Nothing Special   »   [go: up one dir, main page]

JP4465906B2 - Power semiconductor module - Google Patents

Power semiconductor module Download PDF

Info

Publication number
JP4465906B2
JP4465906B2 JP2001118999A JP2001118999A JP4465906B2 JP 4465906 B2 JP4465906 B2 JP 4465906B2 JP 2001118999 A JP2001118999 A JP 2001118999A JP 2001118999 A JP2001118999 A JP 2001118999A JP 4465906 B2 JP4465906 B2 JP 4465906B2
Authority
JP
Japan
Prior art keywords
power semiconductor
semiconductor module
circuit pattern
lead frame
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001118999A
Other languages
Japanese (ja)
Other versions
JP2002314038A (en
Inventor
昭浩 丹波
隆一 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001118999A priority Critical patent/JP4465906B2/en
Publication of JP2002314038A publication Critical patent/JP2002314038A/en
Application granted granted Critical
Publication of JP4465906B2 publication Critical patent/JP4465906B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • H01L2224/48139Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate with an intermediate bond, e.g. continuous wire daisy chain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、パワーMOSFET,IGBT(Insulated gate bipolar transistor)等、高発熱パワー半導体素子を有するモジュール、及び、このモジュールを備えたインバータに関する。
【0002】
【従来の技術】
ハイブリッド電気自動車用モータ等、大出力モータを制御する大容量インバータに使用する従来技術のパワー半導体モジュールの断面構造模式図を図2に示す。
【0003】
図2に示すように、IGBTチップ20,FWDチップ21を高温はんだ293で窒化アルミ基板29の銅パターンに接着し、IGBTチップを搭載した窒化アルミ基板を、ニッケルメッキ銅ベース26に共晶はんだ294で接着している。本構造で、IGBTチップ20,FWDチップ21とモジュール取付板でもある銅ベース26は電気的に絶縁され、同時にチップの熱は、銅ベース26に固着される放熱装置で、窒化アルミ基板29,銅ベース26を通して放熱される。窒化アルミ基板が搭載された銅ベース26には、主端子291,空隙24,上ナット22,制御端子290、及び、それに付随した配線がケース中に一体成型した、いわゆるインサートケース23を、シリコーン接着材25で接着する。しかる後、チップと各端子はアルミニウムワイヤ292で電気的に接続する。チップの封止は、いわゆる軟質レジンであるシリコーンゲル28で行い、モジュールのカバーを、蓋27をシリコーン接着材25で接着する。銅ベース26は、図2では平板であるが、より大容量のモジュールで、さらに熱抵抗を低下する必要がある場合には、フィンを形成する。
【0004】
この従来技術では、窒化アルミ基板29の線膨張係数αが約4ppm /℃であり、シリコンの線膨張係数α3ppm /℃に近く、チップ下はんだ293のはんだ歪みが小さい。さらに、絶縁モジュールのため、例えばインバータ等への取付時に、電気的絶縁に配慮しなくても良い。このことは、銅ベース26に直接冷却水を当てて冷却する場合、絶縁への配慮無しに、銅ベース26で水路を強固に塞ぐことができる。
【0005】
図14に、定格電圧/電流,600V/15Aクラスの別の従来技術による小容量3相IGBTモジュールを示す。図示していないが、リードフレーム(L/F)上に、IGBT,FWDチップを接着し、このリードフレームを、樹脂で絶縁したヒートシンクとともに、エポキシ樹脂140でトランスファモールド封止している。主端子、及び、制御端子141は、リードフレームを切断して形成されている。本モジュールは取付穴142部をネジで固定して、フィンが形成されたヒートシンクに固着される。
【0006】
【発明が解決しようとする課題】
前記従来のパワー半導体モジュールの構造、及び、その水冷構造には、冷却性能,信頼性の面で以下の問題がある。図2の従来技術の場合、窒化アルミ基板とシリコンの線膨張係数αが近い為、チップ下はんだの高命が長い。しかし、銅ベースの線膨張係数αは約18ppm /℃のため、窒化アルミ基板とのミスマッチが大きく、窒化アルミ基板下はんだ294は高歪みとなる。さらに、チップから冷媒への熱抵抗、Rth(j−a)を低減するために、銅ベース26にフィン等を形成し、冷却水を当てて直接水冷したとしても、窒化アルミ基板の熱抵抗が高いため全体の熱抵抗が下がらない。
【0007】
図14に示す従来技術のトランスファモールドパッケージ(TM PKG)は、端子をトランスファモールドパッケージ側面より出した構造であるため、金属製の冷却装置に取り付けた場合、絶縁距離の確保が困難であり、大容量パワー半導体モジュールに適用することが困難である。
【0008】
本発明の目的は、信頼性が高く、特に水冷に適した、絶縁型トランスファモールドパッケージを提供することである。
【0009】
【課題を解決するための手段】
本発明のパワー半導体モジュールでは、図1に示すように制御端子13、及び、主端子14を搭載する為の開口部11,12をトランスファモールドパッケージ17上面に設け、この開口部に別部品である制御端子13、及び、主端子14を、リードフレーム15で構成した回路パターンに電気的に接着し、端子をパッケージ上面に配置した。
【0010】
本発明のパワー半導体モジュールの内部構造は、図3に示すように、リードフレーム15で回路パターンを形成し、IGBT,FWD等のパワー半導体チップを、リードフレームに電気的に接着し、絶縁をリードフレーム15下面に接着した絶縁層33で行う。
【0011】
トランスファモールドパッケージ17裏面に直接冷却水を当てて冷却する場合、水路をパッケージ17底面で塞ぐ必要がある為、ネジ締め等で、冷却装置に強固に取り付ける。本発明のパワー半導体モジュールでは、パッケージ外周底面にリードフレーム10を配置し、本リードフレーム10と冷却装置を、パッケージ17の4隅の取付穴16部をネジで強固に締め付ける。
【0012】
【発明の実施の形態】
本発明の実施例を、以下図面を使用して詳細に説明する。
(実施例1)
本実施例を、図1,図3から図8、及び図15から図17を用いて説明する。本実施例は、定格電圧/電流,600V/200AのIGBT、及び、FWDチップを、各々2チップ並列接続した、定格電圧/電流,600V/400Aの1アームモジュール(パッケージ)である。図1は本実施例のパッケージ(PKG)外観模式図であって、図3〜図5はパッケージ製造工程を示す説明図、図6,図7はパッケージに接着される端子の模式図、図8は図1の断面図である。
【0013】
図3は本実施例のIGBTモジュールであって、IGBTチップ20,FWDチップ21,チップ抵抗30各2チップを、共晶はんだ293でリードフレーム(L/F)15へ接着し、アルミニウムワイヤ292,36,37でチップとリードフレーム15間の接続を行った後の平面図、及び断面図である。図3で、IGBT20,FWD21のチップサイズは各々概略10mm×10mm,10mm×6mmであり、チップ厚は約0.5mmである。共晶はんだ293の膜厚は、0.1mmである。
【0014】
本実施例では、スクリーン印刷が容易な共晶はんだ293のペーストをチップ接着に使用し工程を簡素化した。もし、端子はんだ付け等で、封止後にパッケージを180℃以上に加熱する場合があれば、チップ接着はんだを、高温はんだとしても良い。アルミニウムワイヤの線径は300μmφで、ゲートワイヤ36,補助エミッタワイヤ37を除くアルミニウムワイヤ数は、IGBT20,FWD21各チップ24本である。なお、ゲートワイヤ36,補助エミッタワイヤ37以外のアルミニウムワイヤは、図面の簡略化のため、一対のIGBT20,FWD21チップのみについて示す。
【0015】
リードフレーム15の大きさは、70mm×60mm、材質は無酸素銅(C1020)で表面にニッケルメッキを3〜6μm形成しており、板厚は1mmである。IGBT20,FWD21は、リードフレーム15のコレクタパターン31に接着され、エミッタは、同じくエミッタパターン32へアルミニウムワイヤ292で接続される。補助エミッタワイヤ37は、リードフレームパターン34へ接続される。リードフレームパターン35に接着された、ゲートに接続されるチップ抵抗30は並列接続されたIGBT20の発振を防止する為の抵抗である。冷却に重要な大きさであるコレクタパターン31の大きさは約50mm×25mmである。
【0016】
リードフレームパターン31の裏面には、電気的絶縁用に、ビスマス酸化物系ガラス33(熱伝導率:3W/m・℃)を膜厚20μm塗布している。リードフレーム15の4隅には、パッケージ取付用穴16を形成しており、本取付穴16は、各工程の位置決め用としても使用する。
【0017】
アルミニウムワイヤボンディング後、タイバー45の内側を、エポキシ樹脂でトランスファモールドする(第1トランスファモールド(1st TM)、図4)。使用した樹脂は、日立化成工業製エポキシ樹脂,CEL−9200である。樹脂の種類は、パッケージの反り,応力等を考慮して、最適な線膨張係数のものを選択する。
【0018】
パッケージ40形状は約50mm×40mmで、リードフレーム下面からの厚さは約7mmであって、この厚さが厚くなると、樹脂の硬化に長時間を要し、製造タクトが悪くなるのでできるだけ薄くする。パッケージ表面には、リードフレーム表面が露出した、コレクタ電極はんだ接着用開口部41,エミッタ電極接着用切り欠き部42が形成される。さらに、タイバー45とパッケージ切断後、制御用エミッタ端子接着部43、及び、ゲート端子接着部44が形成される。コレクタ電極はんだ接着用開口部41の大きさは、約17mm×17mmである。
【0019】
タイバー45と切り離されたパッケージを、再び、タイバー45とともにトランスファモールドする(図5)。エポキシ樹脂で形成されたパッケージ50表面には、前述の開口部41,切り欠き部42、及び、制御端子接続部43,44と同じ位置に、コレクタ端子接着用開口部52,エミッタ端子接着用開口部51,補助エミッタ端子接着用開口部53,ゲート端子接着用開口部54が形成される。冷却装置に全面が固着されるパッケージ外周底面のリードフレーム部58、及び、冷却水が当てられるリードフレーム部57を除き、パッケージ全体はエポキシ樹脂で封止される。パッケージ50裏面に回り込んだ樹脂部55の厚みを加えた、パッケージの厚さは約8.5mm である。樹脂部55は、リードフレーム57をしっかりとかしめるため、リードフレーム57上へ、オーバーラップした構造である。本実施例では、オーバーラップ部の長さ56は1.5mm とした。この長さは、長いほどしっかりとかしめることができるので、パッケージの防水性は向上するが、熱伝達面積が減少して熱抵抗が上昇するので、防水性,熱抵抗の両者から長さ56を決定する。図3に示すリードフレーム15外周の切り欠き部38は、リードフレーム15を樹脂でしっかりとかしめるためのものである。
【0020】
図6は本実施例のモジュールの主端子(コレクタ,エミッタ端子)の模式図(斜視図,断面図)である。端子60は、ネジ締め用の貫通穴64が形成された厚さ1.5mm のニッケルメッキ無酸素銅(C1010)製銅板61と、ナット63とを、熱可塑性樹脂であるポリフェニレンサルファイド(PPS)樹脂でインサート成型して製造される。樹脂中には、ネジ逃げ用空隙62が形成され、端子60底面にははんだ接着用の端子露出部65が形成されている。
【0021】
図7は、本実施例のモジュールの制御端子70の模式図(斜視図,断面図)であって、図6の主端子と同じく、厚さ1.5mm の無酸素銅製制御ピン71がPPS樹脂でインサート成型されている。端子下面には、はんだ接着用露出部72が形成されている。
【0022】
上記、図6,図7に示した端子を図5に示したパッケージにはんだ接着して、モジュール(パッケージ)として完成させたのが、図1である。図1のB−B断面を図8に示す。エミッタ端子80,コレクタ端子81がリードフレーム上に共晶はんだ82で接着されている。本端子に、バスバーがネジ締めされる。この際、端子にも締め付けトルクが加えられる、この力が、はんだ82に直接加えられると、はんだにクラックが発生することもあるので、本実施例では、パッケージと端子80,81の隙間に端子接着用硬質レジン83を流して、接着しクラック発生を回避している。図示していないが、制御端子部にも同じ樹脂がポッティングされている。
【0023】
以上、主端子,制御端子が接続され、完成したパッケージ17を冷却装置に接続した断面図を図15に示す。様々な回路部品が搭載される回路ケース150に、ガスケット151を配置し、このガスケットでパッケージ17底面の周囲に配置されたパッケージ取付リードフレーム10と回路ケース150を固着させて、パッケージ17底面と水路カバー152とで水路153を形成する。この水路幅154は5mmである。使用する樹脂製ガスケット151の平面図を図16に示す。モジュール取付部160以外の幅は5mmである。パッケージをネジで締め付けて冷却水をシールする場合、締付けネジ間のパッケージがたわむと冷却水が漏洩し易くなる。トランスファモールド樹脂でリードフレーム10を補強して、取付部の剛性を増大させると漏洩防止に効果がある。
【0024】
上記のように構成した水路153に、エチレングリコールを主成分とした冷却水を流し、漏水試験をした。200KPaの水圧を印加し、数分経過しても水路外への冷却水の漏洩はなかった。さらに、パッケージ17の全端子と回路ケース間の絶縁耐圧が3.5KVrms/1 分以上であることを確認し、併せて素子のリーク電流増加も全く見られないことや、パッケージ中への冷却水浸入も全く問題ないことを確認した。ハイブリッド自動車用等への応用では、現実的なポンプ能力は、数10KPaであるので、本実施例のパッケージ構造は、実際の水冷用パッケージとして十分である。またIGBTチップジャンクションから冷却水への熱抵抗、Rth(j−w)は、0.18℃/W(冷却水流速:3m/s)と低い値であった。
【0025】
図17は、本パッケージで構成した3相インバータの断面図である。図17ではインンバータの入出力端子は省略している。インバータケース兼水路カバー1704に本実施例のパッケージ17を6個固着して水路170を構成している。絶縁板1707をNバスバー173,Pバスバー174でサンドイッチして低インダクタンス配線とし、ネジ1708でパッケージ17に固着している。出力配線175も同様にネジ1708でパッケージに固着され、カレントトランス1702に接続される。スナバコンデンサである電解コンデンサ177をインバータケース1704底面に熱伝導シート等で固着する。電解コンデンサ177,ゲートドライバー1700,トランス178等が搭載された、電源回路及びゲート回路基板であるプリント回路基板172は、パッケージの制御端子に、前記バスバー上に配置されてスルーホールはんだ接着してある。マイコン179等が搭載されたプリント回路基板171は、インバータ底蓋1703に固定され、インタフェースケーブル1701で電源回路及びゲート回路基板172に接続される。インバータ上蓋1705,インバータケース1704,底蓋1703は全てネジ1706で固着される。なお、各ケースの締付けには、必要に応じメタルガスケットが使用される。以上の構成で、パワー回路,制御回路とも熱的に問題無い構造が実現できた。
【0026】
(実施例2)
図9に本実施例を示す。本実施例では、IGBT20,FWD21チップを搭載するパターンをリードフレームではなく、窒化アルミ基板90に形成し、この基板に高温はんだ92でチップを接着する。リードフレーム91はタイバー45,エミッタ配線パターン32,補助エミッタパターン34,ゲートパターン35,パッケージ取付穴16を備えており、窒化アルミ基板90を取り囲む。チップ抵抗30は、チップ接着と同時に高温はんだでリードフレームに接着される。窒化アルミ基板90とリードフレーム91の裏面は同一面となるように配置され、アルミニウムワイヤ292,36,37で電気的な配線をする。封止は、前記図4,図5と同様な構造であり、パッケージサイズも同一である。本実施例で、冷却水が当たる面93は、窒化アルミ基板90の裏面銅板であり、この銅板にはニッケルメッキが3〜6μm施されている。従って、冷却水に対する腐食問題が無い。さらに、窒化アルミの熱伝導率は170℃/m・Wであり、熱抵抗も十分小さく、実施例1と同じ、流速3m/sの冷却水の条件測定したRth(j−w)は0.18℃/W である。また、冷却装置への取付は実施例1と同じくタイバー45で行い、冷却水の十分なシール性を確認した。
【0027】
(実施例3)
冷却水の純度を上昇させたり、冷却媒体に絶縁性のオイルを使用すれば、パッケージ外で絶縁できるため、絶縁層は削除することができる。本実施例は、非絶縁モジュールの実施例であって、実施例1のガラス層33を削除している以外はパッケージ40,100の形状を含め、実施例1と同一である。本実施例では、冷却水の純度管理が重要であるが、熱抵抗は、上記二つの実施例よりも低減できた。実施例1と同条件で測定したRth(j−w)は0.16℃/W であった。
【0028】
(実施例4)
主端子も制御端子と同様に、ピンのはんだ接着とした本実施例を図11に示す。図1,図8のコレクタ,エミッタ端子形状が、コレクタ端子110,エミッタ端子111に代わっている以外は、実施例1と同じである。端子110,111のピンの断面形状は制御端子13と同一であり、電流容量を考慮して、各6本のピンをPPS樹脂でインサート成型して端子としている。この構造で、端子の抵抗は、実施例1の端子80,81とほぼ同じであった。バスバーへの接続は、例えば、制御回路基板であるプリント回路基板(PCBB)に、主電流用の厚い銅板を接着して、この銅板、及び、プリント回路基板にスルーホールを形成して共晶はんだでスルーホールはんだ接着すれば良い。
【0029】
(実施例5)
本実施例は、第2モールドをトランスファモールドでなく、熱硬化型硬質レジンのポッティング封止とした。図12に第2モールド前の平面構造模式図、図13にポッティング後の平面図、及び側面図を示す。図12は図4に示した第1トランスファモールドパッケージに、主端子80,81、制御端子13をはんだ接着した形状を示す。実施例1ではタイバー45もトランスファモールド封止後に端子を接着しているが、本実施例では、第2モールド実施前に接着していて、信頼性に全く問題の無い構造である。
【0030】
本実施例では、第2モールドをPPS等の熱可塑性樹脂で封止しても良い。さらに、リードフレーム形状によっては、第1,2モールドに分けずに一回のポッティングで封止しても良い。
【0031】
【発明の効果】
本発明によれば、熱抵抗が低く、信頼性が高いトランスファモールド型半導体モジュールを容易に実現できる。
【図面の簡単な説明】
【図1】実施例1の半導体モジュールの説明図である。
【図2】従来技術の半導体モジュールの断面模式図である。
【図3】実施例1の半導体モジュールの製造工程の説明図である。
【図4】実施例1の半導体モジュールの製造工程の説明図である。
【図5】実施例1の半導体モジュールの製造工程の説明図である。
【図6】実施例1の半導体モジュールの主端子の説明図である。
【図7】実施例1の半導体モジュールの制御端子の説明図である。
【図8】実施例1の半導体モジュールの断面模式図である。
【図9】実施例2の半導体モジュールの断面模式図である。
【図10】実施例3の半導体モジュールの断面模式図である。
【図11】実施例4の半導体モジュールの断面模式図である。
【図12】実施例5の半導体モジュールの平面図である。
【図13】実施例5の半導体モジュールのポッティング封止の説明図である。
【図14】従来技術のトランスファモールドパッケージの説明図である。
【図15】実施例1の半導体モジュールを実装し、水路を形成した説明図である。
【図16】図16の水路を形成する際に用いるガスケットの模式図である。
【図17】実施例1の半導体モジュールを用いた水冷インバータの断面図である。
【符号の説明】
10,58…パッケージ(PKG)取付け用リードフレーム(L/F)、11…制御端子接着用開口部、12…主端子接着用開口部、13,70…制御端子、14,60…主端子、15,91…リードフレーム、16…パッケージ取付穴、17…トランスファーモールドパッケージ(TM PKG)、20…IGBTチップ、21…FWDチップ、22,63…主端子取付け用ナット、23…インサートケース、24,62…ネジ逃げ用空隙、25…シリコーン接着材、26…銅ベース、27…モジュール蓋、28…シリコーンゲル、29,90…窒化アルミ基板、30…チップ抵抗、31…リードフレームコレクタパターン、32…リードフレームエミッタパターン、33…ガラス層、34…リードフレーム補助エミッタパターン、35…リードフレームゲートパターン、36…ゲートアルミニウムワイヤ、37…補助エミッタアルミニウムワイヤ、38…リードフレーム切り欠き部、40…第1トランスファモールドパッケージ、41…コレクタ端子はんだ接着用開口部、42…エミッタ端子はんだ接着用切り欠き部、43…補助エミッタ端子接着部、44…ゲート端子接着部、45…タイバー、50,100…第2トランスファモールドパッケージ、51…エミッタ端子接着用開口部、52…コレクタ端子接着用開口部、53…補助エミッタ端子接着用開口部、54…ゲート端子接着用開口部、55…パッケージ裏面封止樹脂、56…リードフレームコレクタパターン/樹脂オーバーラップ長さ、57…放熱用リードフレーム部、61…主端子用銅板、64…ネジ締付け用穴、65,72…接着用端子露出部、71…制御端子銅ピン、80,111…エミッタ端子、81,110…コレクタ端子、82…端子接着用はんだ、83…端子接着用硬質レジン、92,293…チップ接着はんだ、93…冷却面、130…パッケージ(ポッティングで形成)、140…従来のトランスファモールドパッケージ、141…主端子、及び、制御端子、142…パッケージ取付穴、150…回路ケース、151…ガスケット、152…水路カバー、153,170…水路、154…水路幅、160…パッケージ取付部穴、171,172…プリント回路基板、173…N(グランド)バスバー配線、174…P(電源)バスバー配線、175…出力配線、176,177…電解コンデンサ、178…トランス、179…マイコン、290…制御端子、291…主端子、292…アルミワイヤ、294…基板接着はんだ、1700…ゲートドライバー、1701…インタフェースケーブル、1702…カレントトランス、1703…インバータ底蓋、1704…インバータケース兼水路カバー、1705…インバータ上蓋、1706…ケース取付ネジ、1707…P,Nバスバー絶縁板。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a module having a high heat generating power semiconductor element such as a power MOSFET, IGBT (Insulated gate bipolar transistor), and an inverter provided with the module.
[0002]
[Prior art]
FIG. 2 shows a schematic cross-sectional structure diagram of a conventional power semiconductor module used in a large-capacity inverter that controls a large output motor such as a motor for a hybrid electric vehicle.
[0003]
As shown in FIG. 2, the IGBT chip 20 and the FWD chip 21 are bonded to the copper pattern of the aluminum nitride substrate 29 with a high temperature solder 293, and the aluminum nitride substrate on which the IGBT chip is mounted is connected to a nickel-plated copper base 26 with a eutectic solder 294. It is glued with. In this structure, the IGBT chip 20, the FWD chip 21 and the copper base 26 which is also a module mounting plate are electrically insulated, and at the same time, the heat of the chip is a heat dissipation device fixed to the copper base 26. Heat is radiated through the base 26. A copper base 26 on which an aluminum nitride substrate is mounted has a main terminal 291, a gap 24, an upper nut 22, a control terminal 290, and a so-called insert case 23 in which a wiring associated therewith is integrally molded in a case, bonded to silicone. Bond with the material 25. Thereafter, the chip and each terminal are electrically connected by an aluminum wire 292. The chip is sealed with a silicone gel 28 which is a so-called soft resin, and the cover of the module is bonded to the lid 27 with the silicone adhesive 25. Although the copper base 26 is a flat plate in FIG. 2, fins are formed when it is necessary to further reduce the thermal resistance with a module having a larger capacity.
[0004]
In this prior art, the linear expansion coefficient α of the aluminum nitride substrate 29 is about 4 ppm / ° C., which is close to the linear expansion coefficient α 3 ppm / ° C. of silicon, and the solder distortion of the under-chip solder 293 is small. Furthermore, since it is an insulation module, it is not necessary to consider electrical insulation when it is attached to an inverter, for example. This is because when the cooling water is directly applied to the copper base 26 for cooling, the water channel can be tightly closed by the copper base 26 without consideration for insulation.
[0005]
FIG. 14 shows a small capacity three-phase IGBT module according to another prior art having a rated voltage / current of 600 V / 15 A class. Although not shown, an IGBT and FWD chip are bonded onto a lead frame (L / F), and the lead frame is transfer-mold sealed with an epoxy resin 140 together with a heat sink insulated with resin. The main terminal and the control terminal 141 are formed by cutting a lead frame. This module is fixed to a heat sink in which fins are formed by fixing the mounting hole 142 with screws.
[0006]
[Problems to be solved by the invention]
The structure of the conventional power semiconductor module and its water cooling structure have the following problems in terms of cooling performance and reliability. In the case of the prior art of FIG. 2, since the linear expansion coefficient α between the aluminum nitride substrate and silicon is close, the high life of solder under the chip is long. However, since the linear expansion coefficient α of the copper base is about 18 ppm / ° C., the mismatch with the aluminum nitride substrate is large, and the solder 294 under the aluminum nitride substrate is highly strained. Furthermore, in order to reduce the thermal resistance from the chip to the refrigerant, Rth (ja), even if fins or the like are formed on the copper base 26 and directly cooled with water by applying cooling water, the thermal resistance of the aluminum nitride substrate is reduced. The overall thermal resistance does not decrease because of high.
[0007]
Since the transfer mold package (TM PKG) of the prior art shown in FIG. 14 has a structure in which the terminals are extended from the side surface of the transfer mold package, it is difficult to secure an insulation distance when it is attached to a metal cooling device. It is difficult to apply to a capacitive power semiconductor module.
[0008]
An object of the present invention is to provide an insulated transfer mold package that is highly reliable and particularly suitable for water cooling.
[0009]
[Means for Solving the Problems]
In the power semiconductor module of the present invention, openings 11 and 12 for mounting the control terminal 13 and the main terminal 14 are provided on the upper surface of the transfer mold package 17 as shown in FIG. The control terminal 13 and the main terminal 14 were electrically bonded to a circuit pattern constituted by the lead frame 15, and the terminals were arranged on the upper surface of the package.
[0010]
As shown in FIG. 3, the internal structure of the power semiconductor module of the present invention is to form a circuit pattern with a lead frame 15 and to electrically bond a power semiconductor chip such as IGBT or FWD to the lead frame to lead insulation. The insulating layer 33 adhered to the lower surface of the frame 15 is used.
[0011]
When cooling by directly applying cooling water to the back surface of the transfer mold package 17, it is necessary to block the water channel with the bottom surface of the package 17. In the power semiconductor module of the present invention, the lead frame 10 is disposed on the bottom surface of the outer periphery of the package, and the lead frame 10 and the cooling device are firmly tightened with screws at the four mounting holes 16 at the four corners of the package 17.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below in detail with reference to the drawings.
Example 1
The present embodiment will be described with reference to FIGS. 1, 3 to 8, and FIGS. 15 to 17. The present embodiment is a 1-arm module (package) of rated voltage / current, 600V / 400A, in which two chips of a rated voltage / current, 600V / 200A IGBT and FWD chip are connected in parallel. FIG. 1 is a schematic external view of a package (PKG) according to the present embodiment, FIGS. 3 to 5 are explanatory views showing a package manufacturing process, FIGS. 6 and 7 are schematic views of terminals bonded to the package, and FIG. FIG. 2 is a sectional view of FIG. 1.
[0013]
FIG. 3 shows an IGBT module of this embodiment, in which two chips each of an IGBT chip 20, an FWD chip 21, and a chip resistor 30 are bonded to a lead frame (L / F) 15 with a eutectic solder 293, and an aluminum wire 292, FIG. 36 is a plan view and a cross-sectional view after the connection between the chip and the lead frame 15 is made at 36 and 37. In FIG. 3, the chip sizes of the IGBT 20 and the FWD 21 are approximately 10 mm × 10 mm and 10 mm × 6 mm, respectively, and the chip thickness is about 0.5 mm. The film thickness of the eutectic solder 293 is 0.1 mm.
[0014]
In this example, a paste of eutectic solder 293 that can be easily screen-printed is used for chip bonding to simplify the process. If there is a case where the package is heated to 180 ° C. or higher after sealing by terminal soldering or the like, the chip bonding solder may be a high temperature solder. The wire diameter of the aluminum wire is 300 μmφ, and the number of aluminum wires excluding the gate wire 36 and the auxiliary emitter wire 37 is 24 for each of the IGBT 20 and FWD 21 chips. Note that aluminum wires other than the gate wire 36 and the auxiliary emitter wire 37 are shown only for a pair of IGBT 20 and FWD 21 chips for simplification of the drawing.
[0015]
The size of the lead frame 15 is 70 mm × 60 mm, the material is oxygen-free copper (C1020), nickel plating is formed on the surface of 3 to 6 μm, and the plate thickness is 1 mm. The IGBT 20 and FWD 21 are bonded to the collector pattern 31 of the lead frame 15, and the emitter is similarly connected to the emitter pattern 32 by an aluminum wire 292. The auxiliary emitter wire 37 is connected to the lead frame pattern 34. A chip resistor 30 bonded to the gate and bonded to the lead frame pattern 35 is a resistor for preventing oscillation of the IGBTs 20 connected in parallel. The size of the collector pattern 31 which is an important size for cooling is about 50 mm × 25 mm.
[0016]
A bismuth oxide-based glass 33 (thermal conductivity: 3 W / m · ° C.) is applied to the back surface of the lead frame pattern 31 to a thickness of 20 μm for electrical insulation. Package mounting holes 16 are formed at the four corners of the lead frame 15, and the main mounting holes 16 are also used for positioning in each process.
[0017]
After the aluminum wire bonding, the inside of the tie bar 45 is transfer-molded with an epoxy resin (first transfer mold (1st TM), FIG. 4). The resin used is Hitachi Chemical's epoxy resin, CEL-9200. As the type of resin, the one having the optimum linear expansion coefficient is selected in consideration of the warpage of the package, stress, and the like.
[0018]
The shape of the package 40 is about 50 mm × 40 mm, and the thickness from the lower surface of the lead frame is about 7 mm. If this thickness increases, it takes a long time to cure the resin, and the manufacturing tact deteriorates, so it is made as thin as possible. . On the surface of the package, a collector electrode solder bonding opening 41 and an emitter electrode bonding notch 42 are formed with the lead frame surface exposed. Further, after cutting the package with the tie bar 45, a control emitter terminal bonding portion 43 and a gate terminal bonding portion 44 are formed. The size of the collector electrode solder bonding opening 41 is about 17 mm × 17 mm.
[0019]
The package separated from the tie bar 45 is again transfer molded together with the tie bar 45 (FIG. 5). On the surface of the package 50 formed of an epoxy resin, the collector terminal bonding opening 52 and the emitter terminal bonding opening are provided at the same positions as the opening 41, the notch 42, and the control terminal connection parts 43 and 44. A portion 51, an auxiliary emitter terminal bonding opening 53, and a gate terminal bonding opening 54 are formed. The entire package is sealed with epoxy resin except for the lead frame portion 58 on the bottom surface of the outer periphery of the package, which is fixed to the entire cooling device, and the lead frame portion 57 to which cooling water is applied. The thickness of the package, including the thickness of the resin portion 55 that wraps around the back surface of the package 50, is about 8.5 mm. The resin portion 55 has a structure that overlaps the lead frame 57 in order to firmly crimp the lead frame 57. In this embodiment, the length 56 of the overlap portion is 1.5 mm. Since this length can be caulked more firmly, the waterproofness of the package is improved. However, since the heat transfer area is reduced and the thermal resistance is increased, the length 56 is selected from both waterproofness and thermal resistance. decide. The notch 38 on the outer periphery of the lead frame 15 shown in FIG. 3 is for firmly caulking the lead frame 15 with resin.
[0020]
FIG. 6 is a schematic view (perspective view, cross-sectional view) of the main terminals (collector, emitter terminal) of the module of this embodiment. The terminal 60 includes a 1.5 mm thick nickel-plated oxygen-free copper (C1010) copper plate 61 in which a screw-tightening through hole 64 is formed, and a nut 63, a polyphenylene sulfide (PPS) resin, which is a thermoplastic resin. It is manufactured by insert molding. A screw escape gap 62 is formed in the resin, and a terminal exposed portion 65 for solder bonding is formed on the bottom surface of the terminal 60.
[0021]
FIG. 7 is a schematic diagram (perspective view, cross-sectional view) of the control terminal 70 of the module of the present embodiment. Like the main terminal of FIG. 6, an oxygen-free copper control pin 71 having a thickness of 1.5 mm is formed of PPS resin. It is insert molded. An exposed portion 72 for solder bonding is formed on the lower surface of the terminal.
[0022]
FIG. 1 shows the module (package) completed by soldering the terminals shown in FIGS. 6 and 7 to the package shown in FIG. FIG. 8 shows a BB cross section of FIG. An emitter terminal 80 and a collector terminal 81 are bonded to the lead frame with a eutectic solder 82. The bus bar is screwed to this terminal. At this time, a tightening torque is also applied to the terminals. If this force is directly applied to the solder 82, cracks may occur in the solder. Therefore, in this embodiment, the terminals are provided in the gap between the package and the terminals 80 and 81. Adhesive hard resin 83 is flowed and bonded to avoid the generation of cracks. Although not shown, the same resin is potted in the control terminal portion.
[0023]
FIG. 15 shows a cross-sectional view in which the main terminal and the control terminal are connected and the completed package 17 is connected to the cooling device. A gasket 151 is disposed on a circuit case 150 on which various circuit components are mounted, and the package mounting lead frame 10 disposed around the bottom surface of the package 17 and the circuit case 150 are fixed with the gasket, whereby the bottom surface of the package 17 and the water channel A water channel 153 is formed with the cover 152. The channel width 154 is 5 mm. A plan view of the resin gasket 151 used is shown in FIG. The width other than the module mounting portion 160 is 5 mm. When sealing the cooling water by tightening the package with screws, the cooling water is likely to leak if the package between the tightening screws bends. Reinforcing the lead frame 10 with transfer mold resin to increase the rigidity of the mounting portion is effective in preventing leakage.
[0024]
A water leak test was conducted by flowing cooling water mainly composed of ethylene glycol through the water channel 153 configured as described above. Even when a water pressure of 200 KPa was applied and several minutes passed, there was no leakage of cooling water outside the water channel. Furthermore, it was confirmed that the insulation breakdown voltage between all terminals of the package 17 and the circuit case was 3.5 KVrms / 1 min or more, and at the same time, no increase in the leakage current of the element was observed, and the cooling water into the package It was confirmed that there was no problem with intrusion. In application to a hybrid vehicle or the like, the realistic pumping capacity is several tens of KPa, so the package structure of this embodiment is sufficient as an actual water cooling package. The thermal resistance from the IGBT chip junction to the cooling water, Rth (j−w), was a low value of 0.18 ° C./W (cooling water flow rate: 3 m / s).
[0025]
FIG. 17 is a cross-sectional view of a three-phase inverter configured with this package. In FIG. 17, the input / output terminals of the inverter are omitted. Six packages 17 of this embodiment are fixed to the inverter case / water channel cover 1704 to form the water channel 170. The insulating plate 1707 is sandwiched between the N bus bar 173 and the P bus bar 174 to form a low inductance wiring, and is fixed to the package 17 with a screw 1708. Similarly, the output wiring 175 is fixed to the package with a screw 1708 and connected to the current transformer 1702. An electrolytic capacitor 177 that is a snubber capacitor is fixed to the bottom surface of the inverter case 1704 with a heat conductive sheet or the like. A printed circuit board 172, which is a power supply circuit and a gate circuit board, on which an electrolytic capacitor 177, a gate driver 1700, a transformer 178, and the like are mounted, is disposed on the bus bar and soldered to the control terminal of the package. . The printed circuit board 171 on which the microcomputer 179 and the like are mounted is fixed to the inverter bottom cover 1703 and connected to the power supply circuit and gate circuit board 172 by the interface cable 1701. The inverter upper lid 1705, inverter case 1704, and bottom lid 1703 are all fixed with screws 1706. A metal gasket is used for tightening each case as necessary. With the above configuration, a structure with no thermal problems was realized in both the power circuit and the control circuit.
[0026]
(Example 2)
FIG. 9 shows this embodiment. In this embodiment, a pattern for mounting the IGBT 20 and FWD 21 chip is formed not on the lead frame but on the aluminum nitride substrate 90, and the chip is bonded to the substrate with high-temperature solder 92. The lead frame 91 includes a tie bar 45, an emitter wiring pattern 32, an auxiliary emitter pattern 34, a gate pattern 35, and a package mounting hole 16, and surrounds the aluminum nitride substrate 90. The chip resistor 30 is bonded to the lead frame with high-temperature solder simultaneously with chip bonding. The aluminum nitride substrate 90 and the back surface of the lead frame 91 are arranged to be the same surface, and are electrically wired with aluminum wires 292, 36, and 37. The sealing has the same structure as that shown in FIGS. 4 and 5, and the package size is the same. In this embodiment, the surface 93 to which the cooling water hits is the back copper plate of the aluminum nitride substrate 90, and the copper plate is nickel plated to 3 to 6 μm. Therefore, there is no corrosion problem with cooling water. Furthermore, the thermal conductivity of aluminum nitride is 170 ° C./m·W, the thermal resistance is sufficiently small, and the same Rth (j−w) as measured in the condition of cooling water with a flow rate of 3 m / s is 0. 18 ° C./W 2. Further, the attachment to the cooling device was performed with the tie bar 45 in the same manner as in Example 1, and a sufficient sealing property of the cooling water was confirmed.
[0027]
(Example 3)
If the purity of the cooling water is increased or insulating oil is used as the cooling medium, the insulating layer can be omitted because the insulating can be performed outside the package. The present embodiment is an embodiment of a non-insulating module, and is the same as the first embodiment including the shapes of the packages 40 and 100 except that the glass layer 33 of the first embodiment is omitted. In this example, the purity control of the cooling water is important, but the thermal resistance can be reduced as compared with the above two examples. Rth (j−w) measured under the same conditions as in Example 1 was 0.16 ° C./W 2.
[0028]
Example 4
FIG. 11 shows the present embodiment in which the main terminal is also soldered to the pin in the same manner as the control terminal. 1 and 8 is the same as that of the first embodiment except that the collector and emitter terminal shapes are replaced with the collector terminal 110 and the emitter terminal 111. The cross-sectional shape of the pins of the terminals 110 and 111 is the same as that of the control terminal 13, and each of the six pins is insert-molded with PPS resin in consideration of the current capacity. With this structure, the resistance of the terminal was almost the same as that of the terminals 80 and 81 of Example 1. For connection to the bus bar, for example, a thick copper plate for main current is bonded to a printed circuit board (PCBB) which is a control circuit board, and through holes are formed in the copper board and the printed circuit board to form a eutectic solder. And through hole soldering.
[0029]
(Example 5)
In this example, the second mold was not a transfer mold but a potting seal of thermosetting hard resin. FIG. 12 shows a schematic diagram of a planar structure before the second mold, and FIG. 13 shows a plan view after potting and a side view. FIG. 12 shows a shape in which the main terminals 80 and 81 and the control terminal 13 are soldered to the first transfer mold package shown in FIG. In the first embodiment, the tie bar 45 is also bonded to the terminal after the transfer mold is sealed, but in this embodiment, the terminal is bonded before the second mold is performed, and there is no problem in reliability.
[0030]
In this embodiment, the second mold may be sealed with a thermoplastic resin such as PPS. Furthermore, depending on the shape of the lead frame, sealing may be performed by a single potting without being divided into the first and second molds.
[0031]
【The invention's effect】
According to the present invention, a transfer mold type semiconductor module having low thermal resistance and high reliability can be easily realized.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a semiconductor module of Example 1. FIG.
FIG. 2 is a schematic cross-sectional view of a conventional semiconductor module.
3 is an explanatory diagram of the manufacturing process of the semiconductor module of Example 1. FIG.
4 is an explanatory diagram of the manufacturing process of the semiconductor module of Example 1. FIG.
5 is an explanatory diagram of the manufacturing process of the semiconductor module of Example 1. FIG.
6 is an explanatory diagram of a main terminal of the semiconductor module of Example 1. FIG.
7 is an explanatory diagram of a control terminal of the semiconductor module of Example 1. FIG.
8 is a schematic cross-sectional view of the semiconductor module of Example 1. FIG.
9 is a schematic cross-sectional view of a semiconductor module of Example 2. FIG.
10 is a schematic cross-sectional view of a semiconductor module of Example 3. FIG.
11 is a schematic cross-sectional view of a semiconductor module of Example 4. FIG.
12 is a plan view of a semiconductor module of Example 5. FIG.
13 is an explanatory diagram of potting sealing of a semiconductor module of Example 5. FIG.
FIG. 14 is an explanatory diagram of a transfer mold package of the prior art.
15 is an explanatory diagram in which the semiconductor module of Example 1 is mounted and a water channel is formed. FIG.
16 is a schematic view of a gasket used when forming the water channel of FIG. 16;
17 is a sectional view of a water-cooled inverter using the semiconductor module of Example 1. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10,58 ... Lead frame (L / F) for package (PKG) attachment, 11 ... Control terminal adhesion opening, 12 ... Main terminal adhesion opening, 13, 70 ... Control terminal, 14, 60 ... Main terminal, DESCRIPTION OF SYMBOLS 15,91 ... Lead frame, 16 ... Package mounting hole, 17 ... Transfer mold package (TM PKG), 20 ... IGBT chip, 21 ... FWD chip, 22, 63 ... Main terminal mounting nut, 23 ... Insert case, 24, 62 ... Screw escape clearance, 25 ... Silicone adhesive, 26 ... Copper base, 27 ... Module lid, 28 ... Silicone gel, 29, 90 ... Aluminum nitride substrate, 30 ... Chip resistor, 31 ... Lead frame collector pattern, 32 ... Lead frame emitter pattern, 33... Glass layer, 34. Lead frame auxiliary emitter pattern, 35. Gate frame pattern, 36 ... Gate aluminum wire, 37 ... Auxiliary emitter aluminum wire, 38 ... Lead frame notch, 40 ... First transfer mold package, 41 ... Collector terminal solder bonding opening, 42 ... Emitter terminal solder Notch portion for bonding, 43 ... Auxiliary emitter terminal bonding portion, 44 ... Gate terminal bonding portion, 45 ... Tie bar, 50, 100 ... Second transfer mold package, 51 ... Emitter terminal bonding opening, 52 ... For collector terminal bonding Opening 53, auxiliary emitter terminal bonding opening, 54 gate terminal bonding opening, 55 package back surface sealing resin, 56 lead frame collector pattern / resin overlap length, 57 heat dissipation lead frame section 61 ... Copper plate for main terminal, 64 ... Hole for screw tightening, 5, 72 ... Adhesive terminal exposed portion, 71 ... Control terminal copper pin, 80, 111 ... Emitter terminal, 81, 110 ... Collector terminal, 82 ... Solder for terminal adhesion, 83 ... Hard resin for terminal adhesion, 92, 293 ... Chip bonding solder, 93 ... Cooling surface, 130 ... Package (formed by potting), 140 ... Conventional transfer mold package, 141 ... Main terminal and control terminal, 142 ... Package mounting hole, 150 ... Circuit case, 151 ... Gasket , 152 ... water channel cover, 153, 170 ... water channel, 154 ... water channel width, 160 ... package mounting hole, 171, 172 ... printed circuit board, 173 ... N (ground) bus bar wiring, 174 ... P (power source) bus bar wiring, 175: Output wiring, 176, 177 ... Electrolytic capacitor, 178 ... Transformer, 179 ... Microcomputer, 90 ... Control terminal, 291 ... Main terminal, 292 ... Aluminum wire, 294 ... Board bonding solder, 1700 ... Gate driver, 1701 ... Interface cable, 1702 ... Current transformer, 1703 ... Inverter bottom cover, 1704 ... Inverter case and waterway cover, 1705... Inverter upper cover, 1706. Case mounting screw, 1707... P, N bus bar insulating plate.

Claims (19)

パワー半導体チップと、該パワー半導体チップが接着される回路パターンと、該パワー半導体チップの電流を外部へ通電する主端子と、該パワー半導体チップを制御する制御端子、とを備え、熱硬化性樹脂によるトランスファモールドパッケージで封止されたパワー半導体モジュールにおいて、
前記パワー半導体モジュール上面に、前記回路パターンが露出した開口部を設け、前記主端子、及び、制御端子を前記回路部へ接着することにより全端子を前記パワー半導体モジュール上面に配置し、前記パワー半導体モジュール底面には、前記回路パターンを取り囲む位置に金属板が露出しており、該金属板を水冷装置へ取り付けることにより、前記パワー半導体モジュール底面で冷却水をシールしてパワー半導体を冷却することを特徴とするパワー半導体モジュール。
A thermosetting resin, comprising: a power semiconductor chip; a circuit pattern to which the power semiconductor chip is bonded; a main terminal for energizing the current of the power semiconductor chip to the outside; and a control terminal for controlling the power semiconductor chip. In the power semiconductor module sealed with the transfer mold package by
An opening in which the circuit pattern is exposed is provided on the upper surface of the power semiconductor module, and all the terminals are disposed on the upper surface of the power semiconductor module by bonding the main terminal and the control terminal to the circuit portion. A metal plate is exposed at a position surrounding the circuit pattern on the bottom surface of the module, and the power semiconductor is cooled by sealing the cooling water on the bottom surface of the power semiconductor module by attaching the metal plate to a water cooling device. A featured power semiconductor module.
請求項1において、前記回路パターン、及び、前記パワー半導体モジュール底面の金属板が、リードフレームで構成されていることを特徴とするパワー半導体モジュール。The power semiconductor module according to claim 1, wherein the circuit pattern and the metal plate on the bottom surface of the power semiconductor module are formed of a lead frame. 請求項2において、前記リードフレームは、アルミニウム、又は、銅、又は、それらの合金であることを特徴とするパワー半導体モジュール。3. The power semiconductor module according to claim 2, wherein the lead frame is made of aluminum, copper, or an alloy thereof. 請求項2において、前記冷却水シール用リードフレームを除く前記回路パターンを、第1の熱硬化性樹脂のトランスファモールドパッケージ(第1トランスファモールドパッケージ)に内蔵し、該第1トランスファモールドパッケージを、前記冷却水シール用リードフレームとともに第2の熱硬化性樹脂のトランスファモールドパッケージに内蔵したことを特徴とするパワー半導体モジュール。3. The circuit pattern according to claim 2, wherein the circuit pattern excluding the cooling water sealing lead frame is incorporated in a first thermosetting resin transfer mold package (first transfer mold package), and the first transfer mold package is A power semiconductor module, which is incorporated in a second thermosetting resin transfer mold package together with a cooling water sealing lead frame. 請求項4において、前記トランスファモールドパッケージ上面開口部と、前記接着された端子のギャップを、熱硬化性樹脂で接着することを特徴とするパワー半導体モジュール。5. The power semiconductor module according to claim 4, wherein a gap between the upper surface opening of the transfer mold package and the bonded terminal is bonded with a thermosetting resin. 請求項2において、前記冷却水シール用リードフレームを除く前記回路パターンを第1の熱硬化性樹脂のトランスファモールドパッケージ(第1トランスファモールドパッケージ)に内蔵し、該第1トランスファモールドパッケージ上面の前記開口部に前記主端子、及び、制御端子を配置し、該端子付き第1トランスファモールドパッケージを、前記冷却水シール用リードフレームとともに第2の熱硬化性樹脂のポッティングパッケージに内蔵したことを特徴とするパワー半導体モジュール。3. The circuit pattern according to claim 2, wherein the circuit pattern excluding the cooling water sealing lead frame is built in a first thermosetting resin transfer mold package (first transfer mold package), and the opening on the upper surface of the first transfer mold package is incorporated. The main terminal and the control terminal are arranged in a portion, and the first transfer mold package with the terminal is incorporated in the second thermosetting resin potting package together with the cooling water sealing lead frame. Power semiconductor module. 請求項2において、前記冷却水シール用リードフレームが、前記回路パターン用リードフレームの周囲を取り囲むタイバーであることを特徴とするパワー半導体モジュール。3. The power semiconductor module according to claim 2, wherein the cooling water sealing lead frame is a tie bar surrounding the circuit pattern lead frame. 請求項2において、前記冷却水シール用リードフレームを除く前記回路パターンを第1の熱硬化性樹脂のトランスファモールドパッケージ(第1トランスファモールドパッケージ)に内蔵し、該第1トランスファモールドパッケージ上面の前記開口部に前記主端子、及び、制御端子を配置し、該端子付き第1トランスファモールドパッケージを、前記冷却水シール用リードフレームとともに熱可塑性樹脂で一体パッケージとしたことを特徴とするパワー半導体モジュール。3. The circuit pattern according to claim 2, wherein the circuit pattern excluding the cooling water sealing lead frame is built in a first thermosetting resin transfer mold package (first transfer mold package), and the opening on the upper surface of the first transfer mold package is incorporated. The power semiconductor module is characterized in that the main terminal and the control terminal are arranged in a portion, and the first transfer mold package with the terminal is integrated with a thermoplastic resin together with the cooling water sealing lead frame. 請求項8において、前記熱可塑性樹脂が、ポリフェニレンサリファイド樹脂であることを特徴とするパワー半導体モジュール。9. The power semiconductor module according to claim 8, wherein the thermoplastic resin is a polyphenylene sulfide resin. パワー半導体チップと、該パワー半導体チップが接着される回路パターンと、該パワー半導体チップの電流を外部へ通電する主端子と、該パワー半導体チップを制御する制御端子、とを備えたパワー半導体モジュールにおいて、
前記回路パターンに前記主端子及び制御端子が接着され、前記全端子が前記パワー半導体モジュール上面に配置されるように、全体を熱硬化性樹脂で一体のポッティングモールドパッケージとし、該パッケージ底面には、前記回路パターンを取り囲む位置に金属板を露出させ、該金属板を水冷装置へ取り付けることにより、冷却水をシールすることを特徴とするパワー半導体モジュール。
In a power semiconductor module, comprising: a power semiconductor chip; a circuit pattern to which the power semiconductor chip is bonded; a main terminal for energizing the current of the power semiconductor chip to the outside; and a control terminal for controlling the power semiconductor chip. ,
The main terminal and the control terminal are bonded to the circuit pattern, and the entire terminal is disposed on the upper surface of the power semiconductor module so that the entire potting mold package is made of a thermosetting resin. A power semiconductor module that seals cooling water by exposing a metal plate to a position surrounding the circuit pattern and attaching the metal plate to a water cooling device.
請求項1において、前記回路パターンは、リードフレーム、及び、金属回路パターン/セラミクス/金属パターンの積層構造からなる基板、又は、金属回路パターン/セラミクス/金属パターンの積層構造からなる基板で構成されていて、前記パワー半導体モジュール底面の金属板が、リードフレームから構成され、該リードフレーム底面と、前記金属製回路パターン/セラミクス/金属パターンの積層構造からなる基板底面が同一面であることを特徴とするパワー半導体モジュール。2. The circuit pattern according to claim 1, wherein the circuit pattern includes a lead frame and a substrate having a laminated structure of metal circuit patterns / ceramics / metal patterns or a substrate having a laminated structure of metal circuit patterns / ceramics / metal patterns. The metal plate on the bottom surface of the power semiconductor module is composed of a lead frame, and the bottom surface of the lead frame and the bottom surface of the substrate having a laminated structure of the metal circuit pattern / ceramics / metal pattern are the same surface. Power semiconductor module. 請求項11において、前記セラミクスが、窒化アルミニウムであることを特徴とするパワー半導体モジュール。The power semiconductor module according to claim 11, wherein the ceramic is aluminum nitride. 請求項2において、前記回路パターン中、パワー半導体素子が接着されるパターン裏面に、絶縁層がコーティングされていることを特徴とするパワー半導体モジュール。3. The power semiconductor module according to claim 2, wherein an insulating layer is coated on a pattern back surface to which the power semiconductor element is bonded in the circuit pattern. 請求項13において、前記絶縁層が、エポキシ樹脂を主成分とする樹脂層、若しくは低融点ガラスの何れかであることを特徴とするパワー半導体モジュール。14. The power semiconductor module according to claim 13, wherein the insulating layer is one of a resin layer containing epoxy resin as a main component or low-melting glass. 請求項2において、前記主端子、及び、制御端子が、熱可塑性樹脂で封止された端子部品であることを特徴とするパワー半導体モジュール。The power semiconductor module according to claim 2, wherein the main terminal and the control terminal are terminal parts sealed with a thermoplastic resin. 請求項15において、前記主端子は、ネジ締め手段を有する構造、制御端子は、スルーホールはんだ接着手段を有することを特徴とするパワー半導体モジュール。16. The power semiconductor module according to claim 15, wherein the main terminal has a structure having screw fastening means, and the control terminal has through-hole solder bonding means. パワー半導体チップと、該パワー半導体チップが接着される回路パターンと、該パワー半導体チップの電流を外部へ通電する主端子と、該パワー半導体チップを制御する制御端子、とを備えていて、熱硬化性樹脂によるトランスファモールドパッケージで封止されたパワー半導体モジュールにおいて、
前記回路パターン底面と、該回路パターンを取り囲む位置に配置された金属板底面とを同一面とし、前記回路パターンと金属板とを樹脂で絶縁し、前記金属板を前記パッケージ底面へ露出させて水冷装置へ取り付けることにより、前記パワー半導体モジュール底面で冷却水をシールしてパワー半導体を冷却することを特徴とするパワー半導体モジュール。
A power semiconductor chip, a circuit pattern to which the power semiconductor chip is bonded, a main terminal for supplying the current of the power semiconductor chip to the outside, and a control terminal for controlling the power semiconductor chip, and thermosetting In power semiconductor modules sealed with transfer mold packages made of functional resin,
The bottom surface of the circuit pattern and the bottom surface of the metal plate disposed at a position surrounding the circuit pattern are flush with each other, the circuit pattern and the metal plate are insulated with resin, and the metal plate is exposed to the bottom surface of the package to be water-cooled. A power semiconductor module, wherein the power semiconductor is cooled by sealing cooling water at a bottom surface of the power semiconductor module by being attached to an apparatus.
請求項17において、前記回路パターン、及び、前記パッケージ底面の金属板はリードフレームであって、前記パッケージ底面の金属板はリードフレームのタイバーであることを特徴とするパワー半導体モジュール。18. The power semiconductor module according to claim 17, wherein the circuit pattern and the metal plate on the bottom surface of the package are lead frames, and the metal plate on the bottom surface of the package is a tie bar of the lead frame. 請求項1記載のパワー半導体モジュールでスイッチング素子を構成した3相インバータ装置。The three-phase inverter apparatus which comprised the switching element with the power semiconductor module of Claim 1.
JP2001118999A 2001-04-18 2001-04-18 Power semiconductor module Expired - Fee Related JP4465906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001118999A JP4465906B2 (en) 2001-04-18 2001-04-18 Power semiconductor module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001118999A JP4465906B2 (en) 2001-04-18 2001-04-18 Power semiconductor module

Publications (2)

Publication Number Publication Date
JP2002314038A JP2002314038A (en) 2002-10-25
JP4465906B2 true JP4465906B2 (en) 2010-05-26

Family

ID=18969286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001118999A Expired - Fee Related JP4465906B2 (en) 2001-04-18 2001-04-18 Power semiconductor module

Country Status (1)

Country Link
JP (1) JP4465906B2 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4622911B2 (en) * 2006-03-29 2011-02-02 トヨタ自動車株式会社 Semiconductor device manufacturing method and manufacturing apparatus
JP5252819B2 (en) 2007-03-26 2013-07-31 三菱電機株式会社 Semiconductor device and manufacturing method thereof
EP2688100B1 (en) * 2011-03-16 2018-08-22 Fuji Electric Co., Ltd. Semiconductor module
EP2822029A4 (en) 2012-02-27 2015-12-23 Nippon Micrometal Corp Power semiconductor device, method for manufacturing same, and bonding wire
CN103779294A (en) * 2014-01-24 2014-05-07 嘉兴斯达微电子有限公司 Power module packaging structure with water-cooled heat sink used for two-sided cooling
CN107978530B (en) * 2017-11-28 2024-03-26 西安中车永电电气有限公司 Method for reducing injection molding flash of IPM module and DBC substrate
CN112119579B (en) * 2018-05-14 2024-04-02 三菱电机株式会社 Power conversion device
CN113557596A (en) 2019-03-13 2021-10-26 日铁新材料股份有限公司 Al bonding wire
SG11202109960TA (en) 2019-03-13 2021-10-28 Nippon Micrometal Corp Bonding wire
JP7138596B2 (en) * 2019-05-21 2022-09-16 三菱電機株式会社 semiconductor equipment
CN110828395A (en) * 2019-09-30 2020-02-21 全球能源互联网研究院有限公司 Power semiconductor device structure and packaging method thereof
CN114467167A (en) 2019-10-01 2022-05-10 日铁新材料股份有限公司 Al wiring material
CN110648986B (en) * 2019-11-05 2023-04-07 汉斯自动化科技(江苏)有限公司 Packaging assembly of IGBT module
CN115280475A (en) 2020-03-13 2022-11-01 日铁新材料股份有限公司 Al bonding wire
US20230142531A1 (en) 2020-03-25 2023-05-11 Nippon Micrometal Corporation Al bonding wire
US20230302584A1 (en) 2020-08-31 2023-09-28 Nippon Micrometal Corporation Al WIRING MATERIAL
EP4207255A4 (en) 2020-08-31 2024-09-25 Nippon Micrometal Corp Al wiring material
US20230307411A1 (en) * 2020-10-14 2023-09-28 Rohm Co., Ltd. Semiconductor module
EP4289984A1 (en) 2021-02-05 2023-12-13 Nippon Micrometal Corporation Al wiring material
TW202239982A (en) 2021-02-05 2022-10-16 日商日鐵新材料股份有限公司 Al bonding wire for semiconductor devices
TW202239983A (en) 2021-02-05 2022-10-16 日商日鐵新材料股份有限公司 Al wiring material

Also Published As

Publication number Publication date
JP2002314038A (en) 2002-10-25

Similar Documents

Publication Publication Date Title
JP4465906B2 (en) Power semiconductor module
JP3674333B2 (en) Power semiconductor module and electric motor drive system using the same
JP5115594B2 (en) Semiconductor module
US5920119A (en) Power semiconductor module employing metal based molded case and screw fastening type terminals for high reliability
US8674492B2 (en) Power module
WO2018227655A1 (en) Low parasitic inductance power module and double-sided heat-dissipation low parasitic inductance power module
JP2000164800A (en) Semiconductor module
US10163752B2 (en) Semiconductor device
US9754855B2 (en) Semiconductor module having an embedded metal heat dissipation plate
WO2014097798A1 (en) Semiconductor device
KR102675634B1 (en) Semiconductor package having overlapping electrically conductive regions and method for producing same
JP2008199022A (en) Power semiconductor module and its manufacturing method
JP2009536458A (en) Semiconductor module and manufacturing method thereof
US9437508B2 (en) Method for manufacturing semiconductor device and semiconductor device
US11232994B2 (en) Power semiconductor device having a distance regulation portion and power conversion apparatus including the same
CN111696936A (en) Power module of integrated radiator and manufacturing method thereof
CN110914975B (en) Power semiconductor module
US20230187311A1 (en) Semiconductor device and manufacturing method thereof
JP3829641B2 (en) Power semiconductor module
JP2012209470A (en) Semiconductor device, semiconductor device module, and manufacturing method of the semiconductor device
JP4051027B2 (en) Power semiconductor device module
JP2001118961A (en) Resin-sealed power semicondcutor device and its manufacturing method
JPH11163490A (en) Electronic device
WO2020148879A1 (en) Semiconductor device, production method for semiconductor device, and power conversion device
JP2021015856A (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080227

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees