JP4406185B2 - 洗濯機 - Google Patents
洗濯機 Download PDFInfo
- Publication number
- JP4406185B2 JP4406185B2 JP2002027691A JP2002027691A JP4406185B2 JP 4406185 B2 JP4406185 B2 JP 4406185B2 JP 2002027691 A JP2002027691 A JP 2002027691A JP 2002027691 A JP2002027691 A JP 2002027691A JP 4406185 B2 JP4406185 B2 JP 4406185B2
- Authority
- JP
- Japan
- Prior art keywords
- current
- motor
- phase
- control
- speed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Control Of Ac Motors In General (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
- Control Of Washing Machine And Dryer (AREA)
Description
【発明の属する技術分野】
本発明は、洗い,濯ぎ及び脱水運転を行うための回転駆動力を発生させるモータについてトルク制御を行う制御手段を備えた洗濯機に関する。
【0002】
【従来の技術】
従来、全自動洗濯機においては、洗い,濯ぎ運転や脱水運転を行う場合に撹拌翼(パルセータ)或いは回転槽を回転させるモータにはブラシレスDCモータを使用し、そのブラシレスDCモータをインバータ回路によって駆動する方式が広く採用されている。そして、モータの駆動条件に応じてトルクを制御する場合は、モータの印加電圧を増減させるようにしている。
【0003】
図21は、洗濯機用モータの制御系の一構成例を示すものである。制御系は例えばマイクロコンピュータなどで構成されており、機能ブロックとしては、PI制御部1,洗いパターン出力部2,UVW変換部3,初期パターン出力部4,PWM形成部5及び位置検知部6等を備えている。
【0004】
PWM形成部5より出力される各相のPWM信号は、モータ7を駆動するインバータ回路8に出力される。また、モータ7にはロータの位置検出を行うためのホールセンサ9が組み込まれており、ホールセンサ9は、三相のうち二相(U,V)分の位置検出を行って位置検出信号を位置検知部6に出力するようになっている。
【0005】
PI制御部1は、洗濯機の運転制御を行う制御部(図示せず)より出力される脱水運転時の目標速度指令ωref と、位置検知部6より出力されるモータ7の検出速度ωとに基づいてモータ7の回転速度をPI制御し、PWM信号のデューティ指令と位相指令とをUVW変換部3に出力する。また、洗いパターン出力部2は、洗い運転時におけるデューティ指令と位相指令とを、PI制御部1に代わってUVW変換部3に出力するようになっている。
【0006】
UVW変換部3は、PI制御部1または洗いパターン出力部2より出力される指令をU,V,W各相の電圧指令に変換してPWM形成部5に出力する。また、初期パターン出力部4は、モータ7を停止状態から起動する場合に例えば120度通電パターンをUVW変換部3に代わってインバータ回路8に出力するようになっている。
【0007】
【発明が解決しようとする課題】
しかしながら、このような従来の制御方式では以下のような問題があった。即ち、モータ7の回転速度は発生トルクに比例するが、上記構成のように印加電圧で制御を行うと発生トルクは電圧に比例しないため、目標速度指令ωref とモータ7の検出速度ωとに差が生じやすく制御が不安定になりがちである。また、洗い運転時はモータ7の速度変動が大きくなるため(例えば、0→150rpmまで0.2秒)PI制御を適用することができず、洗いパターン出力部2への切換えが必要であった。
【0008】
また、インバータ回路8においてIGBT等のスイッチング素子をスイッチングさせる場合には、上アーム側の素子と下アーム側の素子とが同時にオンして短絡電流が流れることを防止するために、スイッチング状態が切り替わる時に必ず両方の素子が同時にオフとなる期間,所謂デッドタイムを設けるようにしている。そのため、インバータ回路8よりモータ7の各相巻線に出力される電流波形は、デッドタイムを設けることで変調された波形となってしまう。
【0009】
このデッドタイムは最低限の時間を確保する必要があるため、PWM変調の搬送波周波数が高く設定される程出力電流波形に与える影響は相対的に大きくなる。例えば、デッドタイムに3μsを確保するとオン時とオフ時とを合わせて6μsとなるが、PWM変調の搬送波周波数が5kHz(周期200ms)である場合の割合は3%であり、搬送波周波数が16kHz(周期62.5μs)である場合の割合は10%となる。一般に、洗濯機ではPWM変調波が可聴ノイズを発生することを抑制するため搬送波周波数を10kHz以上に設定することが多く、デッドタイムが出力電流波形に与える影響が大きくなることが回避し難い。
【0010】
即ち、デッドタイムによる変調がインバータ回路8の出力電圧を歪ませて出力電流波形も歪むことになり、その歪みは発生トルクの変動をもたらす。従って、モータ7の回転に伴ってコギングトルクが発生し、騒音や振動の原因となるという問題があった。
【0011】
本発明は上記事情に鑑みてなされたものであり、その目的は、モータのトルク制御をより高精度に行うことで、騒音や振動の発生を一層抑制することができる洗濯機を提供することにある。
【0012】
【課題を解決するための手段】
上記目的を達成するため、請求項1記載の洗濯機は、ダイレクトドライブ方式により、洗い,濯ぎ及び脱水運転を行うための回転駆動力を発生させる三相ブラシレスDCモータと、
このモータに流れる電流を検出する電流検出手段と、
この電流検出手段によって検出された電流に基づいて前記モータをベクトル制御することで、当該モータの発生トルクが少なくとも洗い運転と脱水運転との夫々について制御するトルク制御手段とを備える。
【0013】
即ち、トルク制御手段がベクトル制御を行うことで、q軸電流に比例させてモータのトルクを直接制御することができる。従って、従来のモータ制御よりも応答性を高めることができ、騒音や振動を低減することが可能となる。
【0014】
