JP4473357B2 - Method for producing unidirectional electrical steel sheet with excellent magnetic properties - Google Patents
Method for producing unidirectional electrical steel sheet with excellent magnetic properties Download PDFInfo
- Publication number
- JP4473357B2 JP4473357B2 JP36261298A JP36261298A JP4473357B2 JP 4473357 B2 JP4473357 B2 JP 4473357B2 JP 36261298 A JP36261298 A JP 36261298A JP 36261298 A JP36261298 A JP 36261298A JP 4473357 B2 JP4473357 B2 JP 4473357B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- annealing
- steel sheet
- alr
- rolling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は電気機器の鉄心として用いられる一方向性電磁鋼板の製造方法に関するもので、特に、スラブ加熱温度を1280℃以下とする製造プロセス即ち、インヒビターを脱炭焼鈍以降に造り込む製造プロセスにおける磁気特性の優れた一方向性電磁鋼板の製造方法に関するものである。
【0002】
【従来の技術】
一方向性電磁鋼板は、主として変圧器、発電機その他の電気機器の鉄心材料として用いられ、それが有する磁気特性として励磁特性と鉄損特性が良好であることの他、良好な被膜を有するものでなければならない。
一方向性電磁鋼板は、二次再結晶現象を利用して圧延面に{110}面、圧延方向に<001>軸をもついわゆるゴス方位を有する結晶粒を発達させることによって得られる。
【0003】
前記二次再結晶現象は、よく知られているように、仕上焼鈍昇温過程で生じるが、二次再結晶の発現を十分なものとするためには、仕上焼鈍昇温過程における二次再結晶発現温度域まで一次再結晶粒の成長を抑制するAlN,MnS,MnSe等の微細な析出物、いわゆるインヒビターを鋼中に存在させる必要がある。従って、電磁鋼スラブは、インヒビター形成元素、例えばAl,Mn,S,Se,N等の化合物を完全に固溶させるために、1350〜1400℃といった高温に加熱される。このように電磁鋼スラブ中に完全に固溶されたインヒビター形成元素は、最終冷間圧延前の焼鈍によって、AlN,MnS,MnSeとして微細に析出せしめられる。
【0004】
特公昭46−23820号公報にはC,Alを含むことを必須条件とする普通鋼もしくは珪素鋼素材を用いて{110}<001>方位の二次再結晶粒を発生させる処理工程において、最終冷延のすぐ前の焼鈍を750℃〜1200℃で行った後、Si量に応じて750℃〜1200℃以下を急冷することによって好ましいサイズのAlNを鋼板に析出させる方法が、また特開昭50−15727号公報ではC,Al,Mn,N,Cu等を含む珪素鋼を熱延し、少なくとも1回の冷間圧延のプロセスをとる一方向性電磁鋼板の製造において、最終冷延前に15秒〜2時間に亘り760〜1177℃で焼鈍し、927℃以下で且つ400℃以上の温度から少なくとも260℃程度までは自然冷却より早い速度で、最高温度から927℃以下にして400℃以上の温度までは自然冷却より遅い速度で冷却する方法が提案されている。
【0005】
これらの方法はいずれも、スラブ加熱温度を高温にして析出物を完全に固溶した後に熱延される素材のみに適用可能なものである。このようなプロセスを採るとき、電磁鋼スラブは前述のように高温に加熱されるから、溶融スケール(ノロ)の発生が多量なものとなり、加熱炉補修の頻度を高めてメンテナンスコストを高くしかつ設備稼働率を低下せしめ,さらに燃料原単位を高くする等の問題がある。
【0006】
かかる問題を解決すべく、電磁鋼スラブの加熱温度を低いものとし得る一方向性電磁鋼板の製造方法が開発されてきた。例えば、特公昭61−60896号公報には、Mn含有量を0.08〜0.45%,S含有量を0.007%以下して[Mn][S]積を低くし、更にAl,P,Nを含有せしめた電磁鋼スラブを素材とすることにより、スラブ加熱温度を1280℃未満とし得る製造プロセスが、また特開平3−211232号公報にはAl,N,Sn,或いは更にBを添加した電磁鋼スラブを1200℃以下の温度で加熱、熱延する同様なプロセスが提案されている。これらの方法はインヒビターを高温スラブ加熱材のように前工程で調整するものではなく、冷延以降の後工程で造り込むことを特徴としており、従って熱延及び熱延板焼鈍は高温スラブ材程の厳密な管理は必要としなくなった。
【0007】
しかしながら、工業生産においては一定の範囲での成分のバラツキ、熱延における温度、時間のバラツキを内在しているため、磁気特性を高位安定化させる上で、熱延板焼鈍で均一化することが必要である。この焼鈍方法として例えば、特開平5−125446号公報に最終冷延前の鋼板の焼鈍を2段均熱とし、その高温側の温度を熱延板の成分から求めたAlR (酸可溶性Al−27/14・N)の値で求める方法を提案している。
【0008】
【発明が解決しようとする課題】
電磁鋼スラブの加熱温度を1280℃以下とする製造プロセスにおいて重要なことは、脱炭焼鈍板の結晶組織(平均粒径、粒径分布)および集合組織の調整と脱炭焼鈍以降のインヒビターの造り込み(窒化)である。
特に、脱炭焼鈍板の結晶組織、集合組織は製品の磁気特性に大きな影響を及ぼすことが知られており、特開平2−259020号公報では一次再結晶粒の平均直径と磁束密度の関係を示しており、一定の大きさの結晶粒に調整することが重要であることが分かる。
【0009】
この組織に影響を与える因子としては冷間圧延率、冷間圧延以前の金属組織及び析出物のサイズや分散状態、冷延後の焼鈍温度等が挙げられるが、これらを左右する工程は、製鋼(主にAl,Nの的中率)は別として熱延板焼鈍(最終冷延前焼鈍を含む)と脱炭焼鈍である。これを解決するための方法の一つとして、前述した特開平5−125446号公報を提案している。しかし、この方法でも製鋼工程で生じる成分(AlR )のバラツキの許容範囲を広げるには不充分である。
【0010】
また、脱炭焼鈍温度を大きく変えて一次再結晶粒径を調整することは、フォルステライト被膜の形成に影響を与える脱炭焼鈍酸化層の質、量を変えることになり好ましくない。本発明はこのAlR の異なった材料を用いて、熱延板焼鈍サイクルと一次再結晶粒成長挙動の関係を詳細に検討し完成させたものである。
【0011】
【課題を解決するための手段】
以下本発明を詳細に説明する。本発明の要旨とするところは下記の通りである。
(1)重量%で、C:0.025〜0.075%、Si:2.5〜4.5%、Mn:0.050〜0.45%、S≦0.015%、酸可溶性Al:0.015〜0.040%、Sn:0.02〜0.15%、Cr:0.03〜0.20%を含有し、残部Feおよび不可避的不純物からなる電磁鋼スラブを1280℃以下の温度に加熱した後、熱延し、焼鈍と一回の圧延または中間焼鈍を介挿する二回以上の圧延でその最終圧延率を80%以上とし、次いで脱炭焼鈍し、脱炭焼鈍から二次再結晶開始温度までの間に鋼板に窒化処理を施し、仕上焼鈍をする一方向性電磁鋼板の製造において、最終冷延前の鋼板の焼鈍を2段サイクルとし、その高温側を温度:1060℃〜1170℃とし、この温度で180秒以内均熱した後、低温側の温度:700〜980℃に移行する過程の980℃〜920℃の滞留時間をt秒とした場合、熱延板の成分から求めたAlR (酸可溶性Al−27/14×N)(ppm) との関係が、
3.14−0.0158×AlR ≦ logt ≦ 3.85−0.0158×AlR 、
及びt≧10sec
を満足するように冷却し、920℃未満〜700℃の温度域から室温まで10℃/sec以上の速度で冷却することを特徴とする一方向性電磁鋼板の製造方法。
【0013】
(2)脱炭焼鈍から二次再結晶開始温度までの間に行う鋼板への窒化処理として、650℃〜800℃の温度でストリップを走行せしめる状態下で水素、窒素、アンモニアの混合ガス中で窒化させることを特徴とする(1)に記載の一方向性電磁鋼板の製造方法。
【0014】
【発明の実施の形態】
始めに本発明の特徴である熱延板焼鈍について実験結果に基づいて説明する。
本発明の素材は、C:0.055%、Si:3.3%、Mn:0.10%、S:0.009%をベース成分とし、これに酸可溶性AlとNを表1に示したように変化させて添加したインゴットを1150℃に加熱した後、熱延し、板厚:2.3mmの熱延板を造った。
【0015】
【表1】
次いで、この熱延板を表2に示す条件で焼鈍した。鋼板の焼鈍を2段サイクルとし、高温側を1120℃×30秒均熱した後、低温側温度を950〜600℃とし、高温側から低温側へ移行する過程の980℃〜920℃の滞留時間(秒)を測定した。
【0016】
【表2】
この後酸洗し、冷延して板厚:0.23mmとした。次いで脱炭焼鈍を840℃の温度でN2 :25%、H2 :75%、露点68℃の雰囲気中で行った。次いで、750℃×30秒の窒化処理をN2 、H2 、NH3 の混合ガス中で行い、窒化後の鋼板の窒素量を220ppmに調整した。この後、MgOとTiO2 を主成分とする焼鈍分離剤を塗布し、1200℃×20時間の仕上げ焼鈍を行った。
【0017】
図1にAlN−熱延板焼鈍条件−磁束密度(B8)の関係を示す。この図から高磁束密度が得られる980℃〜920℃の滞留時間t(秒)とAlR の関係は、
3.14−0.0158×AlR ≦logt≦3.85−0.158×AlR 、t≧10sec
であることが分かる。
【0018】
次に、表1に示すインゴットNo.5の熱延板を用いて、高温側温度の影響を検討した。熱延板焼鈍は表3の条件で行った。高温側から低温側へ移行する過程の980℃〜920℃の滞留時間はいずれも上記の関係を満足するように調整した。
【0019】
【表3】
この後の処理条件は前述したものと同じにした。この結果を図2に示す。
【0020】
図2からB8 :1.93T以上得られる高温側の温度は1060℃〜1170℃の範囲である。
このような焼鈍で高B8 が得られる理由についてはまだ明確にはされていないが、現在のところ次のように考えている。二次再結晶の方位を含めて二次再結晶現象に影響する因子としては一次再結晶組織(平均粒径,粒径分布)、集合組織、インヒビター強度等がある。一次再結晶完了後粒成長に伴って集合組織、粒径分布に変化が生じる。二次再結晶の核化、粒成長を容易にするためには一次再結晶組織として粒径は均一であり一定の大きさ以上であることが望ましい。
【0021】
一方、集合組織は二次再結晶する方位粒({110}<001>方位等)と二次再結晶粒を成長させ易い方位粒({111}<112>方位等)を適当量得ることが必要である。これには圧延率の他に冷間圧延する前の鋼板の結晶粒径(再結晶率)及び変態相の量、固溶C等が影響する。
本発明のプロセスにおいて、冷間圧延以前にインヒビターが存在する事は一次再結晶組織の調整を困難にするため好ましくないが、素材成分にAl,Nを用いるかぎり、AlNの析出は避けられない。特に微細析出物のコントロールが重要である。この析出サイズは焼鈍条件が同一ならAlR が小さいもの程小さく、一次再結晶粒粒成長抑制力は大きい。
【0022】
工場出鋼の電磁鋼のAl,N等は一定の範囲のバラツキ有しているため、同一温度で脱炭焼鈍すると一次再結晶粒径に差が生じ磁気特性が変動する。このため、脱炭焼鈍温度を調節して特性の高位安定化を図る必要がある。ところが、脱炭焼鈍温度を変更すると酸化層の質、量が変わり良好なフォルステライト被膜形成に支障を来すことになる。
【0023】
本発明は、この成分変動から起こる一次再結晶粒径変動を小さくし、脱炭焼鈍温度の変更を極力抑えることによって磁気特性の優れた一方向性電磁鋼板を安定して製造するものである。熱延板焼鈍の高温側から低温側へ移行する過程の980℃〜920℃の滞留時間を変えることで、AlR のバラツキによる一次再結晶粒径の変動を小さくする理由については次のように考えている。
【0024】
熱延板焼鈍を2段サイクルとする場合、AlNの析出ノーズ域は920〜980℃の範囲にあり、この温度域の滞留時間の長、短で析出が左右されると考えられる。従って、析出物が成長し易いAlR 値の大きい材料は低温側保定温度を低くして、析出ノーズ域の滞留時間を短くして析出を抑制し、一方、AlR 値の小さい材料は長めにして析出を促進させることによってインヒビター効果をコントロールしているものと考えている。析出ノーズ域の通過時間が短い場合、一部は脱炭焼鈍時により微細に析出するため、一次再結晶粒成長の抑制作用は大きい。
【0025】
次に、出発材料とする電磁鋼スラブの成分組成の限定理由を説明する。
Cは、その含有量が0.025%未満になると二次再結晶が不安定になり且つ、二次再結晶した場合でも製品の磁束密度(B8 値)が1.80Tに満たない低いものとなる。一方、0.075%を超えると脱炭焼鈍時間が長大なものとなり、生産性を著しく損なう。
【0026】
Siは、その含有量が2.5%未満になると低鉄損の製品を得難く、一方、Siの含有量が4.5%を超えて多くなりすぎると材料の冷間圧延時に、割れ、破断が多発し,安定した冷間圧延作業を不可能にする。
本発明の出発材料の成分系における特徴の1つは、Sを0.015%以下とすることにある。従来、公知の技術、例えば特公昭40−15644号広報或いは特公昭47−25250号広報に開示されている技術においては、Sは二次再結晶を生起させるに必要な析出物であるMnSの形成元素として必須であった。前記公知技術において、Sが最も効果を発揮する含有量範囲があり、それは熱間圧延に先立って行われるスラブの加熱段階でMnSを固溶できる量として規定されていた。しかしながら、インヒビターとして(Al,Si)Nを用いる本発明においてはMnSは特に必要としない。むしろ、MnSが増加することは磁気特性上好ましくない。従って、本発明においては、Sの含有量は0.015%以下とする。
【0027】
Alは、Nと結合してAlNを形成するが、本発明においては後工程即ち一次再結晶完了後に鋼を窒化することにより、(Al,Si)Nを形成せしめることを必須としているから、フリーのAlが一定量以上必要である。そのため、酸可溶性Alとして,0.015〜0.040%添加する。
Nは、0.010%以下にする必要がある。これを超えるとブリスターと呼ばれる鋼板表面の膨れが発生する。また一次再結晶組織の調整が困難になる。下限は0.0020%とする。この値未満になると二次再結晶粒を発達させるのが困難になる。
【0028】
Mnは、含有量が少なすぎると二次再結晶が不安定となり、一方、多すぎると高い磁束密度をもつ製品を得難くなる。適正な含有量は0.050〜0.45%である。
SnとCrは、必要に応じて複合添加で仕上げ焼鈍後の被膜形成を安定化すると同時に、SnおよびCrは脱炭焼鈍後の集合組織を改善し、ひいては二次再結晶粒を小粒化し被膜の安定化と相俟って鉄損改善に効果が大きく、Snの適量は0.02〜0.15%でありこれより少ないと効果が弱く、一方、多いと窒化困難になり二次再結晶粒が発達しなくなる。また、Crの適量は0.05〜0.15%が良い。
【0029】
Cuは、0.02〜0.30%が適量であり、この範囲において磁束密度が向上する。
なお、微量のP,Tiを鋼中に含有せしめることは、本発明の趣旨を損なうものではない。
次に、本発明の製造プロセスについて説明する。
【0030】
電磁鋼スラブは転炉或いは電気炉等の溶解炉で鋼を溶製し、必要に応じて真空脱ガス処理し、次いで連続鋳造によって或いは造塊後分塊圧延することによって得られる。
然る後、熱間圧延に先立つスラブ加熱がなされる。本発明のプロセスにおいては、スラブ加熱温度は1280℃以下の低いものとして加熱エネルギーの消費量を少なくするとともに、鋼中のAlNを完全には固溶させずに不完全固溶状態とする。また、さらに固溶温度の高いMnSは、上記スラブ加熱温度では当然のことながら不完全固溶状態となる。このスラブを熱延して所定の厚みの熱延板を造る。
【0031】
熱延板は引き続き焼鈍と1回の冷間圧延、もしくは中間焼鈍を介挿する2回以上の圧延を施して最終板厚とされる。この時の仕上冷間圧延は高いB8 値を得るために80%以上とされる。この最終圧延に先立つ熱延板焼鈍もしくは中間焼鈍の条件として、既に述べたように、その高温側から低温側へ移行する途中の980℃〜920℃の滞留時間t(秒)とAlR の関係を、
3.14−0.0158×AlR ≦ logt ≦ 3.85−0.158×AlR 、
t≧10sec
に調整することが必要である。
【0032】
焼鈍時間については種種検討した結果、高温側の均熱時間は180秒以内が良い。低温側の温度は980〜920℃の滞留時間を確保するため、700〜980℃にする必要がある。このとき炉内に冷却ガスチューブを設置して冷却速度を制御してもよい。滞留時間tは材料が980〜920℃に存在する時間とする。
低温側焼鈍後は920℃未満〜700℃の温度域から急冷する。この範囲を冷却開始温度とし、冷却速度を10℃/秒以上とすることにより高磁束密度鋼板(高B8 )が安定して得られる。
【0033】
冷却速度を10℃/sec以上とした理由は一定サイズ、一定量の変態相と固溶Cを確保するために必要であり、これもまた一次再結晶集合組織の適正化を図る上での役割を果たしているものと考えている。この結晶組織及び集合組織の適正化は冷間圧延後に行う脱炭焼鈍温度との組み合わせで達成される。
脱炭焼鈍は脱炭を行う他に前述したごとく一次再結晶組織の調整及び被膜形成に必要な酸化層を生成させる役割がある。
【0034】
これは通常800℃〜900℃の温度域で湿水素,窒素ガスの混合ガス中で行う。脱炭焼鈍後は650℃〜800℃の温度で水素, 窒素,アンモニアの混合ガス中で窒化処理を行う。650℃より低い温度では窒化効率が悪く、一方、800℃以上でも効率が悪くなる上に一次再結晶粒径に影響してくるので好ましくない。
【0035】
この後、MgOを主成分とする焼鈍分離剤を塗布して1100℃以上の温度で仕上げ焼鈍をする。窒化処理としては上記の方法の他に、脱炭焼鈍後に塗布する燒鈍分離剤にに窒化能のある薬剤、例えばMnN,CrN等を添加して塗布する方法を採用してもよい。
【0036】
【実施例】
以下実施例について述べる。
C:0.056%,Si:3.35%,Mn:0.10%,S:0.007%,N:0.0083%,Sn:0.05%,Cr:0.12%を含む溶鋼にAlの添加量を変えて酸可溶性Alの変わった3種類の鋼塊を造った。
【0037】
この鋼塊を1150℃で加熱、熱延し2.5mm厚の熱延板にした。この後熱延板焼鈍を次の条件で行った。
【0038】
1100℃×2分(在炉)+800℃×2分(在炉)→100℃湯冷却
このとき、1100℃から800℃へ移行する過程で、冷却ガスを用いて冷却速度を変更し、980〜920℃の滞留時間を次の(イ)〜(ハ)の条件に調整した。
(イ)80秒 (ロ)34秒 (ハ)9秒
この後酸洗し0.27mmに冷延し,次いで840℃×120秒の脱炭焼鈍を露点68℃の湿水素,窒素雰囲気ガス中で行った。引き続き窒化処理を750℃×30秒間、乾水素,窒素アンモニアの混合ガス雰囲気中で行い、窒化後の鋼板の[N]量を200ppmに調整した。この後MgOとTiO2 を主成分とするスラリーを塗布乾燥した後1200℃×20時間の仕上げ焼鈍を行った。仕上げ焼鈍後の磁気特性は、表4に示すように、AlR 値が低い試料(a)は(イ)の条件で、同じく(b)は(イ)(ロ)の条件で高B8 が得られ、一方AlR 値が高めの(c)の材料は(ハ)の条件で高B8 が得られた。これはいずれも本発明の条件を満たすものである。
【0039】
【表4】
【0040】
【発明の効果】
本発明はAl,Nの成分と、最終冷延前の鋼板焼鈍条件の関係を整理し、焼鈍条件を適正にして脱炭焼鈍し窒化処理を行うことにより、極めて高い磁束密度の一方向性電磁鋼板を安定して得ることができる。
【図面の簡単な説明】
【図1】磁束密度に及ぼすAlR と980〜920℃の滞留時間の影響関係を示す図である。
【図2】一次均熱温度と磁束密度の関係を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a unidirectional electrical steel sheet used as an iron core of an electric device, and particularly, a magnetic process in a manufacturing process in which a slab heating temperature is set to 1280 ° C. or less, that is, a manufacturing process in which an inhibitor is built after decarburization annealing. The present invention relates to a method for producing a unidirectional electrical steel sheet having excellent characteristics.
[0002]
[Prior art]
Unidirectional electrical steel sheets are mainly used as iron core materials for transformers, generators, and other electrical equipment, and have good coating properties as well as good excitation characteristics and iron loss characteristics. Must.
A unidirectional electrical steel sheet is obtained by developing a crystal grain having a so-called Goth orientation having a {110} plane on a rolling surface and a <001> axis in a rolling direction by utilizing a secondary recrystallization phenomenon.
[0003]
As is well known, the secondary recrystallization phenomenon occurs in the finish annealing temperature raising process, but in order to fully develop the secondary recrystallization, the secondary recrystallization phenomenon in the finish annealing temperature raising process is sufficient. Fine precipitates such as AlN, MnS, and MnSe that suppress the growth of primary recrystallized grains up to the crystal expression temperature range, so-called inhibitors, must be present in the steel. Therefore, the electromagnetic steel slab is heated to a high temperature such as 1350 to 1400 ° C. in order to completely dissolve a compound such as an inhibitor forming element such as Al, Mn, S, Se, and N. Thus, the inhibitor forming element completely dissolved in the electromagnetic steel slab is finely precipitated as AlN, MnS, and MnSe by annealing before the final cold rolling.
[0004]
In Japanese Patent Publication No. 46-23820, in the processing step of generating secondary recrystallized grains of {110} <001> orientation using a normal steel or silicon steel material which must contain C and Al, A method of precipitating AlN of a preferred size on a steel sheet by performing annealing immediately before cold rolling at 750 ° C. to 1200 ° C. and then rapidly cooling to 750 ° C. to 1200 ° C. or less according to the amount of Si is also disclosed in In No. 50-15727, in the production of a unidirectional electrical steel sheet in which silicon steel containing C, Al, Mn, N, Cu, etc. is hot-rolled and takes at least one cold rolling process, before the final cold rolling Annealing at 760 to 1177 ° C. for 15 seconds to 2 hours, from 927 ° C. or lower and from 400 ° C. or higher to at least 260 ° C., at a faster rate than natural cooling, from the highest temperature to 927 ° C. or lower. 400 to ℃ temperatures above has been proposed a method of cooling at a slower than the natural cooling rate.
[0005]
Any of these methods can be applied only to a raw material that is hot-rolled after the slab heating temperature is raised and the precipitate is completely dissolved. When such a process is adopted, the electromagnetic steel slab is heated to a high temperature as described above, so that a large amount of melt scale (noro) is generated, and the maintenance cost is increased by increasing the frequency of repairing the heating furnace. There are problems such as lowering the capacity factor and increasing the fuel consumption rate.
[0006]
In order to solve such a problem, a method for producing a unidirectional electrical steel sheet capable of lowering the heating temperature of the electrical steel slab has been developed. For example, Japanese Patent Publication No. 61-60896 discloses that the Mn content is 0.08 to 0.45%, the S content is 0.007% or less to lower the [Mn] [S] product, and Al, By using an electromagnetic steel slab containing P and N as a raw material, a manufacturing process capable of setting the slab heating temperature to less than 1280 ° C. is disclosed in Japanese Patent Application Laid-Open No. 3-211122, where Al, N, Sn, or B is further added. A similar process for heating and hot rolling the added electromagnetic steel slab at a temperature of 1200 ° C. or less has been proposed. These methods are characterized in that the inhibitor is not prepared in the previous process as in the high temperature slab heating material, but is built in the subsequent process after cold rolling, so that hot rolling and hot rolling sheet annealing are as much as in the high temperature slab material. No more strict management is needed.
[0007]
However, in industrial production, there are variations in components within a certain range, temperature and time variations in hot rolling, and in order to stabilize magnetic properties at a high level, it is possible to homogenize by hot-rolled sheet annealing. is necessary. As this annealing method, for example, in Japanese Patent Laid-Open No. 5-125446, annealing of a steel sheet before final cold rolling is performed as two-stage soaking, and the temperature on the high temperature side is determined from the components of the hot rolled sheet (acid-soluble Al-27 / 14 · N) is proposed.
[0008]
[Problems to be solved by the invention]
What is important in the manufacturing process in which the heating temperature of the electromagnetic steel slab is 1280 ° C. or lower is the adjustment of the crystal structure (average particle size, particle size distribution) and texture of the decarburized annealed plate and the preparation of inhibitors after the decarburized anneal (Nitriding).
In particular, it is known that the crystal structure and texture of the decarburized annealed plate have a great influence on the magnetic properties of the product. JP-A-2-259020 discloses the relationship between the average diameter of primary recrystallized grains and the magnetic flux density. It can be seen that it is important to adjust the crystal grains to a certain size.
[0009]
Factors affecting this structure include the cold rolling rate, the metal structure before cold rolling and the size and dispersion of precipitates, the annealing temperature after cold rolling, etc. Aside from (mainly the center ratio of Al and N), it is hot-rolled sheet annealing (including annealing before final cold rolling) and decarburization annealing. As one of the methods for solving this, Japanese Patent Laid-Open No. 5-125446 has been proposed. However, this method is not sufficient to widen the allowable range of component (AlR) variation generated in the steelmaking process.
[0010]
In addition, it is not preferable to adjust the primary recrystallization grain size by greatly changing the decarburization annealing temperature because it changes the quality and amount of the decarburization annealing oxide layer that affects the formation of the forsterite film. The present invention has been completed by examining in detail the relationship between the hot rolled sheet annealing cycle and the primary recrystallized grain growth behavior using the different materials of AlR.
[0011]
[Means for Solving the Problems]
The present invention will be described in detail below. The gist of the present invention is as follows.
(1) By weight, C: 0.025 to 0.075%, Si: 2.5 to 4.5%, Mn: 0.050 to 0.45%, S ≦ 0.015%, acid-soluble Al : 0.015 to 0.040%, Sn: 0.02 to 0.15%, Cr: 0.03 to 0.20%, and an electromagnetic steel slab composed of the remaining Fe and unavoidable impurities at 1280 ° C or less After heating to the temperature of, hot rolling, the final rolling rate is 80% or more by two or more rolling interposing annealing and one rolling or intermediate annealing, then decarburization annealing, from decarburization annealing In the manufacture of a unidirectional electrical steel sheet that is subjected to nitriding treatment and finish annealing before the secondary recrystallization start temperature, annealing of the steel sheet before the final cold rolling is performed in a two-stage cycle, and the high temperature side is temperature: The temperature is set to 1060 ° C. to 1170 ° C., and after soaking at this temperature within 180 seconds, the temperature on the low temperature side: 7 Relationship between AlR (acid-soluble Al-27 / 14 × N) (ppm) obtained from the components of hot-rolled sheet when the residence time of 980 ° C. to 920 ° C. in the process of moving to 0 to 980 ° C. is t seconds But,
3.14−0.0158 × AlR ≦ logt ≦ 3.85−0.0158 × AlR,
And t ≧ 10 sec
It cooled so as to satisfy the manufacturing method of an oriented electrical steel sheet you characterized by cooling at room temperature to 10 ° C. / sec or faster from the temperature range of 920 ° C. below to 700 ° C..
[0013]
(2) As a nitriding treatment to the steel sheet performed between the decarburization annealing and the secondary recrystallization start temperature, in a mixed gas of hydrogen, nitrogen and ammonia under the condition of running the strip at a temperature of 650 ° C. to 800 ° C. manufacturing method of an oriented electrical steel sheet according to be nitrided, characterized in (1).
[0014]
DETAILED DESCRIPTION OF THE INVENTION
First, hot-rolled sheet annealing, which is a feature of the present invention, will be described based on experimental results.
The material of the present invention has C: 0.055%, Si: 3.3%, Mn: 0.10%, S: 0.009% as base components, and acid-soluble Al and N are shown in Table 1. The ingot added in such a manner as described above was heated to 1150 ° C. and then hot-rolled to produce a hot-rolled sheet having a thickness of 2.3 mm.
[0015]
[Table 1]
Next, this hot-rolled sheet was annealed under the conditions shown in Table 2. The steel plate is annealed in a two-stage cycle, the high temperature side is soaked at 1120 ° C. for 30 seconds, the low temperature side temperature is set to 950 to 600 ° C., and the residence time is 980 ° C. to 920 ° C. during the transition from the high temperature side to the low temperature side. (Seconds) was measured.
[0016]
[Table 2]
Thereafter, pickling and cold rolling were performed to obtain a sheet thickness of 0.23 mm. Next, decarburization annealing was performed at 840 ° C. in an atmosphere of N 2 : 25%, H 2 : 75%, and dew point of 68 ° C. Next, nitriding treatment at 750 ° C. for 30 seconds was performed in a mixed gas of N 2 , H 2 and NH 3 , and the nitrogen content of the steel sheet after nitriding was adjusted to 220 ppm. Thereafter, an annealing separator mainly composed of MgO and TiO 2 was applied, and finish annealing was performed at 1200 ° C. for 20 hours.
[0017]
FIG. 1 shows the relationship of AlN—hot-rolled sheet annealing condition—magnetic flux density (B8). From this figure, the relationship between the residence time t (seconds) of 980 ° C. to 920 ° C. at which high magnetic flux density is obtained and AlR is as follows:
3.14−0.0158 × AlR ≦ logt ≦ 3.85−0.158 × AlR, t ≧ 10 sec
It turns out that it is.
[0018]
Next, the ingot No. 1 shown in Table 1 was used. 5 was used to examine the influence of the high temperature side temperature. Hot-rolled sheet annealing was performed under the conditions shown in Table 3. The residence time of 980 ° C. to 920 ° C. during the transition from the high temperature side to the low temperature side was adjusted so as to satisfy the above relationship.
[0019]
[Table 3]
The subsequent processing conditions were the same as described above. The result is shown in FIG.
[0020]
From FIG. 2, the temperature on the high temperature side obtained from B8: 1.93 T or more is in the range of 1060 ° C to 1170 ° C.
The reason why high B8 is obtained by such annealing has not been clarified yet, but at present, the following is considered. Factors affecting the secondary recrystallization phenomenon including the orientation of secondary recrystallization include primary recrystallization structure (average particle size, particle size distribution), texture, inhibitor strength, and the like. Changes in the texture and grain size distribution occur with the grain growth after the completion of primary recrystallization. In order to facilitate nucleation and grain growth of secondary recrystallization, it is desirable that the primary recrystallization structure has a uniform grain size and a certain size or more.
[0021]
On the other hand, the texture can obtain an appropriate amount of orientation grains ({110} <001> orientation, etc.) that undergo secondary recrystallization and orientation grains ({111} <112> orientation, etc.) that facilitate the growth of secondary recrystallization grains. is necessary. In addition to the rolling rate, this is affected by the crystal grain size (recrystallization rate) of the steel sheet before cold rolling, the amount of transformation phase, solute C, and the like.
In the process of the present invention, the presence of an inhibitor prior to cold rolling is not preferable because it makes adjustment of the primary recrystallization structure difficult, but precipitation of AlN is inevitable as long as Al and N are used as material components. In particular, control of fine precipitates is important. If the annealing conditions are the same, the smaller the AlR, the smaller the precipitation size, and the greater the primary recrystallized grain growth inhibiting power.
[0022]
Since Al, N, etc. of electromagnetic steel produced from a factory have a certain range of variation, when decarburized annealing is performed at the same temperature, a difference occurs in the primary recrystallized grain size, and the magnetic characteristics fluctuate. For this reason, it is necessary to adjust the decarburization annealing temperature and to stabilize the characteristics at a high level. However, when the decarburization annealing temperature is changed, the quality and quantity of the oxide layer are changed, which hinders the formation of a good forsterite film.
[0023]
The present invention stably manufactures a unidirectional electrical steel sheet having excellent magnetic properties by reducing the primary recrystallized grain size fluctuation caused by this component fluctuation and suppressing changes in the decarburization annealing temperature as much as possible. The reason why the change in the primary recrystallized grain size due to the variation in AlR is reduced by changing the residence time of 980 ° C to 920 ° C in the process of hot rolling annealing from the high temperature side to the low temperature side is as follows. ing.
[0024]
When hot-rolled sheet annealing is performed in a two-stage cycle, the precipitation nose region of AlN is in the range of 920 to 980 ° C., and it is considered that the precipitation depends on the length of residence time in this temperature region. Therefore, a material with a high AlR value, on which precipitates are likely to grow, lowers the retention temperature in the low temperature side, shortens the residence time in the precipitation nose region, and suppresses precipitation, while a material with a low AlR value has a longer precipitation time. It is thought that the inhibitor effect is controlled by promoting the above. When the passage time in the precipitation nose region is short, a part of the precipitation is finer during the decarburization annealing, so that the effect of suppressing primary recrystallized grain growth is large.
[0025]
Next, the reason for limiting the component composition of the electromagnetic steel slab as a starting material will be described.
When C content is less than 0.025%, secondary recrystallization becomes unstable, and even when secondary recrystallization occurs, the magnetic flux density (B8 value) of the product is as low as less than 1.80T. Become. On the other hand, if it exceeds 0.075%, the decarburization annealing time becomes long, and the productivity is remarkably impaired.
[0026]
When the content of Si is less than 2.5%, it is difficult to obtain a product with a low iron loss. On the other hand, when the content of Si exceeds 4.5%, the material is cracked during cold rolling. Breaks occur frequently, making stable cold rolling work impossible.
One of the characteristics in the component system of the starting material of the present invention is that S is 0.015% or less. Conventionally, in a known technique, for example, the technique disclosed in Japanese Patent Publication No. 40-15644 or Japanese Patent Publication No. 47-25250, S forms MnS which is a precipitate necessary for causing secondary recrystallization. It was essential as an element. In the known technology, there is a content range in which S exhibits the most effect, which is defined as an amount capable of dissolving MnS in the heating stage of the slab performed prior to hot rolling. However, MnS is not particularly necessary in the present invention using (Al, Si) N as an inhibitor. Rather, an increase in MnS is not preferable in terms of magnetic properties. Therefore, in the present invention, the S content is 0.015% or less.
[0027]
Al combines with N to form AlN. However, in the present invention, it is essential to form (Al, Si) N by nitriding steel after the completion of the subsequent step, that is, primary recrystallization. A certain amount or more of Al is required. Therefore, 0.015 to 0.040% is added as acid-soluble Al.
N needs to be 0.010% or less. Exceeding this causes blistering of the steel plate surface called blister. In addition, it becomes difficult to adjust the primary recrystallization structure. The lower limit is made 0.0020%. Below this value, it becomes difficult to develop secondary recrystallized grains.
[0028]
If the content of Mn is too small, secondary recrystallization becomes unstable, while if it is too much, it becomes difficult to obtain a product having a high magnetic flux density. The proper content is 0.050 to 0.45%.
Sn and Cr stabilize the formation of the film after finish annealing by adding together if necessary, and at the same time, Sn and Cr improve the texture after decarburization annealing, and thus the secondary recrystallized grains are reduced to a smaller size. Combined with stabilization, it is effective in improving iron loss. The appropriate amount of Sn is 0.02 to 0.15%, and if it is less than this, the effect is weak. No longer develops. Further, an appropriate amount of Cr is preferably 0.05 to 0.15%.
[0029]
An appropriate amount of Cu is 0.02 to 0.30%, and the magnetic flux density is improved in this range.
Note that the inclusion of a small amount of P and Ti in the steel does not impair the spirit of the present invention.
Next, the manufacturing process of the present invention will be described.
[0030]
The electromagnetic steel slab is obtained by melting steel in a melting furnace such as a converter or an electric furnace, vacuum degassing treatment as necessary, and then performing continuous casting or lump rolling after ingot forming.
Thereafter, slab heating is performed prior to hot rolling. In the process of the present invention, the slab heating temperature is as low as 1280 ° C. or less, and the consumption amount of heating energy is reduced, and the AlN in the steel is not completely dissolved but incompletely dissolved. Further, MnS having a higher solid solution temperature naturally becomes an incomplete solid solution state at the slab heating temperature. The slab is hot-rolled to produce a hot-rolled sheet having a predetermined thickness.
[0031]
The hot-rolled sheet is subsequently subjected to annealing and one cold rolling, or two or more rollings intervening intermediate annealing to obtain a final thickness. The finish cold rolling at this time is made 80% or more in order to obtain a high B8 value. As described above, as a condition of hot rolled sheet annealing or intermediate annealing prior to this final rolling, the relationship between the residence time t (seconds) from 980 ° C. to 920 ° C. during transition from the high temperature side to the low temperature side and AlR is as follows. ,
3.14−0.0158 × AlR ≦ logt ≦ 3.85−0.158 × AlR,
t ≧ 10sec
It is necessary to adjust to.
[0032]
As a result of various investigations on the annealing time, the soaking time on the high temperature side is preferably within 180 seconds. The temperature on the low temperature side needs to be 700 to 980 ° C. in order to ensure a residence time of 980 to 920 ° C. At this time, a cooling gas tube may be installed in the furnace to control the cooling rate. Residence time t is the time during which the material is present at 980-920 ° C.
After the low temperature side annealing, it is rapidly cooled from a temperature range of less than 920 ° C to 700 ° C. By setting this range as the cooling start temperature and setting the cooling rate to 10 ° C./second or more, a high magnetic flux density steel plate (high B8) can be obtained stably.
[0033]
The reason why the cooling rate is set to 10 ° C./sec or more is necessary to secure a certain size, a certain amount of transformation phase and solid solution C, and this also plays a role in optimizing the primary recrystallization texture. I believe that The optimization of the crystal structure and the texture is achieved in combination with a decarburization annealing temperature performed after cold rolling.
In addition to decarburization, the decarburization annealing has a role of generating an oxide layer necessary for adjusting the primary recrystallization structure and forming a film as described above.
[0034]
This is usually performed in a mixed gas of wet hydrogen and nitrogen gas at a temperature range of 800 ° C to 900 ° C. After decarburization annealing, nitriding is performed in a mixed gas of hydrogen, nitrogen and ammonia at a temperature of 650 ° C to 800 ° C. When the temperature is lower than 650 ° C., the nitriding efficiency is poor. On the other hand, when the temperature is 800 ° C. or higher, the efficiency is deteriorated and the primary recrystallized grain size is affected.
[0035]
Thereafter, an annealing separator containing MgO as a main component is applied and finish annealing is performed at a temperature of 1100 ° C. or higher. In addition to the above-described method, the nitriding treatment may be performed by adding a nitriding agent such as MnN or CrN to the annealing separator applied after decarburization annealing.
[0036]
【Example】
Examples will be described below.
C: 0.056%, Si: 3.35%, Mn: 0.10%, S: 0.007%, N: 0.0083%, Sn: 0.05%, Cr: 0.12% included Three types of steel ingots with different acid-soluble Al were made by changing the amount of Al added to the molten steel.
[0037]
This steel ingot was heated at 1150 ° C. and hot rolled to obtain a hot rolled sheet having a thickness of 2.5 mm. Thereafter, hot-rolled sheet annealing was performed under the following conditions.
[0038]
1100 ° C. × 2 minutes (in-furnace) + 800 ° C. × 2 minutes (in-furnace) → 100 ° C. Hot water cooling At this time, in the process of transition from 1100 ° C. to 800 ° C., the cooling rate is changed using 980-800 The residence time at 920 ° C. was adjusted to the following conditions (a) to (c).
(B) 80 seconds (b) 34 seconds (c) 9 seconds After this, pickling and cold rolling to 0.27 mm, followed by decarburization annealing at 840 ° C x 120 seconds in wet hydrogen and nitrogen atmosphere gas at a dew point of 68 ° C I went there. Subsequently, nitriding was performed at 750 ° C. for 30 seconds in a mixed gas atmosphere of dry hydrogen and nitrogen ammonia, and the [N] amount of the steel sheet after nitriding was adjusted to 200 ppm. Thereafter, a slurry mainly composed of MgO and TiO 2 was applied and dried, and then finish annealing was performed at 1200 ° C. for 20 hours. As shown in Table 4, the magnetic properties after finish annealing are as follows. Samples (a) having a low AlR value are obtained under the conditions (a), and (b) is obtained under the conditions (a) and (b). On the other hand, the material (c) having a high AlR value obtained a high B8 under the condition (c). All of these satisfy the conditions of the present invention.
[0039]
[Table 4]
[0040]
【The invention's effect】
The present invention arranges the relationship between the components of Al and N and the steel sheet annealing conditions before the final cold rolling, performs decarburization annealing with appropriate annealing conditions, and performs nitriding treatment, thereby providing a unidirectional electromagnetic with extremely high magnetic flux density. A steel plate can be obtained stably.
[Brief description of the drawings]
FIG. 1 is a diagram showing an influence relationship between AlR and a residence time of 980 to 920 ° C. on magnetic flux density.
FIG. 2 is a diagram showing a relationship between primary soaking temperature and magnetic flux density.
Claims (2)
3.14−0.0158×AlR ≦ logt ≦3.85−0.0158×AlR 、
及びt≧10sec
を満足するように冷却し、920℃未満〜700℃の温度域から室温まで10℃/sec以上の速度で冷却することを特徴とする一方向性電磁鋼板の製造方法。By weight, C: 0.025 to 0.075%, Si: 2.5 to 4.5%, Mn: 0.050 to 0.45%, S ≦ 0.015%, acid-soluble Al: 0. An electromagnetic steel slab containing 015 to 0.040%, Sn: 0.02 to 0.15%, Cr: 0.03 to 0.20%, and the balance Fe and unavoidable impurities at a temperature of 1280 ° C or lower After heating, it is hot-rolled, and the final rolling rate is set to 80% or more by two or more rolling steps including annealing and one-time rolling or intermediate annealing, and then decarburization annealing is performed. In the manufacture of a unidirectional electrical steel sheet that is subjected to nitriding treatment and finish annealing before the crystallization start temperature, annealing of the steel sheet before final cold rolling is performed in a two-stage cycle, and the high temperature side is temperature: 1060 ° C. to 1170 ° C. After soaking at this temperature within 180 seconds, the temperature on the low temperature side: 700 to If the 980 ℃ ~920 residence time of ° C. in the course of transition to 80 ° C. was t seconds, the relationship between AlR obtained from components of the hot rolled sheet (acid-soluble Al-27/14 × N) (ppm) is,
3.14−0.0158 × AlR ≦ logt ≦ 3.85−0.0158 × AlR,
And t ≧ 10 sec
It cooled so as to satisfy the manufacturing method of an oriented electrical steel sheet you characterized by cooling at room temperature to 10 ° C. / sec or faster from the temperature range of 920 ° C. below to 700 ° C..
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP36261298A JP4473357B2 (en) | 1998-12-21 | 1998-12-21 | Method for producing unidirectional electrical steel sheet with excellent magnetic properties |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP36261298A JP4473357B2 (en) | 1998-12-21 | 1998-12-21 | Method for producing unidirectional electrical steel sheet with excellent magnetic properties |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000178648A JP2000178648A (en) | 2000-06-27 |
JP4473357B2 true JP4473357B2 (en) | 2010-06-02 |
Family
ID=18477300
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP36261298A Expired - Fee Related JP4473357B2 (en) | 1998-12-21 | 1998-12-21 | Method for producing unidirectional electrical steel sheet with excellent magnetic properties |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4473357B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7976645B2 (en) | 2006-05-24 | 2011-07-12 | Nippon Steel Corporation | Method of production of grain-oriented electrical steel sheet having a high magnetic flux density |
BRPI0712010B1 (en) | 2006-05-24 | 2014-10-29 | Nippon Steel & Sumitomo Metal Corp | METHODS OF PRODUCING AN ELECTRIC GRAIN STEEL SHEET |
-
1998
- 1998-12-21 JP JP36261298A patent/JP4473357B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000178648A (en) | 2000-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2782086B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic and film properties | |
US4576658A (en) | Method for manufacturing grain-oriented silicon steel sheet | |
JP2620438B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with high magnetic flux density | |
JP4272557B2 (en) | Method for producing unidirectional electrical steel sheet with excellent magnetic properties | |
JP2001152250A (en) | Method for producing grain-oriented silicon steel sheet excellent in magnetic property | |
JP2002212639A (en) | Method for producing grain oriented silicon steel sheet having excellent magnetic property | |
WO1995013401A1 (en) | Production method of directional electromagnetic steel sheet of low temperature slab heating system | |
JP4653266B2 (en) | Manufacturing method of unidirectional electrical steel sheet | |
JP2000282142A (en) | Manufacture of grain oriented silicon steel sheet | |
JP3323052B2 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JPH07122096B2 (en) | Manufacturing method of unidirectional electrical steel sheet with excellent magnetic and film properties | |
KR100831756B1 (en) | Process for the control of inhibitors distribution in the production of grain oriented electrical steel strips | |
JP4205816B2 (en) | Method for producing unidirectional electrical steel sheet with high magnetic flux density | |
JP4473357B2 (en) | Method for producing unidirectional electrical steel sheet with excellent magnetic properties | |
JP4279993B2 (en) | Method for producing unidirectional silicon steel sheet | |
JP2001192787A (en) | Grain oriented silicon steel sheet excellent in magnetic property, and its manufacturing method | |
JP2002030340A (en) | Method for producing grain-oriented silicon steel sheet excellent in magnetic property | |
JP3390108B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with high magnetic flux density | |
JPH06256847A (en) | Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic | |
JPH10110218A (en) | Production of grain oriented silicon steel sheet excellent in magnetic property | |
JPH08269561A (en) | Production of grain-oriented silicon steel sheet excellent in magnetic property | |
JPH02259017A (en) | Production of grain-oriented silicon steel sheet excellent in film characteristic as well as in magnetic property | |
KR970007334B1 (en) | Method for manufacturing oriented electrical steel sheet having magnetic properties | |
JPH10245629A (en) | Production of grain oriented silicon steel sheet excellent in magnetic property | |
JPH09194941A (en) | Production of grain-oriented silicon steel sheet high in magnetic flux density |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040901 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060719 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080610 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080808 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091201 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100126 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100223 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100305 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130312 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130312 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130312 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140312 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |