Nothing Special   »   [go: up one dir, main page]

JP4470001B2 - Production method of fine zirconia powder - Google Patents

Production method of fine zirconia powder Download PDF

Info

Publication number
JP4470001B2
JP4470001B2 JP21492899A JP21492899A JP4470001B2 JP 4470001 B2 JP4470001 B2 JP 4470001B2 JP 21492899 A JP21492899 A JP 21492899A JP 21492899 A JP21492899 A JP 21492899A JP 4470001 B2 JP4470001 B2 JP 4470001B2
Authority
JP
Japan
Prior art keywords
powder
zirconia
compound
surface area
specific surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21492899A
Other languages
Japanese (ja)
Other versions
JP2001039716A (en
Inventor
哲朗 生垣
雅典 沢野
伸生 衛藤
隆 毛利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP21492899A priority Critical patent/JP4470001B2/en
Publication of JP2001039716A publication Critical patent/JP2001039716A/en
Application granted granted Critical
Publication of JP4470001B2 publication Critical patent/JP4470001B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本願発明は、ジルコニアセラミックスの製造に用いられるジルコニア微粉末の製造法に関するものであり、特に、有機バインダーとジルコニア粉末のコンパウンドにおいて該コンパウンドが良好な流動性を有し、射出成形において良好な成形特性を示すコンパウンドを得るジルコニア微粉末の製造方法を提供することを目的とする。
【0002】
【従来技術】
ジルコニア焼結体の製造方法の一つとして射出成形法が良く知られている。この射出成形法では、ジルコニア微粉末と各種の有機物を混合した有機バインダーとの混合物即ちコンパウンドを成形用組成物とし、これを金型内に射出しグリーン成形体を成形した後、脱脂、焼成を行ってジルコニア焼結体を得る。
【0003】
ジルコニア微粉末の製造方法として、ジルコニウム塩水溶液或いは該水溶液にY、Ce、Ca等の安定化剤を共存させた水溶液を加熱、加水分解し、生じた水和ジルコニアゾルを乾燥、焼成する方法(加水分解法)や安定化剤を共存させたジルコニウム塩水溶液を中和し、得られた沈殿物を乾燥、焼成する方法(中和法)が広く知られている。また、水和ジルコニウムゾルを限外ろ過膜等でろ過する事により、不純物のろ過と濃縮を同時に行い乾燥の効率を上げる方法も良く知られている。また、この方法によれば不純物と共に加水分解反応の未反応成分も同時に除去できる為に、高純度、高反応率のジルコニア微粉末が製造出来る。
【0004】
【発明が解決しようとする課題】
しかしながら、射出成形による成形にはコンパウンドの流動性が良好である事が重要な条件である。射出成形においては、射出成形機の高温のシリンダー内で溶融されたコンパウンドが金型内のキャビティに射出されるが、この時、流動性の不十分なコンパウンドを用いた場合は、成形圧力が金型内に射出されたコンパウンドの隅々にまで十分均等に行き渡らない為、成形体内に不均一な応力分布を生じて、成形体の密度が不均一になり、その結果、成形体にヒケといわれる現象を生ずる。また、極端な場合は、溶融コンパウンドがキャビティ内に十分充填されず、ショートと呼ばれる成形不良を生ずることがある。
【0005】
従来、プラスチック類と比べ、ジルコニア等のセラミックス粉末を含有したコンパウンドはせん断応力に対する降伏値が高く、流動性に優れない傾向があった。そのため、この流動性の改善を図るさまざまな手法が取られてきた。例えば、最も簡単には、コンパウンドにおけるバインダーの配合比率を大きくする方法がある。しかしこの場合、成形体の粉末密度が低下し、焼成後の収縮変形が大きくなるため精度の高い焼結体が得られず好ましくない。また、バインダーの構成成分の中でアクリル系樹脂、脂肪酸などの可塑性の強い成分量を増加させる事が考えられるが、一般にこれらは脱脂時の発熱が大きく、脱脂後の成形体にひび割れを生じさせる事等が多くなり好ましくない。次に、BET法による比表面積(以後、BET比表面積と言う。)の小さなジルコニア粉末を用いてコンパウンドを構成する方法がある。ジルコニア粉末を製造する場合、仮焼工程においてその仮焼温度を高くする事によってBET比表面積の小さな粉末を製造する事が出来る。このような粉末では、その平均粒径は大きくなり、粒子間の相互作用が小さくなるのでコンパウンドの流動性は向上するが、焼結体密度が低下する傾向があり、必ずしも好ましくない。一般に焼結体の特性、例えば、焼結体密度や低温での焼結性を改善する為にはBET比表面積は大きく、しかも単分散の粒子からなる粉末が望ましい。
【0006】
このようにコンパウンドの流動性は射出成形において成形特性を左右する重要な因子であるが、前述の加水分解法や中和法を用いて作成した高純度のジルコニア粉末を用いて作成したコンパウンドは、焼結体特性は優れているが、流動性が十分でなく、射出成形用途に適さないという問題があった。本願発明は高い比表面積でありながら多量のバインダーを必要とせず、流動性に優れた射出成形用コンパウンドを与えるジルコニア粉末を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者らは上記課題を解決するために、ジルコニア粉末の製造法を鋭意検討した結果、粉砕工程での比表面積の増加がコンパウンドの流動性に影響を与える重要因子であることを発見し、本願発明を成すに至った。
【0008】
以下に本願発明を加水分解法を例にして詳細に述べる。本願発明ではジルコニウム塩の水溶液を加水分解して得られる水和ジルコニウムゾルをジルコニア源として用いた。より具体的にはオキシ塩化ジルコニウム(ZOC)溶液を常圧下で加熱、煮沸し、ジルコニア転化率98%以上の水和ジルコニアゾルを得た。このようにして得られた水和ジルコニアゾルを限外ろ過により濃縮する。このろ過を複数回繰り返すことによって、濃縮を行うと同時に液中に含まれる2%以下の未反応のZr成分及び不純物をろ別することが出来る。この時、ろ液をICP発光分析することによって、未反応Zr成分量をモニターし、最終的にジルコニア転化率100%の水和ジルコニアゾルを得た。得られた濃縮ゾルを、溶液中の固形分濃度が35%になるように濃度を調節し、スプレードライヤーを用いた乾燥させた。ここで固形分とは水和ジルコニアゾルを1000℃で2時間乾燥した結果、残存する灰分のことである。このようにしてジルコニウム塩を含んだ濃縮ゾルを作成し、スプレードライヤーを用いて噴霧乾燥することによってジルコニウム塩含有水和ジルコニウムゾル乾燥粉を作成する。次に、該乾燥粉を850℃で2時間、大気雰囲気において仮焼する。更に、該仮焼粉をデカンテーション法によって水洗し、その後ボールミルを用いて粉砕する。こうして得られた粉砕粉を再度スプレードライヤーで乾燥し、コンパウンドの作成に用いる。
【0009】
本願発明の特徴は粉砕の前後でBET比表面積が2m2/g以上増加するように▲1▼粉砕の条件を設定する、乃至は、▲2▼仮焼以前の段階で焼結助剤を加え、仮焼でのBET比表面積の減少を促し、相対的に粉砕での比表面積増加分量を上げることにある。
【0010】
次にこうして得られた粉末とバインダー類とを混合しコンパウンドを作成する手順について説明するが、本願発明の場合、コンパウンドの作成は以下に述べる流動性の評価の用に供するためであり、その成分構成、作成法は一定かつ一般性があれば詳細は重要でなく、もちろん以下に示す例に限るものではない。
【0011】
前記ジルコニア粉末と有機バインダーの混練には通常の加圧式二軸ニーダーを用いた。温度は高温では有機バインダーの燃焼、揮発が生じ、低温ではバインダーの軟化が妨げられるので80℃〜160℃が好ましい。混練時間は長いほどコンパウンドの流動性は向上するが現実的な時間として1〜5時間が好ましい。有機バインダーとして通常のセラミックスの射出成形に用いられるアクリル系バインダー、スチレン系バインダー、脂肪酸類等を用いることが出来る。ジルコニア粉末に対する有機バインダーの混合割合は約20重量%とした、この時約50体積%に当たる。
【0012】
コンパウンドの流動性の評価はJIS K 7210に規定されたメルトフローレート(MFR)測定によった。試料としては、粒度の揃った粉末が望ましく、機械的に粉砕したコンパウンドを、分級したものが適当である。一回の測定に用いる試料量は 10〜15gが望ましい。溶融温度が高いほどコンパウンドの粘度は低下するが、使用する有機バインダーの耐熱性から自ずと限界がある。通常200℃以下が望ましい。シリンダー内に試料を投入した後、シリンダーと試料温度が安定するまで保持する必要がある。その後、ピストンを挿入し、重りを載せ荷重で溶融コンパウンドを押出す。ピストンが一定の位置から25mm押し下げられるまでの時間を測定し以下の式にしたがってMFRを算出した。尚、この時間測定操作は全て自動的に行われる。
【0013】
MFR(T,M,B)=(426×L×ρ)÷t
ここに、T:測定温度、M:試験荷重、B:操作B法を示す、L:ピストンの移動距離、ρ:試料温度におけるコンパウンドの密度、t:ピストンが長さLを移動するのに要する時間の平均値、426:ピストンとシリンダーの面積(cm2)の平均値×600(10分間の秒数)である。
【0014】
一方、このようなジルコニア粉末は、それらを用いて作成した焼結体が十分な密度を示すものである必要がある。その為、得られた粉末の焼結体を作成しその密度を測定した。
【0015】
以下に本願発明の実施例をあげて更に具体的に説明する。
【0016】
【実施例】
実施例1〜、比較例1〜2
本例では、焼結助剤としてZOCを用い、その添加量を変化させた事例によって説明する。ZOCは本願発明でのジルコニアの製造原料であり、重要なコンタミネーションの成分を含まず、焼成によってジルコニアを生ずるため焼結助剤として適している
【0017】
ZOC0.3モル/リットル溶液(以下、原料液という。)を還流状態において約200時間煮沸することによって、ジルコニア転化率90%のジルコニアゾルを得た。続いて煮沸状態において本ゾルの5体積%部を抜き出し、同体積の原料液を補充する。この操作を30分毎に繰り返す。繰り返しの回数を重ねるにつれてジルコニア転化率は徐々に上昇し、約100回の繰り返しの後、約98%の転化率で定常状態に達した。電子顕微鏡による観察の結果、本ゾルは主として直径1000オングストロームの水和ジルコニア粒子から構成されていることが分かった。定常状態下で同様に抜き出し、供給操作を繰り返し、約100リットルのジルコニアゾルを回収、生成した。続いて、限外ろ過操作によってこのゾルを約20リットルに濃縮した。ろ過には円筒形の限外ろ過膜モジュールを用い、この膜モジュール内にゾルを循環させることによって脱水、濃縮を行った。次に、この濃縮されたジルコニアゾルに2.5モル/リットルのZOC溶液をジルコニア量換算で5重量%(実施例1)、8重量%(実施例2)、10重量%(実施例3)及び20重量%(比較例2)になるように添加した。
【0018】
また、無添加の場合を比較例1とした。この混合ゾルに、更に、イットリアを比Y2O3/(Y2O3+ZrO2)が3モル%になるように添加し、一昼夜攪拌した。この混合溶液をスプレー乾燥し、約8キロの乾燥粉を得た。この乾燥粉を管状炉中大気雰囲気において約100℃/時間の速度で昇温し、870℃で2時間仮焼した後水洗した。次にこの粉末を8時間粉砕し、再乾燥させて部分安定化ジルコニア(PSZ)粉末を作成し、この粉砕前後のBET比表面積を測定した。
【0019】
こうして作成したPSZ粉末1505gを秤量し、150℃で1時間以上乾燥させ、1500gの乾燥粉を得た。この乾燥粉を337gの有機バインダーと共に140℃に予熱したニーダー(森山製作所製MS加圧型ニーダー)の混合槽に投入し、混練した。混練開始と共にバインダーは軟化し、粉末と交じり合う。数分の混練の後、ニーダーのヒーターを切るとその後はコンパウンド自身のせん断発熱で120℃〜140℃の温度が保たれたまま混練が進行する。この様にして1時間混練した後、取り出したコンパウンドを冷却、粉砕し、0.5mm目篩下を篩分けた。
【0020】
次に、上記粉末を13g秤量し、予め150℃で十分予熱したメルトインデクサー(東洋精機製作所製)のシリンダー内に投入し、つき固めることによって内部の空気を抜き、ピストンを装着する。そのままの状態を3分間保持し、試料、シリンダー及びピストンの温度が平衡に達した後、10kgの荷重を掛け溶融したコンパウンドを押出した。その後の押出し時間の測定とMFRの計算は装置が自動的に行う。この測定を3回行い、平均値を測定値として採用した。また、このPSZ粉末を金型プレスで成形し、焼結体を作成してその密度を測定した。成形圧力は700kgf/cm2、焼結温度は1450℃、密度測定はアルキメデス法によった。
以上の結果を表1に示す。
【0021】
【表1】

Figure 0004470001
【0022】
ZOCの添加は粉砕粉のBET比表面積には影響しないが、焼結助剤としての働きで仮焼粉のBET比表面積は添加量に比例して低下する。従って、粉砕によるBET比表面積は添加量に応じて増加することが分かる。更に、これらは流動性の改善に優れた効果を示すことが確認された。また、20重量%添加粉末では焼結体密度の低下が生じ、これ以上の添加量は望ましくないことも確認された。
【0023】
実施例、比較例
実施例1〜、及び、比較例1〜2では安定化剤として3mol%のYを用いたPSZ(3Y)を例示した。3Yは粉末の結晶相の70〜95%が正方晶である。一方、安定化剤を用いないジルコニア(0Y)は100%が単斜晶である。0Yにおいても焼結助剤としてZOCの添加が流動性の改善に効果的であることを確認するために、0Y粉末についてZOCを0%、10%をそれぞれ添加した粉末を実施例と同様にして作成し、同様の測定を行った。測定結果を表2に示す。0Y粉末についてもZOCの添加は有効であることが確認された。
【0024】
【表2】
Figure 0004470001
【0025】
比較例4
加水分解反応においてジルコニア転化率90%の水和ジルコニアゾルを作成し、減圧加熱することにより濃縮した。この中には、未反応分として10%のZr成分が含まれている。このようにして得られた濃縮ゾルを前実施例と同様に乾燥、焼成して得られたジルコニア微粉末を用いて作成したコンパウンドの測定結果を表3に示す。
【0026】
【表3】
Figure 0004470001
【0027】
比較例5
水洗工程までは実施例1と同様、焼結助剤を用いずに製粉化した。粉砕工程ではまず前記実施例と同様に10mmφのジルコニア粉砕ボールを用い、振動ミルで8時間粉砕した後、2mmφのボールを用いて8時間追加粉砕を行った。その結果を表4に示す。
【0028】
【表4】
Figure 0004470001
【0029】
以上の実施例に見られるようにBET比表面積の差がMFRに影響するが、これは仮焼時に凝集し焼成が不充分な表面が、粉砕により新しい面として現れることの効果によると考えられる。また、本実施例で得られたコンパウンドを用いて射出成形を行ったところ、2m2/g以上BET比表面積が増加した粉末を用いたものは安定した成形特性を示した。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing zirconia fine powder used in the production of zirconia ceramics, and in particular, the compound has good fluidity in an organic binder and zirconia powder compound, and has good molding characteristics in injection molding. It aims at providing the manufacturing method of the zirconia fine powder which obtains the compound which shows this.
[0002]
[Prior art]
An injection molding method is well known as one of methods for producing a zirconia sintered body. In this injection molding method, a mixture of a zirconia fine powder and an organic binder obtained by mixing various organic substances, that is, a compound, is used as a molding composition, which is injected into a mold to form a green molded body, which is then degreased and fired. To obtain a zirconia sintered body.
[0003]
A method for producing a fine zirconia powder is a method of heating and hydrolyzing a zirconium salt aqueous solution or an aqueous solution in which a stabilizer such as Y, Ce, or Ca coexists in the aqueous solution, and drying and calcining the resulting hydrated zirconia sol ( Hydrolysis method) and a method (neutralization method) of neutralizing a zirconium salt aqueous solution coexisting with a stabilizer and drying and baking the resulting precipitate are widely known. In addition, a method of increasing the drying efficiency by simultaneously filtering and concentrating impurities by filtering the hydrated zirconium sol with an ultrafiltration membrane or the like is also well known. Further, according to this method, unreacted components of the hydrolysis reaction can be removed together with impurities, so that high purity and high reaction rate zirconia fine powder can be produced.
[0004]
[Problems to be solved by the invention]
However, good molding fluidity is an important condition for molding by injection molding. In injection molding, a compound melted in a high-temperature cylinder of an injection molding machine is injected into a cavity in the mold. At this time, if a compound with insufficient fluidity is used, the molding pressure is reduced to gold. Since it does not spread evenly to every corner of the compound injected into the mold, non-uniform stress distribution is generated in the molded body, resulting in non-uniform density of the molded body. As a result, the molded body is called sink. Cause a phenomenon. In an extreme case, the melt compound is not sufficiently filled in the cavity, which may cause a molding defect called a short circuit.
[0005]
Conventionally, compared to plastics, compounds containing ceramic powder such as zirconia have a high yield value with respect to shear stress and have a tendency not to have excellent fluidity. For this reason, various methods for improving the liquidity have been taken. For example, the simplest method is to increase the blending ratio of the binder in the compound. However, in this case, the powder density of the molded body is reduced, and shrinkage deformation after firing is increased, so that a highly accurate sintered body cannot be obtained, which is not preferable. In addition, it is conceivable to increase the amount of highly plastic components such as acrylic resins and fatty acids among the constituent components of the binder, but generally these generate great heat during degreasing and cause cracks in the molded product after degreasing. Many things are not desirable. Next, there is a method of forming a compound using zirconia powder having a small specific surface area (hereinafter referred to as BET specific surface area) by the BET method. When producing zirconia powder, a powder having a small BET specific surface area can be produced by increasing the calcining temperature in the calcining step. In such a powder, the average particle size is increased, and the fluidity of the compound is improved because the interaction between the particles is reduced. However, the density of the sintered body tends to be lowered, which is not necessarily preferable. In general, a powder having a large BET specific surface area and monodispersed particles is desirable to improve the characteristics of the sintered body, for example, the density of the sintered body and the sinterability at low temperatures.
[0006]
Thus, the fluidity of the compound is an important factor that influences the molding characteristics in injection molding, but the compound prepared using the high-purity zirconia powder prepared using the hydrolysis method or neutralization method described above is Although the sintered compact property is excellent, there is a problem that the fluidity is not sufficient and it is not suitable for injection molding. It is an object of the present invention to provide a zirconia powder that provides an injection molding compound having excellent fluidity without requiring a large amount of binder while having a high specific surface area.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors diligently studied the production method of zirconia powder, and as a result, discovered that an increase in specific surface area in the pulverization step is an important factor affecting the fluidity of the compound, It came to make this invention.
[0008]
Hereinafter, the present invention will be described in detail by taking a hydrolysis method as an example. In the present invention, a hydrated zirconium sol obtained by hydrolyzing an aqueous solution of a zirconium salt is used as a zirconia source. More specifically, a zirconium oxychloride (ZOC) solution was heated and boiled under normal pressure to obtain a hydrated zirconia sol having a zirconia conversion rate of 98% or more. The hydrated zirconia sol thus obtained is concentrated by ultrafiltration. By repeating this filtration a plurality of times, concentration can be performed and at the same time 2% or less of unreacted Zr components and impurities contained in the liquid can be filtered off. At this time, the filtrate was subjected to ICP emission analysis to monitor the amount of unreacted Zr component, and finally a hydrated zirconia sol having a zirconia conversion rate of 100% was obtained. The concentration of the obtained concentrated sol was adjusted so that the solid content concentration in the solution was 35%, and dried using a spray dryer. Here, the solid content is the ash remaining as a result of drying the hydrated zirconia sol at 1000 ° C. for 2 hours. In this way, a concentrated sol containing a zirconium salt is prepared, and spray dried using a spray dryer to prepare a zirconium salt-containing hydrated zirconium sol dry powder. Next, the dried powder is calcined in an air atmosphere at 850 ° C. for 2 hours. Further, the calcined powder is washed with water by a decantation method and then pulverized using a ball mill. The pulverized powder thus obtained is again dried with a spray dryer and used for preparing a compound.
[0009]
The feature of the present invention is that (1) pulverization conditions are set so that the BET specific surface area increases by 2 m 2 / g or more before and after pulverization, or (2) a sintering aid is added before calcination. This is to promote a decrease in the BET specific surface area during calcination and to increase the amount of increase in the specific surface area during pulverization.
[0010]
Next, a procedure for preparing a compound by mixing the powder thus obtained and a binder will be described. In the case of the present invention, the preparation of the compound is for use in the evaluation of fluidity described below, and its components The details of the configuration and creation method are not important as long as they are constant and general, and are not limited to the following examples.
[0011]
A normal pressure biaxial kneader was used for kneading the zirconia powder and the organic binder. The temperature is preferably 80 ° C. to 160 ° C., because the organic binder burns and volatilizes at a high temperature and softening of the binder is hindered at a low temperature. The longer the kneading time, the better the fluidity of the compound, but 1 to 5 hours is preferable as a realistic time. As the organic binder, acrylic binders, styrene binders, fatty acids and the like used for ordinary ceramic injection molding can be used. The mixing ratio of the organic binder to the zirconia powder was about 20% by weight, which corresponds to about 50% by volume.
[0012]
The fluidity of the compound was evaluated by melt flow rate (MFR) measurement specified in JIS K 7210. As the sample, powder having a uniform particle size is desirable, and a product obtained by classifying a mechanically pulverized compound is suitable. The sample amount used for one measurement is preferably 10-15g. The higher the melting temperature, the lower the viscosity of the compound, but there is a limit due to the heat resistance of the organic binder used. Usually 200 ° C or less is desirable. After putting the sample into the cylinder, it is necessary to hold it until the cylinder and sample temperature are stabilized. Then, a piston is inserted, a weight is placed, and the molten compound is extruded with a load. The time until the piston was pushed down 25 mm from a certain position was measured, and MFR was calculated according to the following formula. All the time measurement operations are automatically performed.
[0013]
MFR (T, M, B) = (426 × L × ρ) ÷ t
Where T: measured temperature, M: test load, B: operation B method, L: distance traveled by piston, ρ: density of compound at sample temperature, t: required for piston to travel length L Average value of time, 426: average value of piston and cylinder area (cm 2 ) × 600 (seconds in 10 minutes).
[0014]
On the other hand, such a zirconia powder needs to have a sufficient density in a sintered body produced using them. Therefore, a sintered body of the obtained powder was prepared and its density was measured.
[0015]
Hereinafter, the present invention will be described more specifically with reference to examples.
[0016]
【Example】
Examples 1-3 , Comparative Examples 1-2
In this example, a case where ZOC is used as a sintering aid and the amount of addition is changed will be described. ZOC is a raw material for producing zirconia in the present invention, does not contain important contamination components, and is suitable as a sintering aid because it produces zirconia upon firing.
[0017]
A zirconia sol having a zirconia conversion rate of 90% was obtained by boiling a ZOC 0.3 mol / liter solution (hereinafter referred to as a raw material solution) in a reflux state for about 200 hours. Subsequently, in a boiling state, 5% by volume of the present sol is extracted and replenished with the same volume of raw material liquid. This operation is repeated every 30 minutes. As the number of repetitions was repeated, the zirconia conversion rate gradually increased, and after about 100 repetitions, a steady state was reached at a conversion rate of about 98%. As a result of observation by an electron microscope, it was found that the sol was mainly composed of hydrated zirconia particles having a diameter of 1000 angstroms. Similarly, it was extracted under a steady state, and the supply operation was repeated to recover and produce about 100 liters of zirconia sol. Subsequently, the sol was concentrated to about 20 liters by an ultrafiltration operation. For filtration, a cylindrical ultrafiltration membrane module was used, and dehydration and concentration were performed by circulating a sol in the membrane module. Next, a 2.5 mol / liter ZOC solution was added to the concentrated zirconia sol in an amount of 5% by weight (Example 1), 8% by weight (Example 2), and 10% by weight (Example 3). And 20% by weight ( Comparative Example 2 ).
[0018]
Further, the case of no addition was designated as Comparative Example 1. To this mixed sol, yttria was further added so that the ratio Y 2 O 3 / (Y 2 O 3 + ZrO 2 ) was 3 mol%, and the mixture was stirred overnight. This mixed solution was spray-dried to obtain about 8 kg of dry powder. The dry powder was heated at a rate of about 100 ° C./hour in an air atmosphere in a tubular furnace, calcined at 870 ° C. for 2 hours, and then washed with water. Next, this powder was pulverized for 8 hours and re-dried to prepare partially stabilized zirconia (PSZ) powder, and the BET specific surface area before and after this pulverization was measured.
[0019]
The PSZ powder 1505 g thus prepared was weighed and dried at 150 ° C. for 1 hour or longer to obtain 1500 g of dry powder. This dried powder was put into a mixing tank of a kneader (MS pressure type kneader manufactured by Moriyama Seisakusho) preheated to 140 ° C. with 337 g of an organic binder and kneaded. As the kneading starts, the binder softens and mixes with the powder. After kneading for several minutes, when the kneader heater is turned off, the kneading proceeds while the temperature of 120 ° C. to 140 ° C. is maintained due to the shear heat generation of the compound itself. After kneading for 1 hour in this manner, the taken-out compound was cooled and pulverized, and sieved under a 0.5 mm sieve.
[0020]
Next, 13 g of the above powder is weighed, put into a cylinder of a melt indexer (manufactured by Toyo Seiki Seisakusho) that has been preheated sufficiently at 150 ° C., and the inside is evacuated to install the piston. This state was maintained for 3 minutes, and after the temperature of the sample, cylinder and piston reached equilibrium, the molten compound was extruded under a load of 10 kg. Subsequent measurement of extrusion time and calculation of MFR are performed automatically by the equipment. This measurement was performed three times, and the average value was adopted as the measurement value. Further, this PSZ powder was molded by a mold press to prepare a sintered body, and its density was measured. The molding pressure was 700 kgf / cm 2 , the sintering temperature was 1450 ° C., and the density was measured by the Archimedes method.
The results are shown in Table 1.
[0021]
[Table 1]
Figure 0004470001
[0022]
Although the addition of ZOC does not affect the BET specific surface area of the pulverized powder, the BET specific surface area of the calcined powder decreases in proportion to the added amount by acting as a sintering aid. Therefore, it can be seen that the BET specific surface area by pulverization increases with the addition amount. Furthermore, it has been confirmed that these have an excellent effect on improving fluidity. It was also confirmed that the 20% by weight added powder resulted in a decrease in the density of the sintered body, and the addition amount beyond this was not desirable.
[0023]
Example 4 and Comparative Example 3
In Examples 1 to 3 and Comparative Examples 1 to 2 , PSZ (3Y) using 3 mol% Y 2 O 3 as a stabilizer was exemplified. In 3Y, 70 to 95% of the crystalline phase of the powder is tetragonal. On the other hand, zirconia (0Y) that does not use a stabilizer is 100% monoclinic. In order to confirm that the addition of ZOC as a sintering aid is effective in improving the fluidity even at 0Y, the powder obtained by adding 0% and 10% of ZOC to 0Y powder was the same as in the examples. The same measurement was performed. The measurement results are shown in Table 2. It was confirmed that the addition of ZOC is also effective for the 0Y powder.
[0024]
[Table 2]
Figure 0004470001
[0025]
Comparative Example 4
In the hydrolysis reaction, a hydrated zirconia sol having a zirconia conversion rate of 90% was prepared and concentrated by heating under reduced pressure. This contains 10% of the Zr component as an unreacted component. Table 3 shows the measurement results of the compound prepared using the zirconia fine powder obtained by drying and firing the concentrated sol thus obtained in the same manner as in the previous examples.
[0026]
[Table 3]
Figure 0004470001
[0027]
Comparative Example 5
Until the water washing step, as in Example 1, milling was performed without using a sintering aid. In the pulverization step, first, zirconia pulverized balls of 10 mmφ were used and pulverized for 8 hours using a vibration mill, followed by additional pulverization for 8 hours using 2 mmφ balls. The results are shown in Table 4.
[0028]
[Table 4]
Figure 0004470001
[0029]
As seen in the above examples, the difference in BET specific surface area affects the MFR, which is considered to be due to the effect that a surface which is agglomerated during calcination and insufficiently fired appears as a new surface by pulverization. Further, when injection molding was performed using the compound obtained in the present example, powder using powder having an increased BET specific surface area of 2 m 2 / g or more showed stable molding characteristics.

Claims (1)

ジルコニウム塩水溶液、或いは、安定化剤を含有するジルコニウム塩水溶液を加水分解、或いは、中和共沈して得られ、限外濾過による濃縮後の水和ジルコニアゾル、焼結助剤としてオキシ塩化ジルコニウムを添加し、オキシ塩化ジルコニウムが含有するZrが全Zr量の5重量%以上20重量%未満の乾燥粉を得る乾燥工程と、該乾燥粉を仮焼し仮焼粉を得る仮焼工程と、得られた該仮焼粉を粉砕し粉砕粉を得る粉砕工程を含むジルコニア微粉末の製造方法において、粉砕工程で、粉砕粉の比表面積(BET法)が仮焼粉の比表面積より2m/g以上大きくなるように粉砕することを特徴とするジルコニア微粉末の製造方法。Aqueous solution of a zirconium salt, or hydrolysis of the zirconium salt aqueous solution containing a stabilizing agent, or obtained by neutralization co-precipitation, the hydrous zirconia sol after concentration by ultrafiltration, oxychloride as a sintering aid A drying step in which zirconium is added and Zr contained in zirconium oxychloride is 5% by weight or more and less than 20% by weight of the total Zr amount; and a calcining step in which the dried powder is calcined to obtain a calcined powder. In the method for producing zirconia fine powder including a pulverization step of pulverizing the obtained calcined powder to obtain a pulverized powder, the specific surface area (BET method) of the pulverized powder is 2 m 2 from the specific surface area of the calcined powder in the pulverization step. A method for producing a fine zirconia powder, characterized by pulverizing so as to be larger than / g.
JP21492899A 1999-07-29 1999-07-29 Production method of fine zirconia powder Expired - Lifetime JP4470001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21492899A JP4470001B2 (en) 1999-07-29 1999-07-29 Production method of fine zirconia powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21492899A JP4470001B2 (en) 1999-07-29 1999-07-29 Production method of fine zirconia powder

Publications (2)

Publication Number Publication Date
JP2001039716A JP2001039716A (en) 2001-02-13
JP4470001B2 true JP4470001B2 (en) 2010-06-02

Family

ID=16663906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21492899A Expired - Lifetime JP4470001B2 (en) 1999-07-29 1999-07-29 Production method of fine zirconia powder

Country Status (1)

Country Link
JP (1) JP4470001B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1626929B1 (en) 2003-05-20 2019-02-20 ETH Zürich, ETH Transfer Metal delivery system for nanoparticle manufacture
CN100391853C (en) * 2004-02-16 2008-06-04 华南理工大学 Method for preparing zirconia nanopowder by ultrasonic sol-gel method
JP4988548B2 (en) 2004-03-15 2012-08-01 アイトゲネシッシェ テヒニッシェ ホーホシューレ チューリッヒ Frame synthesis of metal salt nanoparticles, especially calcium and phosphate with nanoparticles
JP5000853B2 (en) * 2005-03-24 2012-08-15 パナソニック株式会社 Method for producing fuel cell separator material, fuel cell separator and fuel cell
JP4961985B2 (en) * 2006-12-08 2012-06-27 旭硝子株式会社 Method for producing zirconia fine particles
KR20110107187A (en) 2010-03-24 2011-09-30 삼성전자주식회사 Metal Doped Oxide Particles, Preparation Method thereof, and Solid Oxide Electrolyte Using the Same
EP3153483A4 (en) * 2014-06-04 2018-01-10 Shin-Etsu Chemical Co., Ltd. Method for producing transparent ceramic, transparent ceramic, magneto-optical device and rare earth oxide powder for sintering

Also Published As

Publication number Publication date
JP2001039716A (en) 2001-02-13

Similar Documents

Publication Publication Date Title
KR101323697B1 (en) Zirconium oxide and method for the production thereof
WO2016172824A1 (en) Zirconium oxide composite ceramic and preparation method therefor
JP4470001B2 (en) Production method of fine zirconia powder
KR101786056B1 (en) Lead-free piezoelectric seramic for low temperature firing having core-shell structure and method of manufacturing the same
CN104944930A (en) Refractory sagger and preparation method thereof
CN111233468B (en) Preparation method of yttrium-stabilized zirconium powder for structural component
JP4186319B2 (en) Production method of fine zirconia powder
EP0384489B1 (en) High-strength aluminium oxide
JP4320852B2 (en) Hydrated zirconia dry powder, production method thereof and use thereof
US5840641A (en) Preparation of pulverulent zirconium dioxide
JPS63103864A (en) Sintered formed body comprising partially stabilized zirconium oxide and manufacture
JPS61132510A (en) Method for producing heat-resistant composite oxide powder
JP2616772B2 (en) Method for producing proton conductive ceramics
JP4696338B2 (en) Method for producing fine zirconia powder
CN118236272A (en) Machinable zirconia dental restoration material and preparation method and application thereof
JP2616773B2 (en) Method for producing zirconia ceramics
JP2968608B2 (en) Method for producing fine ceria solid solution tetragonal zirconia powder
JP2607517B2 (en) Method for producing zirconia ceramics
JP2541726B2 (en) Ceramic composite conductive heat resistant material composition
JPH0457615B2 (en)
JPS6221750A (en) Manufacture of ceramic sintered body
JPS6158431B2 (en)
JP2000016864A (en) Production of beta-alumina-based ceramic sintered compact
JPH03290361A (en) Production of mullite-zirconia compound sintered compact
JPS63285151A (en) Manufacturing method of perovskite ceramics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4470001

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 4

EXPY Cancellation because of completion of term