Nothing Special   »   [go: up one dir, main page]

JP4484033B2 - Moving body detection device - Google Patents

Moving body detection device Download PDF

Info

Publication number
JP4484033B2
JP4484033B2 JP2004068907A JP2004068907A JP4484033B2 JP 4484033 B2 JP4484033 B2 JP 4484033B2 JP 2004068907 A JP2004068907 A JP 2004068907A JP 2004068907 A JP2004068907 A JP 2004068907A JP 4484033 B2 JP4484033 B2 JP 4484033B2
Authority
JP
Japan
Prior art keywords
moving body
magnetic
giant magnetoresistive
bias magnet
gmr element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004068907A
Other languages
Japanese (ja)
Other versions
JP2005257434A (en
Inventor
利尚 木戸
誠二 福岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2004068907A priority Critical patent/JP4484033B2/en
Publication of JP2005257434A publication Critical patent/JP2005257434A/en
Application granted granted Critical
Publication of JP4484033B2 publication Critical patent/JP4484033B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measuring Magnetic Variables (AREA)

Description

本発明は、磁性材移動体の移動に伴う磁界変化を検出する移動体検出装置に係り、特に工業用工作機械や、自動車のエンジン等に用いられる軟磁性体歯車の回転情報を検出する場合等に用いて好適な移動体検出装置に関するものである。   The present invention relates to a moving body detection device for detecting a magnetic field change accompanying movement of a magnetic material moving body, and particularly to detecting rotation information of a soft magnetic gear used for industrial machine tools, automobile engines, and the like. The present invention relates to a moving body detection apparatus suitable for use in the above.

従来、回転センサ等に用いる移動体検出装置としては、下記特許文献1に示す強度検知型巨大磁気抵抗素子(以下、強度検知型GMR素子)を用いたものが知られている。   2. Description of the Related Art Conventionally, as a moving body detection device used for a rotation sensor or the like, an apparatus using an intensity detection type giant magnetoresistive element (hereinafter referred to as an intensity detection type GMR element) shown in Patent Document 1 is known.

特開平9−329461号公報 この特許文献1の検出装置は、磁性材移動体としての歯車と磁石間に強度検知型GMR素子を配置した構成において、ヒステリシスを持った強度検知型GMR素子であっても、その感磁面中心と、磁石の中心とをずらして配置することで、抵抗値の変化範囲が対称となるように定め、歯車の凹凸のエッジに対応した波形を得ている。その際の波形を図10に示す。図10中、(A)は磁性材移動体としての歯車の凸部に対応した強度検知型GMR素子の検出波形であり、Vta,Vtbは強度検知型GMR素子の検出波形を波形整形する場合のスレッショルド電圧を示す。同図(B)は波形整形後の矩形波出力である。JP, 9-329461, A The detection device of this patent document 1 is an intensity detection type GMR element which has hysteresis in the composition which arranged the intensity detection type GMR element between the gear and magnet as a magnetic material moving object, However, by arranging the center of the magnetosensitive surface and the center of the magnet so as to be shifted, the resistance change range is determined to be symmetric, and a waveform corresponding to the uneven edge of the gear is obtained. The waveform at that time is shown in FIG. In FIG. 10, (A) is a detection waveform of the intensity detection type GMR element corresponding to the convex portion of the gear as the magnetic material moving body, and Vta and Vtb are obtained when the detection waveform of the intensity detection type GMR element is waveform-shaped. Indicates the threshold voltage. FIG. 5B shows a rectangular wave output after waveform shaping.

図11は強度検知型GMR素子の磁気特性であり、ヒステリシス特性を有している。前記特許文献1の装置では2対の強度検知型GMR素子を用いてホイートストンブリッジ回路を組む場合、対をなす強度検知型GMR素子の一方は曲線の右側、他方は同曲線の左側の互いに対称的な動作点となるようにして、正方向の検出波形と負方向の検出波形が同程度のピークを有するように設定している。   FIG. 11 shows magnetic characteristics of the intensity detection type GMR element, which has hysteresis characteristics. When the Wheatstone bridge circuit is assembled using two pairs of intensity detection type GMR elements in the apparatus of Patent Document 1, one of the pair of intensity detection type GMR elements is symmetrical on the right side of the curve and the other is symmetrical on the left side of the curve. Thus, the positive detection waveform and the negative detection waveform are set to have approximately the same peak.

ところで、前述したように特許文献1の検出装置で用いていたGMR素子は、磁界強度依存型(多層膜型)であり、図11の特性図に示すようにヒステリシスを持っている。ホイートストンブリッジ回路から取り出した検出信号は図10(A)のように上下にピークを持つ波形である。図10(A)のVtaは立ち上がりスレッショルド電圧であり、Vtbは立下りスレッショルド電圧である。このようにスレッショルド電圧に幅を持たせることで、温度ドリフトによって多少の検出波形の上下移動が生じたとしても、検出波形がスレッショルド電圧を横切るように工夫されている。ところが、図12(A)の歯車の凸部に対応した強度検知型GMR素子の検出波形、図12(B)の波形整形後の矩形波出力との関係において、さらなる温度ドリフトにより、検出波形やスレッショルド電圧Vta,Vtbがシフトすると、図13の検出波形スレッショルド付近拡大図(温度ドリフト時)に示すように検出波形の裾部分にスレッショルド電圧がかかるようになり、図12(B)の矩形波のパルス幅T1、T2、T3が異なる値を取る、つまり歯車凸部毎に異なる矩形波出力になるという問題があった。   By the way, as described above, the GMR element used in the detection apparatus of Patent Document 1 is a magnetic field strength dependent type (multilayer film type) and has hysteresis as shown in the characteristic diagram of FIG. The detection signal extracted from the Wheatstone bridge circuit is a waveform having peaks at the top and bottom as shown in FIG. In FIG. 10A, Vta is a rising threshold voltage, and Vtb is a falling threshold voltage. Thus, by providing a width to the threshold voltage, the detection waveform is devised so that the detection waveform crosses the threshold voltage even if the detection waveform slightly moves up and down due to temperature drift. However, in relation to the detection waveform of the intensity detection type GMR element corresponding to the convex portion of the gear in FIG. 12A and the rectangular wave output after waveform shaping in FIG. When the threshold voltages Vta and Vtb are shifted, the threshold voltage is applied to the bottom of the detected waveform as shown in the enlarged view of the vicinity of the detected waveform threshold (at the time of temperature drift) in FIG. 13, and the rectangular wave in FIG. There is a problem that the pulse widths T1, T2, and T3 take different values, that is, different rectangular wave outputs are generated for each gear projection.

本発明は、上記の点に鑑み、感磁素子としてピン層磁化方向に順平行、反平行の磁界成分で作動するスピンバルブ型巨大磁気抵抗素子(以下、SV−GMR素子)を用い、これにバイアス磁石によりバイアス磁界を印加する場合に、前記SV−GMR素子磁気特性の上限又は下限飽和領域にバイアス点を移動させることにより、磁性材移動体の移動による磁界変化を、前記SV−GMR素子の急峻な抵抗変化を利用して検出することができ、SV−GMR素子や検出信号を得るための回路素子の温度ドリフト、磁性材移動体としての歯車の軸ぶれ、その他外乱ノイズ等による検出波形変動に強い(影響されにくい)検出信号を得ることが可能な移動体検出装置を提供することを目的とする。   In view of the above points, the present invention uses a spin-valve giant magnetoresistive element (hereinafter referred to as an SV-GMR element) that operates with a magnetic field component that is forward-parallel and anti-parallel to the pinned layer magnetization direction. When a bias magnetic field is applied by a bias magnet, the magnetic field change due to the movement of the magnetic material moving body can be changed by moving the bias point to the upper limit or lower limit saturation region of the SV-GMR element magnetic characteristics. Detection of fluctuations in waveform due to temperature drift of circuit elements for obtaining SV-GMR elements and detection signals, gear shaft wobbling as a magnetic material moving body, other disturbance noise, etc. It is an object of the present invention to provide a moving body detection apparatus capable of obtaining a detection signal that is resistant to (or hardly influenced by) the sound.

本発明のその他の目的や新規な特徴は後述の実施の形態において明らかにする。   Other objects and novel features of the present invention will be clarified in embodiments described later.

上記目的を達成するために、本願請求項1の発明は、少なくとも1つの凸部又は凹部を有する磁性材移動体と、磁界を発生するバイアス磁石と、前記磁性材移動体で変化された磁界に対応して抵抗値が変化するSV−GMR素子とを有する移動体検出装置であって、
前記磁性材移動体の凸部又は凹部による磁界変化を実質的に受けない第1状態では、前記SV−GMR素子位置での磁界が、前記SV−GMR素子のピン層磁化方向に順平行又は反平行の成分を有し、
前記凸部又は凹部による磁界変化を受ける第2状態では、前記SV−GMR素子位置での磁界の前記ピン層磁化方向に平行な成分の向きが反転することを特徴としている。
In order to achieve the above object, the invention of claim 1 of the present application relates to a magnetic material moving body having at least one convex portion or concave portion, a bias magnet for generating a magnetic field, and a magnetic field changed by the magnetic material moving body. A moving body detection apparatus having an SV-GMR element whose resistance value changes correspondingly,
In the first state where the magnetic material moving body is not substantially affected by the magnetic field change due to the convex portion or concave portion, the magnetic field at the SV-GMR element position is forward-parallel or anti-parallel to the pin layer magnetization direction of the SV-GMR element. Have parallel components,
In the second state where the magnetic field is changed by the convex portion or the concave portion, the direction of the component parallel to the pinned layer magnetization direction of the magnetic field at the SV-GMR element position is reversed.

本願請求項2の発明に係る移動体検出装置は、請求項1において、前記磁性材移動体と前記バイアス磁石間に前記SV−GMR素子が配置され、かつ前記バイアス磁石の中心に対して前記SV−GMR素子の中心を前記磁性材移動体の移動方向にずらしたことを特徴としている。   According to a second aspect of the present invention, there is provided a moving body detection apparatus according to the first aspect, wherein the SV-GMR element is disposed between the magnetic material moving body and the bias magnet, and the SV is centered on the bias magnet. The center of the GMR element is shifted in the moving direction of the magnetic material moving body.

本願請求項3の発明に係る移動体検出装置は、請求項1において、前記磁性材移動体と前記バイアス磁石間に前記SV−GMR素子が配置され、かつ前記SV−GMR素子の感磁面と前記バイアス磁石の磁極面とが非平行となるように前記磁極面を傾斜させたことを特徴としている。   According to a third aspect of the present invention, there is provided a moving body detection apparatus according to the first aspect, wherein the SV-GMR element is disposed between the magnetic material moving body and the bias magnet, and the SV-GMR element has a magnetosensitive surface. The magnetic pole surface is inclined so that the magnetic pole surface of the bias magnet is not parallel to the magnetic pole surface.

本願請求項4の発明に係る移動体検出装置は、請求項1において、前記磁性材移動体と前記バイアス磁石間に前記SV−GMR素子が配置され、かつ前記バイアス磁石の磁極面の前記磁性材移動体の移動方向にずらした位置にヨークを部分配置したことを特徴としている。   According to a fourth aspect of the present invention, there is provided a moving body detection apparatus according to the first aspect, wherein the SV-GMR element is disposed between the magnetic material moving body and the bias magnet, and the magnetic material on the magnetic pole surface of the bias magnet. The yoke is partially arranged at a position shifted in the moving direction of the moving body.

本願請求項5の発明に係る移動体検出装置は、請求項1において、前記磁性材移動体が外周に凸部又は凹部を有する回転部材であり、該回転部材の外周と前記バイアス磁石間に前記SV−GMR素子が配置され、かつ前記回転部材の回転中心は、前記バイアス磁石中心と前記SV−GMR素子中心とを通過する直線からずれた位置にあることを特徴としている。   The moving body detection apparatus according to claim 5 of the present application is the rotating member according to claim 1, wherein the magnetic material moving body is a rotating member having a convex portion or a concave portion on an outer periphery, and the outer periphery of the rotating member and the bias magnet are An SV-GMR element is disposed, and the rotation center of the rotating member is at a position shifted from a straight line passing through the bias magnet center and the SV-GMR element center.

本願請求項6の発明に係る移動体検出装置は、請求項1,2,3,4又は5において、前記SV−GMR素子が少なくとも1対設けられていて、対をなすSV−GMR素子のピン層磁化方向が互いに逆向きとなっていることを特徴としている。   According to a sixth aspect of the present invention, there is provided a mobile object detection device according to the first, second, third, fourth, or fifth aspect, wherein at least one pair of the SV-GMR elements is provided, and the pair of SV-GMR elements forming a pair The layer magnetization directions are opposite to each other.

本発明に係る移動体検出装置は、少なくとも1つの凸部又は凹部を有する磁性材移動体と、磁界を発生するバイアス磁石と、前記磁性材移動体で変化された磁界に対応して抵抗値が変化するSV−GMR素子とを用いる場合において、前記磁性材移動体の凸部又は凹部による磁界変化を実質的に受けない第1状態では、前記SV−GMR素子位置での磁界が、前記SV−GMR素子のピン層磁化方向に順平行又は反平行の成分を有し、前記凸部又は凹部による磁界変化を受ける第2状態では、前記SV−GMR素子位置での磁界の前記ピン層磁化方向に平行な成分の向きが反転するようにしたので、SV−GMR素子等の温度ドリフト、磁性材移動体としての歯車の軸ぶれ、その他外乱ノイズ等に起因する検出波形変動を少なくでき、信頼性の高い検出信号を得ることできる。   The moving body detection apparatus according to the present invention has a magnetic material moving body having at least one convex portion or a concave portion, a bias magnet that generates a magnetic field, and a resistance value corresponding to the magnetic field changed by the magnetic material moving body. In the case of using the changing SV-GMR element, in the first state where the magnetic material moving body is not substantially subjected to the magnetic field change by the convex portion or the concave portion, the magnetic field at the SV-GMR element position is the SV− In a second state having a forward or antiparallel component in the pin layer magnetization direction of the GMR element and receiving a magnetic field change caused by the convex portion or the concave portion, the magnetic field at the SV-GMR element position is in the pin layer magnetization direction. Since the direction of the parallel component is reversed, it is possible to reduce detection waveform fluctuations caused by temperature drift of SV-GMR elements, gear shaft movement as a magnetic material moving body, and other disturbance noise, and reliability. It can be obtained a high detection signal.

以下、本発明を実施するための最良の形態として、移動体検出装置の実施の形態を図面に従って説明する。   Hereinafter, as a best mode for carrying out the present invention, an embodiment of a moving body detection apparatus will be described with reference to the drawings.

図1乃至図5で本発明に係る移動体検出装置の実施の形態1を説明する。この実施の形態1は磁性材移動体として軟磁性体歯車の回転検出を行う回転センサを構成した場合を示し、図1は磁性材移動体としての軟磁性体歯車1、SV−GMR素子10、及びこれにバイアス磁界を印加するバイアス磁石5の配置図である。   Embodiment 1 of the moving body detection apparatus according to the present invention will be described with reference to FIGS. Embodiment 1 shows a case where a rotation sensor for detecting rotation of a soft magnetic gear is configured as a magnetic material moving body, and FIG. 1 shows a soft magnetic gear 1, a SV-GMR element 10 as a magnetic material moving body, FIG. 5 is a layout diagram of a bias magnet 5 that applies a bias magnetic field thereto.

本実施の形態では、磁性材移動体である軟磁性体歯車1で変化された磁界に対応して抵抗値が変化するGMR素子として、SV−GMR素子を用いており、その模式的な膜構成及び磁気特性を図2に示す。SV−GMR素子は、磁化方向が一方向に固定された強磁性体のピン層と、電流が主として流れる非磁性体を介して前記ピン層に積層された強磁性体のフリー層とを有し、ピン層は外部磁界(外部磁束)によって磁化方向は変化せず、フリー層は外部磁界(外部磁束)の方向に磁化される。ここで、ピン層の磁化方向とフリー層の磁化方向(つまり外部磁界の方向)とが直交しているとき(図2(a)のθ=0のとき)、抵抗変化率(ΔR/R)は0である。ピン層の磁化方向とフリー層の磁化方向(つまり外部磁界Hの方向)とが平行であるが向きが逆のとき、つまり反平行のとき、抵抗変化率はプラスとなり、図2(a)の高抵抗状態となる。また、ピン層の磁化方向とフリー層の磁化方向(つまり外部磁界Hの方向)とが平行でかつ向きが同じとき、つまり順平行のとき、抵抗変化率はマイナスとなり、図2(b)の低抵抗状態となる。   In the present embodiment, an SV-GMR element is used as a GMR element whose resistance value changes in response to a magnetic field changed by the soft magnetic gear 1 that is a magnetic material moving body, and its typical film configuration The magnetic properties are shown in FIG. The SV-GMR element has a ferromagnetic pinned layer whose magnetization direction is fixed in one direction, and a ferromagnetic free layer stacked on the pinned layer via a nonmagnetic material through which a current mainly flows. The magnetization direction of the pinned layer is not changed by an external magnetic field (external magnetic flux), and the free layer is magnetized in the direction of the external magnetic field (external magnetic flux). Here, when the magnetization direction of the pinned layer is perpendicular to the magnetization direction of the free layer (that is, the direction of the external magnetic field) (when θ = 0 in FIG. 2A), the rate of change in resistance (ΔR / R) Is 0. When the magnetization direction of the pinned layer and the magnetization direction of the free layer (that is, the direction of the external magnetic field H) are parallel but opposite to each other, that is, when they are antiparallel, the rate of change in resistance becomes positive, as shown in FIG. High resistance state. When the magnetization direction of the pinned layer and the magnetization direction of the free layer (that is, the direction of the external magnetic field H) are parallel and in the same direction, that is, in the forward parallel direction, the rate of change in resistance becomes negative, as shown in FIG. It becomes a low resistance state.

図2のような磁気特性を有するSV−GMR素子10は、図1のように磁性材移動体としての軟磁性体歯車1とバイアス磁石5間に配置され、SV−GMR素子10の感磁面は歯車1の外周面に対向している。バイアス磁石5は、例えば軟磁性体歯車1の外周面に対向する面にN極、反対面にS極を有する永久磁石であり、N極面と軟磁性体歯車1間にSV−GMR素子10が位置するとともに、バイアス磁石5の中心軸P(磁極面の中心軸)に対してSV−GMR素子の中心は歯車1の凸部2の移動方向(図1の左右方向)にずれた配置となっている。なお、図1ではSV−GMR素子の中心を通りその感磁面に垂直な直線Qは歯車1の回転中心を通るように設定している。   An SV-GMR element 10 having magnetic characteristics as shown in FIG. 2 is arranged between a soft magnetic gear 1 as a magnetic material moving body and a bias magnet 5 as shown in FIG. Faces the outer peripheral surface of the gear 1. The bias magnet 5 is a permanent magnet having, for example, an N pole on the surface facing the outer peripheral surface of the soft magnetic gear 1 and an S pole on the opposite surface, and the SV-GMR element 10 between the N pole surface and the soft magnetic gear 1. And the center of the SV-GMR element is shifted in the moving direction of the convex portion 2 of the gear 1 (the left-right direction in FIG. 1) with respect to the central axis P of the bias magnet 5 (the central axis of the magnetic pole surface). It has become. In FIG. 1, a straight line Q that passes through the center of the SV-GMR element and is perpendicular to the magnetosensitive surface is set to pass through the rotation center of the gear 1.

図1のように、バイアス磁石5の中心軸Pに対してSV−GMR素子の中心を歯車1の凸部2の移動方向(図1の左右方向)にずらした配置とする理由は、図3及び図4(A)のように、軟磁性体歯車1の凸部2による磁界変化を実質的に受けない第1状態において、SV−GMR素子位置での磁界がピン層磁化方向に順平行又は反平行の成分を有するようにして、SV−GMR素子10のバイアス点が下限飽和域(又は上限飽和域)となるように設定するためである。   The reason why the center of the SV-GMR element is shifted with respect to the central axis P of the bias magnet 5 in the moving direction of the convex portion 2 of the gear 1 (left-right direction in FIG. 1) as shown in FIG. As shown in FIG. 4A, the magnetic field at the SV-GMR element position is forward-parallel to the pinned layer magnetization direction in the first state where the magnetic field change due to the convex portion 2 of the soft magnetic gear 1 is not substantially received. This is because the bias point of the SV-GMR element 10 is set to be in the lower limit saturation region (or the upper limit saturation region) so as to have an antiparallel component.

図4は軟磁性体歯車1が回転するのに伴うSV−GMR素子の動作点の軌跡を太線で示し、同図(A)では軟磁性体歯車1の凸部2がSV−GMR素子 10からかなり離れた位置にあり、バイアス磁石5のバイアス磁界によるSV−GMR素子のピン層磁化方向と平行で向きが同じ順平行の磁界成分によって下限飽和域の動作点となるようにバイアスされている(SV−GMR素子が低抵抗となる第1状態)。   FIG. 4 shows the locus of the operating point of the SV-GMR element as the soft magnetic gear 1 rotates by a thick line. In FIG. 4A, the convex portion 2 of the soft magnetic gear 1 is from the SV-GMR element 10. The bias magnet 5 is biased so as to be the operating point of the lower limit saturation region by a forward-parallel magnetic field component that is parallel to the same direction as the pinned layer magnetization direction of the SV-GMR element due to the bias magnetic field of the bias magnet 5 ( (First state in which the SV-GMR element has a low resistance).

図4(B)のように軟磁性体歯車1の回転に伴い凸部2がSV−GMR素子10の右側に近接することで、SV−GMR素子位置での磁界はその影響を受けてピン層磁化方向と平行で向きが逆の反平行の磁界成分を持つようになり、SV−GMR素子の動作点は上限飽和域に移行する(SV−GMR素子が高抵抗となる第2状態)。   As the soft magnetic gear 1 rotates as shown in FIG. 4B, the convex portion 2 approaches the right side of the SV-GMR element 10, so that the magnetic field at the position of the SV-GMR element is affected by the influence of the pin layer. The anti-parallel magnetic field component is parallel to the magnetization direction and opposite in direction, and the operating point of the SV-GMR element shifts to the upper limit saturation region (second state in which the SV-GMR element has a high resistance).

図4(C)のように軟磁性体歯車1の回転に伴い凸部2がSV−GMR素子10の正面を通過して左側に移行すると、SV−GMR素子位置での磁界はその影響を受けてピン層磁化方向と平行で向きが同じ順平行の磁界成分を再び持つようになり、SV−GMR素子の動作点は下限飽和域に移行し、以後同図(D),(A)を経て(B)でピン層磁化方向に平行な磁界成分の向きが反転するまでSV−GMR素子が低抵抗となった第1状態を維持する。   As shown in FIG. 4C, when the convex portion 2 passes through the front of the SV-GMR element 10 and moves to the left side as the soft magnetic gear 1 rotates, the magnetic field at the position of the SV-GMR element is affected. As a result, the SV-GMR element shifts to the lower limit saturation region again after passing through the same figure (D) and (A). In (B), the SV-GMR element maintains the first state in which the resistance is low until the direction of the magnetic field component parallel to the pinned layer magnetization direction is reversed.

従って、SV−GMR素子の検出波形は軟磁性体歯車1の凸部2の片エッジのみに反応し、凸部2の1回の通過に対して図3(B)のような検出信号波形を得ることができ、立ち上がりスレッショルド電圧Vta、立下りスレッショルド電圧Vtbで波形整形することにより、矩形波出力を得ることが可能である。   Therefore, the detection waveform of the SV-GMR element reacts only to one edge of the convex portion 2 of the soft magnetic gear 1, and the detection signal waveform as shown in FIG. A rectangular wave output can be obtained by shaping the waveform with the rising threshold voltage Vta and the falling threshold voltage Vtb.

図5(A)は軟磁性体歯車の凸部に対応したSV−GMR素子抵抗変化による検出波形、同図(B)は立ち上がりスレッショルド電圧Vta、立下りスレッショルド電圧Vtbで波形整形した矩形波出力を示す。この場合、SV−GMR素子を下限飽和域及び上限飽和域で動作させることにより、凸部とSV−GMR素子間の取付間隔のばらつきに起因する同図(A)の検出波形の変化は発生せず、安定した矩形波出力を得ることができる。また、矩形波出力を得るための回路素子(波形整形回路等)の温度ドリフトによりスレッショルド電圧が変動してもSV−GMR素子抵抗変化による検出波形が図5(A)のように立ち上がり及び立ち下がり共に急峻であるため、図5(B)の矩形波出力のパルス位置及びパルス幅変動も極めて小さくなる。また、外乱ノイズ等による影響も受けにくくなる。   FIG. 5A shows a detection waveform due to a change in resistance of the SV-GMR element corresponding to the convex portion of the soft magnetic gear, and FIG. Show. In this case, by operating the SV-GMR element in the lower limit saturation range and the upper limit saturation range, the change in the detected waveform in FIG. Therefore, a stable rectangular wave output can be obtained. Further, even if the threshold voltage fluctuates due to temperature drift of a circuit element (such as a waveform shaping circuit) for obtaining a rectangular wave output, the detected waveform due to the SV-GMR element resistance rises and falls as shown in FIG. Since both are steep, fluctuations in the pulse position and pulse width of the rectangular wave output in FIG. In addition, it is less susceptible to disturbance noise and the like.

図6乃至図8は本発明に係る移動体検出装置の実施の形態2であり、4個のSV−GMR素子R1,R2,R3,R4を用いてホイートストンブリッジ回路20を構成し、SV−GMR素子R1,R2,R3,R4の抵抗変化による検出出力を得る構成である。この場合、各SV−GMR素子と軟磁性体歯車1とバイアス磁石5との位置関係は図1の場合と同様であるが、軟磁性体歯車1の凸部2による磁界変化を実質的に受けない第1状態では、第1組のSV−GMR素子R1,R3のピン層磁化方向とバイアス磁石5による当該ピン層磁化方向に平行な磁界成分とが同方向(順平行)であり、第2組のSV−GMR素子R2,R4のピン層磁化方向とバイアス磁石5による当該ピン層磁化方向に平行な磁界成分とは逆方向(反平行)である。なお、図6では各SV−GMR素子R1,R2,R3,R4は軟磁性体歯車1の回転面に垂直な直線上に配置されているが、軟磁性体歯車1の回転面に平行で回転方向に直交した方向(軟磁性体歯車1の径方向)に各SV−GMR素子R1,R2,R3,R4を重ねて配置してもよい。   6 to 8 show a second embodiment of the moving object detection apparatus according to the present invention. A Wheatstone bridge circuit 20 is configured by using four SV-GMR elements R1, R2, R3, and R4, and the SV-GMR. In this configuration, detection outputs are obtained by resistance changes of the elements R1, R2, R3, and R4. In this case, the positional relationship among each SV-GMR element, the soft magnetic gear 1 and the bias magnet 5 is the same as in the case of FIG. 1, but the magnetic field change due to the convex portion 2 of the soft magnetic gear 1 is substantially received. In the first state, the pinned layer magnetization direction of the first set of SV-GMR elements R1 and R3 and the magnetic field component parallel to the pinned layer magnetization direction by the bias magnet 5 are in the same direction (forward parallel). The pinned layer magnetization direction of the pair of SV-GMR elements R2 and R4 and the magnetic field component parallel to the pinned layer magnetization direction by the bias magnet 5 are opposite (antiparallel). In FIG. 6, each SV-GMR element R1, R2, R3, R4 is arranged on a straight line perpendicular to the rotation surface of the soft magnetic gear 1, but rotates parallel to the rotation surface of the soft magnetic gear 1. The SV-GMR elements R1, R2, R3, and R4 may be stacked in a direction perpendicular to the direction (the radial direction of the soft magnetic gear 1).

前記ホイートストンブリッジ回路20は、SV−GMR素子R1,R2の対と、もう一つのSV−GMR素子R3,R4の対とで構成され、このホイートストンブリッジ回路には一定の供給電圧Vinが供給されるようになっている。検出出力VoutはR1,R2の接続点とR3,R4の接続点間の電位差として得られる。   The Wheatstone bridge circuit 20 is composed of a pair of SV-GMR elements R1 and R2 and another pair of SV-GMR elements R3 and R4, and a constant supply voltage Vin is supplied to the Wheatstone bridge circuit. It is like that. The detection output Vout is obtained as a potential difference between the connection points of R1 and R2 and the connection points of R3 and R4.

図7はSV−GMR素子R1,R2,R3,R4を用いたホイートストンブリッジ回路20から矩形波出力を得るための回路構成であり、ホイートストンブリッジ回路20の検出出力Voutは差動増幅器21で増幅された後、コンパレータ22で立ち上がりスレッショルド電圧Vta、立下りスレッショルド電圧Vtbと比較されて波形整形され、出力回路23から矩形波出力が得られる。   FIG. 7 shows a circuit configuration for obtaining a rectangular wave output from the Wheatstone bridge circuit 20 using the SV-GMR elements R1, R2, R3, R4. The detection output Vout of the Wheatstone bridge circuit 20 is amplified by the differential amplifier 21. After that, the comparator 22 compares the waveform with the rising threshold voltage Vta and the falling threshold voltage Vtb and shapes the waveform, and a rectangular wave output is obtained from the output circuit 23.

図8は実施の形態2の場合における温度ドリフト時の出力波形の例であり、図8(A)は軟磁性体歯車の凸部に対応したホイートストンブリッジ回路20の検出波形、同図(B)は前記検出波形を立ち上がりスレッショルド電圧Vta、立下りスレッショルド電圧Vtbで波形整形した矩形波出力を示す。図8(A)のように、ドリフト前は直線位置にあった立下りスレッショルド電圧Vtbがドリフト後に点線位置に変化したとき、検出波形は立ち上がり及び立ち下がり共に極めて急峻であるため、同図(B)の矩形波出力のパルス位置及びパルス幅T1,T2,T3の変動は極めて僅かである(SV−GMR素子1個使用の場合よりもさらに改善される)。また、スレッショルド電圧のドリフト範囲に余裕が生じるため、強度検知型GMR素子よりも温度ドリフト等に影響されにくい検出出力波形を得ることができる。さらに、ホイートストンブリッジ回路20を組むことで、SV−GMR素子単独使用の4倍の検出出力を得ることができ、磁性材移動体としての軟磁性体歯車の軸ぶれ、その他外乱ノイズ等に影響されにくい矩形波出力信号を得ることか可能である。   FIG. 8 is an example of an output waveform at the time of temperature drift in the case of the second embodiment. FIG. 8A is a detection waveform of the Wheatstone bridge circuit 20 corresponding to the convex portion of the soft magnetic gear, and FIG. Indicates a rectangular wave output obtained by shaping the detected waveform with a rising threshold voltage Vta and a falling threshold voltage Vtb. As shown in FIG. 8A, when the falling threshold voltage Vtb, which was in the linear position before the drift, changes to the dotted line position after the drift, the detected waveform is extremely steep in both the rising and falling edges. ) Of the rectangular wave output pulse position and pulse widths T1, T2, and T3 are extremely small (more improved than the case of using one SV-GMR element). In addition, since there is a margin in the drift range of the threshold voltage, it is possible to obtain a detection output waveform that is less susceptible to temperature drift than the intensity detection type GMR element. Furthermore, by constructing the Wheatstone bridge circuit 20, it is possible to obtain a detection output four times that of the SV-GMR element alone, which is influenced by the shaft shake of the soft magnetic gear as the magnetic material moving body, and other disturbance noises. It is possible to obtain a difficult rectangular wave output signal.

図9は本発明に係る移動体検出装置の実施の形態3〜6をそれぞれ示す。図9(A)は実施の形態3であり、SV−GMR素子10は、磁性材移動体としての軟磁性体歯車1とバイアス磁石5間に配置され、SV−GMR素子10の感磁面は歯車1の外周面に対向している。SV−GMR素子の中心を通りその感磁面に垂直な直線Qは歯車1の回転中心を通り、この直線Qに対して左右方向にずれた位置にバイアス磁石5が傾斜配置されている(SV−GMR素子10の感磁面と磁石5の磁極面が非平行)。バイアス磁石5の傾斜方向は、例えばその中心軸P(磁極面の中心軸)がSV−GMR素子中心の近傍を通過する向きである。これにより、軟磁性体歯車1の凸部2による磁界変化を実質的に受けない第1状態では、SV−GMR素子位置での磁界が、SV−GMR素子10のピン層磁化方向に順平行(又は反平行)の成分を有し、凸部2による磁界変化を受ける第2状態では、前記SV−GMR素子位置での磁界の前記ピン層磁化方向に平行な成分の向きが反転するように設定できる。   FIG. 9 shows Embodiments 3 to 6 of the moving object detection apparatus according to the present invention. FIG. 9A shows the third embodiment, and the SV-GMR element 10 is disposed between the soft magnetic gear 1 as a magnetic material moving body and the bias magnet 5, and the magnetosensitive surface of the SV-GMR element 10 is as follows. It faces the outer peripheral surface of the gear 1. A straight line Q that passes through the center of the SV-GMR element and is perpendicular to the magnetosensitive surface passes through the center of rotation of the gear 1, and the bias magnet 5 is inclined at a position shifted in the left-right direction with respect to the straight line Q (SV -The magnetosensitive surface of the GMR element 10 and the magnetic pole surface of the magnet 5 are not parallel. The inclination direction of the bias magnet 5 is, for example, a direction in which the central axis P (the central axis of the magnetic pole surface) passes near the center of the SV-GMR element. Thus, in the first state in which the magnetic field change due to the convex portion 2 of the soft magnetic gear 1 is not substantially received, the magnetic field at the SV-GMR element position is forward parallel to the pin layer magnetization direction of the SV-GMR element 10 ( (Or antiparallel), and in the second state where the magnetic field is changed by the convex portion 2, the direction of the component parallel to the pinned layer magnetization direction of the magnetic field at the SV-GMR element position is reversed. it can.

図9(B)は実施の形態4であり、SV−GMR素子10は、磁性材移動体としての軟磁性体歯車1とバイアス磁石5間に配置され、SV−GMR素子10の感磁面は歯車1の外周面に対向している。SV−GMR素子の中心を通りその感磁面に垂直な直線Qは歯車1の回転中心を通り、この直線Q上にバイアス磁石5が配置されている(直線Qと磁石5の中心軸Pとが一致してよい)。但し、バイアス磁石5の磁極面の軟磁性体歯車1の移動方向にずらした位置に磁性体ヨーク30を部分配置し、軟磁性体歯車1の凸部2による磁界変化を実質的に受けない第1状態において、SV−GMR素子位置での磁界が、SV−GMR素子10のピン層磁化方向に順平行(又は反平行)の成分を有するように設定する。   FIG. 9B shows the fourth embodiment. The SV-GMR element 10 is disposed between the soft magnetic gear 1 as a magnetic material moving body and the bias magnet 5, and the magnetic sensitive surface of the SV-GMR element 10 is It faces the outer peripheral surface of the gear 1. A straight line Q passing through the center of the SV-GMR element and perpendicular to the magnetic sensitive surface thereof passes through the center of rotation of the gear 1, and a bias magnet 5 is disposed on the straight line Q (the straight line Q and the central axis P of the magnet 5). May match). However, the magnetic yoke 30 is partially disposed at a position shifted in the moving direction of the soft magnetic gear 1 on the magnetic pole surface of the bias magnet 5 so that the magnetic field change due to the convex portion 2 of the soft magnetic gear 1 is not substantially received. In one state, the magnetic field at the position of the SV-GMR element is set to have a component that is forward parallel (or antiparallel) to the pinned layer magnetization direction of the SV-GMR element 10.

これにより、軟磁性体歯車1の凸部2による磁界変化を実質的に受けない第1状態では、SV−GMR素子位置での磁界が、SV−GMR素子10のピン層磁化方向に順平行(又は反平行)の成分を有し、凸部2による磁界変化を受ける第2状態では、前記SV−GMR素子位置での磁界の前記ピン層磁化方向に平行な成分の向きが反転するように設定できる。   Thus, in the first state in which the magnetic field change due to the convex portion 2 of the soft magnetic gear 1 is not substantially received, the magnetic field at the SV-GMR element position is forward parallel to the pin layer magnetization direction of the SV-GMR element 10 ( (Or antiparallel), and in the second state where the magnetic field is changed by the convex portion 2, the direction of the component parallel to the pinned layer magnetization direction of the magnetic field at the SV-GMR element position is reversed. it can.

図9(C)は実施の形態5であり、SV−GMR素子10は、磁性材移動体としての軟磁性体歯車1とバイアス磁石5間に配置され、SV−GMR素子10の感磁面は歯車1の外周面に対向している。また、バイアス磁石5はその中心軸P(磁極面の中心軸)が歯車1の回転中心を通過する配置であり、SV−GMR素子10の中心は中心軸Pの左右方向、つまり歯車1の移動方向にずらした配置となっている。   FIG. 9C shows the fifth embodiment, and the SV-GMR element 10 is disposed between the soft magnetic gear 1 as a magnetic material moving body and the bias magnet 5, and the magnetic sensitive surface of the SV-GMR element 10 is It faces the outer peripheral surface of the gear 1. The bias magnet 5 is arranged such that the central axis P (the central axis of the magnetic pole surface) passes through the rotation center of the gear 1, and the center of the SV-GMR element 10 is the left-right direction of the central axis P, that is, the movement of the gear 1. The arrangement is shifted in the direction.

これにより、軟磁性体歯車1の凸部2による磁界変化を実質的に受けない第1状態では、SV−GMR素子位置での磁界が、SV−GMR素子10のピン層磁化方向に順平行(又は反平行)の成分を有し、凸部2による磁界変化を受ける第2状態では、前記SV−GMR素子位置での磁界の前記ピン層磁化方向に平行な成分の向きが反転するように設定できる。   Thus, in the first state in which the magnetic field change due to the convex portion 2 of the soft magnetic gear 1 is not substantially received, the magnetic field at the SV-GMR element position is forward parallel to the pin layer magnetization direction of the SV-GMR element 10 ( (Or antiparallel), and in the second state where the magnetic field is changed by the convex portion 2, the direction of the component parallel to the pinned layer magnetization direction of the magnetic field at the SV-GMR element position is reversed. it can.

図9(D)は実施の形態6であり、SV−GMR素子10は、磁性材移動体としての軟磁性体歯車1とバイアス磁石5間に配置され、SV−GMR素子10の感磁面は歯車1の外周面に対向している。また、バイアス磁石5の中心軸P(磁極面の中心軸)上にSV−GMR素子10の中心が位置している(磁石5の中心軸PとSV−GMR素子の中心を通る直線Qが一致してよい)。但し、回転部材としての軟磁性体歯車1の回転中心は、前記バイアス磁石5とSV−GMR素子中心とを通過する直線から移動方向にずれた位置にある。   FIG. 9D shows the sixth embodiment. The SV-GMR element 10 is disposed between the soft magnetic gear 1 as a magnetic material moving body and the bias magnet 5, and the magnetic sensitive surface of the SV-GMR element 10 is as follows. It faces the outer peripheral surface of the gear 1. Further, the center of the SV-GMR element 10 is positioned on the central axis P (the central axis of the magnetic pole surface) of the bias magnet 5 (the straight line Q passing through the central axis P of the magnet 5 and the center of the SV-GMR element is one). You can do it). However, the rotation center of the soft magnetic gear 1 as a rotating member is at a position shifted in the moving direction from a straight line passing through the bias magnet 5 and the center of the SV-GMR element.

これにより、軟磁性体歯車1の凸部2による磁界変化を実質的に受けない第1状態では、SV−GMR素子位置での磁界が、SV−GMR素子10のピン層磁化方向に順平行(又は反平行)の成分を有し、凸部2による磁界変化を受ける第2状態では、前記SV−GMR素子位置での磁界の前記ピン層磁化方向に平行な成分の向きが反転するように設定できる。   Thus, in the first state in which the magnetic field change due to the convex portion 2 of the soft magnetic gear 1 is not substantially received, the magnetic field at the SV-GMR element position is forward parallel to the pin layer magnetization direction of the SV-GMR element 10 ( (Or antiparallel), and in the second state where the magnetic field is changed by the convex portion 2, the direction of the component parallel to the pinned layer magnetization direction of the magnetic field at the SV-GMR element position is reversed. it can.

上記実施の形態3〜6の構成によっても、軟磁性体歯車1の回転に伴って前記第1状態(動作点:下限飽和域)から第2状態(動作点:上限飽和域)に移行し、第2状態から第1状態に戻ることで、実施の形態1の場合と同様にSV−GMR素子の抵抗変化を検出できる。得られる効果も実施の形態1と同様である。なお、実施の形態3〜6において、実施の形態2のように4個のSV−GMR素子を用いてホイートストンブリッジ回路を構成して、検出出力を得てもよい。   Also with the configurations of the above-described third to sixth embodiments, the soft magnetic gear 1 is shifted from the first state (operating point: lower limit saturation region) to the second state (operating point: upper limit saturation region) as the soft magnetic gear 1 rotates. By returning from the second state to the first state, a change in resistance of the SV-GMR element can be detected as in the case of the first embodiment. The effect obtained is the same as that of the first embodiment. In the third to sixth embodiments, a Wheatstone bridge circuit may be configured using four SV-GMR elements as in the second embodiment to obtain a detection output.

上記実施の形態1〜6では磁性材移動体として、回転する軟磁性体歯車の凸部が1個の場合を示したが、凸部又は凹部が回転する軟磁性体歯車の外周面に周期的に設けられた磁性材移動体を用いることができる。さらに、磁性材移動体が、軟磁性体の直線移動体に1個又は複数個の凸部又は凹部を設けた構成であってもよい。   In the first to sixth embodiments described above, the magnetic material moving body has been described as having a single convex portion of the rotating soft magnetic gear. However, the convex portion or the concave portion is periodically arranged on the outer circumferential surface of the soft magnetic gear. Can be used. Further, the magnetic material moving body may have a configuration in which one or a plurality of convex portions or concave portions are provided on a soft magnetic linear moving body.

また、一対のSV−GMR素子R1,R2(ピン層磁化方向が互いに逆向き)を用い、他のSV−GMR素子R3,R4の代わりに固定抵抗を用いてホイートストンブリッジ回路を構成してもよいし、SV−GMR素子R1,R3(ピン層磁化方向が同じ向き)を用い、他のSV−GMR素子R2,R4の代わりに固定抵抗を用いてホイートストンブリッジ回路を構成してもよい。これらの場合、1個のSV−GMR素子を用いる場合の2倍の検出出力を得ることができる。   A pair of SV-GMR elements R1 and R2 (the pinned layer magnetization directions are opposite to each other) may be used, and a Wheatstone bridge circuit may be configured using a fixed resistor instead of the other SV-GMR elements R3 and R4. Alternatively, the Wheatstone bridge circuit may be configured by using SV-GMR elements R1 and R3 (the pinned magnetization direction is the same) and using a fixed resistor instead of the other SV-GMR elements R2 and R4. In these cases, it is possible to obtain twice as many detection outputs as when one SV-GMR element is used.

以上本発明の実施の形態について説明してきたが、本発明はこれに限定されることなく請求項の記載の範囲内において各種の変形、変更が可能なことは当業者には自明であろう。   Although the embodiments of the present invention have been described above, it will be obvious to those skilled in the art that the present invention is not limited to these embodiments, and various modifications and changes can be made within the scope of the claims.

本発明に係る移動体検出装置の実施の形態1であって、移動体検出装置の構成を示す模式的配置図である。It is Embodiment 1 of the mobile body detection apparatus which concerns on this invention, Comprising: It is a typical layout figure which shows the structure of a mobile body detection apparatus. 本発明の実施の形態で用いるSV−GMR素子の膜構成及び磁気特性を示す説明図である。It is explanatory drawing which shows the film | membrane structure and magnetic characteristic of SV-GMR element used by embodiment of this invention. 実施の形態1におけるSV−GMR素子の動作説明であり、(A)はバイアス磁石の磁界によるSV−GMR素子のバイアス点を示す説明図、(B)はSV−GMR素子の抵抗変化による検出波形を示す波形図である。2A and 2B are diagrams for explaining the operation of the SV-GMR element according to the first embodiment, in which FIG. 1A is an explanatory diagram showing a bias point of the SV-GMR element due to a magnetic field of a bias magnet, and FIG. FIG. 実施の形態1の場合の動作図である。FIG. 6 is an operation diagram in the case of the first embodiment. 実施の形態1の出力波形の説明であり、(A)は軟磁性体歯車の凸部に対応したSV−GMR素子抵抗変化による検出波形図、(B)は検出波形を立ち上がりスレッショルド電圧Vta、立下りスレッショルド電圧Vtbで波形整形した矩形波出力波形図である。FIG. 4 is an explanation of an output waveform according to the first embodiment, where (A) is a detection waveform diagram based on a change in resistance of the SV-GMR element corresponding to the convex portion of the soft magnetic gear, and (B) is a rise of the detection waveform with a rising threshold voltage Vta, It is a rectangular wave output waveform diagram shaped by the down threshold voltage Vtb. 本発明に係る移動体検出装置の実施の形態2であって、移動体検出装置の構成を示す模式的斜視図及びホイートストンブリッジ回路図である。It is Embodiment 2 of the mobile body detection apparatus which concerns on this invention, Comprising: They are the typical perspective view and Wheatstone bridge circuit diagram which show the structure of a mobile body detection apparatus. SV−GMR素子のホイートストンブリッジ回路の検出出力を増幅処理する処理回路のブロック図である。It is a block diagram of the processing circuit which amplifies the detection output of the Wheatstone bridge circuit of a SV-GMR element. 実施の形態2における出力波形の説明であり、(A)は軟磁性体歯車の凸部に対応したホイートストンブリッジ回路の検出波形図、(B)は検出波形を立ち上がりスレッショルド電圧Vta、立下りスレッショルド電圧Vtbで波形整形した矩形波出力波形図である。FIG. 4 is an explanation of an output waveform in the second embodiment, where (A) is a detection waveform diagram of a Wheatstone bridge circuit corresponding to a convex portion of a soft magnetic gear, and (B) is a detection waveform with rising threshold voltage Vta and falling threshold voltage. It is a rectangular wave output waveform diagram shaped by Vtb. 本発明に係る移動体検出装置の他の実施の形態であって、(A)は実施の形態3、(B)は実施の形態4、(C)は実施の形態5、(D)は実施の形態6をそれぞれ示す模式的配置図である。It is other embodiment of the moving body detection apparatus concerning this invention, (A) is Embodiment 3, (B) is Embodiment 4, (C) is Embodiment 5, (D) is implementation. It is a typical arrangement | positioning figure which shows the form 6 of each. 従来の強度検知型GMR素子を用いた移動体検出装置における出力波形の説明であり、(A)は軟磁性体歯車の凸部に対応した強度検知型GMR素子抵抗変化による検出波形図、(B)は検出波形を立ち上がりスレッショルド電圧Vta、立下りスレッショルド電圧Vtbで波形整形した矩形波出力波形図である。It is description of the output waveform in the mobile body detection apparatus using the conventional intensity | strength detection type | mold GMR element, (A) is the detection waveform figure by the intensity | strength detection type | mold GMR element resistance change corresponding to the convex part of a soft magnetic gear, ) Is a rectangular wave output waveform diagram in which the detected waveform is shaped with the rising threshold voltage Vta and the falling threshold voltage Vtb. 強度検知型GMR素子の磁気特性及びバイアス点を示す説明図である。It is explanatory drawing which shows the magnetic characteristic and bias point of an intensity | strength detection type GMR element. 温度ドリフト時の従来装置における出力波形の説明であり、(A)は軟磁性体歯車の凸部に対応した強度検知型GMR素子抵抗変化による検出波形図、(B)は検出波形を立ち上がりスレッショルド電圧Vta、立下りスレッショルド電圧Vtbで波形整形した矩形波出力波形図である。It is description of the output waveform in the conventional apparatus at the time of temperature drift, (A) is a detection waveform diagram by the intensity | strength detection type | mold GMR element resistance change corresponding to the convex part of a soft-magnetic-material gear, (B) is a rising threshold voltage with a detection waveform. It is a rectangular wave output waveform diagram shaped by Vta and a falling threshold voltage Vtb. 温度ドリフト時の検出波形スレッショルド付近拡大図である。It is an enlarged view near the detection waveform threshold at the time of temperature drift.

符号の説明Explanation of symbols

1 軟磁性体歯車
2 凸部
5 バイアス磁石
10,R1,R2,R3,R4 SV−GMR素子
20 ホイートストンブリッジ回路
21 差動増幅器
22 コンパレータ
23 出力回路
30 磁性体ヨーク
DESCRIPTION OF SYMBOLS 1 Soft magnetic gear 2 Convex part 5 Bias magnet 10, R1, R2, R3, R4 SV-GMR element 20 Wheatstone bridge circuit 21 Differential amplifier 22 Comparator 23 Output circuit 30 Magnetic yoke

Claims (6)

少なくとも1つの凸部又は凹部を有する磁性材移動体と、磁界を発生するバイアス磁石と、前記磁性材移動体で変化された磁界に対応して抵抗値が変化するスピンバルブ型巨大磁気抵抗素子とを有する移動体検出装置であって、
前記磁性材移動体の凸部又は凹部による磁界変化を実質的に受けない第1状態では、前記スピンバルブ型巨大磁気抵抗素子位置での磁界が、前記スピンバルブ型巨大磁気抵抗素子のピン層磁化方向に順平行又は反平行の成分を有し、
前記凸部又は凹部による磁界変化を受ける第2状態では、前記スピンバルブ型巨大磁気抵抗素子位置での磁界の前記ピン層磁化方向に平行な成分の向きが反転することを特徴とする移動体検出装置。
A magnetic material moving body having at least one convex portion or a concave portion, a bias magnet for generating a magnetic field, and a spin valve type giant magnetoresistive element whose resistance value changes in accordance with the magnetic field changed by the magnetic material moving body; A moving body detection apparatus comprising:
In a first state in which a magnetic field change due to a convex portion or a concave portion of the magnetic material moving body is not substantially received, a magnetic field at the position of the spin valve giant magnetoresistive element is a pinned layer magnetization of the spin valve giant magnetoresistive element. Has a forward-parallel or anti-parallel component in the direction,
In the second state in which the magnetic field is changed by the convex portion or the concave portion, the direction of the component parallel to the pinned layer magnetization direction of the magnetic field at the position of the spin valve type giant magnetoresistive element is reversed. apparatus.
前記磁性材移動体と前記バイアス磁石間に前記スピンバルブ型巨大磁気抵抗素子が配置され、かつ前記バイアス磁石の中心に対して前記スピンバルブ型巨大磁気抵抗素子の中心を前記磁性材移動体の移動方向にずらしたことを特徴とする請求項1記載の移動体検出装置。   The spin-valve giant magnetoresistive element is disposed between the magnetic material moving body and the bias magnet, and the magnetic material moving body moves in the center of the spin-valve giant magnetoresistive element with respect to the center of the bias magnet. The moving body detection apparatus according to claim 1, wherein the moving body detection apparatus is shifted in a direction. 前記磁性材移動体と前記バイアス磁石間に前記スピンバルブ型巨大磁気抵抗素子が配置され、かつ前記スピンバルブ型巨大磁気抵抗素子の感磁面と前記バイアス磁石の磁極面とが非平行となるように前記磁極面を傾斜させたことを特徴とする請求項1記載の移動体検出装置。   The spin valve giant magnetoresistive element is disposed between the magnetic material moving body and the bias magnet, and the magnetic sensitive surface of the spin valve giant magnetoresistive element and the magnetic pole face of the bias magnet are non-parallel. The moving body detection apparatus according to claim 1, wherein the magnetic pole surface is inclined. 前記磁性材移動体と前記バイアス磁石間に前記スピンバルブ型巨大磁気抵抗素子が配置され、かつ前記バイアス磁石の磁極面の前記磁性材移動体の移動方向にずらした位置にヨークを部分配置したことを特徴とする請求項1記載の移動体検出装置。   The spin valve type giant magnetoresistive element is disposed between the magnetic material moving body and the bias magnet, and a yoke is partially disposed at a position shifted in the moving direction of the magnetic material moving body on the magnetic pole surface of the bias magnet. The moving body detection device according to claim 1. 前記磁性材移動体が外周に凸部又は凹部を有する回転部材であり、該回転部材の外周と前記バイアス磁石間に前記スピンバルブ型巨大磁気抵抗素子が配置され、かつ前記回転部材の回転中心は、前記バイアス磁石中心と前記スピンバルブ型巨大磁気抵抗素子中心とを通過する直線からずれた位置にあることを特徴とする請求項1記載の移動体検出装置。   The magnetic material moving body is a rotating member having a convex portion or a concave portion on the outer periphery, the spin valve type giant magnetoresistive element is disposed between the outer periphery of the rotating member and the bias magnet, and the rotation center of the rotating member is 2. The moving body detection device according to claim 1, wherein the moving body detection device is located at a position deviated from a straight line passing through the bias magnet center and the spin valve type giant magnetoresistive element center. 前記スピンバルブ型巨大磁気抵抗素子が少なくとも1対設けられていて、対をなすスピンバルブ型巨大磁気抵抗素子のピン層磁化方向が互いに逆向きとなっていることを特徴とする請求項1,2,3,4又は5記載の移動体検出装置。   2. The spin valve giant magnetoresistive element is provided with at least one pair, and the pin layer magnetization directions of the paired spin valve giant magnetoresistive elements are opposite to each other. , 3, 4 or 5.
JP2004068907A 2004-03-11 2004-03-11 Moving body detection device Expired - Lifetime JP4484033B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004068907A JP4484033B2 (en) 2004-03-11 2004-03-11 Moving body detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004068907A JP4484033B2 (en) 2004-03-11 2004-03-11 Moving body detection device

Publications (2)

Publication Number Publication Date
JP2005257434A JP2005257434A (en) 2005-09-22
JP4484033B2 true JP4484033B2 (en) 2010-06-16

Family

ID=35083300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004068907A Expired - Lifetime JP4484033B2 (en) 2004-03-11 2004-03-11 Moving body detection device

Country Status (1)

Country Link
JP (1) JP4484033B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4573736B2 (en) 2005-08-31 2010-11-04 三菱電機株式会社 Magnetic field detector
JP5013075B2 (en) * 2007-03-30 2012-08-29 Tdk株式会社 Magnetic detector
JP5165963B2 (en) * 2007-08-14 2013-03-21 新科實業有限公司 Magnetic sensor and manufacturing method thereof
JP5144373B2 (en) * 2008-05-29 2013-02-13 アルプス電気株式会社 Magnetic detection type encoder
US7592803B1 (en) * 2008-06-23 2009-09-22 Magic Technologies, Inc. Highly sensitive AMR bridge for gear tooth sensor
JP5843079B2 (en) 2013-03-29 2016-01-13 Tdk株式会社 Magnetic sensor and magnetic sensor system
JP2016095138A (en) * 2014-11-12 2016-05-26 Tdk株式会社 Magnetic sensor
JP6367724B2 (en) * 2015-01-29 2018-08-01 メレキシス テクノロジーズ エス エー Displacement detector

Also Published As

Publication number Publication date
JP2005257434A (en) 2005-09-22

Similar Documents

Publication Publication Date Title
JP5144803B2 (en) Rotation detector
US6107793A (en) Magnetic sensing device unaffected by positioning error of magnetic field sensing elements
JP5271448B2 (en) Magnetic position detector
US7112957B2 (en) GMR sensor with flux concentrators
US6169396B1 (en) Sensing device for detecting change in an applied magnetic field achieving high accuracy by improved configuration
JP2007198843A (en) Magnetism detecting system
JP2009053186A (en) Moving body detector
JP4484033B2 (en) Moving body detection device
JP4973869B2 (en) Moving body detection device
JPH08178937A (en) Magnetism detecting device
US7427859B2 (en) Moving body detecting apparatus
JP2008008699A (en) Rotation detecting apparatus
US7045997B2 (en) Magnetic detection apparatus
KR100658859B1 (en) Magnetic Detector
JP3448209B2 (en) Magnetic detector
JP4286739B2 (en) Magnetic detector
JP4281913B2 (en) Moving body detection device
JP3682052B2 (en) Magnetic detector
JP4424481B2 (en) Moving body detection device
JP2005098942A (en) Mobile unit detection device
JP5086605B2 (en) Moving body detection device
JP4506960B2 (en) Moving body position detection device
US20040017188A1 (en) Magnetic detection apparatus
WO2017199787A1 (en) Magnetic sensor
JP2004301741A (en) Magnetic sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4484033

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100316

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

EXPY Cancellation because of completion of term