この場合、モータを駆動するためのインバータ回路を備え、電流検出手段は、前記インバータ回路を構成する下アーム側の各相スイッチング素子と直列に接続される抵抗に流れる電流を検出するので、変流器などの高価な電流センサを用いることなく、安価な構成でモータに流れる電流を検出することができる。
【0015】
また、電流検出手段は、三相のうち相電圧が最大レベルを示さない二相について電流を検出するので、二相の電流を検出すれば残りの一相についても推定することができ、インバータ回路を構成する下アーム側のスイッチング素子がオンしている期間の中間位相でA/D変換を行うので、相電流を確実にサンプリングすることができる。
【0016】
ところで、電流を検出するためには、下アーム側のスイッチング素子をオンさせて抵抗に相電流を流す必要がある。そのため、三相のうち相電圧が最大レベルを示す相について電流を検出しようとすると、相電圧の最大値を低下させることになる。このようにモータの駆動電圧を低下させると巻線に流れる電流が増加するため、抵抗損失が増えて効率を悪化させることになる。そこで、三相のうち相電圧が最大レベルを示さない二相について電流を検出すれば相電圧の最大値が制限されなくなるため、モータの効率が向上する。
また、トルク制御手段の前段において、速度指令と電流検出手段によって検出された電流から得られるモータの回転速度とに基づいて、モータの速度をPI制御する速度制御手段を備えるので、モータの負荷が変動しても所定の回転速度を得ることができるので洗浄力を安定させることができる。
そして、速度制御手段は、PI制御に用いる制御ゲインを少なくとも洗い運転と脱水運転との夫々の回転速度に応じて変更する。即ち、洗い運転と脱水運転とではモータの駆動条件が大きく相違するため、制御ゲインを夫々の駆動条件に合わせて適切な値に設定すれば、振動の発生を有効に抑制することができる。
【0024】
【発明の実施の形態】
以下、本発明を縦軸形の全自動洗濯機に適用した第1の実施例につき、図1ないし図12を参照して説明する。
まず、図3は、全自動洗濯機11の全体構成を示す縦断面図である。すなわち、全体として矩形状をなす外箱12内には、水受槽13が、4組(1組のみ図示)の防振機構14を介して弾性支持されている。この場合、防振機構14は、上端が外箱12内において上方に係止された吊り棒14aと、その吊り棒14aの他端側に取り付けられた振動減衰用のダンパー14bとを含んで構成されている。これらの防振機構14を介して水受槽13が弾性支持されることにより、洗濯運転時に発生する振動が外箱12に極力伝達されないようにしている。
【0025】
上記水受槽13内には、洗濯槽兼脱水槽用の回転槽15が配設されており、この回転槽15の内底部には、撹拌体(パルセータ)16が配設されている。上記回転槽15は、槽本体15aと、この槽本体15aの内側に設けられた内筒15bと、これらの上端部に設けられたバランスリング15cとから構成されている。そして、この回転槽15が回転されると、内部の水を回転遠心力により揚水して槽本体15aの上部の脱水孔15dから水受槽13内に放出するようになっている。
【0026】
また、回転槽15の底部には、通水口17が形成されており、この通水口17は、排水通路17aを通して排水口18に連通されている。そして、排水口18には、排水弁19を備えた排水路20が接続されている。従って、排水弁19を閉塞した状態で回転槽15内に給水すると、回転槽15内に水が貯溜され、排水弁19を開放すると、回転槽15内の水は排水通路17a、排水口18および排水路20を通じて排出されるようになっている。
【0027】
水受槽13の底部には、補助排水口18aが形成されており、この補助排水口18aは、図示しない連結ホースを介し前記排水弁19をバイパスして前記排水路20に接続され、前記回転槽15が回転したときに、その上部から水受槽13内に放出された水を排出するようになっている。
【0028】
また、前記水受槽13の外底部には、機構部ハウジング21が取付けられており、この機構部ハウジング21には、中空の槽軸22が回転自在に設けられ、この槽軸22には、回転槽15が連結されている。また、槽軸22の内部には、撹拌軸23が回転自在に設けられており、この撹拌軸23の上端部には、撹拌体16が連結されている。そして、撹拌軸23の下端部は、モータとしてのアウタロータ形のブラシレスモータ24のロータ24aに連結されている。このブラシレスモータ24は、洗い時には、撹拌体16を直接正逆回転駆動するようになっている。
【0029】
また、ブラシレスモータ24は、脱水時には、図示しないクラッチにより槽軸12と撹拌軸13とが連結された状態で、回転槽15および撹拌体16を一方向に直接回転駆動するようになっている。従って、本実施例では、ブラシレスモータ24の回転速度は、洗い時には撹拌体16のそれと同一になり、脱水時には回転槽15および撹拌体16のそれと同一になる、いわゆる、ダイレクトドライブ方式が採用されている。
【0030】
図1は、洗濯機11の制御系の構成を示す機能ブロック図である。尚、図1において、(α,β)は、三相ブラシレスモータ24の各相に対応する電機角120度間隔の三相(UVW)座標系を直交変換した直交座標径を示し、(d,q)は、ブラシレスモータ24のロータ24aの回転に伴って回転している2次磁束の座標系を示すものである。
【0031】
減算器25には、目標速度指令ωref が被減算値として、エスティメータ(Estimator) 26によって検出されたブラシレスモータ24の検出速度ωが減算値として与えられている。目標速度指令ωref は、洗濯機11の運転全般を制御する制御用のマイクロコンピュータ(マイコン)46より出力されるものである。そして、減算器25の減算結果は、速度PI制御部27に与えられている。
【0032】
速度PI制御部27は、目標速度指令ωref と検出速度ωとの差分量に基づいてPI制御を行い、q軸電流指令値Iqrefとd軸電流指令値Idrefとを生成して減算器28,29に被減算値として夫々出力する。尚、洗いまたは濯ぎ運転時におけるd軸電流指令値Idrefは“0”に設定され、脱水運転時には、弱め界磁制御を行うためd軸電流指令値Idrefは所定値に設定される。減算器28,29には、αβ/dq変換部30より出力されるq軸電流値Iq,d軸電流値Idが減算値として夫々与えられており、減算結果は、電流PI制御部31q,31dに夫々与えられている。
【0033】
電流PI制御部31q,31dは、q軸電流指令値Iqrefとd軸電流指令値Idrefとの差分量に基づいてPI制御を行い、q軸電圧指令値Vq及びd軸電圧指令値Vdを生成してdq/αβ変換部32に出力する。dq/αβ変換部32には、エスティメータ26によって検出されたブラシレスモータ24における2次磁束の回転位相角(ロータ位置角)θが与えられており、その回転位相角θに基づいて電圧指令値Vd,Vqを電圧指令値Vα,Vβに変換するようになっている。
【0034】
dq/αβ変換部32が出力する電圧指令値Vα,Vβは、αβ/UVW変換部33に与えられている。αβ/UVW変換部33は、電圧指令値Vα,Vβを三相の電圧指令値Vu,Vv,Vwに変換して出力する。電圧指令値Vu,Vv,Vwは、切換えスイッチ34u,34v,34wの一方の固定接点34ua,34va,34waに与えられており、他方の固定接点34ub,34vb,34wbには、初期パターン出力部35によって出力される起動用の電圧指令値Vus,Vvs,Vwsが与えられている。そして、切換えスイッチ34u,34v,34wの可動接点34uc,34vc,34wcは、PWM形成部36の入力端子に接続されている。
【0035】
PWM形成部36は、電圧指令値Vus,Vvs,Vwsに基づいて16kHzの搬送波(三角波)を変調した各相のPWM信号Vup(+,-) ,Vvp(+,-) ,Vwp(+,-) をインバータ回路37に出力するようになっている。PWM信号Vup〜Vwpは、例えばモータ24の各相巻線24u,24v,24w(図2参照)に正弦波状の電流が通電されるように正弦波に基づいた電圧振幅に対応するパルス幅の信号として出力される。
【0036】
インバータ回路37は、図2に示すように、6個のIGBT(スイッチング素子)38a〜38fを三相ブリッジ接続して構成されており、下アーム側のIGBT38d,38eのエミッタは、夫々電流検出用のシャント抵抗(電流検出手段)39u,39vを介してグランドに接続されている。また、両者の共通接続点は、増幅・バイアス回路40u,40vを介して図1に示すA/D変換部(電流検出手段)41に接続されている。尚、シャント抵抗39の抵抗値は0.1Ω程度である。
【0037】
増幅・バイアス回路40はオペアンプなどを含んで構成されており、シャント抵抗39の端子電圧を増幅すると共にその増幅信号の出力範囲が正側に収まるように(例えば、0〜+5V)バイアスを与えるようになっている。また、増幅・バイアス回路40u,40vの出力端子は、ダイオード42u,42vを介して過電流検知部43の入力端子に共通に接続されている。
【0038】
過電流検知部43は、増幅・バイアス回路40u,40vの出力信号レベルを参照して何れかの相に過電流が流れたことを検出すると、過電流検出信号を制御部47(制御用マイコン46と後述するDSP45を含む)に出力してインバータ回路37によるモータ24の駆動を停止させるようになっている。尚、W相の電流に関しては、U,V相の電流に基づいて間接的に推定を行うことができる。
【0039】
また、インバータ回路37には、100Vの交流電源48を、ダイオードブリッジで構成される全波整流回路49及び直列接続された2個のコンデンサ50a,50bにより倍電圧全波整流した約280Vの直流電圧が印加されるようになっている。
【0040】
再び図1を参照して、A/D変換部41は、増幅・バイアス回路40u,40vの出力信号をA/D変換した電流データIu,IvをUVW/αβ変換部44に出力する。UVW/αβ変換部44は、電流データIu,IvからW相の電流データIwを推定し、三相の電流データIu,Iv,Iwを(1)式に従って直交座標系の2軸電流データIα,Iβに変換する。
【数1】
そして、2軸電流データIα,Iβをαβ/dq変換部30に出力する。
【0041】
αβ/dq変換部30は、ベクトル制御時にはエスティメータ26よりモータ24のロータ位置角θを得ることで、(2)式に従って2軸電流データIα,Iβを回転座標系(d,q)上のd軸電流値Id,q軸電流値Iqに変換する。
【数2】
そして、d軸電流値Id,q軸電流値Iqを前述したようにエスティメータ26及び減算器28,29に出力するようになっている。
【0042】
エスティメータ26は、d軸電流値Id,q軸電流値Iqに基づいてロータ24a位置角θ及び回転速度ωを推定し、各部に出力する。ここで、モータ24は、起動時には初期パターン出力部35によって直流励磁が行われてロータ24aの回転位置が初期化された後、起動パターンが印加され強制転流が行われる。この起動パターンの印加による強制転流時においては、位置角θは推定するまでもなく明らかである。そして、αβ/dq変換部30は、ベクトル制御が開始される直前において初期パターン出力部35より得られる位置角θinitを初期値として、電流値Id,Iqを演算して出力する。
【0043】
ベクトル制御の開始以降は、エスティメータ26が起動されてロータ24a位置角θ及び回転速度ωが推定される。この場合、エスティメータ26がαβ/dq変換部30に出力するロータ位置角θn とすると、エスティメータ26は、電流値Id,Iqに基づいてベクトル演算により推定したロータ位置角θn-1 とその一周期前に推定したロータ位置角θn-2 との相関に基づいてロータ位置角θn を推定するようになっている。
【0044】
尚、以上の構成において、インバータ回路37,増幅・バイアス回路40,ダイオード42及び過電流検知部43を除く構成は、主にDSP(Digital Signal Processor,トルク制御手段)45のソフトウエアによって実現されている機能である。そして、速度PI制御部27による速度制御周期は1m秒以下になるように設定されている。また、DSP45にベクトル制御を開始させたり目標速度指令ωref を与えることは、制御用マイコン46によって行われる。
【0045】
また、本実施例では、モータ24を起動する場合、後述するように、ベクトル制御の開始前に従来構成と同様のPI制御を一時的に行うようになっている。そのため、図21に示す構成のPI制御部1,UVW変換部3を並列に備えており、実際には、UVW変換部3より出力される電圧指令Vu,Vv,Vwについても切換えスイッチ34部分で切り替えてPWM形成部36に出力することができるようになっている。
【0046】
次に、本実施例の作用について図4乃至図12をも参照して説明する。図4は、主に制御用マイコン46による概略的な制御内容を示すフローチャートである。制御用マイコン46は、例えば洗い運転を開始させる場合に前述した起動処理を行う(ステップS1)。即ち、切替えスイッチ34u〜34wの可動接点34uc〜34wcを固定接点34ub〜34wbに接続して初期パターン出力部35により直流励磁を行わせ、ロータ24aの回転位置を初期化させてから電圧指令値Vus〜Vwsをインバータ回路37に与えてモータ24を強制転流させる(ステップS2)。すると、モータ24は回転を開始し、回転速度は徐々に上昇して行く。
【0047】
それから、制御用マイコン46は、例えば、初期パターン出力部35によって与えられる検知信号によりモータ24の回転数が20rpmに達したと判断すると(ステップS3,「YES」)、切替えスイッチ34u〜34wの可動接点34uc〜34wcを固定接点34ua〜34waに接続するように切り替えると共に目標速度指令ωref の出力を開始し、従来と同様の構成による電圧制御(PI制御)を行う(ステップS4)。即ち、回転速度が比較的低い領域では、ベクトル制御を高精度で行うことが困難となるからである。
【0048】
続いて、制御用マイコン46は、エスティメータ26より与えられる回転速度ωを参照してモータ24の回転数が60rpmに達したと判断すると(ステップS5,「YES」)、ベクトル制御を開始させる(ステップS6)。その後は、運転停止の指示があるまで運転を継続する(ステップS7)。
【0049】
以下、ステップS6以降におけるベクトル制御について処理の流れを説明する。PWM形成部36は、内部のアップダウンカウンタ(図示せず)のカウンタ出力によって16kHzのPWM搬送波を生成しており、そのカウンタ値が“0”,即ち三角波の谷に達した時点で変換タイミング信号をA/D変換部41に出力するようになっている(図5参照)。
【0050】
図5に示すように、PWM形成部36は、αβ/UVW変換部33が出力する電圧指令値Vu〜VwとPWM搬送波とのレベルを比較して、後者のレベルが前者を上回っている期間に上アーム側のIGBT38a〜38cがオンするようにPWM信号Vup(+) 〜Vwp(+) を出力する。そして、下アーム側のIGBT38d〜38fは、上アーム側のIGBT38a〜38cがオフしている期間にデッドタイムを挟んでオンされるようになっている。
【0051】
また、図6には、モータ24の相電流の反転IMINVとシャント抵抗39に流れる電流ISR及び相電圧との関係を示す波形図である。即ち、電流ISRが流れる期間は、下アーム側のIGBT38がオンして相電圧が0Vを示す場合である。従って、三角波の谷は、下アーム側のIGBT38d〜38fがオンしている期間の中間位相を示すことになる。つまり、A/D変換部41が、PWM形成部36内部のカウンタ値“0”の時点でA/D変換を行うようにすれば、インバータ回路37の下アーム側に流れる相電流を確実にサンプリングすることができる。
【0052】
A/D変換部41によりA/D変換された電流値Iu,Ivは、推定された電流値Iwと共にUVW/αβ変換部44,αβ/dq変換部30を介すことで2軸電流データIα,Iβ,→Id,Iqに変換され、エスティメータ26及び減算器28,29に出力され、エスティメータ26によって位置角θ及び回転速度ωが推定される。尚、電流Iqは、モータ24の2次磁束の方向に対して垂直となる方向に流れる電流であり、トルクの発生に寄与する電流成分である。一方、電流Idは、2次磁束の方向に対して水平となる方向に流れる電流であり、トルクの発生には寄与しない電流成分である。
【0053】
そして、速度PI制御部27は、制御用マイコン46より与えられる目標速度指令ωref と検出速度ωとの差分量に基づいてq軸,d軸電流指令値Iqref,Idrefを出力し、電流PI制御部31q,31dは、指令値Iqref,Idrefと検出された電流値Iq,Idとの差分に基づいて電圧指令値Vq,Vdを出力する。
【0054】
電圧指令値Vq,Vdは、dq/αβ変換部32,αβ/UVW変換部33を介して電圧指令値Vu,Vv,Vwに変換されてPWM形成部36に出力され、PWM形成部36がインバータ回路37にPWM信号Vup〜Vwpを出力する。すると、モータ24の各相巻線24u〜24wに通電が行われる。
【0055】
ここで、図7は、回転槽15を250rpmで回転させた場合に回転速度が変動する状態を示すものであり、(a)は本実施例の構成による場合、(b)は従来構成による場合を示す。円の直径方向は回転速度の大きさ(250rpmを中心として±3rpm)を表し、周方向は回転槽15の回転位置を表している。尚、(洗濯物+水分)に相当する負荷として16kgのウエイトを回転槽15内に配置している。また、回転槽15の上端部,下端部には、夫々400g,300gの流体バランサを配置している。
【0056】
図7(b)に示す従来構成の場合は、回転変動に回転角と連動した周期性を有しており、特定の回転位置について大きく偏るように回転変動が発生している(最大変動差は6rpm程度)。これに対して、図7(a)に示す本実施例の構成による場合、回転速度は回転位置の全般に渡って略250rpmとなっている(最大変動差は1rpm程度)。即ち、本実施例の構成により回転変動が効果的に抑制されていることが明らかである。
【0057】
また、図8及び図9には、本実施例の構成と従来構成とにおける脱水運転開始時の回転槽15の揺れ量(変位量)を示す。図8に示す本実施例の場合は、図9に示す従来構成の場合と比較してレベルの小さい揺れ量のピークが早い時間に発生して急速に収束している。即ち、回転速度の変動が少なくなったことで運転時に発生する振動を抑制することが可能となっている。また、図10には、従来構成と本実施例の構成とが夫々発生させる騒音レベルを比較したものを示す。本実施例の構成によって騒音レベルが最大で2dB程度低減されている。
【0058】
加えて、図11には、本実施例の構成における洗い運転時の目標速度指令ωref とモータ24の回転速度ωとを示し、図12は、従来構成においてPI制御部1が出力するデューティ指令Dutyとモータ7の回転速度ωとを示す。これらの図から明らかなように、本実施例の場合は、目標速度指令ωref に対する回転速度ωの追従が良好であり回転変動も少なく安定している。
【0059】
以上のように本実施例によれば、全自動洗濯機11において洗い,すすぎ及び脱水運転を行うための回転駆動力を発生させるモータ24に流れる電流を、インバータ回路37を構成するアーム側のIGBT38d,38fのエミッタ側に配置したシャント抵抗39u,39vにより検出し、検出した電流Iu,Ivに基づいてモータ24をDSP45によりベクトル制御すると共に制御周期1m秒で速度制御を行い、発生トルクが洗い,すすぎ運転と脱水運転との夫々について最適となるように制御する構成とした。
【0060】
即ち、ベクトル制御によりq軸電流に比例させてモータ24のトルクを直接制御することができるので、従来の制御方式よりも応答性を高めて運転時に発生しようとする周期の短い振動成分を効果的に抑制でき、騒音や振動を効果的に低減することが可能となる。従って、洗濯機11の外箱を小形に構成することができ、また、モータ24の無駄な駆動力を減らすことによって省エネルギ効果を得ることもでき、洗浄力を向上させることが可能である。
【0061】
また、電流検出をシャント抵抗39u,39vを用いて行うので、変流器などの高価な電流センサを用いることなく、安価な構成でモータに流れる電流を検出することができる。そして、三相のうち何れか二相(U,V)の電流を検出し残り一相の電流を推定により求めたので、構成をより簡単にすることができる。
【0062】
更に、本実施例によれば、DSP45の内部で実質的にトルク制御を行うdq/αβ変換部32の前段で、速度PI制御部27により目標速度指令ωref と回転速度ωとに基づきモータ24の速度をPI制御するので、モータ24の負荷が変動しても所定の回転速度を得ることができ、洗浄力を安定させることができる。そして、電流PI制御部31q,31dは電流についてもPI制御を行い、dq/αβ変換部32に対してq軸及びd軸電圧指令値Vq,Vdを出力するので、所定の回転速度を得るために必要なトルクを適切に得ることができる。また、本実施例によれば、モータ24の回転速度が60rpmまで上昇した時点からベクトル制御を開始するので、ベクトル制御を高精度で安定して行うことができる。
【0063】
加えて、増幅・バイアス回路40u,40vの出力側に配置した過電流検知部43がモータ24の巻線24u〜24wに流れる過電流を検出すると、制御用マイコン46に検出信号を出力してモータ24の駆動制御を停止するようにしたので、モータ24の少なくとも一相に短絡が発生した場合でも過電流を検出して安全を図ることができる。
【0064】
図13乃至図16は本発明の第2実施例を示すものであり、第1実施例と同一部分には同一符号を付して説明を省略し、以下異なる部分についてのみ説明する。第2実施例の構成では、電流検出用としてW相用のシャント抵抗39w及び増幅・バイアス回路40wが追加されており、三相全てについて電流検出を行うようになっている。また、ダイオード42u,42vは取り除かれて、過電流検知部43は各相に対応して3つ(43u,43v,43w)配置されている。そして、それら3つの過電流検知部43u,43v,43wの出力端子は共通に接続されており、制御部47Aの入力ポートに接続されている。
【0065】
この場合、例えば過電流検出信号をロウアクティブとして、過電流検知部43u,43v,43wの出力部分をオープンドレイン構成としている。また、制御部47AのA/D変換部(電流検出手段)41Aは、図14に示すように、内部に2チャンネル分のコンバータ41A(1),41A(2)を備えており、三相の電流入力に対してそれら2チャンネルを切り替えて接続し、対応するように構成されている。コンバータ41A(1),41A(2)の切替えは、PWM形成部36より出力されるPWM信号の通電位相角(電気角)に基づいて行われるようになっている。その他の構成については第1実施例と同様である。
【0066】
次に、第2実施例の作用について図15及び図16をも参照して説明する。図15は、モータ24に二相変調波通電を行った場合、各相巻線に現れる相電圧Vmu,Vmv,Vmwと、A/D変換部41Aにおける各相電流の検出タイミングを示すものである。例えば、電気角(π/6)から(5π/6)の位相区間はU相電圧がV,W相電圧よりも高くなり最大レベルを示す区間であり、当該区間ではコンバータ41A(1),41A(2)によってV,W相電流を検出する。即ち、V,W相の下アーム側IGBT39e,39fがオンするタイミングで電流検出を行う。
【0067】
それに続く電気角(5π/6)から(3π/2)の位相区間はV相電圧がU,W相電圧よりも高くなる区間であり、当該区間ではコンバータ41A(1),41A(2)によってU,W相電流を検出し、電気角(3π/2)から(2π+π/6)の位相区間はW相電圧がU,V相電圧よりも高くなる区間であり、当該区間ではU,V相電流を検出するように切替えを行う。
【0068】
即ち、電流を検出するためには、下アーム側のIGBT38をオンさせて抵抗39に相電流を流す必要がある。そのため、三相のうち相電圧が最大レベルを示す相について電流を検出しようとすると相電圧の最大値を低下させることになりモータ24の巻線に流れる電流が増加するため、抵抗損失が増えて効率を悪化させることになる。図16には、モータ24の最大出力電圧(相電圧)と消費電力との関係を示す。
【0069】
例えば、最大レベルを示す相について電流を検出する場合には、インバータ回路37の駆動電圧が280V程度である場合は印加電圧を250V程度に制限する必要があった。そこで、三相のうち相電圧が最大レベルを示さない二相について電流を検出すれば相電圧の最大値が制限されなくなるため、モータ24の効率が向上する。
【0070】
以上のように構成した第2実施例によれば、A/D変換部41Aは、通電電気角に基づいて、三相のうち相電圧が最大レベルを示さない二相について電流を検出するので、相電圧が最大レベルを示す区間では下アーム側のIGBT38をオンすることなくPWM信号のデューティを100%に設定できるので、モータ24の効率を向上させることができる。インバータ回路37の駆動電圧が280V程度である場合は、消費電力を約15W低減することができる。
尚、三相変調波による正弦波通電を行う場合でも、同様に適用することができる。
【0071】
図17は本発明の第3実施例を示すものであり、第1実施例と異なる部分についてのみ説明する。第3実施例では、インバータ回路37の下アーム側に接続されているシャント抵抗が各相毎に2個直列に接続されている。即ち、U相については抵抗39ua及び39ub,V相については抵抗39va及び39vb,W相については抵抗39wa及び39wbが配置されている。
【0072】
そして、IGBT38d,38e,38fのエミッタと抵抗39ua,39va,39waとの共通接続点には、増幅・バイアス回路40ua,40va,40waの入力端子が接続されており、各抵抗の直列回路の共通接続点には、増幅・バイアス回路40ub,40vb,40wbの入力端子が接続されている。そして、各増幅・バイアス回路40の出力端子は、制御部(電流検出手段)47Bの入力ポートに接続されている。
【0073】
次に、第3実施例の作用について説明する。洗濯機11の運転態様に応じてモータ24にかかる負荷は変動し巻線に流れる電流量は増減するが、その電流量が比較的大きくなる運転時には抵抗39ub,39vb,39wb側で電流検出を行い、電流量が比較的小さくなる運転時には抵抗39ua,39va,39wa側で電流検出を行うようにする。
【0074】
以上のように構成された第3実施例によれば、制御部47Bは、モータ24の巻線に流れる電流量に応じて検出用抵抗の抵抗値を切り替えるので、負荷変動が大きい洗濯機11に用いる場合でも、電流検出を常に精度良く行うことができる。
【0075】
図18乃至図20は本発明の第4実施例を示すものである。第4実施例では、シャント抵抗39u,39v,39wは取り除かれている。そして、インバータ回路37の出力端子37v,37wとモータ24の巻線24v,24wとの間には、シャント抵抗51v,51wが夫々介挿されている。これらのシャント抵抗51v,51wの両端には、電流検出IC52v,52wの入力端子が接続されている。
【0076】
電流検出IC52v,52wは、例えばInternational Rectifier 社のIR2171などであり、図19に示すようにシャント抵抗51v,51wの端子電圧に応じたPWM信号を40kHzの搬送波で制御部47Cに出力するようになっている。即ち、入力端子Vin+ 〜Vin- 間の電位差が±260mVのレンジで変化すると、PWM信号のデューティ比は93%〜7%のレンジで変化して出力されるようになっている。電流検出IC52v,52wによって出力されるPWM信号は、制御部47Cの入力ポートに与えられている。
【0077】
次に、第4実施例の作用について図20をも参照して説明する。図20(a)は、電流検出IC52が出力するPWM信号波形及び制御部47C内部のDSPが備えているカウンタ(何れも図示せず)のカウンタ値の変化を示し、図20(b)は、前記DSPによって実行される処理の流れを示すフローチャートである。DSPには、電流検出IC52v,52wによって出力されるPWM信号の立下がりエッジによって割り込みがかかり、図20のフローチャート(サブルーチンXINTxSVR)が実行されるようになっている。
【0078】
図20(a)に示すように、カウンタのカウンタ値は、PWM信号の立上がり,立下がりのタイミングで、キャプチャユニットCAPxFIFO(old) ,CAPxFIFO(new) によって夫々ラッチされるようになっている。そして、DSPは、図20(b)の処理を開始すると、それら2つのキャプチャユニットCAPxFIFO(old) ,CAPxFIFO(new) にラッチされているデータをレジスタAR5,AR6に読み込む(ステップD1)。
【0079】
次に、DSPは、PWM信号のオフ期間IxDelta1を計算する(ステップD2)。この場合、レジスタAR5の値を変数IxTime1 に代入し、オフ期間IxDelta1を次式によって計算する。
IxDelta1=IxTime1 −IxTime2 …(3)
ここで、IxTime2 は、1つ前の周期におけるPWM信号の立下がりタイミングでのカウンタ値が、次に述べるステップD3で代入されている。
【0080】
続いて、DSPは、PWM信号のオン期間IxDelta2を計算する(ステップD3)。この場合、レジスタAR6の値を変数IxTime2 に代入し、オン期間IxDelta2を次式によって計算する。
IxDelta2=IxTime2 −IxTime1 …(4)
そして、DSPは、電流値Ixを計算する(ステップD4)。電流値Ixは、オン期間IxDelta2を、オフ期間IxDelta1とオン期間IxDelta2との和で除したもので求められる。即ち、
Ix=IxDelta2/(IxDelta1+IxDelta2) …(5)
【0081】
以上のように第4実施例によれば、インバータ回路37の出力端子37v,37wとモータ24の巻線24v,24wとの間にシャント抵抗51v,51wを介挿し、これらのシャント抵抗51v,51wの両端に電流検出IC52v,52wを接続して、これらの電流検出IC52v,52wより出力されるPWM信号に基づいて電流を検出するので、第1または第2実施例と同様の効果が得られる。
【0082】
本発明は上記し且つ図面に記載した実施例にのみ限定されるものではなく、次のような変形または拡張が可能である。
ベクトル制御は、少なくとも洗い運転と脱水運転とについてのみ行うようにすれば良い。
速度制御の制御周期は1m秒に限ることなく、50m秒以内の範囲で適宜設定すれば騒音や振動を抑制する効果を十分に得ることができる。
更に、速度PI制御に用いる制御ゲインをモータ24の回転速度に応じて変更するように構成しても良い。例えば、モータ24の回転速度が回転槽15などを中心とする振動系の固有振動数付近に達する場合に、制御ゲインの値がより大きくなるように設定してPI制御がより強く作用するようにすれば、振動の発生を有効に抑制することができる。
この場合、速度PI制御に用いる制御ゲインを、少なくとも洗い運転と脱水運転との夫々の場合に変更するように構成しても良い。即ち、洗い運転と脱水運転とではモータ24の駆動条件が大きく相違するため、制御ゲインを夫々の駆動条件に合わせて適切な値に設定すれば振動の発生を有効に抑制できる。
【0083】
モータの電流検出は、カレントトランスを用いて行っても良い。
第3実施例で、電流検出用の抵抗は、3個以上を直列に接続しても良い。
第4実施例において、第3実施例と同様に複数のシャント抵抗を直列に接続し、電流検出ICを抵抗数分だけ用意して、電流量の大きさに応じて検出点を切替えるように構成しても良い。
【0084】
【発明の効果】
本発明の洗濯機によれば、トルク制御手段は、ダイレクトドライブ方式により洗い,濯ぎ及び脱水運転を行うための回転駆動力を発生させる三相ブラシレスDCモータに流れる電流を検出し、その検出電流に基づいてモータをベクトル制御することで、当該モータの発生トルクが少なくとも洗い運転と脱水運転との夫々について制御するので、q軸電流に比例させてモータのトルクを直接制御することができる。従って、従来のモータ制御よりも応答性を高めることができ、騒音や振動を低減することが可能となる。そして、洗濯機の外箱を小形に構成することができ、また、モータの無駄な駆動力を減らすことによって省エネルギ効果を得ることもでき、洗浄力を向上させることも可能である。
また、電流検出手段は、インバータ回路を構成する下アーム側の各相スイッチング素子と直列に接続される抵抗に流れる電流を、三相のうち相電圧が最大レベルを示さない二相について検出するので、変流器などの高価な電流センサを用いることなく、安価な構成でモータに流れる電流を検出することができ、モータの効率が向上する。加えて、インバータ回路を構成する下アーム側のスイッチング素子がオンしている期間の中間位相でA/D変換を行うので、相電流を確実にサンプリングすることができる。
また、トルク制御手段の前段において、速度制御手段がモータの速度をPI制御し、その制御ゲインを少なくとも洗い運転と脱水運転との夫々の回転速度に応じて変更するので、モータの負荷が変動しても所定の回転速度を得ることができるので洗浄力を安定させることができると共に、振動の発生を有効に抑制することができる。
【図面の簡単な説明】
【図1】本発明の第1実施例であり、全自動洗濯機の制御系の構成を示す機能ブロック図
【図2】インバータ回路を中心とする詳細な電気的構成を示す図
【図3】全自動洗濯機の全体構成を示す縦断面図
【図4】主に制御用マイコンによる概略的な制御内容を示すフローチャート
【図5】PWM搬送波と上アーム側,下アーム側のゲート信号の波形を示す図
【図6】モータの相電流の反転IMINVとシャント抵抗に流れる電流ISR及び相電圧との関係を示す波形図
【図7】回転槽を250rpmで回転させた場合に回転速度が変動する状態を示すものであり、(a)は本実施例の構成による場合、(b)は従来構成による場合を示す図
【図8】脱水運転開始時の回転槽の揺れ量(変位量)を示す図(本実施例)
【図9】図8相当図(従来構成)
【図10】従来構成と本実施例の構成とが夫々発生させる騒音レベルを比較した図
【図11】洗い運転時の目標速度指令ωref とモータの回転速度ωとを示す図
【図12】従来構成においてPI制御部が出力するデューティ指令Dutyとモータの回転速度ωとを示す図
【図13】本発明の第2実施例を示す図2相当図
【図14】A/D変換部が2チャンネルのコンバータに対する入力を切り替える状態を示す図
【図15】モータの相電圧と各相電流の検出を行うタイミングを示す図
【図16】モータの最大出力電圧(相電圧)と消費電力との関係を示す図
【図17】本発明の第3実施例を示す図2相当図
【図18】本発明の第4実施例を示す図2相当図
【図19】電流検出ICが出力するPWM信号波形を示す図
【図20】(a)は電流検出ICが出力するPWM信号波形及び制御部内のDSPが備えるカウンタのカウンタ値の変化を示す図であり、(b)はDSPが行う計算処理のフローチャート
【図21】従来技術を示す図1相当図
【符号の説明】
11は全自動洗濯機、24はブラシレスモータ、27は速度PI制御部(速度制御手段)、37はインバータ回路、38a〜38fはIGBT(スイッチング素子)、39u,39v,39wはシャント抵抗(電流検出手段)、41,41AはA/D変換部(電流検出手段)、45はDSP(トルク制御手段)、47Bは制御部(電流検出手段)、52v,52wは電流検出ICを示す。
Claims (1)
- ダイレクトドライブ方式により、洗い,濯ぎ及び脱水運転を行うための回転駆動力を発生させる三相ブラシレスDCモータと、
このモータを駆動するためのインバータ回路と、
前記モータに流れる電流を検出する電流検出手段と、
この電流検出手段によって検出された電流に基づいて前記モータをベクトル制御することで、当該モータの発生トルクが少なくとも洗い運転と脱水運転との夫々について制御するトルク制御手段と、
このトルク制御手段の前段において、速度指令と、前記電流検出手段によって検出された電流から得られるモータの回転速度とに基づいて、前記モータの速度をPI制御する速度制御手段とを備え、
前記電流検出手段は、前記インバータ回路を構成する下アーム側の各相スイッチング素子と直列に接続される抵抗に流れる電流を、三相のうち相電圧が最大レベルを示さない二相について検出し、前記下アーム側のスイッチング素子がオンしている期間の中間位相でA/D変換を行い、
前記速度制御手段は、PI制御に用いる制御ゲインを、少なくとも洗い運転と脱水運転との夫々の回転速度に応じて変更することを特徴とする洗濯機。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002027691A JP4406185B2 (ja) | 2001-06-06 | 2002-02-05 | 洗濯機 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001171185 | 2001-06-06 | ||
JP2001-171185 | 2001-06-06 | ||
JP2002027691A JP4406185B2 (ja) | 2001-06-06 | 2002-02-05 | 洗濯機 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003053092A JP2003053092A (ja) | 2003-02-25 |
JP4406185B2 true JP4406185B2 (ja) | 2010-01-27 |
Family
ID=26616441
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002027691A Expired - Fee Related JP4406185B2 (ja) | 2001-06-06 | 2002-02-05 | 洗濯機 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4406185B2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9543882B2 (en) | 2013-10-02 | 2017-01-10 | Mitsubishi Electric Corporation | AC motor drive system |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3962668B2 (ja) | 2002-09-24 | 2007-08-22 | 株式会社東芝 | ドラム式洗濯機 |
JP4795628B2 (ja) * | 2003-05-08 | 2011-10-19 | 株式会社東芝 | 洗濯機の制御装置 |
JP2006271048A (ja) * | 2005-03-23 | 2006-10-05 | Matsushita Electric Ind Co Ltd | モータ駆動装置 |
KR101135924B1 (ko) | 2005-10-13 | 2012-04-13 | 삼성전자주식회사 | 모터 구동장치 |
JP5083494B2 (ja) * | 2006-07-19 | 2012-11-28 | 株式会社ジェイテクト | モータ用制御装置 |
JP2009232569A (ja) * | 2008-03-21 | 2009-10-08 | Nsk Ltd | モータ駆動制御装置及びこれを使用した電動パワーステアリング装置 |
JP5338930B2 (ja) * | 2012-02-20 | 2013-11-13 | ダイキン工業株式会社 | モータ駆動制御装置 |
JP6713824B2 (ja) * | 2016-05-18 | 2020-06-24 | 東芝ライフスタイル株式会社 | 洗濯機モータの制御装置 |
JP7141201B2 (ja) * | 2017-05-29 | 2022-09-22 | 東芝ライフスタイル株式会社 | 洗濯機用インバータ装置 |
JP7169792B2 (ja) * | 2018-07-06 | 2022-11-11 | 東芝ライフスタイル株式会社 | 洗濯機 |
-
2002
- 2002-02-05 JP JP2002027691A patent/JP4406185B2/ja not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9543882B2 (en) | 2013-10-02 | 2017-01-10 | Mitsubishi Electric Corporation | AC motor drive system |
Also Published As
Publication number | Publication date |
---|---|
JP2003053092A (ja) | 2003-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100432962B1 (ko) | 세탁기 | |
KR100659423B1 (ko) | 모터 구동 장치 | |
JP4194312B2 (ja) | ドラム式洗濯機 | |
KR100712247B1 (ko) | 식기 세척기의 모터 구동 장치 | |
KR100639606B1 (ko) | 세탁기 모터 구동 장치 | |
US8424347B2 (en) | Washer dryer | |
TW200950303A (en) | Inverter device of washing machine | |
KR100681081B1 (ko) | 식기 세척기의 모터 구동 장치 | |
JP4406185B2 (ja) | 洗濯機 | |
JP4406176B2 (ja) | 洗濯機 | |
JP3915557B2 (ja) | 洗濯機のモータ駆動装置 | |
JP4795628B2 (ja) | 洗濯機の制御装置 | |
JP6713824B2 (ja) | 洗濯機モータの制御装置 | |
JP3981549B2 (ja) | 洗濯機の制御装置 | |
JP2003024686A (ja) | 洗濯機のモータ駆動装置 | |
JP4253458B2 (ja) | 洗濯機 | |
JP2006230766A (ja) | 洗濯機 | |
JP2005312227A (ja) | ポンプあるいはファンのモータ駆動装置 | |
JP6634603B2 (ja) | 洗濯機 | |
JP4430356B2 (ja) | モータ駆動装置並びにそれを用いた洗濯機及び乾燥機 | |
JP2007089775A (ja) | 洗濯機 | |
JP6681554B2 (ja) | 洗濯機のモータ駆動装置 | |
JP3834525B2 (ja) | 洗濯機 | |
JP2017209407A (ja) | 洗濯機 | |
JP4857779B2 (ja) | 動力発生装置およびこれを使用した衣類処理装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060220 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060228 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060421 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060905 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061030 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070403 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070507 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20070612 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20070720 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090909 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091106 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121113 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4406185 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121113 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131113 Year of fee payment: 4 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 Free format text: JAPANESE INTERMEDIATE CODE: R313117 Free format text: JAPANESE INTERMEDIATE CODE: R313114 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313114 Free format text: JAPANESE INTERMEDIATE CODE: R313117 Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |