Nothing Special   »   [go: up one dir, main page]

JP4422256B2 - Phosphazene derivative having sulfonyl group and process for producing the same - Google Patents

Phosphazene derivative having sulfonyl group and process for producing the same Download PDF

Info

Publication number
JP4422256B2
JP4422256B2 JP32544099A JP32544099A JP4422256B2 JP 4422256 B2 JP4422256 B2 JP 4422256B2 JP 32544099 A JP32544099 A JP 32544099A JP 32544099 A JP32544099 A JP 32544099A JP 4422256 B2 JP4422256 B2 JP 4422256B2
Authority
JP
Japan
Prior art keywords
general formula
phosphazene derivative
represented
formula
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32544099A
Other languages
Japanese (ja)
Other versions
JP2001139584A (en
Inventor
翼 土屋
川壁  弘
淳 和久井
智久 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP32544099A priority Critical patent/JP4422256B2/en
Publication of JP2001139584A publication Critical patent/JP2001139584A/en
Application granted granted Critical
Publication of JP4422256B2 publication Critical patent/JP4422256B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fireproofing Substances (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電解液、潤滑油等の難燃化に有用な新規なスルホニル基を含有するホスファゼン誘導体およびその製造方法に関するものである。
【0002】
【従来の技術】
従来、ホスファゼンは、難燃剤、耐油性エラストマー、ガス分離膜、電解質などに用いられてきた。
近年、非水電解液二次電池は、高電圧、高エネルギー密度という優れた自己放電性を有することから、特にパソコン、VTR等の情報機器やAVのメモリーのバックアップやそれらの駆動電源用電池として注目され、特開平06−13108号公報には、非水電解質二次電池の電解質に、(NPR2)n (式中、Rは一価の有機基、nは3〜15)で表される環状ホスファゼン誘導体又はR3(P=N) m - PR4 ( 式中、mは1〜20、Rは一価の有機基、O、又はCの中から選ばれる。)で表される鎖状型ホスファゼン誘導体を含有させることにより、短絡時における破裂、発火の危険性を取り除いた非水電解質二次電池が提案されている。
【0003】
【発明が解決しようとする課題】
しかしながら、このホスファゼン誘導体を電解質に含有させることにより、電解質の難燃性をある程度改善できるものの、その反面電池性能が低下するという問題がある。
ホスファゼン化合物においても、難燃性を付与する機能と共に、優れた電気特性を持つ新規なホスファゼン化合物の出現が望まれていた。
【0004】
従って、本発明の目的は、優れた難燃性と電気特性を保持したスルホニル基を有するホスファゼン誘導体およびその製造方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明が提供しようとするスルホニル基を有するホスファゼン誘導体は、下記一般式(1);
【0006】
【化5】

Figure 0004422256
【0007】
(式中、R1は、炭素数1〜10の直鎖状又は分岐状のアルキル基、炭素数1〜10のエーテル結合を有する基で置換されたアルキル基、ハロゲン原子で置換されたアルキル基を示し、R1は同一でも異なってもよい。)又は、下記一般式(2);
【0008】
【化6】
Figure 0004422256
【0009】
(式中、R2は、炭素数1〜10の直鎖状又は分岐状のアルキル基、炭素数1〜10のエーテル結合を有する基で置換されたアルキル基、ハロゲン原子又はフッ素原子で置換されたアルキル基を示し、R2は同一でも異なってもよい。)で表されることを構成上の特徴とする。
【0010】
本発明が提供しようとする前記一般式(1)で表されるスルホニル基を有するホスファゼン誘導体の製造方法は、一般式PX5(Xはハロゲン原子を示す。)で表されるハロゲン化リンとスルファミン酸とを反応させて、下記一般式(3)
【0011】
【化7】
Figure 0004422256
【0012】
(式中、Xは前記と同義。)で表されるハロゲン化ホスファゼン誘導体を得、次いで、得られたハロゲン化ホスファゼン誘導体と一般式R1−OM(式中、R1は前記と同義。Mはアルカリ金属を示す。)で表されるアルコラート類とを反応させることを構成上特徴とする。
【0013】
更に、本発明が提供しようとする前記一般式(2)で表されるスルホニル基を有するホスファゼン誘導体の製造方法は、一般式PX5(Xは前記と同義。)で表されるハロゲン化リンとスルファミドとを反応させて、下記一般式(4)
【0014】
【化8】
Figure 0004422256
【0015】
(式中、Xは前記と同義。)で表されるビスハロゲン化ホスファゼン誘導体を得、次いで、得られたビスハロゲン化ホスファゼン誘導体と一般式R2−OM(式中、R2、Mは前記と同義。)で表されるアルコラート類とを反応させることを構成上の特徴とする。
【0016】
【発明の実施の形態】
以下、本発明を詳細に説明する。
前記一般式(1)及び(2)で表されるスルホニル基を有するホスファゼン誘導体の式中、R1、R2は、炭素数1〜10の直鎖状又は分岐状のアルキル基、炭素数1〜10のエーテル結合を有する基で置換されたアルキル基、ハロゲン原子で置換されたアルキル基を示し、前記一般式(1)の式中、R1は同一でも異なってもよく、また、前記一般式(2)の式中、R2は同一でも異なってもよい。かかるアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、n−ヘキシル基、イソヘキシル基、n−ヘプチル基、n−オクチル基、イソオクチル基、n−デシル基、イソデシル基等が挙げられる。エーテル結合を有する基のエーテル結合は1又は2以上を有していてもよい。また、ハロゲン原子としては特に制限されないが、塩素原子又はフッ素原子が好ましい。
【0017】
次いで、前記一般式(1)で表されるスルホニル基を有するホスファゼン誘導体の製造方法について説明する。
本発明の前記一般式(1)で表されるスルホニル基を有するホスファゼン誘導体の製造方法は、基本的に一般式PX5(Xはハロゲン原子を示す。)で表されるハロゲン化リンとスルファミン酸とを反応させて、前記一般式(3)で表されるハロゲン化ホスファゼン誘導体を得る第一工程、次いで、得られたハロゲン化ホスファゼン誘導体とR1−OM(式中、R1は前記と同義。Mはアルカリ金属を示す。)で表されるアルコラート類とを反応させて、目的とする前記一般式(1)で表されるスルホニル基を有するホスファゼン誘導体を得る第二工程からなるものである。
【0018】
第一工程の反応原料となるハロゲン化リンの式中、Xは塩素、臭素、ヨウ素等のハロゲン原子であり、この中、反応性の面で塩素原子が好ましい。
このハロゲン化リンとスルファミン酸との反応は、下記反応式(1)
【0019】
【化9】
Figure 0004422256
【0020】
(式中、Xはハロゲン原子を示す。)に従って進行し、ハロゲン化リンとスルファミン酸を有機溶媒中で反応させる。ハロゲン化リンに対するスルファミン酸のモル比は、通常0.4〜1.0、好ましくは0.5〜0.6、反応温度は、通常80〜150℃、好ましくは90〜110℃であり、反応時間は、通常3〜24時間、好ましくは6〜12時間である。反応溶媒としては、ハロゲン化リン及びスルファミン酸が溶解するもので、かつ不活性なものであれば特に制限されないが、例えばトルエン、キシレン、ベンゼン等の芳香族炭化水素類、アセトニトリル、プロピオニトリル等のニトリル類、クロロベンゼン等のハロゲン化芳香族炭化水素及び塩化メチレン、クロロホルム等のハロアルカン類等が挙げられ、これらは1種又は2種以上を組合わせて用いることができる。反応終了後は乾燥して前記一般式(3)で表されるハロゲン化ホスファゼン誘導体を得ることが出来るが、本発明では、更に、常法の精製手段により精製を行うことが出来る。
【0021】
第二工程は、第一工程で得られた前記一般式(3)で表されるハロゲン化ホスファゼン誘導体と、R1−OM(式中、R1は前記と同義。Mはアルカリ金属を示す。)で表されるアルコラート類とを反応させて、目的とする前記一般式(1)で表されるスルホニル基を有するホスファゼン誘導体を得る工程である。
【0022】
反応原料となるR1−OMで表されるアルコラート類の式中、R1は、前記一般式(1)で表されるスルホニル基を有するホスファゼン誘導体の式中のR1に相当し、炭素数1〜10の直鎖状又は分岐状のアルキル基、炭素数1〜10のエーテル結合を有する基で置換されたアルキル基、ハロゲン原子で置換されたアルキル基を示し、Mは、ナトリウム、カリウム等のアルカリ金属を示す。
このハロゲン化ホスファゼン誘導体とアルコラート類との反応は、下記反応式(2)
【0023】
【化10】
Figure 0004422256
【0024】
(式中、Mはアルカリ金属を示し、X及びR1 は前記に同じ。)に従って進行し、前記一般式(3)で表されるハロゲン化ホスファゼン誘導体とアルコラート類とを有機溶媒中で反応させる。ハロゲン化ホスファゼン誘導体に対するアルコラート類のモル比は、通常0.5〜6、好ましくは3.6〜4.4である。反応温度は、通常−50〜50℃、好ましくは−40〜−20℃、反応時間は、通常0.5〜24時間、好ましくは3〜12時間である。反応溶媒としては、ハロゲン化ホスファゼン誘導体とアルコール類が溶解でき、かつ不活性な溶媒であれば特に限定はなく、例えば、炭化水素、ハロゲン化芳香族炭化水素、ハロアルカン、ジオキサン、テトラヒドロフラン、ジブチルエーテル等のエーテル類、アセトニトリル、プロピオニトリル等が挙げられ、このうち、1種又は2種以上を組合わせて用いることができる。反応終了後は抽出、脱水、乾燥等の常法により目的物を得る。
【0025】
次いで、前記一般式(2)で表されるスルホニル基を有するホスファゼン誘導体の製造方法について説明する。
本発明の前記一般式(2)で表されるスルホニル基を有するホスファゼン誘導体の製造方法は、基本的に一般式PX5(Xはハロゲン原子を示す。)で表されるハロゲン化リンとスルファミドとを反応させ、前記一般式(4)で表されるビスハロゲン化ホスファゼン誘導体を得る第一工程、次いで、得られたビスハロゲン化ホスファゼン誘導体とR2−OM(式中、R2、Mは前記と同義。)で表されるアルコラート類とを反応させて目的とする前記一般式(2)で表されるスルホニル基を有するホスファゼン誘導体を得る第二工程からなるものである。
【0026】
この第一工程の反応原料となるハロゲン化リンの式中、Xは塩素、臭素、ヨウ素等のハロゲン原子であり、この中、反応性の面で塩素原子が好ましい。
このハロゲン化リンとスルファミドとの反応は、下記反応式(3)
【0027】
【化11】
Figure 0004422256
【0028】
(式中、X はハロゲン原子を示す。)に従って反応は進行し、ハロゲン化リンとスルファミドとを有機溶媒中で反応させる。ハロゲン化リンに対するスルファミドのモル比は、通常0.4〜1、好ましくは0.4〜0.6、反応温度は、通常80〜120℃、好ましくは100〜120℃であり、反応時間は、通常1〜6時間、好ましくは2〜4時間である。反応溶媒としては、ハロゲン化リン及びスルファミドが溶解するもので、かつ不活性なものであれば特に限定はないが、例えばトルエン、キシレン、ベンゼン等の芳香族炭化水素類、1,1,1−トリクロロエタン、1,1,2−トリクロロエタン、1,1,1,2−テトラクロロエタン及び1,1,2,2−テトラクロロエタン等のハロアルカン類等が挙げられ、これらは1種又は2種以上組合わせて用いることができる。反応終了後は乾燥して、前記一般式(4)で表されるビスハロゲン化ホスファゼン誘導体を得ることが出来るが、本発明では、更に、常法の精製手段により精製を行うことが出来る。
【0029】
第二工程は、第一工程で得られた前記一般式(4)で表されるビスハロゲン化ホスファゼン誘導体と、R2−OM(式中、R2は前記と同義。Mはアルカリ金属を示す。)で表されるアルコラート類とを反応させて、目的とする前記一般式(2)で表されるスルホニル基を有するホスファゼン誘導体を得る工程である。
【0030】
反応原料となるR2−OMで表されるアルコラート類の式中、R2は、前記一般式(2)で表されるスルホニル基を有するホスファゼン誘導体の式中のR2に相当し、炭素数1〜10の直鎖状又は分岐状のアルキル基、炭素数1〜10のエーテル結合を有する基で置換されたアルキル基、ハロゲン原子で置換されたアルキル基を示し、Mは、ナトリウム、カリウム等のアルカリ金属を示す。
このビスハロゲン化ホスファゼン誘導体とアルコラート類との反応は、下記反応式(4)
【0031】
【化12】
Figure 0004422256
【0032】
(式中、M 及びX は前記に同じ、R2は前記と同義である。) に従って進行し、
前記一般式(4)で表されるビスハロゲン化ホスファゼン誘導体とアルコラート類とを有機溶媒中で反応させる。前記一般式(4)で表されるハロゲン化ホスファゼン誘導体に対するアルコラート類のモル比は、通常5〜7、好ましくは5.6〜6.6である。反応温度は、通常−50〜0℃、好ましくは−40〜−20℃、反応時間は、通常2〜24時間、好ましくは3〜12時間である。反応溶媒としては、前記ハロゲン化ホスファゼン誘導体と前記アルコラート類が溶解でき、かつ不活性な溶媒であれば特に限定はなく、例えば、ジオキサン、テトラヒドロフラン、ジブチルエーテル等のエーテル類、アセトニトリル、プロピオニトリル等の1種又は2種以上が挙げられ、このうち、1種又は2種以上を組合わせて用いることができる。反応終了後は抽出、脱水、乾燥等の常法により目的物を得ことができる。
【0033】
本発明の前記一般式(1)及び前記一般式(2)で表されるホスファゼン誘導体は、ホスファゼン化合物自体の難燃性機能とともに、スルホニル基を有することから優れた電気性能を有する。従って、例えば、リチウムイオン二次電池、リチウムイオン一次電池、ポリマー電池、ポリマー二次電池等の非水電解液電池、電解コンデンサー等の電池の電解液に含有させることにより、優れた難燃性能と電気特性を付与することができる。
【0034】
【実施例】
以下、本発明を実施例により詳細に説明するが本発明はこれらに限定されるものではない。
次に、実施例を挙げて、本発明を更に具体的に説明するが、これは単に例示であって、本発明を制限するものではない。
【0035】
実施例1
攪拌機を付けた四つ口フラスコに五塩化リン639.5g(3.06モル)、スルファミン酸97.1g(1.54モル)及びクロロベンゼン1Lを仕込み、窒素雰囲気中で12時間、100〜105℃で反応させた。反応終了後、常法により、乾燥、蒸留精製して、トリクロロホスファゾスルホニルクロライド265.7g(収率68.8%)を得た。次いで、攪拌機を付けた四つ口フラスコに上記で得たトリクロロホスファゾスルホニルクロライド185.3g(0.74モル)とTHF700mLを仕込み、ジエチレングリコールモノメチルエーテルのアルコラート溶液1066.5g(2.96モル)を、窒素雰囲気中で、−22〜−20℃で一昼夜攪拌下に反応させた。反応終了後、濃塩酸で中和した。次いで、水洗後、クロロホルムで抽出して得られた有機相を脱水、濃縮して、次式;
(CH3OCH2CH2OCH2CH2O)3P=N-SO2-OCH2CH2OCH2CH2OCH3
で示されるホスファゼン誘導体を325.9g(収率75.2%)得た。
(同定データ)
分子式:C2044NO14PS(分子量585.59)
Figure 0004422256
1H−NMR(CDCl):3.37ppm(s,12H) 、3.53〜3.55ppm(m,8H) 、3.64〜3.66ppm(m,8H) 、3.75〜3.78ppm(m,8H) 、4.22〜4.29ppm(m,2H) 、4.36〜4.41ppm(m,6H)
MASS(FAB):586 m/z(M +1)
【0036】
実施例2
攪拌機を付けた四つ口フラスコに五塩化燐66g(0.317モル)、スルファミド15g(0.156モル)を仕込み、窒素雰囲気中で1時間、120℃で反応させた。反応終了後、過剰の五塩化燐を昇華で除去し、ビス(トリクロロホスファゾ)スルホン57g(収率100%)を得た。次いで、攪拌機を付けた四つ口フラスコに上記で得たビス(トリクロロホスファゾ)スルホン4 6g(0.126モル)とTHFを仕込み、THF0.4Lにエチレングリコールモノメチルエーテルのアルコラート溶液84g(0.86モル)を溶液させたTHF溶液を、窒素雰囲気下で滴下し、−20〜−15℃で一昼夜攪拌下に反応させた。反応終了後、濾過、乾燥して次式;
(CH3OCH2CH2O)3P=N-SO2-N=P(OCH2CH2OCH3)3
で示されるホスファゼン誘導体Bを45g(収率59%)得た。
(同定データ)
分子式:C18422 142 S(分子量604.53)
Figure 0004422256
1H−NMR(CDCl):3.38ppm(s,18H) 、3.61〜3.65ppm(m,12H) 、4.35〜4.41ppm(m,12H)
MASS(FAB):605 m/z(M +1)
【0037】
実施例3
攪拌機を付けた四つ口フラスコに五塩化燐639.5g(3.06モル)、スルファミン酸97.1g(1.54モル)及びクロロベンゼン1Lを仕込み、窒素雰囲気中で4時間、100〜105℃で反応させた。反応終了後、常法により、乾燥、蒸留精製して、トリクロロホスファゾスルホニルクロライド265.7g(収率68.8%)を得た。次いで、攪拌機を付けた四つ口フラスコに上記で得たトリクロロホスファゾスルホニルクロライド97.3g(0.39モル)とTHF700mLを仕込み、エチレングリコールモノメチルエーテルのアルコラート溶液867.2g(1.62モル)を、窒素雰囲気中で、−40〜−35℃で一昼夜攪拌下に反応させた。反応終了後、酢酸で中和した。次いで、水洗後クロロホルムで抽出して得られた有機相を脱水、濃縮して、次式;
(CH3OCH2CH2O)3P=N-SO2-OCH2CH2OCH3
で示されるホスファゼン誘導体Cを129.2g(収率81.3%)得た。
(同定データ)
分子式:C1228NO10PS(分子量409.38)
Figure 0004422256
1H−NMR(CDCl):3.20ppm(s,12H) 、3.43〜3.49ppm(m,8H) 、4.07〜4.10ppm(m,2H) 、4.16〜4.22ppm(m,6H)
MASS(FAB):410 m/z(M +1)
【0038】
実施例4
攪拌機を付けた四つ口フラスコに五塩化燐66g(0.317)モル、スルファミド15g(0.156モル)を仕込み、窒素雰囲気中で1時間、120℃で反応させた。反応終了後、過剰の五塩化燐を昇華で除去し、ビス(トリクロロホスファゾ)スルホン57g(収率100%)を得た。次いで、攪拌機を付けた四つ口フラスコに上記で得たビス(トリクロロホスファゾ)スルホン56g(0.156モル)とTHFを仕込み、THF0.15Lにナトリウムエトキシドを溶解させたTHF溶液437g(0.96モル)を、窒素雰囲気下で滴下し、−25〜−20℃で一昼夜攪拌下に反応させた。反応終了後、濾過、乾燥して次式;(CH3CH2O)3P=N-SO2-N=P(OCH2CH3)3
で示されるホスファゼン誘導体Dを38g(収率57%)得た。
(同定データ)
分子式:C12302 82 S(分子量424.37)
Figure 0004422256
1H−NMR(CDCl):1.02−1.07ppm(m,18H) 、3.93〜4.03ppm(m,12H) MASS(FAB):425 m/z(M +1)
【0039】
【発明の効果】
上記したとおり、本発明のスルホニル基を有するホスファゼン誘導体は、優れた難燃性と電気特性を有する新規なホスファゼン誘導体であり、例えば、リチウムイオン二次電池、リチウムイオン一次電池、ポリマー電池、ポリマー二次電池等の非水電解液電池、電解コンデンサー等の電池の電解液に含有させることにより、優れた難燃性能と電気特性を付与することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel phosphazene derivative containing a sulfonyl group useful for flame retardancy of electrolytes, lubricating oils and the like, and a method for producing the same.
[0002]
[Prior art]
Conventionally, phosphazenes have been used in flame retardants, oil resistant elastomers, gas separation membranes, electrolytes and the like.
In recent years, non-aqueous electrolyte secondary batteries have excellent self-discharge characteristics such as high voltage and high energy density, so they are used as backup devices for information devices such as personal computers and VTRs, AV memories, and their drive power supplies. Attention is drawn to JP-A-06-13108, where the electrolyte of a non-aqueous electrolyte secondary battery is represented by (NPR 2 ) n (wherein R is a monovalent organic group and n is 3 to 15). A cyclic phosphazene derivative or a chain represented by R 3 (P═N) m -PR 4 (wherein m is selected from 1 to 20, R is selected from a monovalent organic group, O, or C). A non-aqueous electrolyte secondary battery has been proposed in which the risk of rupture and ignition at the time of a short circuit is eliminated by containing a type phosphazene derivative.
[0003]
[Problems to be solved by the invention]
However, the inclusion of this phosphazene derivative in the electrolyte can improve the flame retardance of the electrolyte to some extent, but there is a problem that the battery performance is lowered.
Also in the phosphazene compound, there has been a demand for the appearance of a novel phosphazene compound having an excellent electrical property as well as a function of imparting flame retardancy.
[0004]
Accordingly, an object of the present invention is to provide a phosphazene derivative having a sulfonyl group that retains excellent flame retardancy and electrical properties, and a method for producing the same.
[0005]
[Means for Solving the Problems]
The phosphazene derivative having a sulfonyl group to be provided by the present invention has the following general formula (1):
[0006]
[Chemical formula 5]
Figure 0004422256
[0007]
(In the formula, R 1 is a linear or branched alkyl group having 1 to 10 carbon atoms, an alkyl group substituted with a group having an ether bond having 1 to 10 carbon atoms, or an alkyl group substituted with a halogen atom. R 1 may be the same or different.) Or the following general formula (2);
[0008]
[Chemical 6]
Figure 0004422256
[0009]
(In the formula, R 2 is substituted with a linear or branched alkyl group having 1 to 10 carbon atoms, an alkyl group substituted with a group having an ether bond with 1 to 10 carbon atoms, a halogen atom or a fluorine atom. And R 2 may be the same or different.) Is a structural feature.
[0010]
The method for producing a phosphazene derivative having a sulfonyl group represented by the general formula (1) to be provided by the present invention comprises a phosphorus halide and a sulfamine represented by the general formula PX 5 (X represents a halogen atom). By reacting with an acid, the following general formula (3)
[0011]
[Chemical 7]
Figure 0004422256
[0012]
(Wherein X is as defined above), and then the obtained halogenated phosphazene derivative and general formula R 1 -OM (wherein R 1 is as defined above, M is as defined above) It represents an alkali metal.) It is structurally characterized by reacting with an alcoholate represented by
[0013]
Furthermore, the method for producing a phosphazene derivative having a sulfonyl group represented by the general formula (2) to be provided by the present invention includes a phosphorus halide represented by the general formula PX 5 (X is as defined above) and By reacting with sulfamide, the following general formula (4)
[0014]
[Chemical 8]
Figure 0004422256
[0015]
(Wherein X is as defined above), and then the obtained bishalogenated phosphazene derivative and the general formula R 2 -OM (wherein R 2 and M are the same as above) It is a structural feature to react with an alcoholate represented by the same formula.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
In the formula of the phosphazene derivative having a sulfonyl group represented by the general formulas (1) and (2), R 1 and R 2 are linear or branched alkyl groups having 1 to 10 carbon atoms, 1 carbon atom Represents an alkyl group substituted with a group having 10 to 10 ether bonds, an alkyl group substituted with a halogen atom, and in the formula of the general formula (1), R 1 may be the same or different; In the formula (2), R 2 may be the same or different. Examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, n-hexyl group, isohexyl group, n-heptyl group, n- Examples include an octyl group, an isooctyl group, an n-decyl group, and an isodecyl group. The ether bond of the group having an ether bond may have 1 or 2 or more. Further, the halogen atom is not particularly limited, but a chlorine atom or a fluorine atom is preferable.
[0017]
Subsequently, the manufacturing method of the phosphazene derivative which has a sulfonyl group represented by the said General formula (1) is demonstrated.
The method for producing a phosphazene derivative having a sulfonyl group represented by the general formula (1) of the present invention basically comprises a phosphorus halide and a sulfamic acid represented by the general formula PX 5 (X represents a halogen atom). In the first step to obtain the halogenated phosphazene derivative represented by the general formula (3), then the obtained halogenated phosphazene derivative and R 1 -OM (wherein R 1 is as defined above). M represents an alkali metal.) This is a second step of obtaining a target phosphazene derivative having a sulfonyl group represented by the general formula (1) by reacting with an alcoholate represented by the general formula (1). .
[0018]
In the formula of the phosphorus halide used as the reaction raw material in the first step, X is a halogen atom such as chlorine, bromine or iodine, and among these, a chlorine atom is preferable in terms of reactivity.
The reaction between this phosphorus halide and sulfamic acid is represented by the following reaction formula (1):
[0019]
[Chemical 9]
Figure 0004422256
[0020]
Proceeding according to the formula (wherein X represents a halogen atom), the phosphorus halide and sulfamic acid are reacted in an organic solvent. The molar ratio of sulfamic acid to phosphorus halide is usually 0.4 to 1.0, preferably 0.5 to 0.6, and the reaction temperature is usually 80 to 150 ° C., preferably 90 to 110 ° C. The time is usually 3 to 24 hours, preferably 6 to 12 hours. The reaction solvent is not particularly limited as long as it is capable of dissolving phosphorus halide and sulfamic acid, and is inactive. For example, aromatic hydrocarbons such as toluene, xylene, benzene, acetonitrile, propionitrile, etc. Nitriles, halogenated aromatic hydrocarbons such as chlorobenzene, and haloalkanes such as methylene chloride and chloroform. These can be used alone or in combination of two or more. After the completion of the reaction, the halogenated phosphazene derivative represented by the general formula (3) can be obtained by drying, but in the present invention, it can be further purified by a conventional purification means.
[0021]
In the second step, the halogenated phosphazene derivative represented by the general formula (3) obtained in the first step and R 1 -OM (wherein R 1 has the same meaning as described above. M represents an alkali metal. ) To obtain an objective phosphazene derivative having a sulfonyl group represented by the general formula (1).
[0022]
In the formula of alcoholates represented by R 1 -OM as a reaction raw material, R 1 corresponds to R 1 in the formula of the phosphazene derivative having a sulfonyl group represented by the general formula (1), and has a carbon number 1 to 10 linear or branched alkyl group, an alkyl group substituted with a group having an ether bond of 1 to 10 carbon atoms, an alkyl group substituted with a halogen atom, M is sodium, potassium, etc. The alkali metal is shown.
The reaction between this halogenated phosphazene derivative and alcoholates is represented by the following reaction formula (2)
[0023]
[Chemical Formula 10]
Figure 0004422256
[0024]
(Wherein M represents an alkali metal, and X and R 1 are the same as above), and the halogenated phosphazene derivative represented by the general formula (3) is reacted with the alcoholate in an organic solvent. . The molar ratio of the alcoholates to the halogenated phosphazene derivative is usually 0.5 to 6, preferably 3.6 to 4.4. The reaction temperature is usually −50 to 50 ° C., preferably −40 to −20 ° C., and the reaction time is usually 0.5 to 24 hours, preferably 3 to 12 hours. The reaction solvent is not particularly limited as long as it can dissolve halogenated phosphazene derivatives and alcohols, and is an inert solvent. For example, hydrocarbon, halogenated aromatic hydrocarbon, haloalkane, dioxane, tetrahydrofuran, dibutyl ether, etc. Ethers, acetonitrile, propionitrile, and the like. Among these, one kind or two or more kinds can be used in combination. After completion of the reaction, the desired product is obtained by conventional methods such as extraction, dehydration and drying.
[0025]
Next, a method for producing a phosphazene derivative having a sulfonyl group represented by the general formula (2) will be described.
The method for producing a phosphazene derivative having a sulfonyl group represented by the general formula (2) of the present invention basically comprises a phosphorus halide, a sulfamide represented by the general formula PX 5 (X represents a halogen atom), In the first step to obtain the bishalogenated phosphazene derivative represented by the general formula (4), and then the obtained bishalogenated phosphazene derivative and R 2 -OM (wherein R 2 and M are the same as the above) The second step of obtaining a target phosphazene derivative having a sulfonyl group represented by the general formula (2) by reacting with an alcoholate represented by the general formula (2).
[0026]
In the formula of the phosphorus halide used as the reaction raw material in the first step, X is a halogen atom such as chlorine, bromine or iodine, and among these, a chlorine atom is preferred in terms of reactivity.
The reaction between this phosphorus halide and sulfamide is represented by the following reaction formula (3):
[0027]
Embedded image
Figure 0004422256
[0028]
The reaction proceeds according to (wherein X represents a halogen atom), and phosphorus halide and sulfamide are reacted in an organic solvent. The molar ratio of sulfamide to phosphorus halide is usually 0.4 to 1, preferably 0.4 to 0.6, the reaction temperature is usually 80 to 120 ° C., preferably 100 to 120 ° C., and the reaction time is Usually 1 to 6 hours, preferably 2 to 4 hours. The reaction solvent is not particularly limited as long as it is capable of dissolving phosphorus halide and sulfamide and is inactive. For example, aromatic hydrocarbons such as toluene, xylene and benzene, 1,1,1- Examples include haloalkanes such as trichloroethane, 1,1,2-trichloroethane, 1,1,1,2-tetrachloroethane, and 1,1,2,2-tetrachloroethane, and the like. These may be used alone or in combination of two or more. Can be used. After completion of the reaction, the product can be dried to obtain the bishalogenated phosphazene derivative represented by the general formula (4). However, in the present invention, purification can be performed by a conventional purification means.
[0029]
In the second step, the bis-halogenated phosphazene derivative represented by the general formula (4) obtained in the first step and R 2 -OM (wherein R 2 is as defined above. M represents an alkali metal. .) To obtain a target phosphazene derivative having a sulfonyl group represented by the general formula (2).
[0030]
In the formula of the alcoholates represented by R 2 -OM as the reaction raw material, R 2 corresponds to R 2 in the formula of the phosphazene derivative having a sulfonyl group represented by the general formula (2), and has a carbon number 1 to 10 linear or branched alkyl group, an alkyl group substituted with a group having an ether bond of 1 to 10 carbon atoms, an alkyl group substituted with a halogen atom, M is sodium, potassium, etc. The alkali metal is shown.
The reaction between this bis-halogenated phosphazene derivative and alcoholates is represented by the following reaction formula (4)
[0031]
Embedded image
Figure 0004422256
[0032]
(Wherein M 1 and X are the same as above, R 2 is as defined above),
The bishalogenated phosphazene derivative represented by the general formula (4) is reacted with an alcoholate in an organic solvent. The molar ratio of the alcoholates to the halogenated phosphazene derivative represented by the general formula (4) is usually 5 to 7, preferably 5.6 to 6.6. The reaction temperature is usually −50 to 0 ° C., preferably −40 to −20 ° C., and the reaction time is usually 2 to 24 hours, preferably 3 to 12 hours. The reaction solvent is not particularly limited as long as it can dissolve the halogenated phosphazene derivative and the alcoholate and is an inert solvent. For example, ethers such as dioxane, tetrahydrofuran, dibutyl ether, acetonitrile, propionitrile, etc. 1 type or 2 types or more are mentioned, Among these, 1 type or 2 types or more can be used in combination. After completion of the reaction, the desired product can be obtained by conventional methods such as extraction, dehydration and drying.
[0033]
The phosphazene derivative represented by the general formula (1) and the general formula (2) of the present invention has excellent electrical performance because it has a sulfonyl group in addition to the flame retardant function of the phosphazene compound itself. Therefore, for example, by including in an electrolyte of a battery such as a non-aqueous electrolyte battery such as a lithium ion secondary battery, a lithium ion primary battery, a polymer battery or a polymer secondary battery, or an electrolytic capacitor, it has excellent flame resistance performance. Electrical properties can be imparted.
[0034]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these.
EXAMPLES Next, the present invention will be described more specifically with reference to examples. However, this is merely an example and does not limit the present invention.
[0035]
Example 1
A four-necked flask equipped with a stirrer was charged with 639.5 g (3.06 mol) of phosphorus pentachloride, 97.1 g (1.54 mol) of sulfamic acid, and 1 L of chlorobenzene, and 100 to 105 ° C. for 12 hours in a nitrogen atmosphere. It was made to react with. After completion of the reaction, it was dried and purified by distillation by a conventional method to obtain 265.7 g (yield 68.8%) of trichlorophosphazosulfonyl chloride. Next, 185.3 g (0.74 mol) of trichlorophosphazosulfonyl chloride obtained above and 700 mL of THF were charged in a four-necked flask equipped with a stirrer, and 1066.5 g (2.96 mol) of an alcoholate solution of diethylene glycol monomethyl ether. Was reacted in a nitrogen atmosphere at −22 to −20 ° C. with stirring all day and night. After completion of the reaction, the reaction mixture was neutralized with concentrated hydrochloric acid. Then, after washing with water, the organic phase obtained by extraction with chloroform is dehydrated and concentrated to obtain the following formula:
(CH 3 OCH 2 CH 2 OCH 2 CH 2 O) 3 P = N-SO 2 -OCH 2 CH 2 OCH 2 CH 2 OCH 3
As a result, 325.9 g (yield: 75.2%) of the phosphazene derivative represented by formula (1) was obtained.
(Identification data)
Molecular Formula: C 20 H 44 NO 14 PS ( molecular weight 585.59)
Figure 0004422256
1 H-NMR (CDCl 3 ): 3.37 ppm (s, 12H), 3.53 to 3.55 ppm (m, 8H), 3.64 to 3.66 ppm (m, 8H), 3.75 to 3.78 ppm (m, 8H), 4.22 to 4.29 ppm (m, 2H), 4.36-4.41 ppm (m, 6H)
MASS (FAB): 586 m / z (M + 1)
[0036]
Example 2
A four-necked flask equipped with a stirrer was charged with 66 g (0.317 mol) of phosphorus pentachloride and 15 g (0.156 mol) of sulfamide, and reacted at 120 ° C. for 1 hour in a nitrogen atmosphere. After completion of the reaction, excess phosphorus pentachloride was removed by sublimation to obtain 57 g of bis (trichlorophosphazo) sulfone (yield 100%). Subsequently, 4 g (0.126 mol) of the bis (trichlorophosphazo) sulfone obtained above and THF were charged into a four-necked flask equipped with a stirrer, and 84 g (0 g) of an alcoholate solution of ethylene glycol monomethyl ether in 0.4 L of THF. .86 mol) in THF was added dropwise under a nitrogen atmosphere, and the mixture was reacted at −20 to −15 ° C. with stirring overnight. After completion of the reaction, the solution is filtered and dried, then the following formula:
(CH 3 OCH 2 CH 2 O) 3 P = N-SO 2 -N = P (OCH 2 CH 2 OCH 3 ) 3
45 g (59% yield) of the phosphazene derivative B represented by
(Identification data)
Molecular formula: C 18 H 42 N 2 O 14 P 2 S (molecular weight 604.53)
Figure 0004422256
1 H-NMR (CDCl 3 ): 3.38 ppm (s, 18H), 3.61 to 3.65 ppm (m, 12H), 4.35 to 4.41 ppm (m, 12H)
MASS (FAB): 605 m / z (M + 1)
[0037]
Example 3
A four-necked flask equipped with a stirrer was charged with 639.5 g (3.06 mol) of phosphorus pentachloride, 97.1 g (1.54 mol) of sulfamic acid, and 1 L of chlorobenzene, and 100 to 105 ° C. for 4 hours in a nitrogen atmosphere. It was made to react with. After completion of the reaction, it was dried and purified by distillation by a conventional method to obtain 265.7 g (yield 68.8%) of trichlorophosphazosulfonyl chloride. Subsequently, 97.3 g (0.39 mol) of trichlorophosphazosulfonyl chloride obtained above and 700 mL of THF were charged into a four-necked flask equipped with a stirrer, and 867.2 g (1.62 mol) of an alcoholate solution of ethylene glycol monomethyl ether. ) In a nitrogen atmosphere at −40 to −35 ° C. with stirring overnight. After completion of the reaction, the reaction mixture was neutralized with acetic acid. Subsequently, the organic phase obtained by washing with water and extracting with chloroform is dehydrated and concentrated to obtain the following formula:
(CH 3 OCH 2 CH 2 O) 3 P = N-SO 2 -OCH 2 CH 2 OCH 3
As a result, 129.2 g (yield: 81.3%) of the phosphazene derivative C shown in FIG.
(Identification data)
Molecular formula: C 12 H 28 NO 10 PS (molecular weight 409.38)
Figure 0004422256
1 H-NMR (CDCl 3 ): 3.20 ppm (s, 12H), 3.43 to 3.49 ppm (m, 8H), 4.07 to 4.10 ppm (m, 2H), 4.16 to 4.22 ppm (m, 6H)
MASS (FAB): 410 m / z (M + 1)
[0038]
Example 4
A four-necked flask equipped with a stirrer was charged with 66 g (0.317) mol of phosphorus pentachloride and 15 g (0.156 mol) of sulfamide, and reacted at 120 ° C. for 1 hour in a nitrogen atmosphere. After completion of the reaction, excess phosphorus pentachloride was removed by sublimation to obtain 57 g of bis (trichlorophosphazo) sulfone (yield 100%). Next, the bis (trichlorophosphazo) sulfone 56 g (0.156 mol) obtained above and THF were charged in a four-necked flask equipped with a stirrer, and 437 g of a THF solution in which sodium ethoxide was dissolved in 0.15 L of THF ( 0.96 mol) was added dropwise under a nitrogen atmosphere and reacted at −25 to −20 ° C. with stirring all day and night. After completion of the reaction, filtration and drying are carried out, and the following formula: (CH 3 CH 2 O) 3 P = N—SO 2 —N = P (OCH 2 CH 3 ) 3
As a result, 38 g (yield 57%) of the phosphazene derivative D shown in FIG.
(Identification data)
Molecular formula: C 12 H 30 N 2 O 8 P 2 S ( molecular weight 424.37)
Figure 0004422256
1 H-NMR (CDCl 3 ): 1.02-1.07 ppm (m, 18H), 3.93 to 4.03 ppm (m, 12H) MASS (FAB): 425 m / z (M +1)
[0039]
【The invention's effect】
As described above, the phosphazene derivative having a sulfonyl group of the present invention is a novel phosphazene derivative having excellent flame retardancy and electrical characteristics. For example, a lithium ion secondary battery, a lithium ion primary battery, a polymer battery, and a polymer battery. By including it in the electrolyte of a battery such as a non-aqueous electrolyte battery such as a secondary battery or an electrolytic capacitor, excellent flame retardancy and electrical characteristics can be imparted.

Claims (5)

下記一般式(1);
Figure 0004422256
(式中、R1は、炭素数1〜10の直鎖状又は分岐状のアルキル基、炭素数1〜10のエーテル結合を有する基で置換されたアルキル基、ハロゲン原子で置換されたアルキル基を示し、R1は同一でも異なってもよい。)で表されることを特徴とするスルホニル基を有するホスファゼン誘導体。
The following general formula (1);
Figure 0004422256
(In the formula, R 1 is a linear or branched alkyl group having 1 to 10 carbon atoms, an alkyl group substituted with a group having an ether bond having 1 to 10 carbon atoms, or an alkyl group substituted with a halogen atom. And R 1 may be the same or different.) A phosphazene derivative having a sulfonyl group.
下記一般式(2);
Figure 0004422256
(式中、R2は、エーテル結合を有する基で置換された炭素数1〜10のアルキル基を示し、R2は同一でも異なってもよい。)で表されるスルホニル基を有するホスファゼン誘導体からなることを特徴とする非水電解液用難燃剤。
The following general formula (2);
Figure 0004422256
(Wherein R 2 represents an alkyl group having 1 to 10 carbon atoms substituted with a group having an ether bond, and R 2 may be the same or different). A flame retardant for a non-aqueous electrolyte,
請求項1に記載のスルホニル基を有するホスファゼン誘導体からなることを特徴とする非水電解液用難燃剤。  A flame retardant for a non-aqueous electrolyte, comprising the phosphazene derivative having a sulfonyl group according to claim 1. 一般式PX5(Xはハロゲン原子を示す。)で表されるハロゲン化リンとスルファミン酸とを反応させて、下記一般式(3)
Figure 0004422256
(式中、Xは前記と同義。)で表されるハロゲン化ホスファゼン誘導体を得、次いで、得られたハロゲン化ホスファゼン誘導体と一般式R1−OM(式中、R1は前記と同義。Mはアルカリ金属を示す。)で表されるアルコラート類とを反応させることを特徴とする請求項1記載の前記一般式(1)で表されるスルホニル基を有するホスファゼン誘導体の製造方法。
By reacting a phosphorus halide represented by the general formula PX 5 (X represents a halogen atom) with sulfamic acid, the following general formula (3)
Figure 0004422256
(Wherein X is as defined above), and then the obtained halogenated phosphazene derivative and general formula R 1 -OM (wherein R 1 is as defined above. M Is an alkali metal.) The method for producing a phosphazene derivative having a sulfonyl group represented by the general formula (1) according to claim 1, wherein the alcoholate represented by the formula (1) is reacted.
一般式PX5(Xはハロゲン原子を示す。)で表されるハロゲン化リンとスルファミドとを反応させて、下記一般式(4)
Figure 0004422256
(式中、Xは前記と同義。)で表されるビスハロゲン化ホスファゼン誘導体を得、次いで、得られたビスハロゲン化ホスファゼン誘導体と一般式R2−OM(式中、 2 前記と同義。Mはアルカリ金属を示す。)で表されるアルコラート類とを反応させることを特徴とする請求項2記載の前記一般式(2)で表されるスルホニル基を有するホスファゼン誘導体の製造方法。
By reacting a phosphorus halide represented by the general formula PX 5 (X represents a halogen atom ) with sulfamide, the following general formula (4)
Figure 0004422256
(Wherein X is as defined above), and then the obtained bishalogenated phosphazene derivative and general formula R 2 -OM (wherein R 2 is as defined above). M represents an alkali metal, The method of manufacturing the phosphazene derivative which has a sulfonyl group represented by the said General formula (2) of Claim 2 characterized by making it react with the alcoholates represented by these.
JP32544099A 1999-11-16 1999-11-16 Phosphazene derivative having sulfonyl group and process for producing the same Expired - Fee Related JP4422256B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32544099A JP4422256B2 (en) 1999-11-16 1999-11-16 Phosphazene derivative having sulfonyl group and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32544099A JP4422256B2 (en) 1999-11-16 1999-11-16 Phosphazene derivative having sulfonyl group and process for producing the same

Publications (2)

Publication Number Publication Date
JP2001139584A JP2001139584A (en) 2001-05-22
JP4422256B2 true JP4422256B2 (en) 2010-02-24

Family

ID=18176896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32544099A Expired - Fee Related JP4422256B2 (en) 1999-11-16 1999-11-16 Phosphazene derivative having sulfonyl group and process for producing the same

Country Status (1)

Country Link
JP (1) JP4422256B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017015996A1 (en) * 2015-07-28 2017-02-02 东莞市凯欣电池材料有限公司 Phosphonitrile fluoroalkyl sulfimide alkali metal salt and electrolyte solution containing the metal salt

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1328036B1 (en) 2000-09-07 2009-12-02 Bridgestone Corporation Additive for non aqueous-electrolyte secondary cell
JP5849373B2 (en) * 2011-11-11 2016-01-27 協同油脂株式会社 Flame retardant grease composition
JP6182113B2 (en) 2013-10-11 2017-08-16 富士フイルム株式会社 Method for producing amino-substituted phosphazene compound, method for producing electrolyte for non-aqueous secondary battery, and method for producing non-aqueous secondary battery
JP6302551B2 (en) 2014-07-03 2018-03-28 富士フイルム株式会社 Method for producing amino-substituted phosphazene compound, method for producing electrolyte for non-aqueous secondary battery, and method for producing non-aqueous secondary battery
WO2016002828A1 (en) 2014-07-04 2016-01-07 富士フイルム株式会社 Method for manufacturing amino-substituted phosphazene compound, method for manufacturing electrolyte for nonaqueous secondary cell, and method for manufacturing nonaqueous secondary cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017015996A1 (en) * 2015-07-28 2017-02-02 东莞市凯欣电池材料有限公司 Phosphonitrile fluoroalkyl sulfimide alkali metal salt and electrolyte solution containing the metal salt

Also Published As

Publication number Publication date
JP2001139584A (en) 2001-05-22

Similar Documents

Publication Publication Date Title
JP2019131530A (en) Method for producing sulfate ester
JP2000327634A (en) Fluorinated carbonate compound
CN107573371A (en) Cyclic disulfonic acid silicon substrate ester and preparation method thereof
JP4422256B2 (en) Phosphazene derivative having sulfonyl group and process for producing the same
EP1958952B1 (en) Ionic compounds
JP5584600B2 (en) Lithium ionic liquid crystal compound, production method thereof and liquid crystal material
JP4484318B2 (en) Sulfonyl group-containing phosphazene derivative and method for producing the same
CN111875525A (en) Cationic sulfoxide intermediate, polyarylene sulfide monomer and preparation method of polyarylene sulfide
US9994679B2 (en) Polymerization process of polyarylene sulfide
JP2019206502A (en) Carbonate group-containing silane compound and manufacturing method therefor
JP2021161223A (en) Phosphonium-containing polymer
JP5207516B2 (en) Method for producing 2,3-dicyanonaphthalene derivative
JP4221088B2 (en) Organic electrolyte
JP5054932B2 (en) Process for producing ionic compounds
JP5318479B2 (en) Luminescent ionic liquid
JP5060783B2 (en) Process for producing ionic compounds
JP4582286B2 (en) Sulfooxyalkynylthiophene compound and process for producing the same
JP2021024791A (en) Allyl isocyanurate compound and method for synthesizing the same
WO2018086379A1 (en) Cyanovinyl sulfonate and synthesis method thereof
US11180469B2 (en) Method for preparing sultone derivatives
JP5364307B2 (en) Process for producing ionic compounds
JP2000319230A (en) Production of bishexafluoroisopropyl carbonate
KR20230134979A (en) Method for manufacturing cyclic sulfite-based compounds
JP2006206515A (en) Methylenedisulfonyl chloride and method for producing derivative of the same
JP4336501B2 (en) Novel 4,4 "-dialkoxyterphenyls

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20081204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees