Nothing Special   »   [go: up one dir, main page]

JP4484958B1 - Discharge lamp - Google Patents

Discharge lamp Download PDF

Info

Publication number
JP4484958B1
JP4484958B1 JP2009219224A JP2009219224A JP4484958B1 JP 4484958 B1 JP4484958 B1 JP 4484958B1 JP 2009219224 A JP2009219224 A JP 2009219224A JP 2009219224 A JP2009219224 A JP 2009219224A JP 4484958 B1 JP4484958 B1 JP 4484958B1
Authority
JP
Japan
Prior art keywords
solid
electrode
members
metal
discharge lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009219224A
Other languages
Japanese (ja)
Other versions
JP2011070823A (en
Inventor
和泉 芹澤
信夫 金井
宏 小平
壮則 早川
睦美 松木
規行 酒井
慎 前島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orc Manufacturing Co Ltd
Original Assignee
Orc Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orc Manufacturing Co Ltd filed Critical Orc Manufacturing Co Ltd
Priority to JP2009219224A priority Critical patent/JP4484958B1/en
Application granted granted Critical
Publication of JP4484958B1 publication Critical patent/JP4484958B1/en
Priority to TW99128222A priority patent/TWI470666B/en
Priority to CN201010290648.9A priority patent/CN102034672B/en
Priority to KR1020100092839A priority patent/KR101661488B1/en
Publication of JP2011070823A publication Critical patent/JP2011070823A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Discharge Lamp (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

【課題】電極特性に影響を与えることなく、様々な固体を組み合わせた電極を構成する。
【解決手段】ショートアーク型放電ランプにおいて、高融点の金属部材40と熱伝導率の高い金属部材50とをSPS接合させることによって、陽極30を構成する。円錐台形状の金属部材40と円柱形状の金属部材50とを接合することにより、接合面Sを、電極軸Xに対して垂直な方向、すなわち陽極断面径方向に沿って形成する。
【選択図】図2
An electrode is formed by combining various solids without affecting the electrode characteristics.
In a short arc discharge lamp, an anode 30 is formed by SPS bonding a metal member 40 having a high melting point and a metal member 50 having a high thermal conductivity. By joining the frustoconical metal member 40 and the columnar metal member 50, the joining surface S is formed along the direction perpendicular to the electrode axis X, that is, the anode cross-sectional radial direction.
[Selection] Figure 2

Description

本発明は、露光装置等に利用される放電ランプに関し、特に、ショートアーク型放電ランプなど高出力放電ランプの電極構造に関する。   The present invention relates to a discharge lamp used for an exposure apparatus or the like, and more particularly to an electrode structure of a high output discharge lamp such as a short arc type discharge lamp.

ショートアーク型放電ランプでは、高輝度の光を基板など露光対象物に照射する。露光対象物の大型化、さらにスループット向上のため、放電ランプの高出力化が要求されており、それに伴って定格消費電力の増加が求められる。大電力化すると、従来の電極構造では、電子放出、熱放出、耐久性などに影響が生じる。そのため、結晶、種類などの異なる金属を組み合わせた電極構造が求められている。   In a short arc type discharge lamp, an object to be exposed such as a substrate is irradiated with high-intensity light. In order to increase the size of the object to be exposed and further improve the throughput, it is required to increase the output of the discharge lamp, and accordingly, the rated power consumption must be increased. When the power is increased, the conventional electrode structure affects the electron emission, heat emission, durability, and the like. Therefore, an electrode structure in which different metals such as crystals and types are combined is required.

例えば、定格電力を大きくすると、陰極先端部における電流密度が大きいために電極消耗が激しくなり、アーク放電の輝点が動いて不安定な放電となる。アーク放電を安定化させるため、直流放電処理装置によって陰極先端部を溶融し、先端部の結晶構造を粗大化させる電極構造が知られている(特許文献1参照)。   For example, when the rated power is increased, the current density at the cathode tip is large, so that the electrode wears up, and the bright spot of the arc discharge moves, resulting in an unstable discharge. In order to stabilize the arc discharge, an electrode structure is known in which the tip of the cathode is melted by a direct current discharge treatment device and the crystal structure of the tip is coarsened (see Patent Document 1).

また、定格電力を大きくすると、ランプの電極間に流れる電流量が増加し、電極温度が上昇する。特に、陽極先端部が高温状態になって、時間経過とともに陽極先端部が溶融、蒸発する。その結果、不安定なアーク放電、および陽極溶融による金属の管内表面付着などによって発光効率が低下するとともに、電極消耗によってランプ寿命が低下する。   Further, when the rated power is increased, the amount of current flowing between the electrodes of the lamp increases and the electrode temperature rises. In particular, the anode tip becomes hot and the anode tip melts and evaporates over time. As a result, the luminous efficiency is reduced due to unstable arc discharge and adhesion of the metal inside the tube due to anode melting, and the lamp life is reduced due to electrode consumption.

このような過熱による電極溶融を防ぐため、金属の電極本体よりも熱伝導率が高く、融点の低い金属材料を本体内部空間に封入する電極構造が知られている(特許文献2参照)。そこでは、有底筒状の金属部材に蓋部材を溶接し、密閉空間を設けた電極を形成する。   In order to prevent such electrode melting due to overheating, an electrode structure is known in which a metal material having a higher thermal conductivity and a lower melting point than that of a metal electrode body is enclosed in the interior space of the body (see Patent Document 2). There, a lid member is welded to a bottomed cylindrical metal member to form an electrode provided with a sealed space.

特開2002−110083号公報Japanese Patent Laid-Open No. 2002-110083 特開2004−259644号公報JP 2004-259644 A

電極表面付近の結晶構造、金属組成を変えても、熱伝導性、導電性、耐久性などの電極特性を全体的に大きく改善させることはできない。特に、大出力型放電ランプの場合、熱放出特性の大きな向上は望めない。しかしながら、同種類、あるいは異種類の部材を組み合わせて電極を構成する場合、部材間の接合状態が耐久性、熱伝導性等に影響を与える。   Even if the crystal structure and metal composition in the vicinity of the electrode surface are changed, the overall electrode characteristics such as thermal conductivity, conductivity, and durability cannot be greatly improved. In particular, in the case of a high-power discharge lamp, a great improvement in heat release characteristics cannot be expected. However, when an electrode is configured by combining the same type or different types of members, the bonding state between the members affects the durability, thermal conductivity, and the like.

例えば、ビーム溶接などの溶接によって金属部材を接合し、電極を構成する場合、接合面に沿って金属結晶の径が肥大化し、径の大きさが不均一となる。また、電極軸方向に沿った結晶径の変化が不連続となり、接合部分に結晶境界が顕れる。そのため、電極強度が接合部分において低下する。   For example, when a metal member is joined by welding such as beam welding to form an electrode, the diameter of the metal crystal is enlarged along the joining surface, and the diameter is not uniform. Further, the change in the crystal diameter along the electrode axis direction becomes discontinuous, and a crystal boundary appears at the junction. For this reason, the electrode strength decreases at the joint portion.

また、結晶径の大きさが不均一であって、電極軸方向に沿った結晶径の大きさが不連続であると、電極軸方向に沿った熱の伝導特性が接合面全体で均一化せず、電極内部の熱輸送がうまく働かない。その結果、電極内部に局所的な過熱状態が発生し、電極消耗を早める。   Also, if the crystal size is non-uniform and the crystal size along the electrode axis direction is discontinuous, the heat conduction characteristics along the electrode axis direction will be uniform over the entire joint surface. Therefore, heat transport inside the electrode does not work well. As a result, a local overheating state is generated inside the electrode, which accelerates electrode consumption.

したがって、電極特性に悪影響を与えないように、複数の部材を組み合わせて電極を構成することが求められる。   Therefore, it is required to configure the electrode by combining a plurality of members so as not to adversely affect the electrode characteristics.

本発明の放電ランプは、放電管と、放電管内に配置される一対の電極とを備え、例えば、ショートアーク型放電ランプ(特に大出力放電ランプ)として構成される。そして、放電ランプの少なくとも一方の電極が、複数の固体部材を固相接合させた電極によって構成され、少なくとも1つの固体部材は金属部材から成る。固相接合方式に関しては、熱拡散、電界拡散等を利用した固相接合法の1つである拡散接合を適用するのが好ましく、この場合、放電プラズマ焼結法(SPS焼結法)などによって固体部材同士が接合される。   The discharge lamp of the present invention includes a discharge tube and a pair of electrodes disposed in the discharge tube, and is configured as, for example, a short arc type discharge lamp (particularly a high-power discharge lamp). At least one electrode of the discharge lamp is configured by an electrode obtained by solid-phase bonding a plurality of solid members, and at least one solid member is made of a metal member. Regarding the solid phase bonding method, it is preferable to apply diffusion bonding which is one of solid phase bonding methods using thermal diffusion, electric field diffusion, etc. In this case, by a discharge plasma sintering method (SPS sintering method) or the like. Solid members are joined together.

本発明では、それぞれ別々に用意される固体状部材を固相接合することにより、接合面において金属結晶の構造が、耐久性、熱伝導性に関して優れた構成になっている。金属結晶の径は、固体部材間の接合面に沿ってほぼ均一であり、接合面垂直方向に沿った結晶構造は、接合面付近において傾斜化している。すなわち、接合面付近において結晶が段階的、連続的であって、急激な結晶構造変化がない。   In the present invention, the solid-state members prepared separately are solid-phase bonded, so that the structure of the metal crystal is excellent in terms of durability and thermal conductivity at the bonding surface. The diameter of the metal crystal is substantially uniform along the joint surface between the solid members, and the crystal structure along the direction perpendicular to the joint surface is inclined near the joint surface. That is, the crystal is stepwise and continuous in the vicinity of the joint surface, and there is no sudden crystal structure change.

接合面付近においても、導電性、熱伝導性、耐久性が安定しているため、熱伝導性、耐久性などが局所的に低下し、急激な部分的電極消耗が生じる恐れがなく、熱伝達性、電子放出特性、耐久性などを向上させるように異種あるいは同種の固体部材を選択し、接合することによって優れた特性をもつ電極構造を得ることができる。   Even in the vicinity of the joint surface, the conductivity, thermal conductivity, and durability are stable, so heat conductivity, durability, etc. are locally reduced, there is no risk of sudden partial electrode consumption, and heat transfer An electrode structure having excellent characteristics can be obtained by selecting and bonding different or similar solid members so as to improve the properties, electron emission characteristics, durability, and the like.

熱輸送効果、耐久性など目的に応じて固体部材の組み合わせを決定すればよく、電極形状も目的に応じて定めればよい。例えば、ショートアーク型放電ランプなどでは、円錐台形状の電極先端部と円柱状の電極胴体部によって電極が構成されているが、接合面は、固体部材の組み合わせ、形状に応じて電極先端部、あるいは電極胴体部に位置する。   What is necessary is just to determine the combination of a solid member according to the objectives, such as a heat transport effect and durability, and what is necessary is just to determine an electrode shape according to the objective. For example, in a short arc type discharge lamp or the like, the electrode is constituted by a truncated cone-shaped electrode tip and a cylindrical electrode body, but the joint surface is a combination of solid members, the electrode tip according to the shape, Or it is located in the electrode body part.

固体部材の組み合わせとしては、電極先端部と電極胴体部の一部を構成する固体部材と残りの電極胴体部を構成する固体部材を接合することも可能であり、また、電極胴体部と電極先端部の一部を構成する固体部材と残りの電極先端部を構成する固体部材を接合することができる。あるいは、電極先端部と電極胴体部をそれぞれ別々の固体部材で構成し、接合しても良い。   As a combination of solid members, it is also possible to join a solid member constituting a part of the electrode tip portion and the electrode body portion and a solid member constituting the remaining electrode body portion, and the electrode body portion and the electrode tip portion. The solid member constituting a part of the part and the solid member constituting the remaining electrode tip can be joined. Alternatively, the electrode tip portion and the electrode body portion may be formed of separate solid members and joined.

電極軸方向に沿った熱輸送効果を高めることを考慮すれば、熱伝導率の異なる固体部材を接合し、熱伝導率の相対的に高い固体部材によって電極支持棒側の電極胴体部を構成し、純タングステンなどの高融点固体部材を電極部として構成することができる。一方、固体部材同士の接合によって自由な電極形状を構成することも可能であり、同じ種類、同じ特性の固体部材同士を接合させて電極を形成することも可能である。   Considering the enhancement of the heat transport effect along the electrode axis direction, solid members having different thermal conductivities are joined, and the electrode body on the electrode support rod side is constituted by the solid members having relatively high thermal conductivities. A high melting point solid member such as pure tungsten can be configured as the electrode portion. On the other hand, it is possible to form a free electrode shape by joining solid members, and it is also possible to form electrodes by joining solid members of the same type and the same characteristics.

電極を構成する固体部材の数は任意であり、例えば、電極先端面を有する第1固体部材と、第1固体部材と固相接合する第2固体部材によって構成される。   The number of solid members constituting the electrode is arbitrary, and is constituted by, for example, a first solid member having an electrode tip surface and a second solid member solid-phase bonded to the first solid member.

電極先端部全体を一つの固体部材で構成する場合、円錐台形状の電極先端部と、第2固体部材の径と同じ径をもつ円柱形状接合部によって、第1固体部材を構成することができる。このような電極構造にすると、胴体部に内部空間を形成する、放熱フィンを周方向に形成するなど、胴体部の構成を比較的自由に設計することができる。   When the entire electrode tip is formed of a single solid member, the first solid member can be formed by a truncated cone-shaped electrode tip and a columnar joint having the same diameter as the second solid member. . With such an electrode structure, it is possible to design the structure of the body part relatively freely, such as forming an internal space in the body part and forming a heat radiation fin in the circumferential direction.

一方、電極先端部の一部だけを1つの固体部材で構成する場合、胴体部と、第1固体部材と接合する円錐台形状電極接合部によって第2固体部材が構成される。このような電極構造にすると、電極先端部の特性のみを変えるような設計が可能となる。   On the other hand, when only a part of the electrode tip portion is constituted by one solid member, the second solid member is constituted by the body portion and the frustoconical electrode joining portion joined to the first solid member. Such an electrode structure enables a design that changes only the characteristics of the electrode tip.

通常、電極形状は電極軸を中心として対称的であり、熱、電流は電極軸に沿った移動となる。したがって、電極軸に沿って固体部材を適所、適材に配置するのが望ましく、接合面が電極軸垂直方向に沿って形成されるように、固体部材を固相接合させるのがよい。その一方、例えば固相接合させた後に電極を切削成形する場合、電極軸垂直方向に沿って接合面が形成されることによって作業中の電極安定性が優れたものになる。   Usually, the electrode shape is symmetric about the electrode axis, and heat and current move along the electrode axis. Therefore, it is desirable to dispose the solid member in the right place and in the appropriate material along the electrode axis, and the solid member is preferably solid-phase bonded so that the bonding surface is formed along the direction perpendicular to the electrode axis. On the other hand, for example, when the electrode is cut and formed after solid-phase bonding, the bonding surface is formed along the direction perpendicular to the electrode axis, so that the electrode stability during operation is excellent.

例えば、陽極を鉛直上側に配置させた放電ランプにおいて、タングステンなどの電極先端部に熱伝導率の高い固体部材を接合させる場合、電極先端面から接合面まで電極軸方向の距離が等しくなる。そのため、電極軸に沿った熱の輸送にバラツキがなく、ランプ点灯中の温度分布は電極軸を中心として対称的な分布となり、局所的な過熱による電極摩耗が生じない。   For example, in a discharge lamp in which the anode is disposed vertically upward, when a solid member having high thermal conductivity is joined to an electrode tip such as tungsten, the distance in the electrode axis direction is equal from the electrode tip surface to the joint surface. Therefore, there is no variation in the heat transport along the electrode axis, the temperature distribution during lamp operation is a symmetric distribution around the electrode axis, and electrode wear due to local overheating does not occur.

電極の過熱を防ぐことを考慮すれば、熱輸送とともに熱放出効果を上げるのが望ましい。接合する固体部材の接触面を完全な平坦にしなければ、接合面に沿って隙間が部分的に生じる。ランプ点灯中に隙間から熱が放出されると、電極過熱の防ぐことができる。したがって、接合面に沿って隙間が形成されるような接触面をもつ固体部材同士を固相接合させるのがよい。特に、電極表面付近に楔を形成し、フィン形状を電極表面に形成するような隙間を設けるのもよい。   In consideration of preventing the electrode from overheating, it is desirable to increase the heat release effect together with the heat transport. If the contact surfaces of the solid members to be joined are not completely flat, gaps are partially generated along the joining surfaces. If heat is released from the gap while the lamp is lit, electrode overheating can be prevented. Therefore, it is preferable to solid-phase join solid members having contact surfaces that form gaps along the joining surfaces. In particular, a wedge may be formed near the electrode surface, and a gap may be provided to form a fin shape on the electrode surface.

本発明の放電ランプ用電極は、放電ランプの放電管内に配置される電極であって、電極先端面を有する第1固体部材と、第1固体部材と固相接合する第2固体部材とを備え、少なくとも一方が金属部材であり、金属部材の結晶径が、第1、第2固体部材間の接合面に沿ってほぼ均一であり、接合面垂直方向に沿った結晶構造が、接合面付近において傾斜化していることを特徴とする。   An electrode for a discharge lamp according to the present invention is an electrode disposed in a discharge tube of a discharge lamp, and includes a first solid member having an electrode front end surface and a second solid member that is solid-phase bonded to the first solid member. , At least one is a metal member, the crystal diameter of the metal member is substantially uniform along the joint surface between the first and second solid members, and the crystal structure along the perpendicular direction of the joint surface is near the joint surface It is characterized by being inclined.

本発明の放電ランプ用電極の製造方法は、電極先端面を有する第1固体部材と、導電性の電極支持棒によって支持される第2固体部材とを含む複数の固体部材であって、少なくとも1つが金属部材である複数の固体部材を、第1固体部材と前記第2固体部材との間で固相接合させる製造方法であって、前記金属部材の結晶径が部材間の接合面に沿ってほぼ均一となり、前記金属部材の前記接合面付近において金属結晶が接合面垂直方向に沿って傾斜化するように、前記複数の固体部材を固相接合させることを特徴とし、電極先端面を有する第1固体部材を形成し、第1固体部材と接合する第2固体部材を形成し、少なくともどちらか一方が金属部材である第1固体部材と第2固体部材の接触面同士を固相接合させる。例えば第1固体部材は金属であり、第2固体部材は金属もしくは非金属でのいずれかであり、また、第2固体部材は、第1固体部材よりも熱伝導率の高い金属である。 The method for manufacturing an electrode for a discharge lamp according to the present invention is a plurality of solid members including a first solid member having an electrode tip surface and a second solid member supported by a conductive electrode support rod, wherein at least one A manufacturing method of solid-phase joining a plurality of solid members, each of which is a metal member, between the first solid member and the second solid member, wherein the crystal diameter of the metal member is along the joining surface between the members The plurality of solid members are solid-phase bonded so as to be substantially uniform and the metal crystal is inclined along the direction perpendicular to the bonding surface in the vicinity of the bonding surface of the metal member, 1 solid member is formed, the 2nd solid member joined with the 1st solid member is formed, and the contact surfaces of the 1st solid member and the 2nd solid member in which at least one is a metal member are solid-phase joined . For example, the first solid member is a metal, the second solid member is either a metal or a nonmetal, and the second solid member is a metal having a higher thermal conductivity than the first solid member.

本発明によれば、電極特性に影響を与えることなく、様々な固体を組み合わせた電極を構成することができる。   According to the present invention, an electrode in which various solids are combined can be configured without affecting the electrode characteristics.

第1の実施形態であるショートアーク型放電ランプを模式的に示した平面図である。It is the top view which showed typically the short arc type discharge lamp which is 1st Embodiment. 陽極の概略的断面図である。It is a schematic sectional drawing of an anode. 放電プラズマ焼結装置を示した図である。It is the figure which showed the discharge plasma sintering apparatus. 第2の実施形態における放電ランプの陽極断面図である。It is an anode sectional view of a discharge lamp in a 2nd embodiment. SPS接合による陽極の接合面状態を示した電子顕微鏡写真を示した図である。It is the figure which showed the electron micrograph which showed the joining surface state of the anode by SPS joining. 電子ビーム接合による陽極の接合面状態を示した電子顕微鏡写真を示した図である。It is the figure which showed the electron micrograph which showed the joining surface state of the anode by electron beam joining.

以下では、図面を参照して本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、第1の実施形態であるショートアーク型放電ランプを模式的に示した平面図である。   FIG. 1 is a plan view schematically showing the short arc type discharge lamp according to the first embodiment.

ショートアーク型放電ランプ10は、パターン形成する露光装置(図示せず)の光源などに使用可能な放電ランプであり、透明な石英ガラス製の放電管(発光管)12を備える。放電管12には、陰極20、陽極30が所定間隔をもって対向配置される。   The short arc type discharge lamp 10 is a discharge lamp that can be used as a light source of an exposure apparatus (not shown) for pattern formation, and includes a transparent quartz glass discharge tube (light emitting tube) 12. A cathode 20 and an anode 30 are opposed to the discharge tube 12 with a predetermined interval.

放電管12の両側には、対向するように石英ガラス製の封止管13A、13Bが放電管12と一体的に設けられており、封止管13A、13Bの両端は、口金19A、19Bによって塞がれている。放電ランプ10は、陽極30が上側、陰極20が下側となるように鉛直方向に沿って配置されている。後述するように、陽極30は、2つの金属部材40、50から構成されている。   On both sides of the discharge tube 12, quartz glass sealing tubes 13A and 13B are provided integrally with the discharge tube 12 so as to face each other, and both ends of the sealing tubes 13A and 13B are formed by caps 19A and 19B. It is blocked. The discharge lamp 10 is arranged along the vertical direction so that the anode 30 is on the upper side and the cathode 20 is on the lower side. As will be described later, the anode 30 is composed of two metal members 40 and 50.

封止管13A、13Bの内部には、金属性の陰極20、陽極32を支持する導電性の電極支持棒17A、17Bが配設され、金属リング(図示せず)、モリブデンなどの金属箔16A、16Bを介して導電性のリード棒15A、15Bにそれぞれ接続される。封止管13A、13Bは、封止管13A、13B内に設けられるガラス管(図示せず)と溶着しており、これによって、水銀、および希ガスが封入された放電空間Sが封止される。   Inside the sealing tubes 13A and 13B, conductive electrode support rods 17A and 17B for supporting the metallic cathode 20 and the anode 32 are disposed, and a metal ring (not shown), a metal foil 16A such as molybdenum, etc. , 16B to the conductive lead rods 15A, 15B, respectively. The sealing tubes 13A and 13B are welded to glass tubes (not shown) provided in the sealing tubes 13A and 13B, so that the discharge space S in which mercury and a rare gas are sealed is sealed. The

リード棒15A、15Bは外部の電源部(図示せず)に接続されており、リード棒15A、15B、金属箔16A、16B、そして電極支持棒17A、17Bを介して陰極20、陽極30の間に電圧が印加される。放電ランプ10に電力が供給されると、電極間でアーク放電が発生し、水銀による輝線(紫外光)が放射される。   The lead rods 15A and 15B are connected to an external power source (not shown), and are connected between the cathode 20 and the anode 30 via the lead rods 15A and 15B, the metal foils 16A and 16B, and the electrode support rods 17A and 17B. A voltage is applied to. When electric power is supplied to the discharge lamp 10, arc discharge occurs between the electrodes, and a bright line (ultraviolet light) due to mercury is emitted.

図2は、陽極の概略的断面図である。   FIG. 2 is a schematic cross-sectional view of the anode.

陽極30は、金属部材40、50を接合させた電極構造であり、金属部材40は、電極先端面40Sを含む円錐台形状部分40Aと、円柱状の金属部材50と同一径をもち、金属部材50と接合する円柱状形状部分40Bによって構成される。金属部材40は、純タングステンなどの高融点、あるいはタングステンを主成分とする合金によって構成される。一方、円柱状金属部材50は、金属部材40よりも熱伝導率の高い金属(例えば、大形状可能な純タングステン、モリブデン、ゲッター効果のあるタンタル、熱伝導性の高い窒化アルミ、カーボン素材など)を含有する金属によって構成される。   The anode 30 has an electrode structure in which metal members 40 and 50 are joined. The metal member 40 has the same diameter as the truncated cone-shaped portion 40A including the electrode tip surface 40S and the columnar metal member 50, and is a metal member. 50 is formed by a columnar portion 40B joined to 50. The metal member 40 is made of a high melting point such as pure tungsten or an alloy containing tungsten as a main component. On the other hand, the columnar metal member 50 is a metal having a higher thermal conductivity than the metal member 40 (for example, pure tungsten, molybdenum, tantalum having a getter effect, aluminum nitride having a high thermal conductivity, carbon material, etc. that can be formed into a large shape). It is comprised with the metal containing.

金属部材40、50は、放電プラズマ焼結(SPS焼結)方式に従って拡散接合している。そのため、電極軸Xに垂直な方向に沿って形成される接合面S付近には、拡散層が形成されている。金属結晶の径は、接合面Sに沿ってほぼ均一である。また、電極軸Xに沿って結晶構造が傾斜化している。傾斜化により、結晶径は電極軸Xに沿って連続的、段階的に変化している。   The metal members 40 and 50 are diffusion-bonded according to a discharge plasma sintering (SPS sintering) method. Therefore, a diffusion layer is formed in the vicinity of the bonding surface S formed along the direction perpendicular to the electrode axis X. The diameter of the metal crystal is substantially uniform along the bonding surface S. Further, the crystal structure is inclined along the electrode axis X. Due to the tilting, the crystal diameter changes continuously and stepwise along the electrode axis X.

このような接合面Sを挟む拡散層の形成により、熱伝導特性、導電性については接合面Sに沿ってバラツキがない。ランプ点灯によって高温になる電極先端面40S(1000℃以上)から電極支持棒17Bに向けて熱が輸送される間、陽極内部の温度分布は、電極軸Xを中心として対称的な分布となり、熱輸送は接合面Sによる影響を受けない。   By forming such a diffusion layer sandwiching the joint surface S, there is no variation along the joint surface S in terms of heat conduction characteristics and conductivity. While heat is transported from the electrode front end surface 40S (1000 ° C. or higher) to the electrode support rod 17B, the temperature distribution inside the anode is symmetrical with respect to the electrode axis X, The transport is not affected by the joint surface S.

また、金属部材40、50の接触面は完全な平坦面ではなく、接合面Sの周縁部、すなわち陽極30の表面付近に沿って楔状の隙間(図示せず)が生じている。そのため、接合面30において熱が陽極30から放出される。   Further, the contact surfaces of the metal members 40 and 50 are not completely flat surfaces, but wedge-shaped gaps (not shown) are formed along the peripheral edge of the bonding surface S, that is, near the surface of the anode 30. Therefore, heat is released from the anode 30 at the bonding surface 30.

図3は、放電プラズマ焼結装置を示した図である。   FIG. 3 is a view showing a discharge plasma sintering apparatus.

放電プラズマ焼結法は、圧粉体あるいは成形体の粒子間隙にパルス状の電気エネルギーを直接投入し、火花放電現象により瞬時に発生する放電プラズマの高温エネルギーを熱拡散、電界拡散などへ適用した焼結方法である。   In the spark plasma sintering method, pulsed electric energy is directly applied to the particle gaps of the green compact or compact, and the high temperature energy of the discharge plasma generated instantaneously by the spark discharge phenomenon is applied to thermal diffusion, electric field diffusion, etc. It is a sintering method.

図3の放電プラズマ焼結装置100は、真空チャンバー110を備え、真空チャンバー110内部に設けられた上部パンチ120A、下部パンチ120Bおよびグラファイト製ダイ140の間に、図2に示した形状をもつ金属部材40、50がそれぞれ接触面を接触させた状態で設置される。金属部材40、50は、あらかじめ切削などの金属加工処理によって成型されている。   3 includes a vacuum chamber 110, and a metal having the shape shown in FIG. 2 between an upper punch 120A, a lower punch 120B, and a graphite die 140 provided in the vacuum chamber 110. The members 40 and 50 are installed with their contact surfaces in contact with each other. The metal members 40 and 50 are previously formed by metal processing such as cutting.

グラファイト製の上部パンチ120A、下部パンチ120Bは、上部パンチ電極130A、下部パンチ電極130Bとそれぞれ接続されている。装置内を真空雰囲気にした後、パルス電源180によって上部パンチ120A、下部パンチ120Bの間に電圧が印加される。   The upper punch 120A and the lower punch 120B made of graphite are connected to the upper punch electrode 130A and the lower punch electrode 130B, respectively. After the inside of the apparatus is evacuated, a voltage is applied between the upper punch 120A and the lower punch 120B by the pulse power source 180.

そして、通電とともに、加圧機構(図示せず)によって上部パンチ120A、下部パンチ120Bの間に圧力が加えられる。通電による放電プラズマによって所定の焼結温度まで瞬時に昇温された後、圧力が加えられた状態で一定時間保持する。これにより、図2に示す形状をもつ陽極が得られる。   Along with energization, a pressure mechanism (not shown) applies pressure between the upper punch 120A and the lower punch 120B. After the temperature is instantaneously raised to a predetermined sintering temperature by the discharge plasma by energization, the pressure is applied for a certain period of time. Thereby, an anode having the shape shown in FIG. 2 is obtained.

このように本実施形態によれば、ショートアーク型放電ランプ10の陽極30が、高融点の金属部材40と熱伝導率の高い金属部材50をSPS接合させることによって構成される。円錐台形状の金属部材40と円柱形状の金属部材50とを接合することにより、接合面Sは、電極軸Xに対して垂直な方向、すなわち陽極断面径方向に沿っている。   As described above, according to the present embodiment, the anode 30 of the short arc type discharge lamp 10 is configured by SPS joining the high melting point metal member 40 and the metal member 50 having high thermal conductivity. By joining the frustoconical metal member 40 and the columnar metal member 50, the joint surface S is along the direction perpendicular to the electrode axis X, that is, the anode cross-sectional radial direction.

ランプ点灯中、電極先端面40S付近は非常に高温となるが、金属部材50によって先端部の熱は効果的に電極支持棒側へ輸送される。これにより、電極過熱による電極消耗を防ぐことができる。また、電極軸Xに垂直な接合面Sにおいて熱伝導性、導電性等が全体的に等しく、バラツキがない。そのため、電極軸に沿った熱輸送が陽極内部全体で生じ、電極内部で局所的に過熱する恐れがない。   While the lamp is lit, the vicinity of the electrode tip surface 40S becomes very hot, but the heat of the tip is effectively transported to the electrode support rod side by the metal member 50. Thereby, electrode consumption due to electrode overheating can be prevented. Further, the thermal conductivity, conductivity, and the like are generally the same at the bonding surface S perpendicular to the electrode axis X, and there is no variation. Therefore, heat transport along the electrode axis occurs throughout the anode, and there is no risk of local overheating inside the electrode.

図4は、第2の実施形態における放電ランプの陽極断面図である。   FIG. 4 is a cross-sectional view of the anode of the discharge lamp in the second embodiment.

陽極60は、金属部材70と金属部材80を接合することによって形成された電極である。金属部材70は、円柱形状部分72と、凹部74Sを有する円錐台形状部分74から構成される。そして、電極先端面80Sを有する金属部材80は、金属部材70に嵌るように成型されている。SPS接合による接合面Sでは、金属結晶が接合面の径方向に沿ってほぼ均一であり、電極軸Xの方向に沿って傾斜化している。   The anode 60 is an electrode formed by joining the metal member 70 and the metal member 80. The metal member 70 includes a columnar portion 72 and a truncated cone portion 74 having a recess 74S. The metal member 80 having the electrode tip surface 80 </ b> S is molded so as to fit into the metal member 70. On the bonding surface S by SPS bonding, the metal crystal is substantially uniform along the radial direction of the bonding surface and is inclined along the direction of the electrode axis X.

なお、SPS焼結法以外の拡散接合方法によって電極を製造してもよい。例えば、ホットプレス(HP)、熱間静水圧加圧(HIP)など、加圧しながら焼結する拡散接合方式によって電極を製造可能である。さらに、拡散接合方法以外の固相接合法(摩擦圧接法、超音波接合法など)も適用可能であり、このような方法によっても結晶構造を傾斜化することが可能である。また、陰極についても、複数の金属部材を固相接合させた電極構造にしてもよい。   The electrode may be manufactured by a diffusion bonding method other than the SPS sintering method. For example, the electrode can be manufactured by a diffusion bonding method such as hot pressing (HP) or hot isostatic pressing (HIP) that sinters while pressing. Furthermore, solid phase bonding methods (friction welding method, ultrasonic bonding method, etc.) other than the diffusion bonding method can be applied, and the crystal structure can be inclined by such a method. The cathode may also have an electrode structure in which a plurality of metal members are solid-phase bonded.

電極を構成する金属は充填型金属に限定されず、内部に密閉空間を設けるように凹型金属と蓋になる金属とを接合させてもよい。この場合、接合面は、電極先端側から離れた電極支持棒側に形成される。切削成形した金属を固相接合する代わりに、金属を固相接合させた後切削成形してもよく、この場合、接合面が電極軸垂直方向に沿っていることで切削作業が安定して行える。一方、熱輸送以外の電極特性を考慮して、接合面を電極軸垂直方向以外の方向に沿って形成してもよい。さらに、接合面に沿って形成された隙間を楔形状にして電極表面をフィン形状に構成し、一層熱放射効果を高めることも可能である。その一方で、隙間を接合面に設けないように構成することも可能である。   The metal constituting the electrode is not limited to the filling metal, and the concave metal and the metal to be the lid may be joined so as to provide a sealed space inside. In this case, the joining surface is formed on the electrode support bar side away from the electrode tip side. Instead of solid-phase joining the metal that has been cut and formed, it may be cut and formed after solid-phase joining the metal. In this case, the cutting operation can be performed stably because the joining surface is along the direction perpendicular to the electrode axis. . On the other hand, in consideration of electrode characteristics other than heat transport, the joining surface may be formed along a direction other than the direction perpendicular to the electrode axis. Furthermore, the gap formed along the joint surface can be wedge-shaped to form the electrode surface in a fin shape, thereby further enhancing the heat radiation effect. On the other hand, it is also possible to configure so that no gap is provided on the joint surface.

電極を構成する金属の数は任意であり、3つ以上の金属によって電極を構成してもよい。また、同種類の金属を固相接合させてもよい。さらには、一方を金属部材、他方を非金属部材(タングステンとセラミックスなど)として固相接合させてもよく、少なくとも接合させる部材の1つを金属とすればよい。このような部材の組み合わせでも、接合面に沿った金属結晶径はほぼ一定となり、電極軸方向に沿って結晶構造が傾斜化する。   The number of metals composing the electrode is arbitrary, and the electrode may be composed of three or more metals. Further, the same kind of metal may be solid-phase bonded. Furthermore, solid bonding may be performed using one as a metal member and the other as a non-metallic member (such as tungsten and ceramics), and at least one of the members to be bonded may be a metal. Even in such a combination of members, the metal crystal diameter along the joint surface is substantially constant, and the crystal structure is inclined along the electrode axis direction.

次に、本発明の実施例について説明する。ここででは、SPS接合によって成形した電極の接合面状態と、電子ビーム溶接によって成形した接合面状態とを比較する。   Next, examples of the present invention will be described. Here, the bonded surface state of the electrode formed by SPS bonding is compared with the bonded surface state formed by electron beam welding.

図5Aは、SPS接合による陽極の接合面状態を示した電子顕微鏡写真を示した図である。図5Bは、電子ビーム接合による陽極の接合面状態を示した電子顕微鏡写真を示した図である。   FIG. 5A is a view showing an electron micrograph showing a state of a bonded surface of an anode by SPS bonding. FIG. 5B is a view showing an electron micrograph showing the state of the bonded surface of the anode by electron beam bonding.

SPS接合による電極は、形状の異なる2つの金属部材(胴体部と先端部)、タングステン(WVMW W 15−40ppmK)を接合させた電極であり、第1の実施形態に示した円錐台形状、円柱状形状の2つの金属から構成される。   An electrode by SPS bonding is an electrode in which two metal members (body and tip) having different shapes and tungsten (WVMW W 15-40 ppmK) are bonded, and the frustoconical shape and circle shown in the first embodiment. It is composed of two columnar metals.

電子ビーム接合による電極も、同様に2つの金属から構成される。SPS接合を行う装置として、SPSシンテックス株式会社製SPS焼結装置を使用し、焼結温度1500〜1700℃、真空雰囲気の条件下で接合を行った。一方、電子ビーム接合には、NECコントロールシステム株式会社製の電子ビーム溶接装置を使用した。   Similarly, an electrode formed by electron beam bonding is composed of two metals. As an apparatus for performing SPS bonding, an SPS sintering apparatus manufactured by SPS Shintex Co., Ltd. was used, and bonding was performed under conditions of a sintering temperature of 1500 to 1700 ° C. and a vacuum atmosphere. On the other hand, an electron beam welding apparatus manufactured by NEC Control System Co., Ltd. was used for electron beam bonding.

図5Aでは、陽極表面付近の接合面を、マイクロオーダーレベルで撮影した写真を示しており、接合面付近の電極の結晶構造が明らかにされている。紙面の左右方向に沿って接合面が形成されていて、接合面に沿った電極表面近くには、楔状に隙間が生じている。図5Aに示すように、接合面に沿った金属結晶の径はほぼ均一であり、また、電極軸に沿って結晶構造は連続的であり、傾斜化している。   FIG. 5A shows a photograph of the bonding surface near the anode surface taken at the micro-order level, and the crystal structure of the electrode near the bonding surface is clarified. A joining surface is formed along the left-right direction of the paper surface, and a gap is formed in a wedge shape near the electrode surface along the joining surface. As shown in FIG. 5A, the diameter of the metal crystal along the bonding surface is substantially uniform, and the crystal structure is continuous along the electrode axis and is inclined.

図5Bにおいても、陽極表面付近の接合面を拡大した写真を示している。図5Bでは、接合面に沿った金属粒子径が不均一であること(電極表面付近参照)が明らかになっている。また、電極軸方向(紙面上下方向)に沿った結晶構造についても急激、かつ断続的に変化し、傾斜化していない。   FIG. 5B also shows an enlarged photograph of the bonding surface near the anode surface. In FIG. 5B, it is clear that the metal particle diameter along the joining surface is non-uniform (see the vicinity of the electrode surface). Further, the crystal structure along the electrode axis direction (up and down direction in the drawing) also changes suddenly and intermittently and is not inclined.

このように、SPS焼結によって成形する電極では、結晶構造が接合面において安定化している。その結果、電極強度、点灯中の放熱性について、従来の電極と比べて優れた性能を発揮する。   Thus, in the electrode formed by SPS sintering, the crystal structure is stabilized at the joint surface. As a result, the electrode strength and heat dissipation during lighting exhibit superior performance compared to conventional electrodes.

10 放電ランプ
12 放電管
30 陽極
40 金属部材(固体部材、第1固体部材)
50 金属部材(固体部材、第2固体部材)
S 接合面
10 discharge lamp 12 discharge tube 30 anode 40 metal member (solid member, first solid member)
50 Metal member (solid member, second solid member)
S joint surface

Claims (9)

放電管と、
前記放電管内に配置される一対の電極とを備え、
少なくとも一方の電極が、複数の固体部材を固相接合させることによって形成される電極であり、
前記複数の固体部材のうち少なくとも1つが金属部材であって、
前記金属部材の結晶径が、部材間の接合面に沿ってほぼ均一であり、
前記金属部材の前記接合面付近において、金属結晶が接合面垂直方向に沿って傾斜化していることを特徴とする放電ランプ。
A discharge tube;
A pair of electrodes disposed in the discharge tube,
At least one of the electrodes is an electrode formed by solid-phase bonding a plurality of solid members,
At least one of the plurality of solid members is a metal member,
The crystal diameter of the metal member is substantially uniform along the joint surface between the members;
In the vicinity of the joint surface of the metal member , the metal crystal is inclined along the direction perpendicular to the joint surface .
前記接合面が、電極軸垂直方向に沿った面であることを特徴とする請求項1に記載の放電ランプ。   The discharge lamp according to claim 1, wherein the joint surface is a surface along a direction perpendicular to the electrode axis. 前記接合面に沿って隙間が形成されることを特徴とする請求項1乃至2のいずれかに記載の放電ランプ。   The discharge lamp according to claim 1, wherein a gap is formed along the joint surface. 前記複数の固体部材が、熱伝導性の異なる固体部材を含むことを特徴とする請求項1乃至3のいずれかに記載の放電ランプ。   The discharge lamp according to any one of claims 1 to 3, wherein the plurality of solid members include solid members having different thermal conductivities. 前記複数の固体部材が、拡散接合されていることを特徴とする請求項1乃至4のいずれかに記載の放電ランプ。   The discharge lamp according to any one of claims 1 to 4, wherein the plurality of solid members are diffusion-bonded. 前記複数の固体部材が、電極先端面を有する第1固体部材と、前記第1固体部材と固相接合する第2固体部材とを含み、
前記第1固体部材が、円錐台形状の電極先端部と、前記第2固体部材の径と同じ径をもつ円柱形状接合部を有することを特徴とする請求項1に記載の放電ランプ。
The plurality of solid members include a first solid member having an electrode tip surface, and a second solid member that is solid-phase bonded to the first solid member,
2. The discharge lamp according to claim 1, wherein the first solid member has a frustoconical electrode tip and a columnar joint having the same diameter as that of the second solid member.
前記複数の固体部材が、電極先端面を有する第1固体部材と、前記第1固体部材と固相接合する第2固体部材とを備え、
前記第2固体部材が、胴体部と、前記第1固体部材と接合する円錐台形状電極接合部を有することを特徴とする請求項1に記載の放電ランプ。
The plurality of solid members includes a first solid member having an electrode tip surface, and a second solid member that is solid-phase bonded to the first solid member,
2. The discharge lamp according to claim 1, wherein the second solid member includes a body portion and a frustoconical electrode joint portion that joins the first solid member.
放電ランプの放電管内に配置され、電極先端面を有する第1固体部材と、導電性の電極支持棒によって支持される第2固体部材とを含む複数の固体部材から構成される電極であって、
前記複数の固体部材を、前記第1固体部材と前記第2固体部材との間で固相接合させることによって形成され、
前記複数の固体部材のうち少なくとも1つが金属部材であって、
前記金属部材の結晶径が、部材間の接合面に沿ってほぼ均一であり、
前記金属部材の前記接合面付近において、金属結晶が接合面垂直方向に沿って傾斜化していることを特徴とする放電ランプ用電極。
An electrode composed of a plurality of solid members disposed in a discharge tube of a discharge lamp and including a first solid member having an electrode tip surface and a second solid member supported by a conductive electrode support rod ,
The solid members are formed by solid-phase bonding between the first solid member and the second solid member,
At least one of the plurality of solid members is a metal member,
The crystal diameter of the metal member is substantially uniform along the joint surface between the members ;
An electrode for a discharge lamp , wherein a metal crystal is inclined along a direction perpendicular to a joint surface in the vicinity of the joint surface of the metal member.
放電管と、A discharge tube;
前記放電管内に配置される一対の電極とを備え、A pair of electrodes disposed in the discharge tube,
少なくとも一方の電極が、複数の固体部材を固相接合させることによって形成される電極であり、At least one of the electrodes is an electrode formed by solid-phase bonding a plurality of solid members,
前記複数の固体部材のうち少なくとも1つが金属部材であって、At least one of the plurality of solid members is a metal member,
前記金属部材の結晶径が、部材間の接合面に沿ってほぼ均一であり、The crystal diameter of the metal member is substantially uniform along the joint surface between the members;
前記金属部材の前記接合面付近において、金属結晶径が接合面垂直方向に沿って連続的に変化していることを特徴とする放電ランプ。In the vicinity of the joint surface of the metal member, the metal crystal diameter continuously changes along the joint surface perpendicular direction.
JP2009219224A 2009-09-24 2009-09-24 Discharge lamp Active JP4484958B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009219224A JP4484958B1 (en) 2009-09-24 2009-09-24 Discharge lamp
TW99128222A TWI470666B (en) 2009-09-24 2010-08-24 A discharge lamp, a discharge lamp electrode, and a discharge lamp electrode
CN201010290648.9A CN102034672B (en) 2009-09-24 2010-09-21 Discharge lamp, electrode for discharge lamp and method for manufacturing electrode for discharge lamp
KR1020100092839A KR101661488B1 (en) 2009-09-24 2010-09-24 Discharge lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009219224A JP4484958B1 (en) 2009-09-24 2009-09-24 Discharge lamp

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010052991A Division JP4498468B1 (en) 2009-09-24 2010-03-10 Manufacturing method of electrode for discharge lamp

Publications (2)

Publication Number Publication Date
JP4484958B1 true JP4484958B1 (en) 2010-06-16
JP2011070823A JP2011070823A (en) 2011-04-07

Family

ID=42351848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009219224A Active JP4484958B1 (en) 2009-09-24 2009-09-24 Discharge lamp

Country Status (1)

Country Link
JP (1) JP4484958B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102315078A (en) * 2010-07-02 2012-01-11 优志旺电机株式会社 Short arc discharge lamp
JP2012015007A (en) * 2010-07-02 2012-01-19 Ushio Inc Short arc discharge lamp
WO2012101732A1 (en) * 2011-01-24 2012-08-02 株式会社フジクラ Optical fiber fusion connector
KR20190037102A (en) 2017-09-28 2019-04-05 가부시키가이샤 오크세이사쿠쇼 Discharge lamp, electrode for discharge lamp, method for producing discharge lamp, and method for producing electrode for discharge lamp

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4914970B2 (en) * 2007-01-31 2012-04-11 株式会社ユメックス Discharge lamp electrode and manufacturing method thereof
JP5472915B2 (en) * 2010-05-24 2014-04-16 株式会社オーク製作所 Discharge lamp
JP5556315B2 (en) * 2010-04-02 2014-07-23 ウシオ電機株式会社 Short arc type discharge lamp
JP5754701B2 (en) * 2010-12-21 2015-07-29 株式会社オーク製作所 Discharge lamp
JP6116200B2 (en) * 2012-11-16 2017-04-19 株式会社ユメックス Manufacturing method of discharge lamp electrode
KR102206779B1 (en) 2013-07-22 2021-01-22 가부시키가이샤 오크세이사쿠쇼 Discharge lamp, method for producing discharge lamp, and electrode for discharge lamp
JP6818394B2 (en) * 2016-09-27 2021-01-20 株式会社オーク製作所 Manufacturing method of discharge lamp, electrode for discharge lamp and electrode for discharge lamp

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000285849A (en) * 1999-03-31 2000-10-13 Toshiba Corp Electrode for electric discharge lamp, manufacture thereof and electric discharge lamp using it
JP2002110083A (en) * 2000-09-28 2002-04-12 Ushio Inc Short arc discharge lamp
JP2002110089A (en) * 2000-09-28 2002-04-12 Toshiba Lighting & Technology Corp Electrode, discharge lamp using it and optical device
JP2009211916A (en) * 2008-03-04 2009-09-17 Yumex Inc Electrode with heat dissipation member

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000285849A (en) * 1999-03-31 2000-10-13 Toshiba Corp Electrode for electric discharge lamp, manufacture thereof and electric discharge lamp using it
JP2002110083A (en) * 2000-09-28 2002-04-12 Ushio Inc Short arc discharge lamp
JP2002110089A (en) * 2000-09-28 2002-04-12 Toshiba Lighting & Technology Corp Electrode, discharge lamp using it and optical device
JP2009211916A (en) * 2008-03-04 2009-09-17 Yumex Inc Electrode with heat dissipation member

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102315078A (en) * 2010-07-02 2012-01-11 优志旺电机株式会社 Short arc discharge lamp
JP2012015007A (en) * 2010-07-02 2012-01-19 Ushio Inc Short arc discharge lamp
JP2012015008A (en) * 2010-07-02 2012-01-19 Ushio Inc Short arc discharge lamp
CN102315078B (en) * 2010-07-02 2014-04-09 优志旺电机株式会社 Short arc type discharge lamp
WO2012101732A1 (en) * 2011-01-24 2012-08-02 株式会社フジクラ Optical fiber fusion connector
JP5295438B2 (en) * 2011-01-24 2013-09-18 株式会社フジクラ Optical fiber fusion splicer
KR20190037102A (en) 2017-09-28 2019-04-05 가부시키가이샤 오크세이사쿠쇼 Discharge lamp, electrode for discharge lamp, method for producing discharge lamp, and method for producing electrode for discharge lamp

Also Published As

Publication number Publication date
JP2011070823A (en) 2011-04-07

Similar Documents

Publication Publication Date Title
JP4484958B1 (en) Discharge lamp
JP5472915B2 (en) Discharge lamp
JP4498468B1 (en) Manufacturing method of electrode for discharge lamp
JP5316436B2 (en) Discharge lamp
KR101661488B1 (en) Discharge lamp
TWI602216B (en) Manufacturing method of discharge lamp electrode and discharge lamp
JP2014063655A (en) Method of manufacturing electrode for discharge lamp
JP6633826B2 (en) Discharge lamp
JP6483020B2 (en) Discharge lamp, discharge lamp manufacturing method, and discharge lamp electrode
TWI697937B (en) Discharge lamp
JP6180716B2 (en) Discharge lamp
JP7313791B2 (en) Discharge lamp and method for manufacturing discharge lamp electrode
JP4628777B2 (en) Short arc type high pressure discharge lamp
JP6263770B2 (en) Short arc type discharge lamp
JP6328285B2 (en) Manufacturing method of discharge lamp electrode
JP7145429B2 (en) discharge lamp
JP7377750B2 (en) Method for manufacturing discharge lamps and electrodes for discharge lamps
JP2003123688A (en) Short-arc high pressure discharge lamp
TW202335037A (en) Discharge lamp capable of preventing rectifying body disposed in sealed space from cracking
KR20200023177A (en) Discharge lamp
JP2016066484A (en) Discharge lamp

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100323

R150 Certificate of patent or registration of utility model

Ref document number: 4484958

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250