将来の時刻における前記上流地点から前記下流地点までの代表区間旅行時間と予測する代表区間旅行時間予測手段と、を備えることを特徴とする代表区間旅行時間予測装置である。 The present invention has been made to solve the above-described problem, and is a sample that holds a section travel time of a vehicle between two points on a road, the vehicle identification information, and the acquisition time of the vehicle identification information in association with each other. Of the section travel time of the vehicle in a predetermined time zone, the storage section and the section travel time not less than the upper limit value and less than the lower limit value and the section travel time outside the predetermined time zone are determined as invalid samples, and the rest are valid Sample selection means for determining a sample, and processing for calculating the representative section travel time in the predetermined time zone by averaging each section travel time of the effective sample is repeated at predetermined time intervals, and the representative section travel time a representative section travel time calculating means for calculating each representative section travel time between two points at a particular time of calculation of the specific time and the 2 locations at that particular time Downstream information creation that creates downstream information indicating the transition of the correspondence relationship between the accumulated traffic volume and the time at the downstream point based on the accumulated traffic volume obtained from the accumulated traffic volume detection device installed at the downstream point And the cumulative traffic volume and time at the upstream point of the two points based on the means and the cumulative traffic volume at the downstream point at the specific time and the time obtained by subtracting the representative section travel time at the specific time from the specific time. Upstream information creating means for creating upstream information indicating the transition of the correspondence relationship, the transition of the cumulative traffic volume and time indicated by the downstream information, and the transition of the cumulative traffic volume and time indicated by the upstream information When, by using the future trend calculation method, the future of the cumulative traffic volume and time correspondence between the transition and the downstream location of the correspondence between the future cumulative traffic volume and time in the upstream point Based on the transition of two future correspondences between the upstream point and the downstream point, and the time of the upstream point corresponding to the same cumulative traffic and the downstream point A representative section travel time prediction device comprising: representative section travel time prediction means for predicting a difference in time as a representative section travel time from the upstream point to the downstream point at a future time.

また本発明は、上述の代表区間旅行時間予測装置において、前記対応関係推移予測手段は、前記上流地点と前記下流地点それぞれにおける過去のある1日の一定時間帯の累積交通量と時刻の対応関係の推移と当日の累積交通量と時刻の対応関係の推移との類似性を判定する手法を前記将来推移算出手法として用いて、前記上流地点と前記下流地点の前記当日における将来の累積交通量と時刻の対応関係の推移を予測することを特徴とする。 Further, the present invention is the above-described representative section travel time prediction device, wherein the correspondence transition prediction means is a correspondence relationship between a cumulative traffic volume and a time of a certain day in the past at each of the upstream point and the downstream point. And a method of determining the similarity between the transition of the current day's cumulative traffic volume and the transition of the correspondence relationship of the time as the future transition calculation method, and the future cumulative traffic volume on the current day of the upstream point and the downstream point It is characterized by predicting the transition of time correspondence.

また本発明は、上述の代表区間旅行時間予測装置において、前記対応関係推移予測手段は、前記上流地点と前記下流地点それぞれにおける過去の対応関係の推移に基づいて、時系列データの予測手法を前記将来推移算出手法として用いて前記2つの将来の対応関係を予測することを特徴とする。 The present invention, in a representative section travel time prediction system described above, the correspondence relation transition prediction means, on the basis of transition of the past correspondence relationship in the downstream point, respectively and the upstream point of the time series data a prediction method the It is characterized by using the future transition calculation method to predict the two future correspondences.

また本発明は、上述の代表区間旅行時間予測装置において、前記対応関係推移予測手段は、前記類似性を判定する手法、または、前記時系列データの予測手法のうち、前記2つの対応関係の将来の予測の手法として、該予測した将来の累積交通量と時刻の精度の良い手法に切り替えることを特徴とする。 In the representative section travel time prediction apparatus according to the present invention, the correspondence transition prediction unit may determine the future of the two correspondences among the method for determining the similarity or the time series data prediction method. As a prediction method, the method is characterized in that the predicted future traffic volume and time are switched to a method with high accuracy .

また本発明は、上述の代表区間旅行時間予測装置が、前記過去のある1日の一定時間帯の累積交通量と時刻の対応関係の推移の情報を記憶する過去情報記憶手段と、前記過去情報記憶手段に記録された前記過去のある1日の一定時間帯の累積交通量と時刻の対応関係の推移との情報を更新する更新手段と、を備えることを特徴とする。 According to the present invention, the representative section travel time prediction device described above includes a past information storage unit that stores information on a transition of a correspondence relationship between a cumulative traffic volume and a time in a certain period of the past in the past, and the past information. And updating means for updating information on the transition of the correspondence relationship between the cumulative traffic volume and the time recorded in the storage means for a certain day in the past in the past.

また本発明は、道路上の2地点間における車両の区間旅行時間と前記車両の識別情報と当該車両識別情報の取得時刻とを対応付けて保持するサンプル記憶手段と、所定の時刻帯における前記車両の区間旅行時間のうち、上限値以上と下限値未満の区間旅行時間と前記所定時刻帯を外れる区間旅行時間とを無効サンプルと決定しそれ以外を有効サンプルと決定するサンプル選別手段と、を備えた代表区間旅行時間予測装置における代表区間旅行時間予測方法であって、前記有効サンプルの各区間旅行時間を平均して、前記所定の時刻帯における代表区間旅行時間を算出する処理を、所定の時間間隔で繰り返し、前記代表区間旅行時間を算出した特定時刻における2地点間の代表区間旅行時間をそれぞれ算出する代表区間旅行時間算出過程と、前記特定時刻とその特定時刻において前記2地点のうちの下流地点に設置された累積交通量検知装置から得られた累積交通量とに基づいて、前記下流地点における累積交通量と時刻の対応関係の推移を示す下流情報を作成する下流情報作成過程と、前記特定時刻における前記下流地点の累積交通量と前記特定時刻からその特定時刻における代表区間旅行時間を差引いた時刻とに基づいて、前記2地点のうちの上流地点における累積交通量と時刻の対応関係の推移を示す上流情報を作成する上流情報作成過程と、前記下流情報が示す累積交通量と時刻の対応関係の推移と、前記上流情報が示す累積交通量と時刻の対応関係の推移と、将来推移算出手法とを用いて、前記上流地点における将来の累積交通量と時刻の対応関係の推移と前記下流地点における将来の累積交通量と時刻の対応関係の推移とを予測する対応関係推移予測過程と、前記上流地点と前記下流地点の2つの将来の対応関係の推移に基づいて、同一の累積交通量に対応する前記上流地点の時刻と前記下流地点の時刻の差を、将来の時刻における前記上流地点から前記下流地点までの代表区間旅行時間と予測する代表区間旅行時間予測過程と、を有することを特徴とする代表区間旅行時間予測方法である The present invention also provides sample storage means for associating and holding a section travel time of a vehicle between two points on a road, the vehicle identification information, and the acquisition time of the vehicle identification information, and the vehicle in a predetermined time zone. A sample selection means for determining a section travel time that is greater than or equal to an upper limit value and less than a lower limit value and a section travel time that is out of the predetermined time zone as invalid samples and the other as valid samples. In the representative section travel time prediction method in the representative section travel time prediction apparatus, the process of calculating the representative section travel time in the predetermined time zone by averaging each section travel time of the effective sample is a predetermined time. repeated at intervals, a representative section travel time calculating process of the calculating each representative section travel time between two points at a particular time calculated the representative section travel time, before Based on the specific time and the cumulative traffic obtained from the cumulative traffic detector installed at the downstream point of the two points at the specific time, the transition of the correspondence relationship between the cumulative traffic and the time at the downstream point Based on the downstream information creation process of creating downstream information, and the accumulated traffic volume of the downstream point at the specific time and the time obtained by subtracting the representative section travel time at the specific time from the specific time. and upstream information creation process of creating an upstream information showing changes in the correspondence between the accumulated traffic volume and time at a point upstream of the out, transition and correspondence between the accumulated traffic volume and time in which the downstream information indicating indicates said upstream information changes and correspondence between the accumulated traffic volume and time by using the future trend calculation method, the transition and the downstream location of the correspondence between the future cumulative traffic volume and time in the upstream point Based on the correspondence transition prediction process for predicting the future cumulative traffic volume and the transition of the correspondence relationship of the time, and the two future correspondence transitions of the upstream point and the downstream point. A representative section travel time prediction process for predicting a difference in time between the corresponding upstream point and the downstream point as a representative section travel time from the upstream point to the downstream point at a future time. Is the representative section travel time prediction method

また本発明は、道路上の2地点間における車両の区間旅行時間と前記車両の識別情報と当該車両識別情報の取得時刻とを対応付けて保持するサンプル記憶手段と、所定の時刻帯における前記車両の区間旅行時間のうち、上限値以上と下限値未満の区間旅行時間と前記所定時刻帯を外れる区間旅行時間とを無効サンプルと決定しそれ以外を有効サンプルと決定するサンプル選別手段と、を備えた代表区間旅行時間予測装置のコンピュータに実行させるプログラムであって、前記有効サンプルの各区間旅行時間を平均して、前記所定の時刻帯における代表区間旅行時間を算出する処理を、所定の時間間隔で繰り返し、前記代表区間旅行時間を算出した特定時刻における2地点間の代表区間旅行時間をそれぞれ算出する代表区間旅行時間算出処理と、前記特定時刻とその特定時刻において前記2地点のうちの下流地点に設置された累積交通量検知装置から得られた累積交通量とに基づいて、前記下流地点における累積交通量と時刻の対応関係の推移を示す下流情報を作成する下流情報作成処理と、前記特定時刻における前記下流地点の累積交通量と前記特定時刻からその特定時刻における代表区間旅行時間を差引いた時刻とに基づいて、前記2地点のうちの上流地点における累積交通量と時刻の対応関係の推移を示す上流情報を作成する上流情報作成処理と、前記下流情報が示す累積交通量と時刻の対応関係の推移と、前記上流情報が示す累積交通量と時刻の対応関係の推移と、将来推移算出手法とを用いて、前記上流地点における将来の累積交通量と時刻の対応関係の推移と前記下流地点における将来の累積交通量と時刻の対応関係の推移とを予測する対応関係推移予測処理と、前記上流地点と前記下流地点の2つの将来の対応関係の推移に基づいて、同一の累積交通量に対応する前記上流地点の時刻と前記下流地点の時刻の差を、将来の時刻における前記上流地点から前記下流地点までの代表区間旅行時間と予測する代表区間旅行時間予測処理と、をコンピュータに実行させるプログラムである。 The present invention also provides sample storage means for associating and holding a section travel time of a vehicle between two points on a road, the vehicle identification information, and the acquisition time of the vehicle identification information, and the vehicle in a predetermined time zone. A sample selection means for determining a section travel time that is greater than or equal to an upper limit value and less than a lower limit value and a section travel time that is out of the predetermined time zone as invalid samples and the other as valid samples. A program to be executed by the computer of the representative section travel time prediction apparatus , wherein the processing of calculating the representative section travel time in the predetermined time zone by averaging each section travel time of the effective sample is performed at a predetermined time interval. Again, the representative section travel time calculating process for calculating each representative section travel time between two points at a particular time calculated the representative section travel time and at Based on the specific time and the cumulative traffic obtained from the cumulative traffic detection device installed at the downstream point of the two points at the specific time, the correspondence between the cumulative traffic at the downstream point and the time Based on the downstream information creation process for creating downstream information indicating transition, the accumulated traffic volume at the downstream point at the specific time and the time obtained by subtracting the representative section travel time at the specific time from the specific time the transition of the upstream information creation processing, correspondence between the accumulated traffic volume and time in which the downstream information indicating that creates upstream information showing changes in the correspondence between the accumulated traffic volume and time at a point upstream of said upstream information changes and correspondence between the accumulated traffic volume and time indicated, using the future trend calculation method, transition and the downstream locations of a correspondence between a future cumulative traffic volume and time in the upstream point Based on the correspondence transition prediction process for predicting the future cumulative traffic volume and the transition of the correspondence relation in time and the transition of the two future correspondence relations of the upstream point and the downstream point. Causing the computer to execute a representative section travel time prediction process for predicting a difference between the time at the corresponding upstream point and the downstream point as a representative section travel time from the upstream point to the downstream point at a future time. It is a program.

本発明によれば、複数の特定時刻における2地点間の代表区間旅行時間を算出する。また下流情報作成手段が下流地点における累積交通量と時刻の対応関係の推移を示す下流情報を作成し、また上流情報作成手段が上流地点における累積交通量と時刻の対応関係の推移を示す上流情報を作成する。そして、対応関係推移予測手段が下流情報と上流情報とに基づいて、上流地点における将来の累積交通量と時刻の対応関係の推移と下流地点における将来の累積交通量と時刻の対応関係の推移とを予測し、さらに、代表区間旅行時間予測手段が、上流地点と下流地点の2つの将来の対応関係の推移に基づいて、同一の累積交通量に対応する上流地点の時刻と下流地点の時刻の差を、将来の時刻における上流地点から下流地点までの代表区間旅行時間と予測する。
これにより、道路上の2地点間の代表区間旅行時間に基づいて作成された下流地点の累積交通量と時刻の対応関係の推移と上流地点の累積交通量と時刻の対応関係の推移とから、将来のある時刻における代表区間旅行時間を予測するので、従来行なっていた車両の地点速度によって代表区間旅行時間を算出し、その後代表区間旅行時間を予測する方式に比べて、より精度の良い将来の代表区間旅行時間を予測することができる。また、車両識別情報受信装置を任意の2地点にそれぞれ設置するようにすれば、料金所の一定区間の将来の代表区間旅行時間の予測だけでなく、その他の2地点の代表区間旅行時間を予測することができる。
According to the present invention, the representative section travel time between two points at a plurality of specific times is calculated. Further, the downstream information creating means creates downstream information indicating the transition of the correspondence relationship between the accumulated traffic volume and the time at the downstream point, and the upstream information creating means represents the upstream information indicating the transition of the correspondence relationship between the cumulative traffic volume and the time at the upstream point. Create Based on the downstream information and the upstream information, the correspondence transition prediction means determines the transition between the future cumulative traffic volume and the time at the upstream point and the transition between the future cumulative traffic and the time at the downstream point. In addition, the representative section travel time prediction means calculates the time of the upstream point and the time of the downstream point corresponding to the same cumulative traffic volume based on the transition of the two future correspondences between the upstream point and the downstream point. The difference is predicted as the representative section travel time from the upstream point to the downstream point at a future time.
From the transition of the cumulative relationship between the cumulative traffic volume at the downstream point and the time created based on the representative section travel time between the two points on the road and the transitional relationship between the cumulative traffic volume at the upstream point and the time, Since the representative section travel time at a certain time in the future is predicted, the representative section travel time is calculated based on the conventional vehicle spot speed and then the representative section travel time is predicted. The representative section travel time can be predicted. In addition, if the vehicle identification information receiver is installed at two arbitrary points, not only the prediction of the future representative section travel time for a certain section of the toll booth, but also the prediction of the representative section travel time for the other two points can do.

以下、本発明の一実施形態による代表区間旅行時間予測装置を図面を参照して説明する。図1は同実施形態の代表区間旅行時間予測システムの概略を示す図である。この図において、符号1は代表区間旅行時間予測装置である。また2は車両である。また3は高速道路であり直線により表している。また4は固有ID受信装置(車両識別情報受信装置)である。また5は車両の累積交通量を検知する累積交通量検知装置である。そして、この代表区間旅行時間予測システムでは、高速道路3上のA地点(上流地点)とB地点(下流地点)と、その2地点間の間のC地点(対象地点)に固有ID受信装置4が設置されており、またB地点に累積交通量検知装置5が設置されている。そして、車両2がA地点、B地点、C地点それぞぞれの固有ID受信装置4の付近を通過する際に、車両2に備えられた固有ID送信装置が、車両2の固有ID(車両識別情報)を固有ID受信装置4へ送信し、その固有IDと当該固有IDの受信時刻とをA地点、B地点、C地点それぞれの固有ID受信装置4が通信ネットワークを介して代表区間旅行時間予測装置1に転送する。また累積交通量検知装置5がB地点において車両が通過した旨を示す通過情報を代表区間旅行時間算出装置1に送信する。そして、代表区間旅行時間予測装置1が、受信した固有IDと受信時刻とに基づいて、車両2のA地点からB地点までの区間旅行時間を算出し、また複数の区間旅行時間の有効サンプルから代表区間旅行時間を算出する。また、代表区間旅行時間算出装置1は累積交通量検知装置5から送信された通過情報から、B地点における時刻ごとの累積交通量をカウントする。そして代表区間旅行時間算出装置1は、算出した代表区間旅行時間とB地点における累積交通量と時刻の対応関係の推移に基づいて、A地点における累積交通量と時刻の対応関係の推移の情報を作成し、さらに、A地点とB地点の過去の累積交通量と時刻の対応関係の推移から、将来の時刻におけるA地点からB地点までの代表区間旅行時間を予測する。   Hereinafter, a representative section travel time prediction apparatus according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing an outline of a representative section travel time prediction system of the embodiment. In this figure, reference numeral 1 denotes a representative section travel time prediction device. Reference numeral 2 denotes a vehicle. Reference numeral 3 denotes a highway, which is represented by a straight line. Reference numeral 4 denotes a unique ID receiving device (vehicle identification information receiving device). Reference numeral 5 denotes a cumulative traffic detection device that detects the cumulative traffic of the vehicle. In this representative section travel time prediction system, the unique ID receiving device 4 is provided at point A (upstream point) and point B (downstream point) on the expressway 3 and point C (target point) between the two points. Is installed, and the accumulated traffic detection device 5 is installed at the point B. When the vehicle 2 passes through the vicinity of the unique ID receiving device 4 at each of the points A, B, and C, the unique ID transmission device provided in the vehicle 2 receives the unique ID (vehicle identification) of the vehicle 2. Information) to the unique ID receiving device 4, and the unique ID receiving device 4 at each of the points A, B, and C predicts the travel time of the representative section via the communication network. Transfer to device 1. Further, the accumulated traffic detection device 5 transmits passage information indicating that the vehicle has passed at the point B to the representative section travel time calculation device 1. Then, the representative section travel time prediction device 1 calculates the section travel time from the point A to the point B of the vehicle 2 based on the received unique ID and the received time, and from the valid samples of the plurality of section travel times Calculate representative section travel time. Further, the representative section travel time calculation device 1 counts the cumulative traffic volume for each time at the B point from the passage information transmitted from the cumulative traffic volume detection device 5. Then, the representative section travel time calculation device 1 obtains information on the transition of the correspondence relationship between the accumulated traffic volume at the point A and the time based on the transition of the correspondence relationship between the calculated representative section travel time and the accumulated traffic amount at the point B and the time. Further, the representative section travel time from the A point to the B point at a future time is predicted from the transition of the correspondence relationship between the past accumulated traffic volume at the A point and the B point and the time.

図2は同実施形態の代表区間旅行時間予測システムの機能ブロックの構成を示す図である。図2の代表区間旅行時間予測装置1において、符号11は通信ネットワークを介して固有ID受信装置4から固有IDと受信時刻とを受信する受信部である。また12は受信した固有IDとその受信時刻とに基づいて固有IDごとの区間旅行時間を算出し、また複数の区間旅行時間のうち有効サンプルと無効サンプルとを決定し、さらに代表区間旅行時間を算出する代表区間旅行時間算出部(代表区間旅行時間算出手段)である。また13はA地点からB地点までの将来の代表区間旅行時間を予測する代表区間旅行時間予測部(上流情報作成手段、対応関係推移予測手段、代表区間旅行時間予測手段)である。また14は、固有IDの有効サンプル数の最大値と最小値や、有効サンプルとする区間旅行時間の上限値と下限値を決定する各割合や、固有ID受信テーブルや、区間旅行時間テーブルなどを記憶する記憶部である。また15は累積交通量検知装置5から送信された通過情報をカウントして、時刻と累積交通量とを対応付けてB地点累積交通量テーブル(下流情報)に記録する累積交通量カウント部(下流情報作成手段)である。   FIG. 2 is a diagram showing a functional block configuration of the representative section travel time prediction system of the embodiment. In the representative section travel time prediction device 1 in FIG. 2, reference numeral 11 denotes a receiving unit that receives the unique ID and the reception time from the unique ID receiving device 4 via the communication network. Further, 12 calculates a section travel time for each unique ID based on the received unique ID and its reception time, determines a valid sample and an invalid sample among a plurality of section travel times, and further represents a representative section travel time. It is a representative section travel time calculation part (representative section travel time calculation means) to calculate. Reference numeral 13 denotes a representative section travel time prediction unit (upstream information creation means, correspondence transition prediction means, representative section travel time prediction means) that predicts a future representative section travel time from point A to point B. Further, 14 indicates the maximum value and minimum value of the number of valid samples of the unique ID, each ratio for determining the upper limit value and the lower limit value of the section travel time as the valid sample, the unique ID reception table, the section travel time table, and the like. It is a memory | storage part to memorize | store. Reference numeral 15 denotes a cumulative traffic count unit (downstream) that counts the passing information transmitted from the cumulative traffic detector 5 and associates the time with the cumulative traffic and records it in the B-point cumulative traffic table (downstream information). Information creation means).

また符号21は車両2に備えられた固有ID送信装置であり、固有IDをDSRC(狭域専用通信)の無線通信方式により固有ID受信装置4に送信処理する固有ID送信処理部22と、固有IDを記憶する記憶部23を備えている。また固有ID受信装置4において、符号41は車両2の固有ID送信装置21から送信された固有IDをDSRCの無線通信方式により受信する固有ID受信部であり、42は固有IDとその固有IDの受信時刻とを通信ネットワークを介して代表区間旅行時間予測装置1に送信する固有ID転送部である。なおDSRCの無線通信方式は、有料道路の自動料金支払いシステムで用いられている無線通信方式である。また累積交通量検知装置5において、符号51は赤外線によって道路上を通過した車両を検出する車両検出部であり、また52は車両検出部51が車両の通過を検知した旨を示す通過情報を代表区間旅行時間予測装置1に送信する通過情報送信処理部である。   Reference numeral 21 denotes a unique ID transmission device provided in the vehicle 2, a unique ID transmission processing unit 22 that transmits the unique ID to the unique ID reception device 4 by a DSRC (Narrow Area Dedicated Communication) wireless communication method, and a unique ID A storage unit 23 for storing the ID is provided. Further, in the unique ID receiving device 4, reference numeral 41 is a unique ID receiving unit that receives the unique ID transmitted from the unique ID transmitting device 21 of the vehicle 2 by the DSRC wireless communication method, and 42 is a unique ID and its unique ID. It is a unique ID transfer unit that transmits the reception time to the representative section travel time prediction device 1 via the communication network. The DSRC wireless communication method is a wireless communication method used in an automatic toll road payment system. In the cumulative traffic detection device 5, reference numeral 51 denotes a vehicle detection unit that detects a vehicle that has passed on the road by infrared rays, and reference numeral 52 represents passage information indicating that the vehicle detection unit 51 has detected the passage of the vehicle. It is a passage information transmission processing unit that transmits to the section travel time prediction device 1.

次に、代表区間旅行時間予測システムの処理を図3を用いて説明する。図3は代表区間旅行時間予測システムの第1の処理フローを示す図である。
まず、車両2がA地点に設置された固有ID受信装置4を通過する際に、車両2に備えられた固有ID送信装置2の固有ID送信処理部22が、記憶部23に記録されている固有IDをDSRCの無線通信方式を利用して固有ID受信装置4へ送信する(ステップS1)。すると、固有ID受信装置4の固有ID受信部41が車両2の固有IDを受信し、当該固有IDとその固有IDの受信時刻とを固有ID転送部42へ送信する。次に固有ID転送部42は固有ID受信部41から受けた固有IDと受信時刻とを代表区間旅行時間予測装置1へ通信ネットワークを介して送信する(ステップS2)。代表区間旅行時間予測装置1は固有ID受信装置4から受信した固有IDと受信時刻とを対応付けて記憶部14の固有ID受信テーブル(図4)に記録する(ステップS3)。そして、車両2がC地点、B地点を通過するごとに、上述のステップS1〜ステップS3同様に、C地点、B地点の固有ID受信装置4が代表区間旅行時間予測装置1に車両2の固有IDと受信時刻とを送信し、B地点、C地点の固有ID受信装置4で得られた情報として、別々に固有IDと受信時刻とが対応付けられて記憶部14の固有ID受信テーブルに記録される。
Next, the processing of the representative section travel time prediction system will be described with reference to FIG. FIG. 3 is a diagram showing a first processing flow of the representative section travel time prediction system.
First, when the vehicle 2 passes the unique ID receiving device 4 installed at the point A, the unique ID transmission processing unit 22 of the unique ID transmitting device 2 provided in the vehicle 2 is recorded in the storage unit 23. The unique ID is transmitted to the unique ID receiver 4 using the DSRC wireless communication system (step S1). Then, the unique ID receiver 41 of the unique ID receiver 4 receives the unique ID of the vehicle 2 and transmits the unique ID and the reception time of the unique ID to the unique ID transfer unit 42. Next, the unique ID transfer unit 42 transmits the unique ID received from the unique ID receiving unit 41 and the reception time to the representative section travel time prediction device 1 via the communication network (step S2). The representative section travel time prediction device 1 records the unique ID received from the unique ID receiver 4 and the reception time in the unique ID reception table (FIG. 4) in the storage unit 14 in association with each other (step S3). Then, each time the vehicle 2 passes through the points C and B, the unique ID receiving device 4 at the points C and B is unique to the representative section travel time prediction device 1 in the same manner as the above-described steps S1 to S3. The ID and the reception time are transmitted, and the unique ID and the reception time are separately associated with each other and recorded in the unique ID reception table of the storage unit 14 as information obtained by the unique ID receiving device 4 at the points B and C. Is done.

代表区間旅行時間予測装置1の区間旅行時間算出部12は、特定の固有IDについて、A地点、B地点における固有IDの受信時刻が記憶部14の固有ID受信テーブルに記録されると、その固有IDをC地点の固有ID受信装置4においても受信したか否かを確認する(ステップS4)。ここで、固有ID受信テーブルにおいて、B地点の受信時刻が記録されているにもかかわらず、C地点における受信時刻(対象地点通過情報)が記録されていない場合には、車両2はC地点を通過せずにA地点からB地点にたどり着いたことになる。つまり、車両2はC地点を通過せずに、サービスエリアに立ち寄ったことになる。代表区間旅行時間予測装置1は車両2がサービスエリアに立ち寄った場合には、その車両2の固有IDを無効とする(ステップS5)。そして、代表区間旅行時間予測装置1は、高速道路3上のC地点を通過している車両2の固有IDを有効とし、A地点からB地点までの距離とA地点とB地点で固有IDを受信したそれぞれの受信時刻とに基づいて、車両2のA地点からB地点までの区間旅行時間を算出する(ステップS6)。そして記憶部14の区間旅行時間テーブル(図5)に車両2の固有IDとその固有IDのC地点での受信時刻とその固有IDを保持する車両2の区間旅行時間を対応付けて記録する(ステップS7)。   The section travel time calculation unit 12 of the representative section travel time prediction apparatus 1 records the unique ID reception time at the points A and B for a specific unique ID in the unique ID reception table of the storage unit 14. It is confirmed whether or not the ID is also received by the unique ID receiver 4 at the point C (step S4). Here, in the unique ID reception table, when the reception time at the point C (the target point passage information) is not recorded even though the reception time at the point B is recorded, the vehicle 2 selects the point C. You have arrived from point A to point B without passing. That is, the vehicle 2 stops at the service area without passing through the point C. The representative section travel time prediction device 1 invalidates the unique ID of the vehicle 2 when the vehicle 2 stops at the service area (step S5). Then, the representative section travel time prediction device 1 validates the unique ID of the vehicle 2 passing through the point C on the expressway 3, and sets the unique ID between the distance from the point A to the point B and the points A and B. Based on each received reception time, a section travel time from point A to point B of the vehicle 2 is calculated (step S6). Then, the unique ID of the vehicle 2, the reception time at the point C of the unique ID, and the interval travel time of the vehicle 2 holding the unique ID are recorded in association in the zone travel time table (FIG. 5) of the storage unit 14 ( Step S7).

上述のステップS1からステップS7の処理により、時刻の経過と共に固有IDとその固有IDの受信時刻と区間旅行時間を対応付けた区間旅行時間テーブルの保持する情報が増加する。ここで、代表区間旅行時間算出部12は、有効サンプルとする区間旅行時間の上限値と下限値を決定する各割合や、有効サンプル数の最大値と最小値を記憶部14から読み取る。そして、代表区間旅行時間算出部12は、記憶部14の区間旅行時間テーブルに記録された区間旅行時間のうち、有効サンプルとなる区間旅行時間を以下の条件により決定する。
(1)所定時刻帯における有効サンプル数を最大値以下に維持するために、古い受信時刻に対応して区間旅行時間テーブルに保持されている区間旅行時間から順に無効サンプルと決定する
(2)所定時刻帯の最も古い時刻よりも古い取得時刻に対応付けられて区間旅行時間テーブルに保持されている区間旅行時間のうち、最近の区間旅行時間から順に有効サンプルとすることにより、有効サンプル数を前記最小値以上に維持する
(3)上限値以上の区間旅行時間と下限値未満の区間旅行時間を無効サンプルとする。
ここで、区間旅行時間の上限値と下限値を決定する割合は、直前の所定時刻帯における代表区間旅行時間から求めた値であり、例えば、上限値は直前の所定時刻帯における代表区間旅行時間の150%の値、下限値は直前の所定時刻帯における代表区間旅行時間の75%の値とする。
As a result of the processing from step S1 to step S7 described above, the information held in the section travel time table in which the unique ID, the reception time of the unique ID, and the section travel time are associated with each other increases with time. Here, the representative section travel time calculation unit 12 reads from the storage unit 14 each ratio for determining the upper limit value and the lower limit value of the section travel time as effective samples, and the maximum value and minimum value of the number of effective samples. Then, the representative section travel time calculation unit 12 determines the section travel time as an effective sample among the section travel times recorded in the section travel time table of the storage unit 14 under the following conditions.
(1) In order to keep the number of valid samples in a predetermined time zone below the maximum value, invalid samples are determined in order from the section travel time stored in the section travel time table corresponding to the old reception time (2) predetermined Among the section travel times associated with the acquisition time older than the oldest time of the time zone and held in the section travel time table, the number of valid samples is set as the valid samples in order from the latest section travel time. Maintain above the minimum value (3) Set the section travel time above the upper limit and the section travel time below the lower limit as invalid samples.
Here, the ratio for determining the upper limit value and the lower limit value of the segment travel time is a value obtained from the representative segment travel time in the immediately preceding predetermined time zone. For example, the upper limit value is the representative segment travel time in the immediately preceding predetermined time zone. The 150% value and the lower limit value are 75% of the representative section travel time in the immediately preceding predetermined time zone.

例えば、所定時刻帯が現在の時刻から5分前までの時刻帯であるとする。すると代表区間旅行時間算出部12はまず、現在の時刻から5分前までの時刻帯の受信時刻に対応付けられて区間旅行時間テーブルに保持されている区間旅行時間を抽出し(a)、その数が最大値n1よりも多い場合であれば、抽出した区間旅行時間のうち、古い受信時刻に対応付けられて区間旅行時間テーブルに記録されている区間旅行時間から順に無効サンプルとして最大値n1になるまで減らす(b)。また代表区間旅行時間算出部12は抽出した区間旅行時間の数が最小値n2未満である場合には現在の時刻から5分よりも前の時刻に対応付けられて区間旅行時間テーブルに保持されている区間旅行時間を順に抽出していき、有効サンプルを最小値n2以上にする(c)。そして、代表区間旅行時間算出部12は(a)、(b)、(c)の処理により得られた各区間旅行時間のうち、直前の代表区間旅行時間の150%の値(上限値)以上長い区間旅行時間と、直前の代表区間旅行時間の75%の値(下限値)未満短い区間旅行時間を無効サンプルとする。(d)。代表区間旅行時間算出部12は、以上(a)、(b)、(c)、(d)の処理によってn1≧有効サンプルの数≧n2の有効サンプルを決定する(ステップS8)。   For example, it is assumed that the predetermined time zone is a time zone from the current time to 5 minutes before. Then, the representative section travel time calculation unit 12 first extracts the section travel time stored in the section travel time table in association with the reception time of the time zone from the current time to five minutes ago (a), If the number is larger than the maximum value n1, among the extracted section travel times, the maximum value n1 is set as an invalid sample in order from the section travel times associated with the old reception time and recorded in the section travel time table. Reduce until (b). In addition, the representative section travel time calculation unit 12 is stored in the section travel time table in association with the time before 5 minutes from the current time when the number of section travel times extracted is less than the minimum value n2. The section travel time is sequentially extracted, and the effective sample is set to the minimum value n2 or more (c). And the representative section travel time calculation part 12 is more than the value (upper limit value) of 150% of the last representative section travel time among each section travel time obtained by the processing of (a), (b), (c). A long section travel time and a section travel time that is less than 75% of the last representative section travel time (lower limit) are used as invalid samples. (D). The representative section travel time calculation unit 12 determines n1 ≧ the number of effective samples ≧ n2 effective samples through the processes (a), (b), (c), and (d) (step S8).

次に代表区間旅行時間算出部12は、有効サンプルとなった区間旅行時間の平均値を算出し、その算出した平均値を代表区間旅行時間とする(ステップS9)。これにより、代表区間旅行時間予測装置1が代表区間旅行時間を出力する。そして、代表区間旅行時間算出部12は、上述のステップS8、ステップS9の処理を、例えば5分おきの特定時刻に行なう。これにより、5分おきの特定時刻におけるA地点からB地点までの代表区間旅行時間が算出できる。なお、ステップS1からステップS8においては、DSRCの無線通信方式を利用して取得してた車両2の固有IDを用いて区間旅行時間算出しているが、この方式に限らず、例えば、現在使われている感知機で計測された車両2の地点速度から代表区間旅行時間を算出するようにしても良い。そして代表区間旅行時間算出部12は算出した代表区間旅行時間と、その代表区間旅行時間を算出した際の時刻とを対応付けて記憶部13で保持する代表区間旅行時間テーブル(図6)に記録していき、区間旅行時間テーブルを作成する(ステップS10)。   Next, the representative section travel time calculation unit 12 calculates an average value of the section travel times that are valid samples, and sets the calculated average value as the representative section travel time (step S9). Thereby, the representative section travel time prediction device 1 outputs the representative section travel time. Then, the representative section travel time calculation unit 12 performs the processes in steps S8 and S9 described above at a specific time every 5 minutes, for example. Thereby, the representative section travel time from point A to point B at a specific time every five minutes can be calculated. In step S1 to step S8, the section travel time is calculated using the unique ID of the vehicle 2 acquired using the DSRC wireless communication method. However, the present invention is not limited to this method. The travel time of the representative section may be calculated from the spot speed of the vehicle 2 measured by the sensor. Then, the representative section travel time calculation unit 12 associates the calculated representative section travel time with the time when the representative section travel time is calculated, and records it in the representative section travel time table (FIG. 6) held in the storage unit 13. Then, a section travel time table is created (step S10).

なお、本実施形態ではC地点が高速道路3本線上である場合の処理について記載しているが、C地点がサービスエリアの入り口ランプと出口ランプの間であり、当該C地点に固有ID受信装置4が設置されていても良い。この場合には、固有ID受信装置4で固有IDを受信した場合には、車両2はサービスエリアに入ったことを示すため、上述のステップS5において、C地点における受信時刻が固有ID受信テーブル記録されてる場合に、そのその受信時刻に対応する固有IDを無効サンプルとすることとなる。   In this embodiment, the process when the point C is on the three highways is described. However, the point C is between the entrance lamp and the exit lamp of the service area, and the unique ID receiving device is located at the point C. 4 may be installed. In this case, when the unique ID is received by the unique ID receiving device 4, it indicates that the vehicle 2 has entered the service area. Therefore, in step S5 described above, the reception time at point C is recorded in the unique ID reception table. If it is, the unique ID corresponding to the reception time is set as an invalid sample.

次に、将来の代表区間旅行時間を予測する処理について図7を用いて説明する。図7は代表区間旅行時間予測システムの第2の処理フローを示す図である。
まず、上述のステップS1からステップS10の処理と平行して、累積交通量検知装置5の車両検出部51がB地点を通過した車両を検知し、検知した場合には通過情報送信処理部52が通過情報を通信ネットワークを介して代表区間旅行時間予測装置1に送信する(ステップS11)。すると、代表区間旅行時間予測装置1の累積交通量カウント部15は、累積交通量検知装置5から受信した通過情報の数をカウントして、例えば上記5分おきの特定時刻ごとの当日の総カウント数(以下累積交通量と呼ぶ)を記憶部14で保持するB地点累積交通量テーブルに記録して現在までのB地点累積交通量テーブル(図8)を作成する(ステップS12)。
Next, a process for predicting a future representative section travel time will be described with reference to FIG. FIG. 7 is a diagram showing a second processing flow of the representative section travel time prediction system.
First, in parallel with the processing from step S1 to step S10 described above, the vehicle detection unit 51 of the cumulative traffic detection device 5 detects a vehicle that has passed through the point B. The passing information is transmitted to the representative section travel time prediction device 1 via the communication network (step S11). Then, the cumulative traffic counting unit 15 of the representative section travel time prediction device 1 counts the number of passing information received from the cumulative traffic detection device 5 and, for example, the total count of the day at each specific time every five minutes. The number (hereinafter referred to as cumulative traffic volume) is recorded in the B-point cumulative traffic volume table held in the storage unit 14, and the B-point cumulative traffic volume table (FIG. 8) up to the present is created (step S12).

そして、代表区間旅行時間予測部13は、B地点累積交通量テーブルに記録された情報と代表区間旅行時間テーブルに記録された情報を用いて、次の処理によりA地点累積交通量テーブル(上流情報)を作成する(ステップS13)。まず、代表区間旅行時間予測部13は代表区間旅行時間テーブルに記録されている、ある時刻(以下時刻Aとする)における代表区間旅行時間を読み取る。そして、その読み取った代表区間旅行時間を時刻Aから差引いた時刻Bと、時刻Aに対応付けられてB地点累積交通量テーブルに記録されている累積交通量とを対応付けて記憶部14で保持するA地点累積交通量テーブルに記録する。そしてこの処理を繰り返す。これによりA地点累積交通量テーブルが作成される。図9はA地点累積交通量テーブルの作成処理のイメージを示す図である。実線1はB地点における累積交通量の推移(B地点累積交通量テーブルから作成)を表している。そして実線1上の1点において、その点が示す時刻の代表区間旅行時間だけ前の時刻まで平行に移動させた点をプロットしていく。これを繰り返して、各プロットを線で結んだ実線2が、A地点における累積交通量の推移となる。そしてこのA地点における累積交通量の推移をあらわす実線2において、各プロットされた点での時刻と累積交通量とを対応付けた表がA地点累積交通量テーブルである。また、この図は、時刻Aからその時刻Aにおける代表区間旅行時間を差引いた時刻Bにおいて、A地点での累積交通量は時刻AにおけるB地点での累積交通量と同等であることを示している。   Then, the representative section travel time prediction unit 13 uses the information recorded in the B point cumulative traffic volume table and the information recorded in the representative section travel time table to perform the following process on the A point cumulative traffic volume table (upstream information). ) Is created (step S13). First, the representative section travel time prediction unit 13 reads a representative section travel time at a certain time (hereinafter referred to as time A) recorded in the representative section travel time table. Then, the storage unit 14 holds the time B obtained by subtracting the read representative section travel time from the time A and the accumulated traffic volume associated with the time A and recorded in the B-point accumulated traffic volume table. Record in the A-point cumulative traffic table. This process is repeated. Thereby, a point A cumulative traffic volume table is created. FIG. 9 is a diagram showing an image of the process for creating the A-point cumulative traffic volume table. The solid line 1 represents the transition of the accumulated traffic volume at the point B (created from the B point accumulated traffic volume table). Then, at one point on the solid line 1, the point moved in parallel up to the previous time by the representative section travel time of the time indicated by the point is plotted. By repeating this, the solid line 2 connecting the plots with lines is the transition of the accumulated traffic volume at the point A. In the solid line 2 representing the transition of the accumulated traffic volume at the point A, a table in which the time at each plotted point is associated with the accumulated traffic volume is the A point accumulated traffic volume table. This figure also shows that the accumulated traffic volume at point A is equal to the accumulated traffic volume at point A at time A at time B, which is the time when the representative section travel time at time A is subtracted from time A. Yes.

以上の処理により、現在の時刻までのB地点累積交通量テーブルとA地点累積交通量テーブルが作成される。ここで、代表区間旅行時間予測装置1は過去の情報をB地点累積交通量テーブルやA地点累積交通量テーブルに保持しているので、A地点、B地点それぞれの、過去のある1日の一定時間帯における累積交通量と時刻の対応関係の推移のグラフを、1日毎に作成することができる。そして、代表区間旅行時間予測部13は、A地点とB地点それぞれについて、過去のある1日の一定時間帯における累積交通量と時刻の対応関係の推移のグラフ複数と、当日の累積交通量と時刻の対応関係の推移のグラフを作成する(ステップS14)。そして、代表区間旅行時間予測部13は、A地点、B地点それぞれについて、当日の累積交通量と時刻の対応関係の推移のグラフに類似している、過去のある1日の一定時間帯における累積交通量と時刻の対応関係の推移のグラフを、ウェーブレット解析の手法を用いて検出し(ステップS15)、その検出した過去のある1日の一定時間帯における累積交通量と時刻の対応関係の推移のグラフのデータを、A地点、B地点それぞれの、当日の将来の累積交通量と時刻の対応関係の推移のグラフと予測する。つまり過去のある1日の一定時間帯における前記対応関係と当日の前記対応関係とをパターンマッチングして、当日の対応関係に類似する過去のある1日の対応関係を検出する。そしてこの処理をA地点とB地点それぞれについて行なう。なお、ウェーブレット解析の手法については公知の技術であるため詳細は省略する。図10はパターンマッチングの処理概要を示す図である。   With the above processing, the B point accumulated traffic volume table and the A point accumulated traffic volume table up to the current time are created. Here, since the representative section travel time prediction device 1 holds the past information in the B point accumulated traffic volume table and the A point accumulated traffic volume table, the past certain day of each of the A point and the B point is constant. A graph of the transition of the correspondence relationship between the accumulated traffic volume and the time in the time zone can be created every day. Then, the representative section travel time prediction unit 13 for each of the points A and B, a plurality of graphs of the transition of the correspondence relationship between the accumulated traffic volume and the time in a certain day in the past, the accumulated traffic volume on the current day, A graph of the transition of time correspondence is created (step S14). Then, the representative section travel time prediction unit 13 is similar to the graph of the transition of the correspondence relationship between the accumulated traffic volume on the day and the time for each of the points A and B, and is accumulated in a certain time period of a certain past day. A graph of the transition of correspondence between traffic volume and time is detected using a wavelet analysis technique (step S15), and the transition of the correspondence between cumulative traffic volume and time during a certain period of time in the past is detected. Is predicted as a graph of the transition of the correspondence relationship between the future accumulated traffic volume on the day and the time at each of the points A and B. In other words, the correspondence relationship in the certain time zone of the past in the past and the correspondence relationship of the day are pattern-matched to detect the correspondence relationship in the past in the past that is similar to the correspondence relationship of the day. This process is performed for each of the points A and B. Since the wavelet analysis technique is a known technique, the details are omitted. FIG. 10 is a diagram showing an outline of pattern matching processing.

ここで、過去のある1日の一定時間帯における累積交通量と時刻の対応関係の推移のグラフを用いずに、当日における累積交通量と時刻の対応関係の推移のグラフから、自己回帰モデルの手法(時系列データの予測手法)を用いて、その当日における将来の累積交通量と時刻の対応関係の推移のグラフを作成しても良い。そして、代表区間旅行時間予測部13は、将来のA地点における累積交通量と時刻の対応関係と、将来のB地点における累積交通量と時刻の対応関係において、同量の累積交通量に対応する各時刻の差が、その将来の時刻における代表区間旅行時間であると予測する(ステップS16)。   Here, instead of using the graph of the transition of the correspondence relationship between the accumulated traffic volume and the time during a certain day in the past, the autoregressive model Using a method (time series data prediction method), a graph of the transition of the correspondence relationship between the future accumulated traffic volume and the time on that day may be created. Then, the representative section travel time prediction unit 13 corresponds to the same cumulative traffic volume in the correspondence relationship between the cumulative traffic volume and the time at the future point A and the correspondence relationship between the cumulative traffic volume and the time at the future point B. It is predicted that the difference between the times is the representative section travel time at the future time (step S16).

そして、代表区間旅行時間予測部13は、上述のパターンマッチングによる将来の累積交通量と時刻の対応関係の予測と、自己回帰モデルの手法による将来の累積交通量と時刻の対応関係の予測の両方を処理するようにして、精度の良い将来の累積交通量と時刻の対応関係の予測を、選択するようにしても良い。また代表区間旅行時間予測装置は、過去に予測した将来の累積交通量と実際の区間旅行時間に大きく誤差がある場合には、それを補正するようにしても良い。   Then, the representative section travel time prediction unit 13 predicts the correspondence between the future accumulated traffic volume and the time based on the pattern matching described above, and predicts the correspondence relationship between the future accumulated traffic volume and the time based on the autoregressive model method. In such a case, the prediction of the correspondence relationship between the future accumulated traffic volume and the time with high accuracy may be selected. In addition, the representative section travel time prediction device may correct the estimated future traffic volume estimated in the past and the actual section travel time if there is a large error.

なお、上述の各装置は内部に、コンピュータシステムを有している。そして、上述した処理の過程は、プログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されており、このプログラムをコンピュータが読み出して実行することによって、上記処理が行われる。ここでコンピュータ読み取り可能な記録媒体とは、磁気ディスク、光磁気ディスク、CD−ROM、DVD−ROM、半導体メモリ等をいう。また、このコンピュータプログラムを通信回線によってコンピュータに配信し、この配信を受けたコンピュータが当該プログラムを実行するようにしても良い。また、上記プログラムは、前述した機能の一部を実現するためのものであっても良い。さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であっても良い。   Each of the above devices has a computer system inside. The process described above is stored in a computer-readable recording medium in the form of a program, and the above process is performed by the computer reading and executing this program. Here, the computer-readable recording medium means a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like. Alternatively, the computer program may be distributed to the computer via a communication line, and the computer that has received the distribution may execute the program. The program may be for realizing a part of the functions described above. Furthermore, what can implement | achieve the function mentioned above in combination with the program already recorded on the computer system, and what is called a difference file (difference program) may be sufficient.

本発明の実施形態による代表区間旅行時間予測システムの概略を示す図である。It is a figure which shows the outline of the representative section travel time prediction system by embodiment of this invention. 同実施形態による代表区間旅行時間予測システムの機能ブロックの構成を示す図である。It is a figure which shows the structure of the functional block of the representative section travel time prediction system by the embodiment. 同実施形態による代表区間旅行時間予測システムの第1の処理フローを示す図である。It is a figure which shows the 1st processing flow of the representative area travel time prediction system by the embodiment. 同実施形態による固有ID受信テーブルのデータ構成を示す図である。It is a figure which shows the data structure of the unique ID reception table by the embodiment. 同実施形態による区間旅行時間テーブルのデータ構成を示す図である。It is a figure which shows the data structure of the section travel time table by the embodiment. 同実施形態による代表区間旅行時間テーブルのデータ構成を示す図である。It is a figure which shows the data structure of the representative area travel time table by the embodiment. 同実施形態による代表区間旅行時間予測システムの第2の処理フローを示す図である。It is a figure which shows the 2nd processing flow of the representative area travel time prediction system by the embodiment. 同実施形態によるB地点累積交通量テーブルのデータ構成を示す図である。It is a figure which shows the data structure of the B point cumulative traffic volume table by the embodiment. 同実施形態によるA地点累積交通量テーブルの作成処理のイメージを示す図である。It is a figure which shows the image of the preparation process of A point accumulation traffic volume table by the embodiment. 同実施形態によるパターンマッチングの処理概要を示す図である。It is a figure which shows the process outline | summary of the pattern matching by the same embodiment.

符号の説明Explanation of symbols

1・・・代表区間旅行時間予測装置
2・・・車両
3・・・高速道路
4・・・固有ID受信装置
5・・・累積交通量検知装置
11・・・受信部
12・・・代表区間旅行時間算出部
13・・・代表区間旅行時間予測部
14、23・・・記憶部
15・・・累積交通量カウント部
21・・・固有ID送信装置
22・・・固有ID送信処理部
41・・・固有ID受信部
42・・・固有ID転送部
51・・・車両検出部
52・・・通過情報送信処理部
DESCRIPTION OF SYMBOLS 1 ... Representative section travel time prediction apparatus 2 ... Vehicle 3 ... Highway 4 ... Unique ID receiver 5 ... Cumulative traffic detector 11 ... Receiver 12 ... Representative section Travel time calculation unit 13 ... representative section travel time prediction unit 14, 23 ... storage unit 15 ... cumulative traffic count unit 21 ... unique ID transmission device 22 ... unique ID transmission processing unit 41 .. Unique ID receiver 42 ... Unique ID transfer unit 51 ... Vehicle detection unit 52 ... Passing information transmission processing unit

Claims (7)

道路上の2地点間における車両の区間旅行時間と前記車両の識別情報と当該車両識別情報の取得時刻とを対応付けて保持するサンプル記憶手段と、
所定の時刻帯における前記車両の区間旅行時間のうち、上限値以上と下限値未満の区間旅行時間と前記所定時刻帯を外れる区間旅行時間とを無効サンプルと決定しそれ以外を有効サンプルと決定するサンプル選別手段と、
前記有効サンプルの各区間旅行時間を平均して、前記所定の時刻帯における代表区間旅行時間を算出する処理を、所定の時間間隔で繰り返し、前記代表区間旅行時間を算出した特定時刻における2地点間の代表区間旅行時間をそれぞれ算出する代表区間旅行時間算出手段と、
前記特定時刻とその特定時刻において前記2地点のうちの下流地点に設置された累積交通量検知装置から得られた累積交通量とに基づいて、前記下流地点における累積交通量と時刻の対応関係の推移を示す下流情報を作成する下流情報作成手段と、
前記特定時刻における前記下流地点の累積交通量と前記特定時刻からその特定時刻における代表区間旅行時間を差引いた時刻とに基づいて、前記2地点のうちの上流地点における累積交通量と時刻の対応関係の推移を示す上流情報を作成する上流情報作成手段と、
前記下流情報が示す累積交通量と時刻の対応関係の推移と、前記上流情報が示す累積交通量と時刻の対応関係の推移と、将来推移算出手法とを用いて、前記上流地点における将来の累積交通量と時刻の対応関係の推移と前記下流地点における将来の累積交通量と時刻の対応関係の推移とを予測する対応関係推移予測手段と、
前記上流地点と前記下流地点の2つの将来の対応関係の推移に基づいて、同一の累積交通量に対応する前記上流地点の時刻と前記下流地点の時刻の差を、将来の時刻における前記上流地点から前記下流地点までの代表区間旅行時間と予測する代表区間旅行時間予測手段と、
を備えることを特徴とする代表区間旅行時間予測装置。
Sample storage means for holding a section travel time of a vehicle between two points on the road, the vehicle identification information, and the acquisition time of the vehicle identification information in association with each other;
Of the section travel times of the vehicle in a predetermined time zone, a section travel time not less than the upper limit value and less than the lower limit value and a section travel time outside the predetermined time zone are determined as invalid samples, and the rest are determined as valid samples. Sample sorting means;
The process of calculating the representative section travel time in the predetermined time zone by averaging each section travel time of the valid sample is repeated at a predetermined time interval, and between the two points at the specific time at which the representative section travel time is calculated Representative section travel time calculating means for calculating each representative section travel time,
Based on the specific time and the cumulative traffic obtained from the cumulative traffic detection device installed at the downstream point of the two points at the specific time, the correspondence between the cumulative traffic at the downstream point and the time Downstream information creating means for creating downstream information indicating the transition;
Based on the cumulative traffic volume at the downstream point at the specific time and the time obtained by subtracting the representative section travel time at the specific time from the specific time, the correspondence between the cumulative traffic volume at the upstream point of the two points and the time Upstream information creation means for creating upstream information indicating the transition of
Using the transition of the cumulative traffic volume and time indicated by the downstream information, the transition of the cumulative traffic volume and time indicated by the upstream information, and the future trend calculation method, the future cumulative at the upstream point Correspondence transition prediction means for predicting transition of correspondence between traffic volume and time and transition of correspondence relation between future cumulative traffic volume and time at the downstream point;
Based on the transition of two future correspondences between the upstream point and the downstream point, the difference between the time at the upstream point and the time at the downstream point corresponding to the same cumulative traffic volume is calculated as the upstream point at a future time. Representative section travel time predicting means for predicting the representative section travel time from to the downstream point,
A representative section travel time prediction apparatus comprising:
前記対応関係推移予測手段は、前記上流地点と前記下流地点それぞれにおける過去のある1日の一定時間帯の累積交通量と時刻の対応関係の推移と当日の累積交通量と時刻の対応関係の推移との類似性を判定する手法を前記将来推移算出手法として用いて、前記上流地点と前記下流地点の前記当日における将来の累積交通量と時刻の対応関係の推移を予測する
ことを特徴とする請求項1に記載の代表区間旅行時間予測装置。
The correspondence relationship transition predicting means includes a transition of a correspondence relationship between a cumulative traffic volume and a time of a certain day in the past at each of the upstream point and the downstream point, and a transition relationship between a cumulative traffic amount and a time of the day. The method of determining the similarity between the upstream point and the downstream point is used as the future transition calculation method to predict the transition of the correspondence relationship between the future accumulated traffic volume and the time on the day. Item 2. The representative section travel time prediction device according to Item 1.
前記対応関係推移予測手段は、前記上流地点と前記下流地点それぞれにおける過去の対応関係の推移に基づいて、時系列データの予測手法を前記将来推移算出手法として用いて前記2つの将来の対応関係を予測する
ことを特徴とする請求項1に記載の代表区間旅行時間予測装置。
The correspondence relationship transition prediction means uses the time-series data prediction method as the future transition calculation method based on the transition of past correspondence relationships at the upstream point and the downstream point, respectively, to determine the two future correspondence relationships. The representative section travel time prediction device according to claim 1, wherein the prediction is performed.
前記対応関係推移予測手段は、前記類似性を判定する手法、または、前記時系列データの予測手法のうち、前記2つの対応関係の将来の予測の手法として、該予測した将来の累積交通量と時刻の精度の良い手法に切り替える
ことを特徴とする請求項2または請求項3のいずれかに記載の代表区間旅行時間予測装置。
The correspondence relationship transition prediction means includes the predicted future traffic volume as a method for determining the similarity or a method for predicting the future of the two correspondence relationships among the method for predicting the time series data. 4. The representative section travel time prediction device according to claim 2, wherein the method is switched to a method with high time accuracy.
前記過去のある1日の一定時間帯の累積交通量と時刻の対応関係の推移の情報を記憶する過去情報記憶手段と、
前記過去情報記憶手段に記録された前記過去のある1日の一定時間帯の累積交通量と時刻の対応関係の推移との情報を更新する更新手段と、
を備えることを特徴とする請求項2から請求項に記載の代表区間旅行時間予測装置。
Past information storage means for storing information on the transition of the correspondence relationship between the cumulative traffic volume and the time during a certain period of time in the past;
Updating means for updating the information on the transition of the correspondence relationship between the accumulated traffic volume and the time of a certain day in the past recorded in the past information storage means;
Representative section travel time prediction device according to claim 2 to claim 4, characterized in that it comprises a.
道路上の2地点間における車両の区間旅行時間と前記車両の識別情報と当該車両識別情報の取得時刻とを対応付けて保持するサンプル記憶手段と、
所定の時刻帯における前記車両の区間旅行時間のうち、上限値以上と下限値未満の区間旅行時間と前記所定時刻帯を外れる区間旅行時間とを無効サンプルと決定しそれ以外を有効サンプルと決定するサンプル選別手段と、を備えた代表区間旅行時間予測装置における代表区間旅行時間予測方法であって、
前記有効サンプルの各区間旅行時間を平均して、前記所定の時刻帯における代表区間旅行時間を算出する処理を、所定の時間間隔で繰り返し、前記代表区間旅行時間を算出した特定時刻における2地点間の代表区間旅行時間をそれぞれ算出する代表区間旅行時間算出過程と、
前記特定時刻とその特定時刻において前記2地点のうちの下流地点に設置された累積交通量検知装置から得られた累積交通量とに基づいて、前記下流地点における累積交通量と時刻の対応関係の推移を示す下流情報を作成する下流情報作成過程と、
前記特定時刻における前記下流地点の累積交通量と前記特定時刻からその特定時刻における代表区間旅行時間を差引いた時刻とに基づいて、前記2地点のうちの上流地点における累積交通量と時刻の対応関係の推移を示す上流情報を作成する上流情報作成過程と、
前記下流情報が示す累積交通量と時刻の対応関係の推移と、前記上流情報が示す累積交通量と時刻の対応関係の推移と、将来推移算出手法とを用いて、前記上流地点における将来の累積交通量と時刻の対応関係の推移と前記下流地点における将来の累積交通量と時刻の対応関係の推移とを予測する対応関係推移予測過程と、
前記上流地点と前記下流地点の2つの将来の対応関係の推移に基づいて、同一の累積交通量に対応する前記上流地点の時刻と前記下流地点の時刻の差を、将来の時刻における前記上流地点から前記下流地点までの代表区間旅行時間と予測する代表区間旅行時間予測過程と、
を有することを特徴とする代表区間旅行時間予測方法。
Sample storage means for holding a section travel time of a vehicle between two points on the road, the vehicle identification information, and the acquisition time of the vehicle identification information in association with each other;
Of the section travel times of the vehicle in a predetermined time zone, a section travel time not less than the upper limit value and less than the lower limit value and a section travel time outside the predetermined time zone are determined as invalid samples, and the rest are determined as valid samples. A representative section travel time prediction method in a representative section travel time prediction device comprising a sample selection means,
The process of calculating the representative section travel time in the predetermined time zone by averaging each section travel time of the valid sample is repeated at a predetermined time interval, and between the two points at the specific time at which the representative section travel time is calculated Representative section travel time calculation process to calculate each representative section travel time,
Based on the specific time and the cumulative traffic obtained from the cumulative traffic detection device installed at the downstream point of the two points at the specific time, the correspondence between the cumulative traffic at the downstream point and the time Downstream information creation process to create downstream information indicating the transition,
Based on the cumulative traffic volume at the downstream point at the specific time and the time obtained by subtracting the representative section travel time at the specific time from the specific time, the correspondence between the cumulative traffic volume at the upstream point of the two points and the time Upstream information creation process to create upstream information showing the transition of
Using the transition of the cumulative traffic volume and time indicated by the downstream information, the transition of the cumulative traffic volume and time indicated by the upstream information, and the future trend calculation method, the future cumulative at the upstream point Correspondence transition prediction process for predicting transition of correspondence between traffic volume and time and transition of correspondence relation between future cumulative traffic volume and time at the downstream point;
Based on the transition of two future correspondences between the upstream point and the downstream point, the difference between the time at the upstream point and the time at the downstream point corresponding to the same cumulative traffic volume is calculated as the upstream point at a future time. A representative section travel time prediction process for predicting a representative section travel time from to the downstream point,
A representative section travel time prediction method characterized by comprising:
道路上の2地点間における車両の区間旅行時間と前記車両の識別情報と当該車両識別情報の取得時刻とを対応付けて保持するサンプル記憶手段と、
所定の時刻帯における前記車両の区間旅行時間のうち、上限値以上と下限値未満の区間旅行時間と前記所定時刻帯を外れる区間旅行時間とを無効サンプルと決定しそれ以外を有効サンプルと決定するサンプル選別手段と、を備えた代表区間旅行時間予測装置のコンピュータに実行させるプログラムであって、
前記有効サンプルの各区間旅行時間を平均して、前記所定の時刻帯における代表区間旅行時間を算出する処理を、所定の時間間隔で繰り返し、前記代表区間旅行時間を算出した特定時刻における2地点間の代表区間旅行時間をそれぞれ算出する代表区間旅行時間算出処理と、
前記特定時刻とその特定時刻において前記2地点のうちの下流地点に設置された累積交通量検知装置から得られた累積交通量とに基づいて、前記下流地点における累積交通量と時刻の対応関係の推移を示す下流情報を作成する下流情報作成処理と、
前記特定時刻における前記下流地点の累積交通量と前記特定時刻からその特定時刻における代表区間旅行時間を差引いた時刻とに基づいて、前記2地点のうちの上流地点における累積交通量と時刻の対応関係の推移を示す上流情報を作成する上流情報作成処理と、
前記下流情報が示す累積交通量と時刻の対応関係の推移と、前記上流情報が示す累積交通量と時刻の対応関係の推移と、将来推移算出手法とを用いて、前記上流地点における将来の累積交通量と時刻の対応関係の推移と前記下流地点における将来の累積交通量と時刻の対応関係の推移とを予測する対応関係推移予測処理と、
前記上流地点と前記下流地点の2つの将来の対応関係の推移に基づいて、同一の累積交通量に対応する前記上流地点の時刻と前記下流地点の時刻の差を、将来の時刻における前記上流地点から前記下流地点までの代表区間旅行時間と予測する代表区間旅行時間予測処理と、
をコンピュータに実行させるプログラム。
Sample storage means for holding a section travel time of a vehicle between two points on the road, the vehicle identification information, and the acquisition time of the vehicle identification information in association with each other;
Of the section travel times of the vehicle in a predetermined time zone, a section travel time not less than the upper limit value and less than the lower limit value and a section travel time outside the predetermined time zone are determined as invalid samples, and the rest are determined as valid samples. A program to be executed by a computer of a representative section travel time prediction device comprising a sample selection means,
The process of calculating the representative section travel time in the predetermined time zone by averaging each section travel time of the valid sample is repeated at a predetermined time interval, and between the two points at the specific time at which the representative section travel time is calculated Representative section travel time calculation processing for calculating the representative section travel time of each,
Based on the specific time and the cumulative traffic obtained from the cumulative traffic detection device installed at the downstream point of the two points at the specific time, the correspondence between the cumulative traffic at the downstream point and the time Downstream information creation processing for creating downstream information indicating transition;
Based on the cumulative traffic volume at the downstream point at the specific time and the time obtained by subtracting the representative section travel time at the specific time from the specific time, the correspondence between the cumulative traffic volume at the upstream point of the two points and the time Upstream information creation processing to create upstream information indicating the transition of
Using the transition of the cumulative traffic volume and time indicated by the downstream information, the transition of the cumulative traffic volume and time indicated by the upstream information, and the future trend calculation method, the future cumulative at the upstream point Correspondence transition prediction processing for predicting transition of correspondence between traffic volume and time and transition of correspondence relation between future accumulated traffic volume and time at the downstream point;
Based on the transition of two future correspondences between the upstream point and the downstream point, the difference between the time at the upstream point and the time at the downstream point corresponding to the same cumulative traffic volume is calculated as the upstream point at a future time. Representative section travel time prediction processing for predicting the representative section travel time from to the downstream point,
A program that causes a computer to execute.
JP2003372571A 2003-10-31 2003-10-31 Representative section travel time prediction device, representative section travel time prediction method and program Expired - Fee Related JP4426253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003372571A JP4426253B2 (en) 2003-10-31 2003-10-31 Representative section travel time prediction device, representative section travel time prediction method and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003372571A JP4426253B2 (en) 2003-10-31 2003-10-31 Representative section travel time prediction device, representative section travel time prediction method and program

Publications (2)

Publication Number Publication Date
JP2005135282A JP2005135282A (en) 2005-05-26
JP4426253B2 true JP4426253B2 (en) 2010-03-03

Family

ID=34648917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003372571A Expired - Fee Related JP4426253B2 (en) 2003-10-31 2003-10-31 Representative section travel time prediction device, representative section travel time prediction method and program

Country Status (1)

Country Link
JP (1) JP4426253B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021071995A (en) * 2019-10-31 2021-05-06 株式会社東芝 Traffic condition prediction system and traffic condition prediction method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4678695B2 (en) * 2007-10-05 2011-04-27 本田技研工業株式会社 Navigation server

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021071995A (en) * 2019-10-31 2021-05-06 株式会社東芝 Traffic condition prediction system and traffic condition prediction method
JP7391613B2 (en) 2019-10-31 2023-12-05 株式会社東芝 Traffic situation prediction system and traffic situation prediction method

Also Published As

Publication number Publication date
JP2005135282A (en) 2005-05-26

Similar Documents

Publication Publication Date Title
CN112700072B (en) Traffic condition prediction method, electronic device, and storage medium
CN104658252B (en) Method for evaluating traffic operational conditions of highway based on multisource data fusion
JP4334870B2 (en) Vehicle trip determination system and method
CN109166337B (en) Bus arrival time generation method and device and bus passenger travel OD acquisition method
CN105741573B (en) A kind of expressway principal line toll station method for control speed based on VSL
CN109446881B (en) Heterogeneous data-based highway section traffic state detection method
US6078895A (en) Technique for showing running time by sections on tollway
Ma et al. Estimation of the automatic vehicle identification based spatial travel time information collected in Stockholm
JP3620487B2 (en) Intersection travel time estimation device
Fu et al. Estimation of route travel time distribution with information fusion from automatic number plate recognition data
CN111968371B (en) System and method for estimating road passing time based on isochronous positioning monitoring
JP4426253B2 (en) Representative section travel time prediction device, representative section travel time prediction method and program
CN110610118A (en) Traffic parameter acquisition method and device
JP3556536B2 (en) Traffic flow analysis system
CN109191850B (en) Data fusion method of stop line detector and queuing detector based on time window
JP4030354B2 (en) Sudden event detection device
JP3932383B2 (en) Traveling time prediction device
KR20230082154A (en) Method for determining the installation location of traffic information detector for interrupted traffic flow, and method for initial queue processing at a signal intersection and method for measuring congestion information using the traffic information detector for interrupted traffic flow
JP2002260142A (en) Predicting method for traveling time
JP3883098B2 (en) Traveling time prediction device
WO2022107193A1 (en) Traffic jam evaluation method, traffic jam evaluation device, and traffic jam evaluation program
JP3526422B2 (en) Travel time information calculation system
JP3529663B2 (en) Travel time information calculation device
JP4283089B2 (en) Representative section travel time calculation device, representative section travel time calculation method and program, and representative section travel time calculation system
US10883845B2 (en) Method of detecting a virtual tolling point

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050330

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051215

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060509

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060822

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091210

R150 Certificate of patent or registration of utility model

Ref document number: 4426253

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151218

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees