Nothing Special   »   [go: up one dir, main page]

JP4481019B2 - Mixed powder and its use - Google Patents

Mixed powder and its use Download PDF

Info

Publication number
JP4481019B2
JP4481019B2 JP2004012735A JP2004012735A JP4481019B2 JP 4481019 B2 JP4481019 B2 JP 4481019B2 JP 2004012735 A JP2004012735 A JP 2004012735A JP 2004012735 A JP2004012735 A JP 2004012735A JP 4481019 B2 JP4481019 B2 JP 4481019B2
Authority
JP
Japan
Prior art keywords
powder
volume
composition
silicone
ceramic powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004012735A
Other languages
Japanese (ja)
Other versions
JP2005209765A (en
Inventor
利貴 山縣
博昭 澤
正人 川野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2004012735A priority Critical patent/JP4481019B2/en
Publication of JP2005209765A publication Critical patent/JP2005209765A/en
Application granted granted Critical
Publication of JP4481019B2 publication Critical patent/JP4481019B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、混合粉末及びそれを含有させた組成物に関する。詳しくは、例えばコンピューターなどの情報処理機器におけるIC、LSI、CPU、MPU及びプラズマディスプレイ等の画像表示用ICの半導体素子により発生する熱を効率よく放出するのに有用な放熱部材等を製造するのに用いられる混合粉末と、それを樹脂又はゴムに含有させてなる組成物、特に放熱部材に関する。   The present invention relates to a mixed powder and a composition containing the same. Specifically, for example, a heat radiating member useful for efficiently releasing heat generated by a semiconductor element of an image display IC such as an IC, LSI, CPU, MPU and plasma display in information processing equipment such as a computer is manufactured. The present invention relates to a mixed powder used in the above and a composition containing the mixed powder in a resin or rubber, particularly a heat dissipation member.

近年、情報処理機器は、携帯用使用の薄型サイズのものが好まれるようになった。それに伴い、半導体素子も高密度化・小型化され、そこから発生する熱も増加の一途をたどり、それを効率よく除去することが重要な問題となっている。   In recent years, information processing equipment has come to be preferred for portable use. Along with this, the density and size of semiconductor elements have also been increased, and the heat generated therefrom has been increasing, and it has become an important problem to efficiently remove them.

従来、半導体素子より発生した熱の除去は、半導体素子を放熱シートを介して放熱フィンに取り付けることによって行われている。情報処理機器の小型化、薄型化により、放熱フィン等を取り付けるスペースがない場合には、情報処理機器のケース等に直接伝熱する方式が取られており、この場合には、半導体素子とケースの間に、そのスペースを埋める厚みを有した熱伝導性フィラー含有のシリコーン硬化物からなる柔らかな放熱スペーサーが用いられている。   Conventionally, the heat generated from the semiconductor element is removed by attaching the semiconductor element to the heat radiation fin via the heat radiation sheet. If there is no space to attach heat radiating fins due to downsizing and thinning of information processing equipment, a method of directly transferring heat to the case of information processing equipment is taken. In between, a soft heat dissipation spacer made of a cured silicone containing a heat conductive filler having a thickness to fill the space is used.

放熱スペーサー(以下、「スペーサー」ともいう。)の熱伝導性を高めるにあたり、窒化アルミニウム、窒化ケイ素等の熱伝導性フィラーを高充填する方法では(特許文献1)、それらの粉末に特有な粒子形状から大変なことであり、分級・粉砕等に多大な労力・時間が必要となるので、これらの粉末を単独で用いて熱伝導性を高めるには限界がきている。
特開平11−145351号公報
In order to increase the thermal conductivity of a heat dissipation spacer (hereinafter also referred to as “spacer”), in a method of highly filling a thermally conductive filler such as aluminum nitride and silicon nitride (Patent Document 1), particles unique to those powders are used. This is serious from the shape and requires a great deal of labor and time for classification and pulverization. Therefore, there is a limit to increase the thermal conductivity by using these powders alone.
JP-A-11-145351

本発明の目的は、更なる高熱伝導性を有するゴム又は樹脂の組成物、特に例えば放熱シート、スペーサー等の放熱部材を提供することであり、それに使用される粉末を提供することである。   An object of the present invention is to provide a rubber or resin composition having a further high thermal conductivity, in particular, a heat radiating member such as a heat radiating sheet or a spacer, and to provide a powder used therefor.

すなわち、本発明は、セラミックス粉末と金属粉末の混合粉末からなり、平均球形度が0.85以上、平均粒子径が50μm以下であり、しかも上記セラミックス粉末には頻度粒度分布において少なくとも2つの極大値があり、また上記金属粉末の頻度粒度分布における極大値が上記セラミックス粉末の極大値の間にあることを特徴とする混合粉末である。この場合において、頻度粒度分布において、セラミックス粉末の極大値が20〜50μmの間と0.3〜0.7μmの間に存在し、金属粉末の極大値が1〜10μmの間に存在する。また、20〜50μmの粒子含有率が40〜60体積%、1〜10μmの粒子含有率が10〜30体積%、0.3〜0.7μmの粒子含有率が1〜5体積%である。更には、セラミックス粉末がアルミナ粉末、金属粉末がアルミニウム粉末である。 That is, the present invention comprises a mixed powder of a ceramic powder and a metal powder, has an average sphericity of 0.85 or more and an average particle diameter of 50 μm or less, and the ceramic powder has at least two maximum values in the frequency particle size distribution. In addition, the mixed powder is characterized in that the maximum value in the frequency particle size distribution of the metal powder is between the maximum values of the ceramic powder. In this case, in the frequency particle size distribution, the maximum value of the ceramic powder exists between 20 to 50 μm and 0.3 to 0.7 μm, and the maximum value of the metal powder exists between 1 to 10 μm . Further, the particle content of 20 to 50 μm is 40 to 60% by volume, the particle content of 1 to 10 μm is 10 to 30% by volume, and the particle content of 0.3 to 0.7 μm is 1 to 5% by volume . Furthermore, the ceramic powder is an alumina powder, and the metal powder is an aluminum powder .

また、本発明は、上記いずれかの混合粉末を樹脂又はゴムに含有させてなることを特徴とする組成物である。この場合において、樹脂又はゴムがシリコーン硬化物であることを特徴とする放熱部材である。   In addition, the present invention is a composition comprising any one of the above mixed powders contained in a resin or rubber. In this case, the heat dissipation member is characterized in that the resin or rubber is a cured silicone.

本発明によれば、更なる高熱伝導性を有するゴム又は樹脂組成物、特に例えば放熱シート、スペーサー等の放熱部材が提供される。また、各種のゴム又は樹脂に絶縁性かつ熱伝導性を付与する粉末が提供される。   According to the present invention, a rubber or resin composition having further high thermal conductivity, in particular, a heat radiating member such as a heat radiating sheet or a spacer is provided. Moreover, the powder which provides insulation and heat conductivity to various rubber | gum or resin is provided.

本発明の混合粉末(以下、「充填剤」ともいう。)は、セラミックス粉末と金属粉末からなり、平均球形度が0.85以上、平均粒子径が50μm以下の混合粉末で構成されている。球形度が0.85未満又は平均粒子径が50μm超であると、粒子同士の接触が著しくなり、樹脂又はゴムの組成物(以下、単に「組成物」ともいう。)特にスペーサーの表面の凹凸が大きくなって界面熱抵抗が増大し更なる高熱伝導率化は達成しづらくなる。   The mixed powder of the present invention (hereinafter also referred to as “filler”) is composed of a ceramic powder and a metal powder, and is composed of a mixed powder having an average sphericity of 0.85 or more and an average particle diameter of 50 μm or less. When the sphericity is less than 0.85 or the average particle diameter is more than 50 μm, the contact between the particles becomes remarkable, and a resin or rubber composition (hereinafter also simply referred to as “composition”), particularly unevenness on the surface of the spacer. As the thermal resistance increases, the interfacial thermal resistance increases, making it difficult to achieve higher thermal conductivity.

平均球形度は、実体顕微鏡、例えば「モデルSMZ−10型」(ニコン社製)、走査型電子顕微鏡にて撮影した粒子像を画像解析装置、例えば(日本アビオニクス社製など)に取り込むことによって測定することができる。すなわち、画像から粒子の投影面積(A)と周囲長(PM)を測定する。周囲長(PM)に対応する真円の面積を(B)とすると、その粒子の真円度はA/Bとして表示できる。そこで、試料粒子の周囲長(PM)と同一の周囲長をもつ真円を想定すると、PM=2πr、B=πrであるから、B=π×(PM/2π)となり、個々の粒子の球形度は、球形度=A/B=A×4π/(PM)として算出することができる。このようにして得られた任意の粒子200個の球形度を求めその平均値を平均球形度とする。 The average sphericity is measured by taking a particle image taken with a stereomicroscope, for example, “Model SMZ-10” (Nikon Corp.) or a scanning electron microscope, into an image analyzer (for example, Nihon Avionics Corp.). can do. That is, the projected area (A) and the perimeter (PM) of the particle are measured from the image. When the area of a perfect circle corresponding to the perimeter (PM) is (B), the roundness of the particle can be displayed as A / B. Thus, assuming a perfect circle having the same circumference as the sample particle (PM), PM = 2πr and B = πr 2 , so that B = π × (PM / 2π) 2 Can be calculated as sphericity = A / B = A × 4π / (PM) 2 . The sphericity of 200 arbitrary particles thus obtained is obtained, and the average value is defined as the average sphericity.

平均粒子径と頻度粒度分布は、市販の粒度測定装置、例えばL&N社製粒度分布計「マイクロトラックSP−A」を用いて測定することができる。   The average particle size and frequency particle size distribution can be measured using a commercially available particle size measuring device, for example, a particle size distribution meter “Microtrac SP-A” manufactured by L & N.

つぎに、本発明の充填剤を構成するセラミックス粉末は、頻度粒度分布において少なくとも2つの極大値を有し、また金属粉末はその頻度粒度分布における極大値が上記セラミックス粉末の極大値の間に存在するように構成されている。このようにすることによって、組成物の表面に粒子の大きなセラミックス粉末が多く存在させることができるので組成物が導電性となるのを緩和することができ、しかもセラミックス粉末同士、金属粉末同士、セラミックス粉末と金属粉末の粒子間の接触が大きくなって熱伝導性が向上する。また、高価格である金属粉末の使用量を軽減できるので低コスト化にも寄与する。   Next, the ceramic powder constituting the filler of the present invention has at least two maximum values in the frequency particle size distribution, and the metal powder has a maximum value in the frequency particle size distribution between the maximum values of the ceramic powder. Is configured to do. By doing so, a large amount of large-sized ceramic powder can be present on the surface of the composition, so that the composition becomes less conductive, and ceramic powders, metal powders, ceramics The contact between the particles of the powder and the metal powder is increased and the thermal conductivity is improved. In addition, the amount of expensive metal powder used can be reduced, which contributes to cost reduction.

本発明においては、セラミックス粉末の頻度粒度分布の極大値が20〜50μm(以下、「セラミックス粉末a」という。)と、0.3〜0.7μm(以下、「セラミックス粉末b」という。)であり、金属粉末の頻度粒度分布の極大値がこれらのセラミックス粉末の頻度粒度分布の極大値の間の1〜10μm(以下、「金属粉末a」という。)にあることが好ましい。中でも、セラミックス粉末aの含有率が40〜60体積%であり、セラミックス粉末bの含有率が1〜5体積%であり、金属粉末aの含有率が10〜30体積%であることが好ましい。特に好ましくは、セラミックス粉末aの含有率が45〜55体積%であり、セラミックス粉末bが0.4〜0.6μmの間にあってその含有率が2〜4体積%であり、金属粉末aの含有率が15〜25体積%である。 In the present invention, the maximum values of the frequency particle size distribution of the ceramic powder are 20 to 50 μm (hereinafter referred to as “ceramic powder a”) and 0.3 to 0.7 μm (hereinafter referred to as “ceramic powder b”). The maximum value of the frequency particle size distribution of the metal powder is preferably 1 to 10 μm (hereinafter referred to as “metal powder a”) between the maximum values of the frequency particle size distribution of these ceramic powders. Especially, it is preferable that the content rate of the ceramic powder a is 40-60 volume%, the content rate of the ceramic powder b is 1-5 volume%, and the content rate of the metal powder a is 10-30 volume%. Particularly preferably, the content of the ceramic powder a is 45 to 55% by volume, the content of the ceramic powder b is between 0.4 to 0.6 μm and the content is 2 to 4% by volume, and the content of the metal powder a The rate is 15-25% by volume.

本発明ではセラミックス粉末bの役割が特に重要であり、その極大値が0.3μm未満にあるか又はその含有率が5体積%超であると、組成物の流動性が低下するか又は組成物内でそれが偏析する。一方、セラミックス粉末bの極大値が0.7μm超にあるか又はその含有率が1体積%未満であると、微粉が少なくなって粒子間の接触が少なくなる。 In the present invention, the role of the ceramic powder b is particularly important, and if the maximum value is less than 0.3 μm or the content is more than 5% by volume, the fluidity of the composition decreases or the composition Within it segregates. On the other hand, when the maximum value of the ceramic powder b is more than 0.7 μm or the content thereof is less than 1% by volume, the fine powder is reduced and the contact between the particles is reduced.

本発明の充填剤は、セラミックス粉末a、セラミックス粉末b及び金属粉末aを所定量混合することによって製造することができる。これらの粉末による合計が100体積%に満たないときには、球形度が0.85以上、平均粒子径が50μm以下のセラミックス粉末を混合する。これによって、更なる導電性を緩和させ、熱伝導率を向上させることができる。 The filler of the present invention can be produced by mixing predetermined amounts of ceramic powder a, ceramic powder b, and metal powder a. When the total of these powders is less than 100% by volume, ceramic powder having a sphericity of 0.85 or more and an average particle diameter of 50 μm or less is mixed. Thereby, further electrical conductivity can be relaxed and thermal conductivity can be improved.

本発明に使用されるセラミックス粉末としては、例えばアルミナ、マグネシア、カルシア、カルシウムアルミネート、スピネル等の酸化物粉末、窒化硼素、窒化珪素、窒化アルミニウム、炭化珪素、炭化ホウ素、炭素等の非酸化物粉末等を例示することができるが、好ましくは球状アルミナ粉末である。また、金属粉末としては、アルミニウム、銅、銀、金、モリブデン、タングステン等が使用されるが、好ましくはアルミニウム粉末である。 Examples of the ceramic powder used in the present invention include oxide powders such as alumina, magnesia, calcia, calcium aluminate, and spinel, and non-oxides such as boron nitride, silicon nitride, aluminum nitride, silicon carbide, boron carbide, and carbon. Examples of the powder include a spherical alumina powder. As the metal powder, aluminum, copper, silver, gold, molybdenum, tungsten, or the like is used, and aluminum powder is preferable.

本発明の組成物に用いられる樹脂又はゴムとしては、例えばシリコーン樹脂、ポリエチレン、ポリプロピレン、エチレン・酢酸ビニル共重合体、硬化性アクリル樹脂、硬化性エポキシ樹脂、シリコーンゴム等が例示され、特に耐熱性が優れることから、シリコーン硬化物が好ましい。組成物中の充填剤の含有率は、用途により例えば30〜95体積%の割合とすることができる。   Examples of the resin or rubber used in the composition of the present invention include silicone resin, polyethylene, polypropylene, ethylene / vinyl acetate copolymer, curable acrylic resin, curable epoxy resin, and silicone rubber. Is preferable, a silicone cured product is preferable. The content rate of the filler in a composition can be made into the ratio of 30-95 volume% by the use, for example.

シリコーン硬化物としては、一般的な電子材料用途に使用されているシリコーン、例えば付加反応により加硫する液状シリコーン樹脂、過酸化物を加硫に用いる熱加硫型ミラブルタイプのシリコーン樹脂等を不都合なく用いることができる。組成物の用途がスペーサー等の放熱部材であるときは、半導体素子の発熱面と放熱フィン等の放熱面との密着性が要求されるため、シリコーンの中でも柔軟性を有する付加反応型液状シリコーンの使用が望ましい。付加反応型液状シリコーンの具体例としては、例えば一分子中にビニル基とH−Si基の両方を有する一液性のシリコーン、又は末端あるいは側鎖にビニル基を有するオルガノポリシロキサンと末端あるいは側鎖に2個以上のH−Si基を有するオルガノポリシロキサンとの二液性のシリコーン等を挙げることができる。このような付加反応型液状シリコーンの市販品としては、例えば東芝シリコーン社製、商品名「XE8530」などがある。シリコーン硬化物の柔軟性は、付加反応によって形成される架橋密度によって調整することができる。   Examples of cured silicone products include silicones that are used in general electronic material applications, such as liquid silicone resins that are vulcanized by addition reactions, and heat-curing millable type silicone resins that use peroxides for vulcanization. Can be used. When the application of the composition is a heat radiating member such as a spacer, the adhesion between the heat generating surface of the semiconductor element and the heat radiating surface such as a heat radiating fin is required. Use is desirable. Specific examples of the addition reaction type liquid silicone include, for example, a one-part silicone having both a vinyl group and an H-Si group in one molecule, or an organopolysiloxane having a vinyl group at the terminal or side chain and the terminal or side. A two-part silicone with an organopolysiloxane having two or more H-Si groups in the chain can be exemplified. Examples of commercially available products of such addition reaction type liquid silicone include a product name “XE8530” manufactured by Toshiba Silicone Co., Ltd. The flexibility of the silicone cured product can be adjusted by the crosslink density formed by the addition reaction.

本発明の組成物は、原料の混合・成形・硬化工程を経て製造される。混合には、ロールミル、ニーダー、バンバリーミキサー等の混合機が用いられる。成形方法はドクターブレード法が好ましいが、ゴム又は樹脂の粘度によって押し出し法・プレス法・カレンダーロール法等を用いることができる。硬化温度は、50〜200℃が望ましい。硬化は、一般的な熱風乾燥機、遠赤外乾燥機、マイクロ波乾燥機等を用いて行われる。   The composition of the present invention is produced through a raw material mixing / molding / curing process. For mixing, a mixer such as a roll mill, a kneader, or a Banbury mixer is used. A doctor blade method is preferable as the molding method, but an extrusion method, a press method, a calender roll method, or the like can be used depending on the viscosity of rubber or resin. The curing temperature is preferably 50 to 200 ° C. Curing is performed using a general hot air dryer, far-infrared dryer, microwave dryer or the like.

本発明の放熱部材は、シリコーン硬化物に充填剤を例えば30〜95体積%存在させたものであり、その厚みは0.1〜6mm、特に0.2〜3mmが一般的である。その平面形状は、半導体素子と密着できる形状ないし、半導体素子を埋没できる形状であれば、特に制限されるものではなく、例えば三角形、四角形、六角形などの多角形、円形、楕円軽等の任意の形状を用いることができ、更には半導体素子が密着ないしは埋没しやすいように凹凸を付けることもできる。   The heat radiating member of the present invention has a silicone cured product in which a filler is present in an amount of, for example, 30 to 95% by volume, and the thickness thereof is generally 0.1 to 6 mm, particularly 0.2 to 3 mm. The planar shape is not particularly limited as long as it is a shape that can be in close contact with a semiconductor element or a shape that can be embedded in a semiconductor element. In addition, the semiconductor element can be provided with unevenness so that the semiconductor element is easily adhered or buried.

実施例1 比較例1〜3
シリコーンA液(ビニル基を有するオルガノポリシロキサン)と、シリコーンB液(H−Si基を有するオルガノポリシロキサン)の二液の付加重合型液状シリコーン(東芝シリコーン社製、商品名「XE8530」)と、表1に示されるセラミックス粉末と金属粉末を表2で示すような割合で配合した。得られた樹脂組成物を、室温において真空脱泡した後、ドクターブレード法にて厚さ1mmのシートに成形した後、120℃の乾燥機に6時間静置して加硫・硬化させ、スペーサーを作製し、以下に従い、(1)熱伝導率と(2)体積抵抗率を測定した。また、平均球形度は上記方法によって画像解析して求め、セラミックス粉末と金属粉末の平均粒子径、頻度粒度分布における極大値をもつ粒子径は、L&N社製粒度分布計「マイクロトラックSP−A」を用いて測定した。それらの結果を表2に示す。
Example 1 Comparative Examples 1-3
Two-part addition polymerization type liquid silicone (trade name “XE8530” manufactured by Toshiba Silicone Co., Ltd.) of silicone A liquid (organopolysiloxane having vinyl group) and silicone B liquid (organopolysiloxane having H—Si group) The ceramic powder and metal powder shown in Table 1 were blended in the proportions shown in Table 2. The obtained resin composition was vacuum degassed at room temperature, then formed into a sheet having a thickness of 1 mm by the doctor blade method, and then left to stand in a dryer at 120 ° C. for 6 hours to be vulcanized and cured. In accordance with the following, (1) thermal conductivity and (2) volume resistivity were measured. The average sphericity is obtained by image analysis according to the above method. The average particle diameter of ceramic powder and metal powder, and the particle diameter having the maximum value in the frequency particle size distribution are the particle size distribution meter “Microtrac SP-A” manufactured by L & N. It measured using. The results are shown in Table 2.

(1)熱伝導率:スペーサーをTO−3型銅製ヒーターケースと銅板との間に挟み、スペーサー厚みの10%を圧縮した後、銅製ヒーターケースに電力5Wをかけて4分間保持し、銅製ヒーターケースと銅板との温度差を測定し、熱伝導率(W/m・k)={電力(W)×厚み(m)}/{温度差(k)×測定面積(m)}、にて熱伝導率を算出した。
(2)体積抵抗率:ヒューレットパッカード社製ハイ・レジスタンス・メータ「4339A」を用いて印加電圧500Vで測定した。
(1) Thermal conductivity: A spacer is sandwiched between a TO-3 type copper heater case and a copper plate, and after compressing 10% of the spacer thickness, the copper heater case is kept at power for 5 minutes and held for 4 minutes. The temperature difference between the case and the copper plate is measured, and thermal conductivity (W / m · k) = {power (W) × thickness (m)} / {temperature difference (k) × measurement area (m 2 )} The thermal conductivity was calculated.
(2) Volume resistivity: Measured at an applied voltage of 500 V using a high resistance meter “4339A” manufactured by Hewlett-Packard Company.

Figure 0004481019
Figure 0004481019

Figure 0004481019
Figure 0004481019

本発明の充填剤は各種の樹脂又はゴムに絶縁性かつ熱伝導性を付与するために使用される。本発明の組成物は各種伝熱部材の製造用材料として使用される。本発明の放熱部材は例えば放熱シート、スペーサー等として使用される。   The filler of the present invention is used for imparting insulating properties and thermal conductivity to various resins or rubbers. The composition of the present invention is used as a material for producing various heat transfer members. The heat radiating member of the present invention is used as, for example, a heat radiating sheet or a spacer.

Claims (3)

アルミナ粉末とアルミニウム粉末の混合粉末からなり、平均球形度が0.85以上、平均粒子径が50μm以下であり、頻度粒度分布において、アルミナ粉末aの極大値が20〜50μmの間、アルミナ粉末bの極大値が0.3〜0.7μmの間に存在し、アルミニウム粉末の極大値が1〜10μmの間に存在し、アルミナ粉末aの粒子含有率が40〜60体積%、アルミニウム粉末の粒子含有率が10〜30体積%、アルミナ粉末bの粒子含有率が1〜5体積%であることを特徴とするシリコーン樹脂又はシリコーンゴムに含有させる放熱部材用の混合粉末。 It consists of a mixed powder of alumina powder and aluminum powder, the average sphericity is 0.85 or more, the average particle diameter is 50 μm or less, and the maximum value of the alumina powder a is between 20 and 50 μm in the frequency particle size distribution, the alumina powder b The maximum value of aluminum powder is between 0.3 and 0.7 μm, the maximum value of aluminum powder is between 1 and 10 μm, the particle content of alumina powder a is 40 to 60% by volume, and the particles of aluminum powder A mixed powder for a heat dissipation member to be contained in a silicone resin or silicone rubber, wherein the content is 10 to 30% by volume and the particle content of the alumina powder b is 1 to 5% by volume. 請求項1記載の混合粉末を用いたことを特徴とする放熱部材用の組成物。 A composition for a heat dissipating member, wherein the mixed powder according to claim 1 is used . 請求項2記載の組成物が硬化物であることを特徴とする放熱部材。 A heat radiating member, wherein the composition according to claim 2 is a cured product.
JP2004012735A 2004-01-21 2004-01-21 Mixed powder and its use Expired - Fee Related JP4481019B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004012735A JP4481019B2 (en) 2004-01-21 2004-01-21 Mixed powder and its use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004012735A JP4481019B2 (en) 2004-01-21 2004-01-21 Mixed powder and its use

Publications (2)

Publication Number Publication Date
JP2005209765A JP2005209765A (en) 2005-08-04
JP4481019B2 true JP4481019B2 (en) 2010-06-16

Family

ID=34899029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004012735A Expired - Fee Related JP4481019B2 (en) 2004-01-21 2004-01-21 Mixed powder and its use

Country Status (1)

Country Link
JP (1) JP4481019B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4880268B2 (en) * 2005-09-07 2012-02-22 電気化学工業株式会社 Inorganic powder and its use
WO2008053536A1 (en) * 2006-10-31 2008-05-08 Denki Kagaku Kogyo Kabushiki Kaisha Alumina powder, process for producing the same, and use thereof
JP2010155870A (en) * 2007-04-20 2010-07-15 Denki Kagaku Kogyo Kk Thermally conductive compound and method for producing the same
WO2011067328A1 (en) * 2009-12-04 2011-06-09 Abb Research Ltd A high voltage surge arrester
TWI462831B (en) * 2010-10-06 2014-12-01 Hitachi Chemical Co Ltd Multilayered resin sheet and method for producing the same, resin sheet laminate and method for producing the same, harded resin sheet, multilayered resin sheet with metal foil, and semiconductor device
JP5431595B2 (en) * 2011-03-28 2014-03-05 日立化成株式会社 Resin composition, resin sheet, resin sheet cured product, resin sheet laminate, resin sheet laminate cured product and method for manufacturing the same, semiconductor device, and LED device
TW201515819A (en) * 2013-10-17 2015-05-01 Ho-Chang Lee Method for manufacturing steering wheel cover
WO2018131486A1 (en) * 2017-01-13 2018-07-19 デンカ株式会社 Thermally conductive resin composition, heat dissipation sheet, heat dissipation member and method for producing same
US20210238368A1 (en) 2018-06-05 2021-08-05 Teijin Limited Composite particles and production method therefor
CN113993939B (en) 2019-06-24 2024-07-16 信越化学工业株式会社 High thermal conductivity silicone composition and cured product thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56834A (en) * 1979-06-15 1981-01-07 Showa Denko Kk Additive for high-molecular material
JP2003309235A (en) * 2002-04-18 2003-10-31 Denki Kagaku Kogyo Kk Heat radiating member and power module

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56834A (en) * 1979-06-15 1981-01-07 Showa Denko Kk Additive for high-molecular material
JP2003309235A (en) * 2002-04-18 2003-10-31 Denki Kagaku Kogyo Kk Heat radiating member and power module

Also Published As

Publication number Publication date
JP2005209765A (en) 2005-08-04

Similar Documents

Publication Publication Date Title
JP3957596B2 (en) Thermally conductive grease
US6284817B1 (en) Conductive, resin-based compositions
CN111492474B (en) Insulating radiating fin
JPWO2014199650A1 (en) Thermosetting resin composition, method for producing thermal conductive sheet, and power module
JP3891969B2 (en) Thermally conductive grease
JP4481019B2 (en) Mixed powder and its use
JP2002003831A (en) Member for heat radiation
WO2021044867A1 (en) Thermally conductive silicone composition and thermally conductive silicone material
WO2021171970A1 (en) Thermally conductive silicone composition and thermally conductive silicone material
WO2021090780A1 (en) Thermally conductive silicone composition and thermally conductive silicone material
JPWO2019031458A1 (en) Low dielectric constant heat conductive heat dissipation member
JP2019131669A (en) Resin composition and insulation heat conductive sheet
JP3794996B2 (en) Thermally conductive resin composition and phase change type heat radiation member
JP4014454B2 (en) Resin composition, method for producing the same, and heat radiating member
JP2003183498A (en) Thermally conductive sheet
JP2021109825A (en) Heat-conductive filler and heat-conductive composition containing the same
JP2000355654A (en) Heat-conductive silicone molding and its use
WO2022191238A1 (en) Thermally conductive resin composition and thermally conductive resin material
JP2002237554A (en) Heat conductive resin formation and its use
JP2005320390A (en) Curable composition, molded product and heat-releasing member
JP4124459B2 (en) Grease
JP2004363272A (en) Heat-dissipating member
JP4313920B2 (en) High thermal conductivity spacer
JPH11307698A (en) Heat dissipating spacer
JPH11307700A (en) Heat dissipating spacer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100317

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4481019

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees