JP4402926B2 - Glass chopped strand and method for producing the same - Google Patents
Glass chopped strand and method for producing the same Download PDFInfo
- Publication number
- JP4402926B2 JP4402926B2 JP2003326407A JP2003326407A JP4402926B2 JP 4402926 B2 JP4402926 B2 JP 4402926B2 JP 2003326407 A JP2003326407 A JP 2003326407A JP 2003326407 A JP2003326407 A JP 2003326407A JP 4402926 B2 JP4402926 B2 JP 4402926B2
- Authority
- JP
- Japan
- Prior art keywords
- resin emulsion
- glass
- sizing agent
- mass
- resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Reinforced Plastic Materials (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
- Surface Treatment Of Glass Fibres Or Filaments (AREA)
Description
本発明は、熱可塑性樹脂や熱硬化性樹脂などの強化用に用いられるガラスチョップドストランド(以下「CS」と略す)およびその製造方法に関する。 The present invention relates to a glass chopped strand (hereinafter abbreviated as “CS”) used for reinforcing thermoplastic resins, thermosetting resins, and the like, and a method for producing the same.
ガラス繊維(ガラスフィラメント)束を所定長さに切断したCSは、熱可塑性樹脂や熱硬化性樹脂などのマトリックス樹脂と混合して繊維強化樹脂の作製に使用され、該繊維強化樹脂から得られる各種成形品の強度、熱変形温度、弾性率などの物性を改良する強化材(補強材)として知られている。 CS obtained by cutting a glass fiber (glass filament) bundle into a predetermined length is mixed with a matrix resin such as a thermoplastic resin or a thermosetting resin, and used for the production of a fiber reinforced resin. It is known as a reinforcing material (reinforcing material) that improves physical properties such as strength, heat distortion temperature, and elastic modulus of a molded product.
上記繊維強化樹脂および成形品の製造工程としては、CSと樹脂とそれ以外の添加剤との配合割合を一定に保ち、自動供給装置によって押出し機中に上記成分を供給して均一混合物とし、該混合物から所望の成形品を成形機により製造するか、あるいは直接成形機中にCSと樹脂とそれ以外の添加剤を同時に供給して成形品を製造する方法が採用されている。 As a manufacturing process of the fiber reinforced resin and the molded product, the blending ratio of CS, resin, and other additives is kept constant, and the above components are supplied into an extruder by an automatic feeder to obtain a uniform mixture. A method is used in which a desired molded article is produced from a mixture by a molding machine, or a molded article is produced by simultaneously supplying CS, resin and other additives directly into a molding machine.
上記の如き混合物または成形品の製造工程においては、CSの搬送に自動計量・空気輸送などの搬送手段が用いられており、このような取扱い中にCSが毛羽立ちしたり、糸(ストランド)割れしたり、分繊などによる作業性の低下やCSの歩留まりの低下が生じ、また、これらのCSの毛羽立ちなどにより、最終的に得られる成形品の機械的強度の低下などが生じるという課題がある。 In the manufacturing process of a mixture or a molded product as described above, conveying means such as automatic weighing and pneumatic transportation are used for conveying CS, and during such handling, CS becomes fuzzy or yarn (strand) breaks. There is a problem that workability and yield of CS are reduced due to splitting and the like, and the mechanical strength of the finally obtained molded product is reduced due to the fluff of these CSs.
従って上記の課題が解決されたCS、すなわち、ガラスフィラメントの集束性が強いCSが望まれている。ガラスフィラメントの集束性が強いCSを得る方法としては、例えば、特許文献1、特許文献2、特許文献3、および特許文献4に挙げられるように、集束剤を付与した湿潤状態のCSに振動作用を付することにより、CSを構成しているガラスフィラメントを緊密化することが提案されている。 Therefore, CS in which the above-described problems are solved, that is, CS with strong glass filament focusing is desired. As a method for obtaining a CS having strong converging property of a glass filament, for example, as described in Patent Document 1, Patent Document 2, Patent Document 3, and Patent Document 4, a vibrating action is applied to CS in a wet state to which a bundling agent is applied. It has been proposed to make the glass filaments constituting the CS closer by attaching the symbol.
しかしながら、一方で、CSを構成しているガラスフィラメントの集束性が強すぎると、CSと樹脂との混合物の成形によって得られた成形品中でCSが適度に開繊せず、樹脂中におけるガラスフィラメントの分散が不十分となり易い。さらに上記の特許文献に記載された方法では、CSのガラスフィラメントの集束を緊密化させるにつれて、CS粒子が凝集して大きくなる、いわゆる造粒作用を伴ってしまい、前記のガラスフィラメントの樹脂中での分散が不十分となる。すなわち、ガラスフィラメントが樹脂中に充分に分散せず、ガラスフィラメントが束として存在すると、最終的に得られる成形品などの製品の表面外観性や機械的強度が著しく損なわれるといった問題を有していた。 However, on the other hand, if the converging property of the glass filament constituting the CS is too strong, the CS does not open properly in the molded product obtained by molding the mixture of CS and resin, and the glass in the resin Filament dispersion tends to be insufficient. Furthermore, in the method described in the above-mentioned patent document, as the focusing of the CS glass filaments becomes closer, the CS particles are aggregated and enlarged, which is accompanied by a so-called granulation action. Is insufficiently distributed. In other words, if the glass filaments are not sufficiently dispersed in the resin and the glass filaments are present as a bundle, there is a problem that the surface appearance and mechanical strength of the final product such as a molded product are significantly impaired. It was.
また、前記特許文献4では、100〜1,000本のガラスフィラメントから成るストランドに水または処理液を噴霧した後、所定の長さに切断しスパイラル振動トラフにて転がり振動作用を与えることにより、ストランドの端面の外郭部が長手軸方向にほぼ垂直な平面内にあるほぼ円柱体またはほぼ楕円柱体から成るように形成することができ、その結果、CSの粒度を揃え、搬送時におけるCSのブリッジ現象の発生を防止するもので、また、同特許文献4には、目開き4,000μmメッシュ以上の粒子が3質量%以下かつ目開き425μmメッシュ以下の粒子が3質量%以下であることを特徴とするCSの製造方法が記載されている。 Moreover, in the said patent document 4, after spraying water or a process liquid on the strand which consists of 100-1,000 glass filaments, by cutting | disconnecting to predetermined length and giving a rolling vibration action with a spiral vibration trough, The outer surface of the end surface of the strand can be formed of a substantially cylindrical body or a substantially elliptical cylinder in a plane substantially perpendicular to the longitudinal axis direction. In this patent document 4, particles having a mesh size of 4,000 μm or more are 3% by mass or less and particles having a mesh size of 425 μm or less are 3% by mass or less. A characteristic CS manufacturing method is described.
また、前記特許文献4に記載された発明では、CSの粒度を揃えることは可能であるものの、前述の造粒化は避けられず、造粒されたCSを使用して成形された成形品は、ガラスフィラメントの分散性が劣るものであった。また、同特許文献4に記載されているガラスフィラメントの集束本数を、例えば、100〜500本のように少なくし、湿潤状態のCSに、転がり振動作用を与えることで、造粒されたとしても全体的に粒子の小さいCSを得ることは可能である。この方法により得られたCSを用いた成形品におけるガラスフィラメントの分散性が向上すると考えられるが、集束本数が少ないガラスストランドを作成することは、CSの生産性が極めて劣り、これによって得られるCSは非常にコスト高となり経済的に劣る。 Further, in the invention described in Patent Document 4, although it is possible to make the particle size of CS uniform, the above-mentioned granulation is inevitable, and a molded product formed using the granulated CS is The dispersibility of the glass filament was inferior. Moreover, even if it granulates by reducing the converging number of the glass filaments described in the said patent document 4 like 100-500, for example, and giving rolling vibration action to wet CS. It is possible to obtain CS with small overall particles. Although it is thought that the dispersibility of the glass filament in the molded product using CS obtained by this method is improved, producing a glass strand with a small number of bundles is extremely inferior in CS productivity, and the CS obtained thereby. Is very expensive and economically inferior.
本発明は上記問題に鑑みてなされたもので、その目的は、経済性に優れ、搬送時の取扱い中における糸割れや毛羽玉の発生が少なく、しかも樹脂中でのガラスフィラメントの分散性に優れたCSおよびその製造方法を提供することにある。 The present invention has been made in view of the above problems, and its purpose is excellent in economic efficiency, less occurrence of yarn cracking and fluff during handling during transportation, and excellent dispersibility of glass filaments in the resin. CS and its manufacturing method are provided.
上記目的は以下の本発明によって達成される。すなわち、本発明は、第一発明として、シランカップリング剤水溶液と水分散樹脂とからなる集束剤を、1,000本以上のガラスフィラメントに、固形分として該ガラスフィラメントの0.1〜2質量%の量で付着させ、かつ引き揃えて集束させてストランドとした後、該ストランドを所定の長さに切断し、次いで該ストランドを、その含水率5〜11質量%の範囲で転がり振動作用を与えた後、乾燥するCSの製造方法であって、
前記水分散樹脂が、エポキシ樹脂エマルジョンと、平均粒子径が0.5〜2.0μmのウレタン樹脂エマルジョンとを主として含み、前記エポキシ樹脂エマルジョンと前記ウレタン樹脂エマルジョンとの固形分質量比が20〜80:80〜20であり、前記ウレタン樹脂エマルジョン中の樹脂分が、前記集束剤の固形分全量に対して20質量%以上含有されていることを特徴とするCSの製造方法を提供する。
The above object is achieved by the present invention described below. That is, in the present invention, as a first invention, a sizing agent comprising a silane coupling agent aqueous solution and a water-dispersed resin is added to 1,000 or more glass filaments in a solid content of 0.1 to 2 mass of the glass filament. %, And the strands are bundled and bundled to form a strand. The strand is then cut into a predetermined length, and the strand is then subjected to a rolling vibration action within a range of 5 to 11% by mass of its moisture content. A method for producing CS which is dried after being given,
The water-dispersed resin mainly contains an epoxy resin emulsion and a urethane resin emulsion having an average particle diameter of 0.5 to 2.0 μm, and a solid content mass ratio of the epoxy resin emulsion to the urethane resin emulsion is 20 to 80. : a 80 to 20, the resin content of the urethane resin Emarujo in emissions is to provide a method for producing CS, characterized in that is contains at least 20% by weight, based on the total solid content of the sizing agent.
また、本発明は、第二発明として、シランカップリング剤水溶液と水分散樹脂とからなる集束剤であって、前記水分散樹脂が、エポキシ樹脂エマルジョンと、平均粒子径が0.5〜2.0μmのウレタン樹脂エマルジョンとを主として含み、前記エポキシ樹脂エマルジョンと前記ウレタン樹脂エマルジョンとの固形分質量比が20〜80:80〜20であり、前記ウレタン樹脂エマルジョン中の樹脂分が、前記集束剤の固形分全量に対して20質量%以上含有されている集束剤を付与されたガラスチョップドストランドにおいて、
後に詳しく説明するCSの粒子径分布の測定法において、2,000μm以上のCSが、CS全量の1質量%以下であって、かつ自然落下の嵩比重が0.5〜0.75(g/ml)であることを特徴とするCSを提供する。
Moreover, this invention is a sizing agent which consists of silane coupling agent aqueous solution and water dispersion resin as 2nd invention, Comprising: The said water dispersion resin is an epoxy resin emulsion, and an average particle diameter is 0.5-2. Mainly containing 0 μm urethane resin emulsion, the solid content mass ratio of the epoxy resin emulsion and the urethane resin emulsion is 20 to 80:80 to 20, and the resin content in the urethane resin emulsion is that of the sizing agent. In a glass chopped strand provided with a sizing agent contained at 20% by mass or more based on the total solid content,
In the method for measuring the particle size distribution of CS, which will be described in detail later, the CS of 2,000 μm or more is 1% by mass or less of the total amount of CS, and the bulk specific gravity of spontaneous fall is 0.5 to 0.75 (g / ml).
前記第一発明によれば、1,000本以上のガラスフィラメントを集束したガラスストランドを用いることにより、CSの生産性を向上させることができる。さらに本発明者らは、通常、集束剤の付与により湿潤状態のCSに転がり振動を与えるとCSが造粒されるところ、平均粒子径0.5μm以上、好ましくは平均粒子径0.5〜2.5μmの樹脂粒子を含有する樹脂エマルジョンを特定量含む集束剤を用い、さらに含水率5〜11質量%でCSに転がり振動作用を与えることにより、得られるCSを過大に造粒させずに、しかもガラスストランドの集束力を向上させてガラスフィラメント束を密にすることができることを見出した。 According to said 1st invention, productivity of CS can be improved by using the glass strand which bundled 1,000 or more glass filaments. Furthermore, the present inventors usually give a rolling vibration to wet CS by applying a sizing agent, and when CS is granulated, the average particle diameter is 0.5 μm or more, preferably 0.5-2. By using a sizing agent containing a specific amount of a resin emulsion containing 5 μm resin particles, and further imparting a vibrating action to CS at a moisture content of 5 to 11% by mass, without excessively granulating the resulting CS, Moreover, it has been found that the glass filament bundle can be made dense by improving the focusing force of the glass strands.
これにより得られるCSの過度の開繊性を減少させて、取扱時におけるCSの毛羽の発生を低減させ、しかもCSをマトリックス樹脂に混練する際に、CSの粒子径が大きくないため、CSが容易に開繊されて、成形品中のガラスフィラメントの分散性が向上する。 This reduces the excessive spreadability of the resulting CS, reduces the occurrence of CS fluff during handling, and the CS particle size is not large when kneading CS into the matrix resin. The fiber is easily opened and the dispersibility of the glass filament in the molded product is improved.
また、前記第二発明によれば、後述のCSの粒子径分布の測定法において、2,000μm以上のCSが、CS全量の1質量%以下であって、かつ自然落下の嵩比重が0.5〜0.9(g/ml)であることにより、CSの過度の開繊性を減少させて、毛羽の発生を低減させ、しかもマトリックス樹脂に混練する際に、粒子径が大きくないため、CSがマトリックス樹脂中で容易に開繊されて、成形品中のガラスフィラメントの分散性が向上する。 According to the second invention, in the method for measuring the particle size distribution of CS described later, CS of 2,000 μm or more is 1% by mass or less of the total amount of CS, and the bulk specific gravity of natural fall is 0.00. By being 5 to 0.9 (g / ml), the excessive opening property of CS is reduced, the generation of fluff is reduced, and the particle diameter is not large when kneaded into the matrix resin. CS is easily opened in the matrix resin, and the dispersibility of the glass filament in the molded product is improved.
次に発明を実施するための最良の形態を挙げて本発明をさらに詳細に説明する。
本発明において、ガラスフィラメントのガラス原料としては、通常CSを製造する際に用いる各種ガラスが使用できるが、ガラスフィラメント化の容易な、しかも良好な特性を得ることができるEガラスを用いるのが特に好ましい。
Next, the present invention will be described in more detail with reference to the best mode for carrying out the invention.
In the present invention, various kinds of glass usually used for producing CS can be used as the glass raw material of the glass filament, but it is particularly preferable to use E glass which can be easily formed into a glass filament and can obtain good characteristics. preferable.
本発明に用いるガラスフィラメントの集束剤は、シランカップリング剤と水分散樹脂とからなり、水分散樹脂は、エマルジョン、ディスパージョンおよび/または水溶性樹脂を用いることができるが、少なくとも後述する特定の樹脂エマルジョンが含まれている必要がある。 The glass filament sizing agent used in the present invention comprises a silane coupling agent and a water-dispersed resin, and the water-dispersed resin may be an emulsion, a dispersion and / or a water-soluble resin. It must contain a resin emulsion.
前記シランカップリング剤としては、例えば、γ−アミノプロピルトリエトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリメトキシシラン、ビニルトリエトキシシラン、γ−グリシドキシプロピルトリメトキシシランなどを用いるのが好ましい。これらのシランカップリング剤は、一種または二種以上を組み合わせて、水に溶解させて用いる。 Examples of the silane coupling agent include γ-aminopropyltriethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, vinyltriethoxysilane, and γ-glycidoxypropyltrimethoxysilane. Is preferred. These silane coupling agents are used alone or in combination of two or more, dissolved in water.
上記シランカップリング剤は、集束剤の固形分の全量に対して、1〜50質量%含有されていることが好ましい。前記含有量が1質量%未満であると、ガラスフィラメントの集束性およびCSを用いて繊維強化熱可塑性樹脂(FRTP)とした時の成形品の強度が劣り、前記含有量が50質量%を越えるとCSの開繊性およびFRTPとした時の成形品の色調が劣り好ましくない。 It is preferable that 1-50 mass% of said silane coupling agents are contained with respect to the total amount of solid content of the sizing agent. When the content is less than 1% by mass, the converging property of the glass filament and the strength of the molded product when using CS as the fiber reinforced thermoplastic resin (FRTP) are inferior, and the content exceeds 50% by mass. And the opening of CS and the color tone of the molded product when FRTP is used are not preferable.
本発明で用いる集束剤には、平均粒子径が0.5μm以上の樹脂粒子を含む樹脂エマルジョンが少なくとも含まれることが重要である。集束剤中に前記平均粒子径0.5μm以上の樹脂粒子を含む樹脂エマルジョンが含まれない場合、ガラスストランドの切断工程以降の工程においてCSの適度な開繊が不十分となり、CS中の粒子径2,000μm以上の粒子が1質量%以下とならなくなるばかりか、湿潤状態のCSに転がり振動を与えると、CSの造粒が生じて却ってCSの粒が大きくなってしまい好ましくなく、さらに前記集束剤中には前記樹脂粒子以外の粒子(例えば、0.5μm未満の粒子径の樹脂粒子、樹脂粒子以外の水不溶性粒子、界面活性剤により形成されたミセルなど)も含まれることがあり、これらの全粒子の平均粒子径が、0.3〜2.0μmの範囲にあることが好ましい。 It is important that the sizing agent used in the present invention contains at least a resin emulsion containing resin particles having an average particle diameter of 0.5 μm or more. When the resin emulsion containing resin particles having an average particle size of 0.5 μm or more is not included in the sizing agent, appropriate opening of CS becomes insufficient in the steps after the glass strand cutting step, and the particle size in CS Not only the particles of 2,000 μm or more do not become 1% by mass or less, but also when rolling vibration is applied to wet CS, granulation of CS occurs and CS particles become larger, which is not preferable. The agent may also contain particles other than the resin particles (for example, resin particles having a particle diameter of less than 0.5 μm, water-insoluble particles other than resin particles, micelles formed by a surfactant, etc.), The average particle diameter of all the particles is preferably in the range of 0.3 to 2.0 μm.
前記全粒子の平均粒子径が0.3μm未満であると、前記した0.5μm以上の樹脂粒子を含む樹脂エマルジョンを加える前記効果が発現せず、また、平均粒子径の上限を2.0μmとしたのは、平均粒子径が2.0μmを越えるとガラスフィラメントへの集束剤の付着むらが生じ易くなり、ストランドの切断時の糸割れが進みすぎて、ガラスフィラメントの集束性が著しく劣る場合や、CSをマトリックス樹脂と混練した際にガラスフィラメントとマトリックス樹脂との間で部分的に界面接着性が劣り、得られる成形品の機械的強度が低下する場合がある。 When the average particle diameter of all the particles is less than 0.3 μm, the above effect of adding the resin emulsion containing the resin particles of 0.5 μm or more is not exhibited, and the upper limit of the average particle diameter is 2.0 μm. This is because when the average particle diameter exceeds 2.0 μm, uneven adherence of the sizing agent to the glass filament is likely to occur, and when the strand is cut too much, the cracking property of the glass filament is extremely poor. When CS is kneaded with a matrix resin, the interfacial adhesion is partially inferior between the glass filament and the matrix resin, and the mechanical strength of the resulting molded product may be lowered.
なお、本発明において、前記集束剤中の全粒子および前記樹脂エマルジョンの平均粒子径は、動的光散乱光度計により測定し、数平均粒子径値を求める方法であれば特に限定しない。好ましい具体例としては、前記樹脂エマルジョンおよび前記集束剤を測定可能な濃度まで蒸留水で希釈した後、四面透過型10mm角セルに満たし、25℃の条件でHe−Neレーザーを照射し測定を行ない、数平均粒子径値を「平均粒子径」とする。 In the present invention, the average particle diameter of all the particles in the sizing agent and the resin emulsion is not particularly limited as long as it is a method of measuring with a dynamic light scattering photometer to obtain the number average particle diameter value. As a preferred specific example, the resin emulsion and the sizing agent are diluted with distilled water to a measurable concentration, filled in a four-surface transmission type 10 mm square cell, and irradiated with a He-Ne laser at 25 ° C. for measurement. The number average particle diameter value is defined as “average particle diameter”.
本発明において使用する樹脂エマルジョンにおける樹脂の種類としては、特に限定せず、膜化形成能を持つ樹脂を一種または二種以上を組み合わせて、水に分散させて用いる。例えば、ウレタン樹脂、エポキシ樹脂、アクリル樹脂、酢酸ビニル樹脂、ポリエステル樹脂、ポリオレフィン樹脂などのエマルジョンが挙げられる。 The type of the resin in the resin emulsion used in the present invention is not particularly limited, and one or a combination of two or more resins having a film-forming ability is used by being dispersed in water. For example, emulsions such as urethane resin, epoxy resin, acrylic resin, vinyl acetate resin, polyester resin, polyolefin resin and the like can be mentioned.
前記樹脂エマルジョンとしては、エポキシ樹脂エマルジョンとウレタン樹脂エマルジョンとを併用することが好ましい。この場合、エポキシ樹脂エマルジョンとウレタン樹脂エマルジョンとの固形分質量比が20〜80:80〜20であって、該ウレタン樹脂エマルジョンの樹脂粒子の平均粒子径が、0.5〜2.0μmであることが、マトリックス樹脂との混練工程でCSの適度な開繊が進み好ましい。平均粒子径が0.5μm未満であると、マトリックス樹脂との混練工程でCSの適度な開繊が進まず、また、平均粒子径が2.0μmを越えると、ストランド切断時の糸割れが進みすぎて、ガラスフィラメントの集束性が著しく劣る場合がある。 As the resin emulsion, an epoxy resin emulsion and a urethane resin emulsion are preferably used in combination. In this case, the mass ratio of the solid content of the epoxy resin emulsion and the urethane resin emulsion is 20 to 80:80 to 20, and the average particle diameter of the resin particles of the urethane resin emulsion is 0.5 to 2.0 μm. It is preferable that the appropriate opening of CS proceeds in the kneading step with the matrix resin. When the average particle size is less than 0.5 μm, the appropriate opening of CS does not proceed in the kneading process with the matrix resin, and when the average particle size exceeds 2.0 μm, yarn cracking at the time of strand cutting proceeds. Thus, the converging property of the glass filament may be extremely inferior.
本発明における集束剤は、集束剤を含むガラスフィラメント全量に対し、固形分として0.1〜2質量%の量で付着させることが好ましく、さらに0.2〜1.5質量%の量で付着させることがより好ましい。前記付着量が0.1質量%未満であると、CSの糸割れや毛羽玉が生じ易いといった問題があり、前記付着量が2質量%を越えると、転がり振動によりCS粒子が凝集して大きくなってしまい、CSを樹脂と混練する際、ガラスフィラメントの未分散を生じ易いといった問題がある。 The sizing agent in the present invention is preferably attached in an amount of 0.1 to 2% by mass as a solid content with respect to the total amount of the glass filament containing the sizing agent, and is further attached in an amount of 0.2 to 1.5% by mass. More preferably. If the adhesion amount is less than 0.1% by mass, there is a problem that CS yarn breakage and fluff are likely to occur. If the adhesion amount exceeds 2% by mass, the CS particles are agglomerated due to rolling vibration. Therefore, when CS is kneaded with resin, there is a problem that undispersion of the glass filament is likely to occur.
次に、本発明のCSの製造方法を説明する。まず、ブッシングなどから溶解したガラスを引き出してガラスフィラメントを得る。その際、ガラスフィラメント束、いわゆるストランドあたりの集束本数が多いほど、CSの生産性(経済性)に優れているので、1本のストランドあたりのガラスフィラメントの集束本数は、1,000本以上が好ましく、1,500本以上〜5,000本以下であることがさらに好ましい。ガラスフィラメントの集束本数が1,000本未満であると前記の通り、CS製造時の経済性に劣る。また、ガラスフィラメントの集束本数が5,000本を超えると、全体的に粒子の非常に大きいCSが作製されるため、樹脂に混練した場合、樹脂中でのCSの開繊性が劣る点で好ましくない。 Next, the manufacturing method of CS of this invention is demonstrated. First, the glass melt | dissolved is pulled out from a bushing etc. and a glass filament is obtained. At that time, the larger the number of bundles of glass filaments, so-called strands, the better the CS productivity (economic), so the number of bundles of glass filaments per strand is 1,000 or more. Preferably, it is 1,500 or more and 5,000 or less. When the number of glass filaments is less than 1,000, as described above, it is inferior in economic efficiency during CS production. In addition, when the number of glass filaments converging exceeds 5,000, a CS having very large particles as a whole is produced. Therefore, when kneaded into a resin, the CS openability in the resin is poor. It is not preferable.
こうして引き出されたガラスフィラメントに、集束剤を固形分として0.1〜2質量%の量で付着させて処理した後、引き揃えてガラスフィラメントを集束させる。ガラスフィラメントに集束剤を付着させる方法としては、噴霧方式、ロールコーター方式などいずれの方法でもよいが、アプリケーターと呼ばれるロールを介して付着させるロールコーター方式が経済的でもあり、好ましく採用される。なお、集束剤を付与する際、集束剤が付着したストランド(湿潤CS)の含水率を5〜11質量%に調製する。この含水率の調整は、ストランドにロールコーター方式で集束剤を付与する場合、アプリケーターロールの回転数と集束剤の固形分濃度とを調整することによって行ない、所望の含水率の湿潤ストランドを得ることができる。 The glass filaments thus drawn out are treated by attaching a sizing agent in an amount of 0.1 to 2% by mass as a solid content, and are then drawn to focus the glass filaments. As a method of attaching the sizing agent to the glass filament, any method such as a spray method or a roll coater method may be used, but a roll coater method of attaching via a roll called an applicator is economical and preferably employed. In addition, when providing a sizing agent, the moisture content of the strand (wet CS) to which the sizing agent is attached is adjusted to 5 to 11% by mass. The moisture content is adjusted by adjusting the number of rotations of the applicator roll and the solid content concentration of the sizing agent when a sizing agent is applied to the strand by a roll coater method to obtain a wet strand having a desired moisture content. Can do.
こうして得られたストランドを所望の長さにカットする。ストランドの形態として、一度捲きとってケーキ状にした後、これを解除してカットしても、巻き取らずにカットしてもどちらの方法を用いても構わない。また、カットの方法は特に限定されないが、例えば、ゴム、合成樹脂などの弾性体からなるフィードローラーと、放射状に植設された多数の刃を有するカッターローラーとの間にストランドを挟んで切断する方法が好ましく採用される。また、ストランドの切断長さは特に限定されないが、通常1.5〜13mmが好ましい。 The strand thus obtained is cut to a desired length. As a form of the strand, either method may be used, in which the strand is once wound up to be cake-like and then released and cut or cut without being wound. The cutting method is not particularly limited. For example, the cutting is performed with a strand sandwiched between a feed roller made of an elastic body such as rubber or synthetic resin and a cutter roller having a large number of blades radially arranged. A method is preferably employed. Moreover, although the cutting length of a strand is not specifically limited, Usually, 1.5-13 mm is preferable.
さらに、切断したストランドを、含水率5〜11質量%で転がり振動を与える。転がり振動作用は、回転ドラム、振動トラフ、スパイラル振動トラフ、改質ディスクペレタイザー、プラウミキサーおよびリボンミキサーより選ばれた一種類または二種類以上の装置の組み合わせにより与えられる。例えば、回転ドラムで5〜60秒間滞留させて回転を与えた後、振動トラフで5〜90秒間滞留および振動させる。この間にCSは、前記の集束剤の影響も手伝って、動的刺激を受けて、1,000本以上からなる大粒子径のガラスストランドが程良く開繊されて、ストランドの粒子径を小さくさせながらも、ガラスフィラメント同士を強く結びつけ、ガラスフィラメントが密に集束し、粒子径の揃った円形断面の丸棒状CSを得られる。 Furthermore, rolling vibration is given to the cut strand at a moisture content of 5 to 11% by mass. The rolling vibration action is provided by one or a combination of two or more devices selected from a rotating drum, a vibration trough, a spiral vibration trough, a modified disk pelletizer, a plow mixer and a ribbon mixer. For example, after rotating by rotating the drum for 5 to 60 seconds, the vibrating trough is held and vibrated for 5 to 90 seconds. During this time, CS is also helped by the influence of the sizing agent, and is subjected to dynamic stimulation, so that a glass strand having a large particle diameter of 1,000 or more is appropriately opened to reduce the particle diameter of the strand. However, the glass filaments are strongly connected to each other, the glass filaments are closely focused, and a round bar CS having a circular cross section with a uniform particle diameter can be obtained.
これは、特定の平均粒子径を有する樹脂エマルジョンを特定量含む集束剤を用い、さらに湿潤CSの含水率5〜11質量%で転がり振動作用を与えることにより、得られるCSの粒子径を大きくせずに、ガラスストランドにおけるガラスフィラメントの集束本数を減らす一方、開繊されたガラスストランドがそのままの状態で、または開繊されたガラスフィラメントが再び集まった状態で、CSを大粒にさせずに当該ストランド中のガラスフィラメントを密に集束させて細長い円柱状にすると考えられる。 This is because the particle size of the obtained CS is increased by using a sizing agent containing a specific amount of a resin emulsion having a specific average particle size, and further giving a rolling vibration action at a moisture content of 5 to 11% by mass of the wet CS. Without reducing the number of glass filaments in the glass strand, while the opened glass strands are left as they are or when the opened glass filaments are gathered again, the strands do not become large grains. It is thought that the glass filament inside is closely focused to form an elongated cylindrical shape.
なお、CSに転がり振動作用を与える際、湿潤CSの含水率が5質量%未満であると、ストランドの開繊が著しく進むため集束性の劣ったCS製品となり、一方、含水率が11質量%を上回ると、2,000μm以上の粒が全CSの1質量%以下とならなくなるばかりか、却ってCSの粒が大きくなってしまう恐れがある。 In addition, when a rolling vibration action is given to CS, if the moisture content of wet CS is less than 5% by mass, the strands are remarkably advanced, resulting in a CS product with poor convergence, while the moisture content is 11% by mass. If it exceeds 1, not less than 2,000 μm of grains will not become 1 mass% or less of the total CS, but the grains of CS may become larger.
CSを転がり振動をさせる時間は、長時間行えばCSが造粒化傾向に向かうため、CSの粒子径分布の測定法において2,000μm以上の粒子が全CSの1質量%以下にするように時間を適宜設定することが好ましい。その後、転がり振動を与えたストランドを乾燥させる。湿潤CSの乾燥方法は、通常行われている方法、例えば、湿潤CSをコンベア上に堆積させた状態で、トンネル型の熱風乾燥機内を通過させる方法などにより乾燥することができる。こうして得られたCSは、2,000μm以上の粒子がCS全体の1質量%以下であり、搬送時などにおける毛羽の発生を少なくすることを可能とし、さらに自然落下の嵩比重が0.5〜0.9(g/ml)とすることにより、搬送時などのCSの毛羽の発生を少なくすることが可能となる。この粒子径のCSを使用することによりマトリックス樹脂に混練する際に、粒子径が大きくないため、容易にCSが開繊されて、成形品中のガラスフィラメントの分散性を向上させるものである。 Since the CS rolls and vibrates for a long time, the CS tends to be granulated. Therefore, in the method of measuring the particle size distribution of CS, particles of 2,000 μm or more should be 1% by mass or less of the total CS. It is preferable to set the time appropriately. Thereafter, the strand subjected to rolling vibration is dried. The wet CS can be dried by a conventional method, for example, a method in which the wet CS is deposited on a conveyor and passed through a tunnel type hot air dryer. In the CS thus obtained, particles of 2,000 μm or more are 1% by mass or less of the entire CS, it is possible to reduce the occurrence of fluff during transportation, and the bulk specific gravity of natural fall is 0.5 to By setting it to 0.9 (g / ml), it becomes possible to reduce the occurrence of CS fluff during transportation. By using CS having this particle size, the particle size is not large when kneaded into the matrix resin, so that the CS is easily opened and the dispersibility of the glass filament in the molded product is improved.
次に実施例および比較例を挙げて本発明をさらに具体的に説明する。なお、文中、「部」または「%」とあるのは質量基準である。
実施例1
ブッシングから繊維径10μmのEガラスフィラメント1,600本の束を引き出し、次いでγ−アミノプロピルトリエトキシシラン0.5部とエポキシ樹脂エマルジョンとウレタン樹脂エマルジョンとを固形分でそれぞれ4.5部と1.5部とを含有する集束剤を、固形分としてガラスフィラメントの質量の0.9%の量で付着させた後、引き揃えて集束し、ドラムに捲きつけてケーキとした。なお、使用したエマルジョン中の樹脂粒子の平均粒子径は、エポキシ樹脂エマルジョンは0.4μm、ウレタン樹脂エマルジョンは0.8μmのものを使用した。次いで、このケーキ40個からストランドを引き出して、3mmの長さにカットし、回転ドラムで回転作用を与えた後、振動板に落とし、振動幅2.5mm、振動数1,700cpm、滞留時間15秒の条件で転がり振動作用を与え、大粒子径のストランドが程良く開繊しながら粒子径の揃った円形断面の丸棒状とした。この状態でのストランドの含水率は9.1%であった。その後、170℃の熱風乾燥機で乾燥して、本発明のCSを得た。
Next, the present invention will be described more specifically with reference to examples and comparative examples. In the text, “part” or “%” is based on mass.
Example 1
A bundle of 1,600 E glass filaments having a fiber diameter of 10 μm is drawn from the bushing, and then 0.5 part of γ-aminopropyltriethoxysilane, an epoxy resin emulsion, and a urethane resin emulsion are added in a solid content of 4.5 parts and 1 part, respectively. A sizing agent containing .5 parts was deposited as a solid content in an amount of 0.9% of the mass of the glass filament, and then the sizing agent was gathered together and squeezed into a drum to make a cake. The average particle size of the resin particles in the emulsion used was 0.4 μm for the epoxy resin emulsion and 0.8 μm for the urethane resin emulsion. Next, strands are pulled out from the 40 cakes, cut into a length of 3 mm, subjected to a rotating action with a rotating drum, dropped on a diaphragm, a vibration width of 2.5 mm, a vibration frequency of 1,700 cpm, a residence time of 15 A rolling vibration effect was applied under the condition of seconds, and a round bar having a circular cross section with a uniform particle diameter was obtained while a strand having a large particle diameter was appropriately opened. The moisture content of the strand in this state was 9.1%. Then, it dried with a 170 degreeC hot air dryer, and obtained CS of this invention.
比較例1
実施例1と同様なガラスフィラメントに、γ−アミノプロピルトリエトキシシラン0.5部と、平均粒子径0.4μmの樹脂粒子を含むエポキシ樹脂エマルジョンと、平均粒子径0.8μmの樹脂粒子を含むウレタン樹脂エマルジョンとを固形分でそれぞれ4.5部と1.5部とを含有する集束剤を、固形分としてガラスフィラメントの質量の0.9%の量で付着させた後、引き揃えて集束し、ドラムに捲きつけてケーキとした。次いで、このケーキ40個からストランドを引き出して、3mmの長さにカットした後、直ちに170℃の熱風乾燥機で乾燥して比較例のCSを得た。なお、カット直後の状態でのストランドの含水率は9.1%であった。
Comparative Example 1
In the same glass filament as in Example 1, 0.5 part of γ-aminopropyltriethoxysilane, an epoxy resin emulsion containing resin particles having an average particle diameter of 0.4 μm, and resin particles having an average particle diameter of 0.8 μm are included. A bundling agent containing 4.5 parts and 1.5 parts of solid content of urethane resin emulsion, respectively, is adhered as solid content in an amount of 0.9% of the mass of the glass filament, and then bundled and focused. Then, it was beaten on a drum to make a cake. Next, the strands were pulled out from the 40 pieces of cake, cut into a length of 3 mm, and then immediately dried with a hot air dryer at 170 ° C. to obtain a comparative CS. The moisture content of the strand immediately after cutting was 9.1%.
比較例2
実施例1と同様なガラスフィラメントに、γ−アミノプロピルトリエトキシシラン0.5部と平均粒子径0.4μmの樹脂粒子を含むエポキシ樹脂エマルジョンと平均粒子径0.2μmの樹脂粒子を含むウレタン樹脂エマルジョンとを固形分でそれぞれ4.5部と1.5部とを含有する集束剤を、固形分としてガラスフィラメントの質量の0.9%の量で付着させた後、引き揃えて集束し、ドラムに捲きつけてケーキとした。次いで、このケーキ40個からストランドを引き出して、3mmの長さにカットし、回転ドラムで回転作用を与えた後、振動板に落とし、振動幅2.5mm、振動数1,700cpm、滞留時間15秒の条件で転がり振動作用を与えた。この状態での湿潤CSの含水率は11.2%であった。その後、170℃の熱風乾燥機で乾燥して、比較例のCSを得た。
Comparative Example 2
Urethane resin containing epoxy resin emulsion containing 0.5 parts of γ-aminopropyltriethoxysilane and resin particles having an average particle diameter of 0.4 μm and resin particles having an average particle diameter of 0.2 μm on the same glass filament as in Example 1. After the sizing agent containing 4.5 parts and 1.5 parts in solid content of the emulsion as a solid content is attached in an amount of 0.9% of the mass of the glass filament, they are gathered together and focused. The cake was struck on a drum. Next, strands are pulled out from the 40 cakes, cut into a length of 3 mm, subjected to a rotating action with a rotating drum, dropped on a diaphragm, a vibration width of 2.5 mm, a vibration frequency of 1,700 cpm, a residence time of 15 Rolling vibration was applied under the condition of seconds. The moisture content of the wet CS in this state was 11.2%. Then, it dried with a 170 degreeC hot air dryer, and obtained CS of the comparative example.
上記実施例1および比較例1、2のCSについて、ブレンド値、粒子径分布、マトリックス樹脂中のガラスフィラメントの分散性および自然落下の嵩比重を測定した。なお、それぞれの測定は以下のようにして行った。これらの結果を表1に示す。
「集束剤中の全粒子および樹脂エマルジョン中の樹脂粒子の平均粒子径の測定方法」
動的光散乱光度計(大塚電子性LPAシステム)によって次の要領で測定した。すなわち、樹脂エマルジョンおよび集束剤を測定可能な濃度まで蒸留水で希釈した後、各々四面透過型10mm角セルに満たし、25℃の条件でHe−Neレーザーを照射し測定を行ない、数平均粒子径値を求めた。
「ブレンド値(g)の測定方法」
内部に中羽根を設置した容量10リットルのVミキサーにCS3kgを投入し、ミキサー回転数30rpm、中羽根回転数480rpm(ミキサーの回転とは逆方向)にて15分間攪拌する。その後、目開き3.35mmの篩でふるい、篩上に残った毛羽玉を回収し、この毛羽玉を0.1gまで秤量し、ブレンド値とする。
The CS of Example 1 and Comparative Examples 1 and 2 were measured for blend value, particle size distribution, dispersibility of the glass filament in the matrix resin, and bulk specific gravity of natural fall. Each measurement was performed as follows. These results are shown in Table 1.
"Measurement method of average particle size of all particles in sizing agent and resin particles in resin emulsion"
Measurement was performed by a dynamic light scattering photometer (Otsuka Electronic LPA System) as follows. That is, after diluting the resin emulsion and the sizing agent with distilled water to a measurable concentration, each is filled into a four-sided transmission type 10 mm square cell, irradiated with a He—Ne laser at 25 ° C., and the number average particle diameter is measured. The value was determined.
"Measurement method of blend value (g)"
3 kg of CS is put into a V mixer having a capacity of 10 liters with a middle blade installed therein, and stirred for 15 minutes at a mixer rotation speed of 30 rpm and a middle blade rotation speed of 480 rpm (in the opposite direction to the rotation of the mixer). Thereafter, the mixture is sieved with a sieve having an opening of 3.35 mm, and the fluff balls remaining on the sieve are collected, and the fluff balls are weighed to 0.1 g to obtain a blend value.
「目開き2,000μm以上の粒子の割合(%)の測定方法」
上段より目開き2,000、850、600、425、250、150μmに重ねた篩で20gのCSを20秒間振とうして、目開き2,000μmの篩上に残ったCSの割合を%で算出し、目開き2,000μm以上の粒子の割合(%)とする。
「CS未分散個数の測定方法」
PBT(ポリブチレンテレフタレート)樹脂ペレット80部にCS20部を添加混合し、東洋精機製ラボプラストミルを用いてシリンダー温度300℃、スクリュー回転100rpmで加熱混合しながらTダイにて押出し、幅15cm厚み2mmのシートを作製した。作製したシート幅10cm、長さ100cmあたりの未分散CSの個数を目視で測定し分散性の指標とした。
「自然落下の嵩比重の測定方法」
試料180gを1,000mlのメスシリンダー内に一気に投入し、その時の体積を読みとって、該体積を質量(180g)で除した値を自然落下の嵩比重とした。
“Measuring method of the ratio (%) of particles with an opening of 2,000 μm or more”
From the top, shake 20g of CS for 20 seconds with sieves with openings of 2,000, 850, 600, 425, 250, and 150μm, and the ratio of CS remaining on the sieve with openings of 2,000μm in%. Calculate the ratio of particles having an opening of 2,000 μm or more (%).
"Measurement method of CS undispersed number"
20 parts of CS is added to and mixed with 80 parts of PBT (polybutylene terephthalate) resin pellets and extruded with a T-die while heating and mixing at a cylinder temperature of 300 ° C. and screw rotation of 100 rpm using a Laboplast mill manufactured by Toyo Seiki, 15 cm wide and 2 mm thick A sheet of was prepared. The number of undispersed CS per 10 cm width and 100 cm length of the produced sheet was visually measured and used as an index of dispersibility.
"Measurement method of bulk specific gravity of natural fall"
180 g of the sample was put into a 1,000 ml graduated cylinder at once, the volume at that time was read, and the value obtained by dividing the volume by mass (180 g) was taken as the bulk specific gravity of natural fall.
上記表1の結果から、実施例1のCSはブレンド値および大粒子径の割合が小さく、作業性と樹脂中へのガラスフィラメントの分散性に優れることが分かる。一方、比較例1および2は、作業性は実施例1と同等であるが、大粒子径の割合が大きく、樹脂中へのガラスフィラメントの分散性に劣る。 From the results of Table 1 above, it can be seen that the CS of Example 1 has a small blend value and large particle size ratio, and is excellent in workability and dispersibility of the glass filament in the resin. On the other hand, Comparative Examples 1 and 2 have the same workability as Example 1, but the ratio of the large particle diameter is large and the dispersibility of the glass filament in the resin is poor.
実施例2〜6
実施例1における平均粒子径0.4μmのエポキシ樹脂エマルジョン(A)と平均粒子径0.8μmのウレタン樹脂エマルジョン(B)との固形分(部)(A/B)、集束剤の付着量、集束剤中の全粒子の平均粒子径(μm)、ストランドの含水率を下記表2に記載の通り変化させ、その他は実施例1と同様にして本発明のCSを得た。これらの実施例について前記と同様に評価したところ、実施例1と同様の良好な結果(表2)を得た。
Examples 2-6
Solid content (part) (A / B) of epoxy resin emulsion (A) having an average particle size of 0.4 μm and urethane resin emulsion (B) having an average particle size of 0.8 μm in Example 1, the amount of sizing agent attached, The average particle diameter (μm) of all the particles in the sizing agent and the moisture content of the strand were changed as shown in Table 2 below, and the CS of the present invention was obtained in the same manner as in Example 1. When these examples were evaluated in the same manner as described above, the same good results (Table 2) as in Example 1 were obtained.
本発明は、経済性に優れ、搬送時の取扱い中における糸割れや毛羽玉の発生が少なく、しかも樹脂中でのガラスフィラメントの分散性に優れたCSを提供することができる。
INDUSTRIAL APPLICABILITY The present invention can provide a CS that is excellent in economic efficiency, has less yarn cracking and fluff generation during handling during transportation, and is excellent in dispersibility of glass filaments in a resin.
Claims (3)
前記水分散樹脂が、エポキシ樹脂エマルジョンと、平均粒子径が0.5〜2.0μmのウレタン樹脂エマルジョンとを主として含み、前記エポキシ樹脂エマルジョンと前記ウレタン樹脂エマルジョンとの固形分質量比が20〜80:80〜20であり、前記ウレタン樹脂エマルジョン中の樹脂分が、前記集束剤の固形分全量に対して20質量%以上含有されていることを特徴とするガラスチョップドストランドの製造方法。 A sizing agent comprising a silane coupling agent aqueous solution and a water-dispersed resin is attached to 1,000 or more glass filaments in a quantity of 0.1 to 2% by mass of the glass filament as a solid content, and aligned. Production of glass chopped strands that are bundled into strands, then cut into a predetermined length, and then the strands are subjected to rolling vibration in the range of 5 to 11% by weight of moisture content and then dried. A method,
The water-dispersed resin mainly contains an epoxy resin emulsion and a urethane resin emulsion having an average particle diameter of 0.5 to 2.0 μm, and a solid content mass ratio of the epoxy resin emulsion to the urethane resin emulsion is 20 to 80. : The method of producing glass chopped strands, wherein the resin content in the urethane resin emulsion is 20 to 20% by mass or more based on the total solid content of the sizing agent.
目開き2,000μmの篩に20gのガラスチョップドストランドを載せて、20秒間振とうし、この篩上に残ったガラスチョップドストランドの割合を%で算出した値が1質量%以下であって、かつ自然落下の嵩比重が0.5〜0.75(g/ml)であることを特徴とするガラスチョップドストランド。 A sizing agent comprising a silane coupling agent aqueous solution and a water-dispersed resin, wherein the water-dispersed resin mainly comprises an epoxy resin emulsion and a urethane resin emulsion having an average particle size of 0.5 to 2.0 μm, The solid content mass ratio between the epoxy resin emulsion and the urethane resin emulsion is 20-80: 80-20, and the resin content in the urethane resin emulsion is 20% by mass or more based on the total solid content of the sizing agent. In a glass chopped strand to which a sizing agent is applied,
20 g of glass chopped strands were placed on a sieve having a mesh opening of 2,000 μm, shaken for 20 seconds, and the ratio of the glass chopped strands remaining on the sieve was calculated as a percentage of 1% by mass or less, and A glass chopped strand characterized by a bulk specific gravity of natural fall of 0.5 to 0.75 (g / ml).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003326407A JP4402926B2 (en) | 2003-09-18 | 2003-09-18 | Glass chopped strand and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003326407A JP4402926B2 (en) | 2003-09-18 | 2003-09-18 | Glass chopped strand and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005089266A JP2005089266A (en) | 2005-04-07 |
JP4402926B2 true JP4402926B2 (en) | 2010-01-20 |
Family
ID=34456613
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003326407A Expired - Fee Related JP4402926B2 (en) | 2003-09-18 | 2003-09-18 | Glass chopped strand and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4402926B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6573759B2 (en) * | 2014-11-12 | 2019-09-11 | ユニチカ株式会社 | Water-based sizing agent |
-
2003
- 2003-09-18 JP JP2003326407A patent/JP4402926B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005089266A (en) | 2005-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE60034593T2 (en) | LUBRICANT COMBINATION FOR FIBER REINFORCEMENT MATERIAL WITH LOW DEHUMIDIFICATION | |
JP6082812B2 (en) | Method and system for manufacturing composite products and composite products | |
US3712776A (en) | Apparatus for the continuous production of glass fiber reinforced thermoplastic | |
EP1971472A1 (en) | Granulation-coating machine for glass fiber granules | |
JPH10503812A (en) | Method for producing carbon fiber pellets, high-density streamline pellets obtained therefrom, and method for producing reinforced thermoplastic resin using the pellets | |
JP6082813B2 (en) | Method and system for manufacturing composite products and composite products | |
JP4402926B2 (en) | Glass chopped strand and method for producing the same | |
JP5559698B2 (en) | Cellulosic spun fiber pellets and their manufacture and use | |
JP2008540162A (en) | Method for manufacturing composite parts from high density glass granules | |
JP2005531476A (en) | High density glass strand pellets | |
JP2020153037A (en) | Web structure and apparatus for producing web structure | |
CN114181435A (en) | Composite body, molded body, and method for producing molded body | |
JP2008540306A (en) | Sizing composition for glass strand granules having high glass content | |
US11141885B2 (en) | Process for manufacturing a precursor material comprising a polymer material and a fibre material | |
JPH0245667B2 (en) | ||
JP3639236B2 (en) | Carbon fiber chop with excellent form | |
JP2871486B2 (en) | Manufacturing method of glass chopped strand | |
JP3292379B2 (en) | Carbon fiber chop and method for producing the same | |
JP3266646B2 (en) | Manufacturing method of carbon fiber chops | |
CZ311098A3 (en) | Products of synthetic glass fiber and process for producing thereof | |
JPS58213650A (en) | Chopped glass strand and preparation thereof | |
CN207987098U (en) | The production system and diverting agent production line of diverting agent | |
EP1115667B1 (en) | Improvements in or relating to glass fibre | |
JP2011512270A (en) | Method and system for producing high density lignocellulosic pulp for use in thermoplastic composite manufacturing process | |
JP2001233630A (en) | Method of producing chopped strands, producing machine thereof and chopped strands produced by this production method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20060427 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060804 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20070326 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20070409 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20070409 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081217 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081224 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090220 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090811 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090930 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091020 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091030 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4402926 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121106 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121106 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131106 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |