Nothing Special   »   [go: up one dir, main page]

JP4467338B2 - Heat pipe manufacturing method - Google Patents

Heat pipe manufacturing method Download PDF

Info

Publication number
JP4467338B2
JP4467338B2 JP2004073878A JP2004073878A JP4467338B2 JP 4467338 B2 JP4467338 B2 JP 4467338B2 JP 2004073878 A JP2004073878 A JP 2004073878A JP 2004073878 A JP2004073878 A JP 2004073878A JP 4467338 B2 JP4467338 B2 JP 4467338B2
Authority
JP
Japan
Prior art keywords
container
heat
heat pipe
wick
pure water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004073878A
Other languages
Japanese (ja)
Other versions
JP2005265205A (en
Inventor
修 本村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Home Technology Corp
Original Assignee
Toshiba Home Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Home Technology Corp filed Critical Toshiba Home Technology Corp
Priority to JP2004073878A priority Critical patent/JP4467338B2/en
Publication of JP2005265205A publication Critical patent/JP2005265205A/en
Application granted granted Critical
Publication of JP4467338B2 publication Critical patent/JP4467338B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments
    • F28F2245/02Coatings; Surface treatments hydrophilic

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Description

本発明は、薄型電子機器内に搭載される熱源の冷却に好適なヒートパイプの製造方法に関する。 The present invention relates to a process for the preparation of suitable non Topaipu to cool the heat source to be mounted in a small and thin electronic device.

従来、この種のヒートパイプは、例えば特許文献1のように、ウィックを、作動媒体を封入したコンテナの内部に設け、熱により作動媒体が蒸発すると、その蒸気が流して凝縮するようにしている。
特許第3408033号公報
Conventionally, this kind of heat pipe, as in Patent Document 1 In example embodiment, the wick, provided inside the container enclosing the working medium, the heat by Ri work dynamic medium is evaporated, and the dynamic its vapor flow and you condensed Unishi.
Japanese Patent No. 3408033

上記構成において、ヒートパイプを搭載する薄型電子機器は年々、熱源の発熱量が増加しており、コンテナの形状を大きくしたり、ヒートパイプを数本使用する為、薄型電子機器本来の利点であるモバイル性が損なわれ、大きさおよび重量の面で、ユーザーを満足させることができない問題を有していた。 In the above structure, year by year thin electronic equipment for mounting the heat pipe, Ri your amount of heat generated by the heat source is increased, or to increase the shape of the container, in order to use several of the heat pipe, in the original advantage thin electronic equipment A certain degree of mobility was impaired, and there was a problem that the user could not be satisfied in terms of size and weight.

そこで、本発明は上記問題点に鑑み、コンテナ形状を大きくしたり、複数本のヒートパイプを使用しなくても、熱源を効果的に冷却することが可能であり、さらに熱伝達性能に優れ、安定した酸化膜を形成でき、所望の厚さを有する酸化膜を均一に生成することができるヒートパイプの製造方法を提供することをその目的とする。   Therefore, in view of the above problems, the present invention can effectively cool the heat source without increasing the container shape or using a plurality of heat pipes, and further has excellent heat transfer performance. It is an object of the present invention to provide a method for manufacturing a heat pipe that can form a stable oxide film and can uniformly generate an oxide film having a desired thickness.

請求項1の発明では、例えば銅または銅合金製のコンテナ内部において、純水と接するウィックの内表面に30nmを超える膜厚を有して、ウィックと純水との親水性を常時良好に保つ酸化膜が形成されているので、ウィックと作動媒体との濡れ性が著しく改善され、常時良好な濡れ性を維持することができる。そのため、コンテナ形状の小型化若しくはヒートパイプの使用本数の削減を図ることができる。また、作動媒体の広がりが改善され、コンテナ内の作動媒体と接するウィックの内表面と、当該作動媒体の蒸発部および凝縮部との間の熱抵抗が小さくなり、熱伝達性能の優れたヒートパイプを提供できる。 In the invention of claim 1, inside the container copper or Dogo gold In example embodiment, has a thickness of more than 30nm on the inner surface of the wick in contact with pure water, constantly improving the hydrophilicity of the wick and pure water since the oxide film is formed to keep the can wettability of the wick and the working medium is significantly improved, to maintain a constantly good wettability. Therefore, it is possible to reduce the use number of compact or heat pipe container shape. Further, an improved spread of the work moving medium, the inner surface of the wick in contact with the working medium in the container, the thermal resistance between the evaporating section and the condensing part of the working medium is reduced, the heat transfer performance superior heat Can provide pipes.

なお、100nmを超える厚さの酸化膜を形成しても、上記ウィックと純水との親水性はそれ以上に改善されず、安定した酸化膜を形成するのがかえって困難になる。そのためウィックと純水との親水性を常時良好に保ち、安定した酸化膜を形成するのに、その膜厚は100nm以下とするのが好ましい。 Even if an oxide film having a thickness exceeding 100 nm is formed, the hydrophilicity between the wick and pure water is not further improved, and it becomes difficult to form a stable oxide film. Therefore, in order to always keep the hydrophilicity of the wick and pure water good and form a stable oxide film, the film thickness is preferably 100 nm or less.

また、コンテナを150℃〜200℃間の温度で加熱しながら、このコンテナに乾燥した空気を10分〜30分間供給するだけで、所望の厚さを有する酸化膜を均一に生成することができる。 In addition, while heating the container at a temperature between 150 ° C. and 200 ° C., it is possible to uniformly generate an oxide film having a desired thickness simply by supplying dry air to the container for 10 minutes to 30 minutes. .

本発明は、以上説明したようなものであるから、以下に記載されるような効果を奏する。   Since the present invention is as described above, the following effects can be obtained.

請求項1の発明では、コンテナ形状を大きくしたり、複数本のヒートパイプを使用しなくても、ウィックと純水との濡れ性を著しく改善し、熱源を効果的に冷却することが可能になる。また、純水の広がりが改善され、熱伝達性能の優れたヒートパイプを提供できる。さらに、膜厚は100nm以下とすることで、安定した酸化膜を形成できると共に、コンテナを150℃〜200℃間の温度で加熱しながら、このコンテナに乾燥した空気を10分〜30分間供給するだけで、所望の厚さを有する酸化膜を均一に生成することができる。 According to the first aspect of the present invention, the wettability between the wick and pure water can be remarkably improved and the heat source can be effectively cooled without enlarging the container shape or using a plurality of heat pipes. Become. Moreover , the spread of pure water is improved, and a heat pipe with excellent heat transfer performance can be provided. Furthermore, by making the film thickness 100 nm or less, a stable oxide film can be formed, and dry air is supplied to this container for 10 to 30 minutes while heating the container at a temperature between 150 ° C. and 200 ° C. As a result, an oxide film having a desired thickness can be uniformly formed.

以下、本発明に係るヒートパイプおよびその製造方法について、添付図面を参照しながらその好ましい実施形態を説明する。   Hereinafter, preferred embodiments of the heat pipe and the manufacturing method thereof according to the present invention will be described with reference to the accompanying drawings.

図1〜図6は本発明の第1実施例を示すもので、図1はヒートパイプの曲げ加工前の外観図であり、また図2は、薄型電子機器であるノート型パソコンに装着するために、曲げ潰し加工を施した後のヒートパイプの外観図である。さらに図3は、図2における潰し部の断面図であり、図4は要部の拡大断面図である。   1 to 6 show a first embodiment of the present invention. FIG. 1 is an external view of a heat pipe before bending, and FIG. 2 is for mounting on a notebook personal computer which is a thin electronic device. It is an external view of the heat pipe after performing a bending crushing process. 3 is a cross-sectional view of the crushed portion in FIG. 2, and FIG. 4 is an enlarged cross-sectional view of the main portion.

上記各図において、ヒートパイプ1の本体部となる中空筒状のコンテナ2は、その素材が好ましくは熱伝導性の高い銅若しくは銅合金などの金属製パイプ材から形成される。また、図1に示す曲げ加工前の状態では、コンテナ2は全体が直線状をなしていて、端部を除いて外径および肉厚が軸方向の全長に亘り一定に形成される。さらにこのコンテナ2の両端は、例えばTig溶接などの適宜手段による封止部2A,2Bが形成され、コンテナ2の内部を真空状態に密閉している。   In each said figure, the hollow cylindrical container 2 used as the main-body part of the heat pipe 1 is preferably formed from a metal pipe material such as copper or a copper alloy having a high thermal conductivity. Moreover, in the state before the bending process shown in FIG. 1, the container 2 is entirely linear, and the outer diameter and the wall thickness are formed uniformly over the entire length in the axial direction except for the ends. Furthermore, sealing portions 2A and 2B are formed at both ends of the container 2 by appropriate means such as Tig welding, for example, and the inside of the container 2 is sealed in a vacuum state.

ところで、ノート型パソコンのような薄型電子機器にヒートパイプ1を設置する場合は、薄型電子機器内の設置スペースが限られているため、図2や図3に示すように、コンテナ2の一部若しくは全体に曲げ潰し加工を施した扁平部11が形成される。この扁平部11を形成したコンテナ2の表面は概ね略平面状になっているが、コンテナ2が円筒状であることや、コンテナ2内部が減圧状態で密封されていることが理由で、曲げ潰し加工の際に窪み12が部分的に設けられる。この窪み12がヒートパイプ1の性能に及ぼす影響を最大限に食い止める手法は、後ほど別な実施例で詳述する。   By the way, when the heat pipe 1 is installed in a thin electronic device such as a notebook computer, since the installation space in the thin electronic device is limited, as shown in FIG. 2 and FIG. Or the flat part 11 which performed the bending crushing process in the whole is formed. The surface of the container 2 on which the flat portion 11 is formed is substantially flat, but is bent and crushed because the container 2 is cylindrical or the inside of the container 2 is sealed under reduced pressure. The recess 12 is partially provided during processing. A method for maximizing the influence of the depression 12 on the performance of the heat pipe 1 will be described in detail later in another embodiment.

図3の断面図に示すように、コンテナ2の内壁面には、その軸方向に沿って多数のフィン4が突出して設けられると共に、フィン4間にはコンテナ2に密封収容された作動媒体としての純水W(図4参照)を毛細管現象により流動させるための溝5が形成される。即ち本実施例では、コンテナ2の内面に形成したフィン4と溝5とによるグルーブ型のウィック6が形成され、溝5内に純水Wを満たしている。また、ウィック6に囲まれたコンテナ2内の中空部は、蒸気の流路7として形成される。本実施例では、コンテナ2の内壁を凹凸状にしたグルーブウィック構造を示したが、コンテナ2の内壁に作動媒体の流動を促進するメッシュや細線を設けた他のウィック構造を採用してもよい。ここでは便宜上、CPUなどの熱源から熱を受け取る加熱部13が、ヒートパイプ1の一端部に形成され、図示しないファンなどにより冷却される冷却部14が、ヒートパイプ1の他端部に形成される。ヒートパイプ1のどの位置に加熱部13および冷却部14を形成するのかは、特に限定しない。   As shown in the cross-sectional view of FIG. 3, the inner wall surface of the container 2 is provided with a large number of fins 4 protruding along the axial direction, and a working medium sealed and accommodated in the container 2 is provided between the fins 4. The groove 5 for allowing the pure water W (see FIG. 4) to flow by capillary action is formed. That is, in this embodiment, a groove type wick 6 is formed by the fins 4 and the grooves 5 formed on the inner surface of the container 2, and the grooves 5 are filled with pure water W. A hollow portion in the container 2 surrounded by the wick 6 is formed as a steam flow path 7. In the present embodiment, the groove wick structure in which the inner wall of the container 2 is made uneven is shown, but other wick structures in which the inner wall of the container 2 is provided with a mesh or fine line that promotes the flow of the working medium may be adopted. . Here, for convenience, a heating unit 13 that receives heat from a heat source such as a CPU is formed at one end of the heat pipe 1, and a cooling unit 14 that is cooled by a fan (not shown) is formed at the other end of the heat pipe 1. The In which position of the heat pipe 1 the heating unit 13 and the cooling unit 14 are formed is not particularly limited.

図4に示すように、コンテナ2内部の純水Wが接するウィック6の内表面には、30nmを超え100nm以下の膜厚を有する酸化膜8が形成される。この酸化膜8は、コンテナ2内に純水Wを真空封入する前の工程で、図示しない酸化膜生成炉にコンテナ2を投入することで生成される。当該酸化膜生成炉は、コンテナ2の温度を150℃〜200℃間で上昇させて、当該コンテナ2全体を加熱すると共に、除湿装置(図示せず)から吹き出される乾燥空気を取り込んで、ウィック6を設けたコンテナ2の内部に供給する。そして、酸化膜生成炉の内部でコンテナ2を一定時間である10分〜30分間加熱することで、コンテナ2の内面に上記所望の膜厚を有する酸化膜8を均一に生成することができる。   As shown in FIG. 4, an oxide film 8 having a thickness of more than 30 nm and not more than 100 nm is formed on the inner surface of the wick 6 with which the pure water W inside the container 2 is in contact. The oxide film 8 is generated by putting the container 2 into an oxide film generating furnace (not shown) in a step before the pure water W is vacuum sealed in the container 2. The oxide film generation furnace raises the temperature of the container 2 between 150 ° C. and 200 ° C., heats the container 2 as a whole, takes in dry air blown from a dehumidifier (not shown), and 6 is supplied to the inside of the container 2 provided. And the oxide film 8 which has the said desired film thickness can be uniformly produced | generated on the inner surface of the container 2 by heating the container 2 for 10 minutes-30 minutes which is a fixed time inside an oxide film production furnace.

次に、上記構成のヒートパイプ1をノート型パソコンにおけるCPUの冷却に用いた場合の作用を、以下説明する。   Next, the operation when the heat pipe 1 having the above-described configuration is used for cooling the CPU in a notebook computer will be described below.

ノート型パソコンの使用時に、CPUの熱がヒートパイプ1の一端部である加熱部13に伝わると、加熱部13周辺におけるコンテナ2の内壁部が温度上昇し、そこにある純水Wが蒸発して蒸発潜熱が奪われることにより、CPUが冷却される。一方、前記加熱部13に位置するウィック6において、純水Wから蒸発した蒸気は、コンテナ2内部の圧力差により温度の低い箇所に移動して凝縮する。その際、凝縮潜熱を放出しつつ、熱がヒートパイプの一端側にある加熱部13から、ファンなどにより冷却される他端側の冷却部14に運ばれる。加熱部13は蒸発に伴い純水Wが減少する一方で、冷却部14は蒸気の凝縮により純水Wが増加するため、グルーブ型のウィック6に毛細管力が発生し、純水Wが溝5に沿って冷却部14から加熱部13へと運ばれるが、本実施例のヒートパイプ1のように、ウィック6に30nmを超える酸化膜8が形成されていると、ウィック6と純水Wとの親水性が著しく改善され、CPUがより多く発熱した場合であっても、純水Wが冷却部14から加熱部13へと円滑に運ばれる。そのため、加熱部13周辺にある純水Wがドライアウトして、熱輸送が低下する虞れを回避することができ、熱源であるCPUを効果的に冷却することが可能になる。   When using a notebook computer, if the heat of the CPU is transferred to the heating unit 13 which is one end of the heat pipe 1, the temperature of the inner wall of the container 2 around the heating unit 13 rises, and the pure water W there evaporates. As the latent heat of vaporization is taken away, the CPU is cooled. On the other hand, in the wick 6 located in the heating unit 13, the vapor evaporated from the pure water W moves to a place where the temperature is low due to the pressure difference inside the container 2 and condenses. At that time, while releasing the latent heat of condensation, the heat is carried from the heating unit 13 on one end side of the heat pipe to the cooling unit 14 on the other end side cooled by a fan or the like. While the pure water W decreases in the heating unit 13 as it evaporates, the pure water W increases in the cooling unit 14 due to the condensation of steam, so that capillary force is generated in the groove-type wick 6 and the pure water W becomes the groove 5. The oxide film 8 having a thickness of more than 30 nm is formed on the wick 6 as in the heat pipe 1 of the present embodiment, and the wick 6 and the pure water W Even when the CPU has a significantly improved hydrophilicity and the CPU generates more heat, the pure water W is smoothly conveyed from the cooling unit 14 to the heating unit 13. Therefore, it is possible to avoid the possibility that the pure water W around the heating unit 13 is dried out and the heat transport is lowered, and the CPU as the heat source can be effectively cooled.

因みに、グルーブ型のウィック6に100nmを超える酸化膜8を形成しても、当該ウィック6と純水Wとの親水性が更に改善されることはなく、製造時において安定した酸化膜8を形成するのがかえって困難になる。したがって、製造性を考慮して、酸化膜8の厚さは100nm以下にするのが好ましい。   Incidentally, even if the oxide film 8 exceeding 100 nm is formed on the groove type wick 6, the hydrophilicity between the wick 6 and the pure water W is not further improved, and a stable oxide film 8 is formed at the time of manufacture. On the contrary, it becomes difficult. Therefore, in consideration of manufacturability, the thickness of the oxide film 8 is preferably 100 nm or less.

上記グルーブ型のウィック6と純水Wとの親水性は、その表面状態に大きく左右される。例えば純水Wに接するウィック6の表面状態が良好であれば、酸化膜8を形成しなくてもある程度の親水性を確保できるが、ウィック6の表面状態が適切でない場合は、本実施例のように、所望の膜厚を有する酸化膜8をウィック6の表面に形成することで、著しく親水性を改善できる。また、コンテナ2の内壁部にあるウィック6の表面状態を常に良好な状態に保つのは難しいことから、純水Wとの親水性を常時良好に保つには、上記酸化膜8の形成が有効な手段といえる。   The hydrophilicity of the groove type wick 6 and the pure water W is greatly influenced by the surface state. For example, if the surface state of the wick 6 in contact with the pure water W is good, a certain degree of hydrophilicity can be ensured without forming the oxide film 8, but if the surface state of the wick 6 is not appropriate, the present embodiment Thus, the hydrophilicity can be remarkably improved by forming the oxide film 8 having a desired film thickness on the surface of the wick 6. In addition, since it is difficult to always keep the surface state of the wick 6 on the inner wall portion of the container 2 in a good state, the formation of the oxide film 8 is effective to always keep the hydrophilicity with the pure water W good. It can be said that it is a means.

ここで、本実施例における酸化膜8を形成したヒートパイプ1に関し、各種の実験結果を以下説明する。図5は、従来例における酸化膜を形成していないヒートパイプの熱抵抗−ヒータ電力特性A1と、酸化膜8を形成したヒートパイプ1の熱抵抗−ヒータ電力特性A2をそれぞれ示している。特性A1,A2は、共にヒートパイプ1を夫々3本ずつ設置して、測定した値である。ここで云うヒータは、いずれもヒートパイプの一端にある加熱部13に熱接続されるものであり、冷却部14は同一のファンからの送風により冷却されている。この図5によれば、酸化膜8を形成したヒートパイプ1の熱抵抗(単位電力当りの温度差)が著しく低くなっていることがわかる。なお、本実施例におけるヒートパイプ1の熱抵抗−ヒータ電力特性A2では、同一のヒータ電力で熱抵抗の幅があるが、これはコンテナ2内に封入される純水Wの液量による。   Here, various experimental results regarding the heat pipe 1 on which the oxide film 8 is formed in the present embodiment will be described below. FIG. 5 shows the thermal resistance-heater power characteristic A1 of the heat pipe in which no oxide film is formed in the conventional example and the thermal resistance-heater power characteristic A2 of the heat pipe 1 in which the oxide film 8 is formed. The characteristics A1 and A2 are values obtained by measuring three heat pipes 1 each. All of the heaters here are thermally connected to the heating unit 13 at one end of the heat pipe, and the cooling unit 14 is cooled by air blown from the same fan. As can be seen from FIG. 5, the heat resistance (temperature difference per unit power) of the heat pipe 1 on which the oxide film 8 is formed is remarkably low. In the thermal resistance-heater power characteristic A2 of the heat pipe 1 in this embodiment, there is a range of thermal resistance with the same heater power, but this depends on the amount of pure water W sealed in the container 2.

次に、酸化膜8を生成する前と、酸化膜8を生成した後の、コンテナ2内壁面における外観と、濡れ性の比較を表1に示す。なお、濡れ性は0.01ccの水を滴下したときの拡がり距離(濡れ距離)を測定したもので、それぞれについて4回の測定とその平均を算出してある。   Next, Table 1 shows a comparison between the appearance on the inner wall surface of the container 2 and the wettability before the oxide film 8 is generated and after the oxide film 8 is generated. The wettability was measured by measuring the spread distance (wet distance) when 0.01 cc of water was dropped, and for each measurement, four measurements and the average were calculated.

Figure 0004467338
Figure 0004467338


上記表1では、酸化膜8を形成することによって、水ひいては作動媒体の濡れ性が著しく改善されることがわかる。   From Table 1 above, it can be seen that the formation of the oxide film 8 significantly improves the wettability of water and the working medium.

さらに図6は、乾燥空気を取り込みながら、酸化膜生成炉の内部でコンテナ2を加熱したときの濡れ性の変化を示したものである。この実験結果からも明らかなように、加熱時間が10分を超えると、酸化膜8を生成する前の状態よりも濡れ性が改善され、その後濡れ性が最大値に達する。しかし、加熱時間がそれよりも延び、酸化膜8の膜厚が次第に増加しても、濡れ性は徐々に低下し、加熱時間が30分を過ぎると、即ち酸化膜8の膜厚が100nmを超えると、濡れ性は加熱を行なう前の状態に略戻ってしまう。したがって、加熱時間は10分〜30分の範囲内とするのが好ましい。   Further, FIG. 6 shows a change in wettability when the container 2 is heated inside the oxide film production furnace while taking in dry air. As is apparent from the experimental results, when the heating time exceeds 10 minutes, the wettability is improved as compared with the state before the oxide film 8 is generated, and then the wettability reaches the maximum value. However, even if the heating time is longer than that and the film thickness of the oxide film 8 is gradually increased, the wettability gradually decreases, and when the heating time exceeds 30 minutes, that is, the film thickness of the oxide film 8 is 100 nm. When it exceeds, wettability will return substantially to the state before heating. Therefore, the heating time is preferably within the range of 10 minutes to 30 minutes.

以上のように本実施例では、熱伝導性が高い金属製の、内面にウィック6を形成したコンテナ2内に純水Wを封入してなるヒートパイプ1において、コンテナ2を例えば酸化膜生成炉により150℃〜200℃間の温度で加熱すると共に、このコンテナ2の内部に乾燥した気体である空気を10分〜30分間供給することにより、コンテナ2内の純水Wと接するウィック6の内表面に、30nmを超え100nm以下の膜厚を有して、ウィック6と純水Wとの親水性を常時良好に保つ酸化膜8を生成し、純水Wと接するウィック6の内表面と、純水Wの蒸発部および凝縮部との間の熱抵抗を小さくする製造方法を採用している。 As described above, in the present embodiment, in the heat pipe 1 in which the pure water W is sealed in the container 2 made of metal having high thermal conductivity and having the wick 6 formed on the inner surface, the container 2 is, for example, an oxide film generation furnace. The inside of the wick 6 in contact with the pure water W in the container 2 is heated at a temperature between 150 ° C. and 200 ° C. by supplying air, which is a dry gas, to the inside of the container 2 for 10 minutes to 30 minutes. on the surface, and to have a thickness of less than 100nm exceeded 30 nm, to produce an oxide film 8 to keep always satisfactorily hydrophilic wick 6 and the pure water W, the inner surface of the wick 6 in contact with the pure water W, A manufacturing method for reducing the thermal resistance between the evaporation part and the condensation part of the pure water W is adopted.

このようにすると、ヒートパイプ1の加熱部13は蒸発に伴い純水Wが減少する一方で、ヒートパイプ1の冷却部14は蒸気の凝縮により純水Wが増加するため、グルーブ型のウィック6に毛細管力が発生し、純水Wが溝5に沿って冷却部14から加熱部13へと運ばれるが、例えば銅または銅合金などの金属製のコンテナ2内部において、純水Wと接するウィック6の内表面に30nmを超える厚さの酸化膜8が形成されているので、ウィック6と純水Wとの濡れ性が著しく改善され、常時良好な濡れ性を維持することができる。そのため、熱源である例えばCPUからより多くの熱が加熱部13に伝わっても、純水Wが冷却部14から加熱部13に円滑に運ばれ、加熱部13のドライアウトに起因する熱輸送機能の低下が生じにくくなり、コンテナ2の形状の小型化若しくはヒートパイプ1の使用本数の削減を図ることができる。また、加熱部13および冷却部14における純水Wの広がりが改善され、コンテナ2内の純水Wと接するウィック6の内表面と、当該純水Wの蒸発部および凝縮部との間の熱抵抗が小さくなり、熱伝達性能の優れたヒートパイプ1を提供できる。   In this case, the pure water W decreases as the heating section 13 of the heat pipe 1 evaporates, while the pure water W increases in the cooling section 14 of the heat pipe 1 due to the condensation of the steam. Capillary force is generated, and the pure water W is transported along the groove 5 from the cooling unit 14 to the heating unit 13. For example, a wick that contacts the pure water W in a metal container 2 such as copper or a copper alloy is used. Since the oxide film 8 having a thickness exceeding 30 nm is formed on the inner surface of 6, the wettability between the wick 6 and the pure water W is remarkably improved, and good wettability can always be maintained. Therefore, even if more heat is transmitted from the CPU, which is a heat source, to the heating unit 13, the pure water W is smoothly conveyed from the cooling unit 14 to the heating unit 13, and the heat transport function resulting from the dry-out of the heating unit 13 Can be reduced, and the size of the container 2 can be reduced or the number of heat pipes 1 used can be reduced. Further, the spread of the pure water W in the heating unit 13 and the cooling unit 14 is improved, and the heat between the inner surface of the wick 6 in contact with the pure water W in the container 2 and the evaporation unit and the condensation unit of the pure water W is improved. The resistance can be reduced, and the heat pipe 1 having excellent heat transfer performance can be provided.

なお、100nmを超える厚さの酸化膜8を形成しても、上記ウィック6と純水Wとの親水性はそれ以上に改善されず、安定した酸化膜8を形成するのがかえって困難になる。そのためウィック6と純水Wとの親水性を常時良好に保ち、安定した酸化膜8を形成するのに、その膜厚は100nm以下とするのが好ましい。 Even if the oxide film 8 having a thickness exceeding 100 nm is formed, the hydrophilicity between the wick 6 and the pure water W is not further improved, and it becomes difficult to form a stable oxide film 8 on the contrary. . Therefore, in order to always maintain good hydrophilicity between the wick 6 and the pure water W and form a stable oxide film 8, the film thickness is preferably 100 nm or less.

また、ヒートパイプ1の製造方法に関し、コンテナ2を150℃〜200℃間の温度で加熱しながら、このコンテナ2の内部に加熱した乾燥空気を10分〜30分間供給するだけで、所望の厚さを有する酸化膜8を均一に生成することができる。   In addition, regarding the manufacturing method of the heat pipe 1, the container 2 is heated at a temperature between 150 ° C. and 200 ° C., and the heated air is supplied to the inside of the container 2 for 10 minutes to 30 minutes. A uniform oxide film 8 can be generated.

なお、本実施例の変形例として、コンテナ2の内壁に作動媒体の流動を促進するメッシュや細線を設けた他のウィック構造を採用した場合、酸化膜8はメッシュや細線を含む純水Wと接する面に形成するのが好ましい。   As a modification of the present embodiment, in the case where another wick structure in which a mesh or a fine wire for promoting the flow of the working medium is provided on the inner wall of the container 2 is employed, the oxide film 8 includes pure water W including the mesh and the fine wire. It is preferable to form the contact surface.

次に、本発明の第2実施例を図7〜図12に基づき説明する。なお、ここで使用するヒートパイプ1は、第1実施例と全く同じものである。したがって、第1実施例と同一部分には同一符号を付し、その共通する箇所の説明は極力省略する。   Next, a second embodiment of the present invention will be described with reference to FIGS. The heat pipe 1 used here is exactly the same as in the first embodiment. Therefore, the same parts as those in the first embodiment are denoted by the same reference numerals, and description of common parts is omitted as much as possible.

ヒートパイプ1の本体部となるコンテナ2には、前述したように曲げ潰し加工を施した扁平部11が形成される。この扁平部11は、ヒートパイプ1を装着する薄型電子機器内の収容スペースに対応して、コンテナ2の一部または全体に形成される。また、図10に示すように、CPU31からの熱を受ける平板状の受熱プレート32や、放熱体である矩形状のフィン33とコンテナ2との接触面積を最大に確保し、お互いの熱接続を強固なものとするためにも、上述した扁平部11が設けられる。こうした扁平部11は、ヒートパイプ1の周辺状況に応じて設けられるものであり、本実施例では受熱プレート32を熱接続する加熱部13や、フィン33を接続する冷却部14に位置して、それぞれコンテナ2に部分的に設けられる。   The container 2 that is the main body of the heat pipe 1 is formed with a flat portion 11 that has been subjected to bending crushing as described above. The flat portion 11 is formed in a part or the whole of the container 2 corresponding to the accommodation space in the thin electronic device to which the heat pipe 1 is attached. In addition, as shown in FIG. 10, the contact area between the flat heat receiving plate 32 that receives heat from the CPU 31 and the rectangular fins 33 that are heat radiators and the container 2 is secured to maximize the heat connection between them. The flat portion 11 described above is also provided in order to be strong. Such a flat part 11 is provided according to the surrounding situation of the heat pipe 1, and in the present embodiment, located in the heating part 13 that thermally connects the heat receiving plate 32 and the cooling part 14 that connects the fins 33, Each is partially provided in the container 2.

図7は、その曲げ潰し加工を施した扁平部11におけるコンテナ2の断面図を示しているが、ここでは扁平部11を形成する際に設けられる窪み12によって、ヒートパイプ1としての性能が低下するのを極力防ぐために、当該扁平部11の一部または全体に、コンテナ2内における蒸気の通路7を拡げるための突出部17が形成される。当該突出部17は、断面形状が略半円状で、少なくとも窪み12が形成される扁平部11の一側である上面側の略中央部に設けられると共に、図9に示すように、筒状をなすコンテナ2の長手方向に沿ってその突出頂部17Aが形成される。こうすると、扁平部11の下面側にはコンテナ2の内方に凹んだ窪み12があるものの、反対側の扁平部11の上面側には、窪み12に代わってコンテナ2の外方に大きく膨らんだ突出部17が形成され、この突出部17によりコンテナ2の両側部のみならず略中央部にも、大量の蒸気の流通を促進する流路7が確保される。   FIG. 7 shows a cross-sectional view of the container 2 in the flat part 11 subjected to the bending crushing process, but here, the performance as the heat pipe 1 is reduced by the depression 12 provided when the flat part 11 is formed. In order to prevent this from occurring as much as possible, a protrusion 17 for expanding the steam passage 7 in the container 2 is formed on a part or the whole of the flat portion 11. The projecting portion 17 has a substantially semicircular cross-sectional shape, and is provided at a substantially central portion on the upper surface side, which is one side of the flat portion 11 where at least the recess 12 is formed. A projecting top portion 17A is formed along the longitudinal direction of the container 2 forming the above. In this way, although there is a recess 12 recessed inward of the container 2 on the lower surface side of the flat portion 11, the upper surface side of the flat portion 11 on the opposite side swells greatly outward of the container 2 instead of the recess 12. A protruding portion 17 is formed, and the protruding portion 17 secures a flow path 7 that promotes the flow of a large amount of steam not only on both sides of the container 2 but also in a substantially central portion.

なお、図7に示す例では、突出部17が扁平部11の上面側略中央部のみに設けられ、その幅方向周辺には略平面状の扁平部11が残っているが、図8に示すように、扁平部11の上面側全体に、当該扁平部11を残さないようにして突出部17を設けてもよい。この場合も、扁平部11の下面側には窪み12があるものの、その上方には大きく膨らんだ突出部17が形成され、コンテナ2の断面形状が略半円状になるので、コンテナ2の内部において大量の蒸気の流通を促進する略半円状の流路7が確保される。   In the example shown in FIG. 7, the protruding portion 17 is provided only at the substantially central portion on the upper surface side of the flat portion 11, and the substantially flat flat portion 11 remains in the periphery in the width direction. As described above, the protruding portion 17 may be provided on the entire upper surface side of the flat portion 11 so as not to leave the flat portion 11. Also in this case, although there is a recess 12 on the lower surface side of the flat portion 11, a projecting portion 17 that is greatly bulged is formed above it, and the cross-sectional shape of the container 2 becomes a substantially semicircular shape. A substantially semicircular flow path 7 that facilitates the flow of a large amount of steam is secured.

図9は、図7における突出部17を設けた状態のヒートパイプ1の平面図である。同図において、前記突出部17はヒートパイプ1の加熱部13と冷却部14にそれぞれ形成した扁平部11の上面側に設けられているが、突出部17を扁平部11の下面側に設けてもよく、また突出部17をコンテナ2の長手方向に沿って連続的にではなく、断続的に設けてもよい。   FIG. 9 is a plan view of the heat pipe 1 in a state in which the protrusion 17 in FIG. 7 is provided. In the figure, the protrusion 17 is provided on the upper surface side of the flat part 11 formed in the heating part 13 and the cooling part 14 of the heat pipe 1 respectively, but the protrusion 17 is provided on the lower surface side of the flat part 11. Alternatively, the protrusions 17 may be provided intermittently rather than continuously along the longitudinal direction of the container 2.

図10は、図9に示すヒートパイプ1を利用して、ノート型パソコンに搭載されたCPU31からの熱をフィン33に運ぶ状態を示している。同図において、ここではCPU31からの熱を受ける受熱部としての受熱プレート32が、加熱部13に形成した略平面状をなす扁平部11の下面側に密着接続されると共に、送風装置(図示せず)からの風が通過する放熱部としてのフィン33が、冷却部14に形成した扁平部11の上面側に密着接続される。なお、こうした受熱プレート32やフィン33を、送風装置の一部として構成してもよい。   FIG. 10 shows a state in which heat from the CPU 31 mounted on the notebook computer is carried to the fins 33 using the heat pipe 1 shown in FIG. In this figure, here, a heat receiving plate 32 as a heat receiving portion for receiving heat from the CPU 31 is closely connected to the lower surface side of the substantially flat flat portion 11 formed in the heating portion 13 and a blower (not shown). The fin 33 as a heat radiating part through which the wind from the air passes through is closely connected to the upper surface side of the flat part 11 formed in the cooling part 14. Note that the heat receiving plate 32 and the fins 33 may be configured as a part of the blower.

次に、上記構成についてその作用を説明すると、ノート型パソコンの使用時に、CPU31の熱が受熱プレート32からヒートパイプ1の一端部である加熱部13に伝わると、加熱部13周辺におけるコンテナ2の内壁部が温度上昇し、そこにある純水Wが蒸発して蒸発潜熱が奪われることにより、CPU31が冷却される。一方、前記加熱部13に位置するウィック6において、純水Wから蒸発した蒸気は、コンテナ2内部の圧力差により温度の低い箇所に移動して凝縮する。その際、凝縮潜熱を放出しつつ、熱がヒートパイプの一端側にある加熱部13から、フィン33などにより冷却される他端側の冷却部14に運ばれる。加熱部13は蒸発に伴い純水Wが減少する一方で、冷却部14は蒸気の凝縮により純水Wが増加するため、グルーブ型のウィック6に毛細管力が発生し、純水Wが溝5に沿って冷却部14から加熱部13へと運ばれる。   Next, the operation of the above configuration will be described. When the heat of the CPU 31 is transferred from the heat receiving plate 32 to the heating unit 13 that is one end of the heat pipe 1 when using the notebook computer, the container 2 around the heating unit 13 is heated. The temperature of the inner wall rises, the pure water W there evaporates and the latent heat of vaporization is taken away, whereby the CPU 31 is cooled. On the other hand, in the wick 6 located in the heating unit 13, the vapor evaporated from the pure water W moves to a place where the temperature is low due to the pressure difference inside the container 2 and condenses. At that time, while releasing condensation latent heat, heat is carried from the heating unit 13 on one end side of the heat pipe to the cooling unit 14 on the other end side cooled by the fins 33 or the like. While the pure water W decreases in the heating unit 13 as it evaporates, the pure water W increases in the cooling unit 14 due to the condensation of steam, so that capillary force is generated in the groove-type wick 6 and the pure water W becomes the groove 5. Are carried from the cooling unit 14 to the heating unit 13.

この一連の冷却サイクルにおいて、受熱プレート32とコンテナ2,およびコンテナ2とフィン33との接触面積を最大にし、且つお互いの熱接続を強固なものとするために、コンテナ2の加熱部13および冷却部14には潰し加工による扁平部11が形成される。しかしながら近年はCPU31の発熱量が増加したのに伴い、コンテナ2の内部で発生する蒸気量が大幅に増加し、コンテナ2内における蒸気の流路7が音速限界(蒸気の速度は音速を超えられない)並びに飛散限界(蒸気が対向する水を飛ばすことにより、水が戻ってこなくなる)に達し、熱輸送量をそれ以上に増加させることが難しい。こうした問題に対し、従来はコンテナ2全体の形状を大きくしたり、ヒートパイプ1の本数を増やしたりしていた。   In this series of cooling cycles, in order to maximize the contact area between the heat receiving plate 32 and the container 2, and between the container 2 and the fin 33, and to strengthen the mutual heat connection, the heating unit 13 and the cooling of the container 2 are cooled. In the portion 14, a flat portion 11 is formed by crushing. However, in recent years, as the amount of heat generated by the CPU 31 has increased, the amount of steam generated inside the container 2 has greatly increased, and the steam flow path 7 in the container 2 is limited to the speed of sound (the speed of steam can exceed the speed of sound). No) and the scattering limit (water is not returned by flying the water facing the steam), and it is difficult to further increase the amount of heat transport. Conventionally, the shape of the entire container 2 has been increased, or the number of heat pipes 1 has been increased.

ところが、上述のような潰し加工による扁平部11が形成されていると、加工時に扁平部11の窪み12が生じるため、この窪み12により蒸気の流路7が狭められて、前述の音速限界並びに飛散限界が生じやすく、ヒートパイプ1としての性能に悪影響を及ぼす。そこで本実施例では、蒸気の流路7による音速限界並びに飛散限界を防ぐために、当該扁平部11にその断面形状が略半円状の突出部17を設け、コンテナ2内における蒸気の流路7を十分に確保することで、コンテナ2全体の形状を大きくしたり、ヒートパイプ1の本数を増やしたりすることなく、収容スペースの狭いノート型パソコンなどの薄型電子機器に最適なヒートパイプ1を供給でき、熱源であるCPU31を効果的に冷却することが可能になる。また、受熱プレート32とコンテナ2,およびコンテナ2とフィン33との接触面積は、扁平部11によって大きく確保することができるので、熱抵抗の小さな熱伝達性能の優れたヒートパイプ1を提供できる。   However, when the flat portion 11 is formed by the crushing process as described above, a recess 12 of the flat portion 11 is generated during processing. Therefore, the flow path 7 of the steam is narrowed by the recess 12, and the above-described sound velocity limit and The scattering limit is likely to occur, and the performance as the heat pipe 1 is adversely affected. Therefore, in this embodiment, in order to prevent the sound velocity limit and the scattering limit due to the steam flow path 7, the flat part 11 is provided with a projecting part 17 having a substantially semicircular cross section, and the steam flow path 7 in the container 2. By ensuring sufficient, the heat pipe 1 that is optimal for thin electronic devices such as notebook computers with a small storage space can be supplied without increasing the overall shape of the container 2 or increasing the number of heat pipes 1 This makes it possible to effectively cool the CPU 31 that is a heat source. In addition, since the contact area between the heat receiving plate 32 and the container 2 and between the container 2 and the fin 33 can be largely secured by the flat portion 11, the heat pipe 1 having a small heat resistance and excellent heat transfer performance can be provided.

以上のように本実施例では、コンテナ2内に作動媒体である純水Wを封入してなるヒートパイプ1において、コンテナ2の一部または全体に略平面状の扁平部11を形成すると共に、扁平部11の一部または全体に断面形状が略半円状である突出部17を形成している。   As described above, in the present embodiment, in the heat pipe 1 in which the pure water W as the working medium is enclosed in the container 2, the substantially flat flat portion 11 is formed on a part or the whole of the container 2, A projecting portion 17 having a substantially semicircular cross-sectional shape is formed on a part or the whole of the flat portion 11.

こうすると、ヒートパイプ1の周辺状況に起因して扁平部11を形成しても、突出部17によりコンテナ2内部の蒸気の流路7が十分に確保されるので、コンテナ2内において音速限界や飛散限界が生じにくくなり、コンテナ形状の小型化若しくはヒートパイプ1の使用本数の削減を図ることができる。また、パイプ状のコンテナ2に扁平部11を設けることで、受熱プレート32などの受熱部材や、フィン33などの放熱部材との熱接続部に、十分な扁平加工を施すことが可能になり、こうした各部材との接触面積を大きく確保して熱抵抗を低減できるため、熱伝達性能の優れたヒートパイプ1を提供できる。   In this way, even if the flat portion 11 is formed due to the surrounding situation of the heat pipe 1, the steam flow path 7 inside the container 2 is sufficiently secured by the protruding portion 17. The scattering limit is less likely to occur, and the container shape can be downsized or the number of heat pipes 1 used can be reduced. In addition, by providing the flat portion 11 in the pipe-shaped container 2, it becomes possible to perform sufficient flattening on the heat receiving member such as the heat receiving plate 32 and the heat connecting portion with the heat radiating member such as the fin 33, Since heat resistance can be reduced by ensuring a large contact area with each of these members, the heat pipe 1 having excellent heat transfer performance can be provided.

また、図9や図10に示すように、突出部17をコンテナ2の長手方向に沿って形成すれば、コンテナ2内の蒸気の流れる方向に沿って突出部17が形成されることになるので、コンテナ2内における音速限界や飛散限界がより一層生じにくくなる。   Further, as shown in FIGS. 9 and 10, if the projecting portion 17 is formed along the longitudinal direction of the container 2, the projecting portion 17 is formed along the direction in which the steam in the container 2 flows. The sound speed limit and the scattering limit in the container 2 are further less likely to occur.

また、図8に示すように、コンテナ2の一部または全体の断面形状を略半円状に形成してもよい。この場合も、コンテナ2の一部または全体の断面形状を略半円状に形成することで、コンテナ2内部の蒸気の流路7が十分に確保されるので、コンテナ2内における音速限界や飛散限界が生じにくくなり、コンテナ形状の小型化若しくはヒートパイプ1の使用本数の削減を図ることができる。また、断面形状を略半円状に形成した突出部17が、扁平部11の一側に設けられていれば、受熱プレート32などの受熱部材や、フィン33などの放熱部材との熱接続部に、十分な扁平加工を施すことが可能になり、こうした各部材との接触面積を大きく確保して熱抵抗を低減できるため、熱伝達性能の優れたヒートパイプ1を提供できる。   Moreover, as shown in FIG. 8, you may form the cross-sectional shape of a part of or the whole container 2 in a substantially semicircular shape. Also in this case, by forming a part or the whole of the cross-sectional shape of the container 2 in a substantially semicircular shape, the steam flow path 7 in the container 2 is sufficiently secured. The limit is less likely to occur, and the container shape can be downsized or the number of heat pipes 1 used can be reduced. Further, if the projecting portion 17 having a substantially semicircular cross-sectional shape is provided on one side of the flat portion 11, a heat connection portion with a heat receiving member such as the heat receiving plate 32 or a heat radiating member such as the fin 33 In addition, it is possible to perform sufficient flattening, and it is possible to provide a heat pipe 1 with excellent heat transfer performance because a large contact area with each of these members can be secured to reduce thermal resistance.

次に、本実施例における別な変形例を図11および図12に示す。ここでは、上記突出部17がコンテナ2の長手方向ではなく、コンテナ2ひいては扁平部11の幅(左右)方向に形成されている。このような突出部17を設けることにより、コンテナ2内における音速限界や飛散限界が生じにくくなり、コンテナ形状の小型化若しくはヒートパイプ1の使用本数の削減を図ることができる。また、特にこの場合は、コンテナ2に扁平部11を形成した際に窪み12の生じやすい箇所に、突出部17を集中して設けることができるので、窪み12により局部的に生じる音速限界や飛散限界を効果的に防止することができる。   Next, another modification of the present embodiment is shown in FIGS. Here, the protruding portion 17 is formed not in the longitudinal direction of the container 2 but in the width (left and right) direction of the container 2 and thus the flat portion 11. Providing such a protrusion 17 makes it difficult for the sound speed limit and the scattering limit in the container 2 to occur, and the container shape can be downsized or the number of heat pipes 1 used can be reduced. Further, particularly in this case, since the projecting portions 17 can be concentrated and provided at the locations where the recesses 12 are likely to occur when the flat portion 11 is formed on the container 2, the sound velocity limit and scattering locally generated by the recesses 12 can be provided. Limits can be effectively prevented.

なお、本発明は、上記実施例に限定されるものではなく、本発明の趣旨を逸脱しない範囲で変更可能である。   In addition, this invention is not limited to the said Example, It can change in the range which does not deviate from the meaning of this invention.

本発明の第1実施例におけるヒートパイプの曲げ加工前の正面図である。It is a front view before the bending process of the heat pipe in 1st Example of this invention. 同上、曲げ潰し加工を施した後のヒートパイプの斜視図である。It is a perspective view of a heat pipe after performing bending crushing processing same as the above. 同上、図2における扁平部の断面図である。FIG. 3 is a cross-sectional view of the flat portion in FIG. 同上、図3に示す要部の拡大断面図である。It is an expanded sectional view of the principal part shown in FIG. 3 same as the above. 本実施例と従来例におけるヒートパイプの熱抵抗−ヒータ電力特性を示すグラフである。It is a graph which shows the thermal resistance-heater electric power characteristic of the heat pipe in a present Example and a prior art example. 加熱時間と濡れ性との関係を示すグラフである。It is a graph which shows the relationship between heating time and wettability. 本発明の第2実施例におけるコンテナに突出部を設けた状態を示した扁平部の断面図である。It is sectional drawing of the flat part which showed the state which provided the protrusion part in the container in 2nd Example of this invention. 同上、図7の変形例を示す扁平部の断面図である。It is sectional drawing of the flat part which shows the modification of FIG. 7 same as the above. 同上、図7に示す突出部を設けた状態のヒートパイプの平面図である。It is a top view of the heat pipe of the state which provided the protrusion part shown in FIG. 7 same as the above. 同上、図9に示すヒートパイプに各種部材を熱接続した状態の正面図である。It is a front view of the state which thermally connected various members to the heat pipe shown in FIG. 9 same as the above. 同上、別な変形例を示す突出部を設けた状態のヒートパイプの平面図である。It is a top view of the heat pipe of the state which provided the protrusion part which shows another modification same as the above. 同上、図11に示すヒートパイプの正面図である。It is a front view of the heat pipe shown in FIG. 11 same as the above.

1 ヒートパイプ
2 コンテナ
6 ウィック
8 酸化膜
W 純水(作動媒体)
1 Heat pipe 2 Container 6 Wick 8 Oxide film W Pure water (working medium)

Claims (1)

熱伝導性が高い銅または銅合金製の、内面にウィックを形成したコンテナ内に作動媒体が封入されているヒートパイプの製造方法において、前記コンテナを150℃〜200℃間の温度で加熱すると共に、該コンテナに乾燥した空気を10分〜30分間供給することにより、作動媒体と接する前記ウィック内表面に、30nmを超え100nm以下の膜厚を有して、前記ウィックと前記作動媒体である純水との親水性を常時良好に保つ酸化膜を均一に生成し、前記作動媒体と接する前記ウィック内表面と、前記作動媒体の蒸発部および凝縮部との間の熱抵抗を小さくしたことを特徴とするヒートパイプの製造方法。 In a method of manufacturing a heat pipe made of copper or copper alloy having high thermal conductivity and having a working medium enclosed in a container having a wick formed on the inner surface, the container is heated at a temperature between 150 ° C. and 200 ° C. , by supplying dry air into the container 10 to 30 minutes, the wick inside surface in contact with the working medium, to have a thickness of less than 100nm exceeded 30 nm, net said a wick and the working medium An oxide film that maintains good hydrophilicity with water at all times is uniformly generated, and the thermal resistance between the inner surface of the wick in contact with the working medium and the evaporation section and the condensation section of the working medium is reduced. A method for manufacturing a heat pipe.
JP2004073878A 2004-03-16 2004-03-16 Heat pipe manufacturing method Expired - Lifetime JP4467338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004073878A JP4467338B2 (en) 2004-03-16 2004-03-16 Heat pipe manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004073878A JP4467338B2 (en) 2004-03-16 2004-03-16 Heat pipe manufacturing method

Publications (2)

Publication Number Publication Date
JP2005265205A JP2005265205A (en) 2005-09-29
JP4467338B2 true JP4467338B2 (en) 2010-05-26

Family

ID=35089958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004073878A Expired - Lifetime JP4467338B2 (en) 2004-03-16 2004-03-16 Heat pipe manufacturing method

Country Status (1)

Country Link
JP (1) JP4467338B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012013277A (en) * 2010-06-30 2012-01-19 Toshiba Home Technology Corp Heat sink
JP5676205B2 (en) * 2010-10-26 2015-02-25 株式会社 正和 Loop heat pipe and manufacturing method thereof
JP5966250B2 (en) * 2011-03-16 2016-08-10 富士電機株式会社 Substrate support jig
WO2019088301A1 (en) * 2017-11-06 2019-05-09 大日本印刷株式会社 Vapor chamber, electronic device, vapor chamber sheet, and methods for manufacturing vapor chamber sheet and vapor chamber
TWI692605B (en) * 2019-06-28 2020-05-01 新加坡商 J&J 資本控股有限公司 Heat conducting structure, manufacturing method thereof, and mobile device
TWI692609B (en) * 2019-06-28 2020-05-01 新加坡商 J&J 資本控股有限公司 Heat conducting structure, manufacturing method thereof, and mobile device
TWI692607B (en) * 2019-06-28 2020-05-01 新加坡商 J&J 資本控股有限公司 Heat conducting structure, manufacturing method thereof, and mobile device

Also Published As

Publication number Publication date
JP2005265205A (en) 2005-09-29

Similar Documents

Publication Publication Date Title
JP4653247B2 (en) Flat heat pipe and method of manufacturing the same
JP4653187B2 (en) Thin heat pipe and manufacturing method thereof
JP2009068787A (en) Thin heat pipe and method of manufacturing the same
JP2022518864A (en) Phase transition radiator
TW201623899A (en) Heat pipe
KR20180132941A (en) Fractal heat transfer device
JP4467338B2 (en) Heat pipe manufacturing method
JP4297908B2 (en) Cooling device and electronic device
JP2008241180A (en) Heat transfer tube for heat pipe and heat pipe
JP2009115346A (en) Heat pipe
JP5567059B2 (en) Thin heat pipe
JP2009024996A (en) Method of manufacturing heat pipe
TWI259895B (en) Heat pipe
JP3900702B2 (en) Boiling cooler
JP2006284020A (en) Heat pipe
TW200527185A (en) Heat dissipating device
JPH1055827A (en) Heat radiator device for power storage battery
JP2000074581A (en) Flat heat pipe and manufacture thereof
JP2000074579A (en) Flat heat pipe and manufacture thereof
JP7444704B2 (en) Heat transfer member and cooling device having heat transfer member
JP2006189232A (en) Heat transfer pipe for heat pipe, and heat pipe
JP2004153001A (en) Cooling fin and boiling cooler using the same
JP2008185283A (en) Heat pipe
JP2001077257A (en) Boiling cooling device
KR100500190B1 (en) Cooling roll using heatpipe mode

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070418

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071003

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071107

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20071207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100223

R150 Certificate of patent or registration of utility model

Ref document number: 4467338

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250