Nothing Special   »   [go: up one dir, main page]

JP4457778B2 - 高湿分ガスタービン発電プラント - Google Patents

高湿分ガスタービン発電プラント Download PDF

Info

Publication number
JP4457778B2
JP4457778B2 JP2004192457A JP2004192457A JP4457778B2 JP 4457778 B2 JP4457778 B2 JP 4457778B2 JP 2004192457 A JP2004192457 A JP 2004192457A JP 2004192457 A JP2004192457 A JP 2004192457A JP 4457778 B2 JP4457778 B2 JP 4457778B2
Authority
JP
Japan
Prior art keywords
gas turbine
air supply
compressed air
humidified air
humidified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004192457A
Other languages
English (en)
Other versions
JP2006016971A (ja
Inventor
康広 堀内
信也 圓島
秀文 荒木
重雄 幡宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2004192457A priority Critical patent/JP4457778B2/ja
Priority to US11/167,468 priority patent/US7587887B2/en
Priority to EP05014230.6A priority patent/EP1612375B1/en
Publication of JP2006016971A publication Critical patent/JP2006016971A/ja
Priority to US12/537,669 priority patent/US20090293493A1/en
Application granted granted Critical
Publication of JP4457778B2 publication Critical patent/JP4457778B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/30Adding water, steam or other fluids for influencing combustion, e.g. to obtain cleaner exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • F02C7/18Cooling of plants characterised by cooling medium the medium being gaseous, e.g. air

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)

Description

本発明は、ガスタービンに供給するガスを増湿する増湿系統を有する高湿分ガスタービン発電プラントに関する。
高湿分ガスタービンにおいては、燃焼ガスは湿分を含んでいるため粘性係数やプラントル数等の物理量の違いから空気よりも熱伝達率が大きく、更に比熱も大きい。このため、タービン翼などのガスタービン高温部における熱的負荷は通常のガスタービンに比べて増大する。これに伴ってガスタービン高温部の冷却を強化しなければならないが、通常のガスタービンと同じ空気冷却では大量の冷却空気が必要となるため、主流ガスの温度を下げ、結果としてガスタービンの熱効率を低下させてしまう。そこで高湿分ガスタービンにおいては、空気よりも冷却性能の高い冷却媒体を用いてガスタービン高温部を冷却する必要があり、その冷却媒体として増湿塔において発生する増湿空気の一部を用いる方法が考えられている。増湿空気は湿分を含んでいるため、空気よりも熱伝達率が大きく、更に比熱も大きいため、冷却性能が高い。よって機器を増やすことなく、少量の冷却媒体で効果的にガスタービン高温部を冷却することが可能となる。
このような高湿分ガスタービン(HAT)発電プラントの従来技術としては、例えば特開平11−257006号公報に記載の技術がある。この従来技術では、燃焼用空気あるいは燃焼用湿分空気供給系統の複数の個所で空気あるいは湿分空気を抽出し、それらを混合させた冷媒によって高温部を冷却する冷却方式が提案されている。具体的には、圧縮機からの圧縮空気の一部と増湿塔からの増湿空気の一部をそれぞれ抽出し、それらを混合器で混合し、ガスタービンの冷却流路に供給することが記載されている。
特開平11−257006号公報(図1等)
前述した特開平11−257006号公報による冷却方式には、どのような運転状態の時にどのような冷却媒体をどのように形成するか、という詳細な機器構成および運転方法については言及されていなかった。
増湿空気を冷却媒体として用いる際に、最も注意しなければならない運転状態は、ガスタービンの昇速時,負荷上昇時,負荷降下時,降速時あるいは増湿系統の異常時である。
まず、ガスタービンの昇速および負荷上昇時においては、ガスタービンは十分に暖機されていない。そのため、ガスタービンの増湿空気を冷却媒体として用いると、ガスタービン高温部内の冷却流路のメタル温度が増湿空気の露点温度よりも低くなってしまい、水分の凝縮が起こる可能性がある。この凝縮した水分が冷却流路に付着し、温度上昇に伴い蒸発すると、そこに不純物が蓄積して回転振動や流路閉塞の原因となったり、蒸発潜熱により局所的に急冷され壊食する原因となったりする。
また、ガスタービンの負荷降下および降速時においては、ガスタービンの温度が低下してくると、ガスタービン高温部内の冷却流路のメタル温度が増湿空気の露点温度よりも低くなってしまい、水分の凝縮が起こる可能性がある。水分が凝縮すると、起動時と同様に、回転振動,流路閉塞,壊食の原因となる。さらにガスタービン停止後において、増湿空気が冷却流路内に残留していると、残留空気中の水分および酸素により酸化して腐食する原因となる。
さらに、増湿系統に異常が発生した場合、冷却媒体である増湿空気を十分に供給できなくなるため、ガスタービン高温部の温度が上昇するという問題が生じる。一時的にも高温部に冷却媒体が供給されないと、高温部材に損傷をきたすことになる。
本発明の目的は、ガスタービン高温部の冷却媒体として増湿空気を用いる発電システムにおいて、ガスタービンの昇速時もしくは負荷上昇時に、冷却流路中に水分が凝縮することを抑制した高湿分ガスタービン発電プラントおよびその運転方法を提供することにある。
本発明は、上記課題を解決するために、圧縮機で発生する圧縮空気の一部を冷却媒体としてガスタービン高温部に供給する圧縮空気供給管と、増湿塔で発生する増湿空気の一部を冷却媒体としてガスタービン高温部に供給する増湿空気供給管とを有する高湿分ガスタービン発電プラントにおいて、前記ガスタービンの昇速時もしくは負荷上昇時に、前記圧縮空気供給弁を全開、前記増湿空気供給弁を全閉にして前記ガスタービン高温部に圧縮空気のみを供給し、ガスタービン高温部の温度もしくはガスタービン高温部を代用する部位の温度から求めたガスタービン高温部の推定温度が冷却媒体の温度よりも上昇した場合に、前記圧縮空気供給弁及び前記増湿空気供給弁の開閉状態を切り替えて前記ガスタービン高温部に増湿空気のみを供給するように構成したことを特徴とする。これにより、ガスタービンの昇速時もしくは負荷上昇時冷却流路中に水分が凝縮することを抑制し、かつ、ガスタービン高温部に熱的負荷をかけない冷却を行うことが可能となり、ガスタービンの信頼性が向上する。
また本発明は、ガスタービン回転数と負荷状態,タービンのロータ側面の空気温度、および冷却媒体供給管において計測した増湿空気の温度と湿度に合わせてこれらの弁を開閉することを特徴とする。これにより、ガスタービンの昇速時,負荷上昇時,負荷降下時,降速時および増湿系統異常時において、冷却空気を圧縮空気から増湿空気もしくは増湿空気から圧縮空気へ切り替える時に、効果的に切り替えを行うことが可能となり、ガスタービンの信頼性が向上する。
本発明によれば、高湿分ガスタービン発電プラントのガスタービンの昇速時もしくは負荷上昇時において、ガスタービン高温部を冷却する冷却流路内における水分の凝縮を抑制することができる。



以下、図面を参照して本発明の実施の形態について説明する。
図1は、本発明の第1の実施例であるガスタービン発電プラントの系統図を示す。図中の実線は気体の経路を示しており、以下においては、気体の経路とこの経路上にある機器を合わせて空気系統と呼ぶこととする。また、図中の点線は水の経路を示しており、水の経路とこの経路上にある機器を合わせて増湿系統と呼ぶこととする。更に、図中の太線は、本発明の特徴である、冷却媒体の経路を示している。以下においては、冷却媒体の経路とこの経路上にある機器を合わせて冷却系統と呼ぶこととする。
まず、空気系統について説明する。同図に示すようにガスタービン発電プラントは、ガスタービン1,圧縮機2,発電機3が一軸に結合されている。大気空気は圧縮機2に供給され、定格負荷運転の状態において、温度は約300℃、圧力は約2000Paの高圧な圧縮空気を生成する。圧縮空気は空気冷却器4において約100℃に冷却された後に、増湿装置として設置した増湿塔5に供給され、水分が加えられ増湿・増量した約150℃の増湿空気となる。増湿塔5を出た増湿空気は、再生器6においてガスタービン排ガスとの熱交換によって550℃付近まで昇温される。昇温した増湿空気は、燃料とともに燃焼器7において燃焼されて温度は1300℃以上、圧力は約1900Paの高温高圧の燃焼ガスとなる。この燃焼ガスはガスタービン1に供給され、このガスタービンと連結された発電機3を駆動する。増湿空気を燃焼することによって、燃焼ガスは多量の水分を含み重量流量が増加し、また、水蒸気の比熱は空気よりも大きく、内部により多くのエネルギーを保有できるため、通常のガスタービンよりも出力を増加させることができる。ガスタービン1において膨張し低圧となった燃焼ガスは排ガスとして排出されるが、まだ十分に高温である。このため、再生器6において増湿空気と熱交換を行い、更に給水加熱器8において水と熱交換を行って、熱エネルギーが回収される。給水加熱器8を出た排ガスは、排ガス再熱器9において冷却された後、水回収装置10に供給される。水回収装置10においては、低温の水を排ガスに対して噴霧することで排ガスの温度を下げ、排ガス中の水分を凝縮させ回収している。凝縮しなかった一部の水分を含んだ排ガスは再び排ガス再熱器9に導かれ、加熱されて煙突11より大気に放出される。
次に、増湿系統について説明する。増湿系統は、増湿塔5と水回収装置10および空気噴霧器14の3箇所において空気系統の気体と直接接触しており、増湿塔5と空気噴霧器14において気体に水分を放出し、水回収装置10において気体から水分を回収している。以下それぞれについて説明する。
増湿塔5においては、空気冷却器4および給水加熱器8で昇温された高温水が、圧縮空気に対して向流接触するように噴霧されている。これによって高温水の一部が蒸発気化し、圧縮空気を昇温増湿して増湿空気とする。蒸発しなかった高温水は、蒸発潜熱を奪われながら増湿塔5内を下降し、最終的に供給空気の温度以下まで冷却され、液相水となって増湿塔5の下部へ滞留する。液相水は、増湿塔5を出た後に2つに分岐され、一方は空気冷却器4に供給されて圧縮空気から熱エネルギーを回収し、他方は給水加熱器8に供給されて排ガスから熱エネルギーを回収する。
一方、水回収装置10においては、低温の水を排ガスに対して噴霧することで排ガスの温度を下げ、増湿塔5において圧縮空気に付加した水分を凝縮させ回収している。排ガス中の水分の一部は回収されることなく大気に放出されるが、放出された量に相当する水分を冷却水タンク15から補給する。これにより、外部からの補給水を最小限に抑え、発電効率の向上を図っている。回収および補給された水の一部は、ポンプ12によって昇圧された後、脱塩装置13を経由して、空気冷却器4と空気噴霧器14に分岐して供給される。空気冷却器4側に分岐した水は、増湿塔5からの液相水と合流し、空気冷却器4側を経由した後、再び増湿塔5において高温水として噴霧される。一方、空気噴霧器14側に分岐した水は、空気噴霧器14にて圧縮機2の吸気に対する噴霧水として噴霧される。また、水回収装置10での回収水,補給水の残りはポンプ16によって昇圧された後、冷却器17で冷却され、再び水回収装置10に排ガスの冷却水として供給される。
次に、冷却系統について説明する。本発明は、ガスタービン起動時,低負荷時,停止時および増湿系統異常時におけるガスタービン高温部の冷却は、圧縮機2で発生する圧縮空気と、増湿塔5で発生する増湿空気を切り替えて行うことを特徴としており、以下のような機器構成を持つ。
圧縮機2から空気冷却器4に導かれる圧縮空気の一部は、ガスタービン高温部の冷却空気として、圧縮空気供給管21,圧縮空気供給弁22,逆止弁23を通じて混合器27へ供給される。圧縮空気の流量は、圧縮空気供給弁22によって調整される。さらに、増湿塔5で水分が加えられた増湿空気の一部が、増湿空気供給管24,増湿空気供給弁25,逆止弁26を通じて混合器27へ供給される。増湿空気供給管24によって供給される増湿空気の流量は、増湿空気供給弁25によって調整される。混合器27に供給された圧縮空気および増湿空気は混合され、冷却空気を形成して冷却空気供給管28を通してガスタービン高温部内の冷却流路29に供給される。高温部を冷却した冷却空気はガスタービン1内へと放出される。また、圧縮空気供給弁22および増湿空気供給弁25の開閉はスムーズに行うものとする。
以上で説明した空気系統,増湿系統および冷却系統で構成される高湿分ガスタービン発電プラントにおいて、ガスタービンの昇速時,降速時,負荷変動時および増湿系統異常時の運転方法について説明する。運転時においては、ガスタービンの状態量としてガスタービンの回転数と負荷,冷却媒体の温度,湿度および圧力,ガスタービン高温部内の冷却流路29のメタル温度を計測する。ガスタービン回転数と負荷については発電機3において、冷却媒体の温度,湿度および圧力は検知器30において計測可能である。しかし、冷却流路29のメタル温度については直接計測することが困難であるため、ガスタービン高温部に検知器31を設けて、タービンのホイール側面の空気温度を静止側から計測することによって、冷却流路29のメタル温度を推定するものとする。
ガスタービンの昇速および負荷上昇時における運転方法について、図2を用いて説明する。まず、ガスタービンが回転し始める時刻0においては、ガスタービンおよび配管は低温であり、増湿空気を供給すると凝縮が発生する可能性がある。このため、増湿空気供給弁25を全閉、圧縮空気供給弁22を全開にして、圧縮空気のみの供給を行っている。ガスタービン起動直後は、始動機によって回転数が上昇する。ある時刻T1において燃焼器7が着火し、検知器31で計測する冷却流路29のメタル推定温度は上昇を始める。また、時刻T1においては着火を安定させるために燃焼用の増湿空気は供給されていない状態である。
燃焼器7において燃焼が安定した時刻T2から燃焼用の増湿空気が供給され始めるが、前記の弁の開閉状態が維持されているので、ガスタービン高温部の冷却流路29にはまだ増湿空気は供給されず、空気冷却器4に入る前の圧縮空気が流れている。ガスタービンの昇速および負荷上昇時のガスタービンの暖機されていない状態においては、冷却流路29のメタル温度が増湿空気の露点温度よりも低くなり水分が凝縮する可能性があり、圧縮空気を冷却流路29に流すことでこの状態を回避する。また、空気冷却器4に入る前の圧縮空気は増湿塔5を出た増湿空気に比べて温度が高いため、冷却流路29の温度が上昇し、ガスタービンの暖機が加速される。
やがて時刻T3において冷却流路29のメタル推定温度が冷却媒体の温度を上回る。この時刻T3でガスタービンの暖機が完了したとみなし、圧縮空気供給弁22を閉め始めると同時に増湿空気供給弁25を開き始める。この弁の開閉に伴って、冷却媒体中の圧縮空気の割合が減少し、増湿空気の割合が増加し始めるが、圧縮空気に比べ増湿空気は空気冷却器4において冷却されているため温度が低く、更に冷却性能も高い。従って、冷却流路29のメタル温度と冷却媒体の温度の差が小さい時刻T3に冷却媒体の切り替えを開始することによって、ガスタービン高温部に与える熱衝撃を抑えることができる。また、弁の開閉は徐々に行い、混合器27を出た冷却媒体の温度が急激に変わらないようしてガスタービン高温部に与える熱衝撃を抑える。
時刻T4において圧縮空気供給弁22は完全に閉じ、増湿空気供給弁25は完全に開き、ガスタービン高温部を流れる冷却媒体は増湿空気のみとなる。時刻T4以降、タービン入口温度は上昇するが、冷却性能が高い増湿空気によって冷却されているため、ガスタービン高温部の温度は許容温度以下に抑えられる。この弁の開閉状態を維持したまま、時刻T5において、ガスタービンは負荷100%の、定格負荷運転に入る。
以上のように、冷却流路29のメタル推定温度が冷却空気供給管28における冷却媒体の温度を上回ったところで冷却媒体を切り替えることによって、ガスタービンの昇速および負荷上昇時における冷却流路内での水分の凝縮を完全に回避し、かつガスタービン高温部に熱衝撃を与えずに定格負荷運転に移行することができる。
なお、本実施例においては、ガスタービンの昇速および負荷上昇時において、冷却流路29のメタル推定温度が、検知器30で計測した冷却媒体の温度を上回る時刻T3でガスタービンの暖機が完了したとみなしているが、検知器30を増湿塔5の出口に配置し、増湿塔出口温度を冷却媒体の温度に代用することも可能である。
また、本実施例においては、ガスタービンの昇速および負荷上昇時の冷却切り替え後において、圧縮空気供給弁22を全閉、増湿空気供給弁25を全開とし、圧縮空気による冷却から完全な増湿空気による冷却に切り替えている。しかしながら、増湿空気の温度は
150℃と低いため、ガスタービンの高温部材内において急激な温度勾配が発生し、高温部材の熱応力が大きくなる可能性がある。このような状態を防ぐために、検知器31で計測するホイール側面温度から求める冷却流路29のメタル推定温度に対して、検知器30で計測する冷却媒体の温度が低すぎる場合(冷却流路のメタル推定温度に対する冷却媒体の温度が所定値を下回る場合)には、圧縮空気供給弁22を部分開とし、温度の高い圧縮空気と混合させることによってガスタービン高温部の冷却流路29を流れる冷却媒体の温度を上昇させる運転をすることもできる。
次に、ガスタービンの負荷降下および降速時における運転方法について、図3を用いて説明する。定格負荷運転においては、圧縮空気供給弁22は全閉、増湿空気供給弁25は全開の状態となっており、混合器27から出る冷却媒体は全て増湿空気である。時刻T11において負荷降下が開始すると、ある時刻T12において増湿空気よりも冷却性能の低い圧縮空気でも十分にガスタービン高温部を冷却することが可能となる。この時刻T12において、圧縮空気供給弁22を開き始めると同時に増湿空気供給弁25を閉じ始め、時刻T13には圧縮空気供給弁22は全開、増湿空気供給弁25は全閉となる。よって、時刻T13以降は冷却流路を流れる冷却空気は圧縮空気のみとなるため、冷却流路内で凝縮を起こさずに運転することができる。ガスタービン1は時刻T14において停止状態となるが、増湿空気が冷却流路29に残留していると、ガスタービン停止後において残留空気中の水分および酸素により冷却流路29の表面が酸化して腐食する可能性がある。しかし、本実施例では時刻T13以降に供給する冷却空気は圧縮空気となっており、時刻T14においては冷却流路内の増湿空気は全て押し出されているので、腐食を抑制することができる。
次に、増湿系統の異常時における運転方法について図4を用いて説明する。増湿塔5において、噴霧器の異常により加湿量が低下したり、目詰まり等によって増湿塔内の圧力損失が増加すると、ガスタービン高温部を十分に冷却することができないため、この状態のままではガスタービン高温部の温度が上昇することになる。この解決方法として、検知器30で計測した増湿空気中の湿度もしくは圧力が増湿系統異常を示すある閾値を下回った時に冷却媒体を圧縮空気に切り替え、ガスタービンを空気冷却による運転状態に移行することにより対応する。
本実施例では、定格負荷の状態において、検知器30で計測した増湿空気中の湿度が低下した場合を想定する。検知器30において計測した増湿空気中の湿度がある閾値を下回ったとき異常発生とみなし、この時刻T21において、即時に圧縮空気供給弁22を開き始めると同時に増湿空気供給弁25を閉じ始める。また、同時刻においてガスタービンの負荷を下げ始め、ガスタービン高温部の温度を低下させる。圧縮空気によってガスタービン高温部の温度を許容温度以下にすることができる負荷状態になる時刻T22において圧縮空気供給弁22は全開、増湿空気供給弁25は全閉となる。
図5は、本発明の第2の実施例であるガスタービン発電プラントの系統図を示す。図1と同一の構成については説明を省略する。図1では、ガスタービン高温部の冷却空気に用いる増湿空気として、増湿塔5から再生器6に供給される増湿空気を利用していたが、本実施例では再生器6で温度を上昇させた増湿空気を利用するものである。具体的には、再生器6の流路途中から増湿空気の一部を分岐させる増湿空気供給管36を設けている。この増湿空気供給管36で分岐した増湿空気は、増湿空気供給弁25,逆止弁26を経由して混合器27に供給される。
増湿塔5を出た増湿空気の温度は、圧縮空気を出た圧縮空気の温度に比べて低く、温度差のある2つの冷却媒体を切り替える時にはガスタービン高温部に熱衝撃がかかってしまう。そこで本実施例においては、再生器6に一度入り、ガスタービン1の排ガスとの熱交換によって温度上昇した増湿空気の一部をガスタービン高温部の冷却媒体とすることによって、圧縮空気との温度差を小さくすることを特徴としている。これにより、圧縮空気供給管21によって供給する圧縮空気から増湿空気に冷却媒体を切り替える時に、ガスタービン高温部にかかる熱衝撃を抑えられるとともに、圧縮空気供給弁22と増湿空気供給弁
25の開閉作業にかかる時間を短縮し、スムーズに冷却媒体を切り替えることができる。
図6は、本発明の第3の実施例であるガスタービン発電プラントの系統図を示す。図1では、ガスタービン高温部の冷却空気に用いる圧縮空気としては、圧縮機2から空気冷却器4に供給される圧縮空気を利用していたが、本実施例では空気冷却器4で温度を低下させた後の圧縮空気を供給するようにしたものである。具体的には、空気冷却器4で冷却された圧縮空気を増湿塔5に供給する経路の途中から、高温部冷却流路29(冷却空気供給管28)に圧縮空気の一部を分岐させる圧縮空気供給管37を設けている。この圧縮空気供給管37で分岐した圧縮空気は、圧縮空気供給弁22,逆止弁23を経由して混合器
27に供給される。
増湿系統に異常が発生した直後は、ガスタービン高温部は高温を保ったまま、冷却媒体の冷却性能が低下してしまうため、ガスタービン高温部の温度が上昇する。よって、冷却媒体を増湿空気から圧縮空気に切り替える時、圧縮空気の温度は出来るだけ低いことが望ましい。そこで、本実施例においては、空気冷却器4を出た圧縮空気の一部を冷却媒体とすることによって、空気冷却器4の通過前より温度の低い圧縮空気をガスタービン高温部に供給することを特徴としている。
図7は、本発明の第4の実施例であるガスタービン発電プラントの系統図を示す。本実施例では、図1のシステム系統に対し、ガスタービン冷却系統の腐食防止手段として不活性ガス供給系統を追加した構成となっている。具体的には、不活性ガス供給源40からの不活性ガスを混合器27に供給する不活性ガス供給管41を設け、不活性ガス供給管41に不活性ガス供給弁42及び逆止弁43を設置している。なお、図7に図示する本実施例では、不活性ガス供給管41を混合器27に接続した構成となっているが、増湿空気供給管24あるいは圧縮空気供給管21の途中に接続するようにしても良い。この場合には、逆止弁23,26あるいは増湿空気供給弁25,圧縮空気供給弁22より下流側の供給管に接続することが望ましい。
ガスタービン停止後において、ガスタービン高温部の冷却流路29に増湿空気が残留すると、残留空気中の水分および酸素により冷却流路29の内表面が酸化して腐食する可能性がある。これに対して、実施例1に示すように冷却媒体を増湿空気から圧縮空気に切り替えることによって腐食を抑えることができる。さらに、本実施例においては、冷却媒体を圧縮空気から不活性ガス供給管41からの不活性ガスに切り替えることによって、腐食の原因となる水分および酸素を冷却流路から完全に押し出すことができるようになる。
本実施例によるガスタービン停止時における運転方法について図8を用いて説明する。図中の時刻T13において、冷却空気の供給を増湿空気から圧縮空気に切り替えた状態となっている。このとき、圧縮空気供給弁22は全開、増湿空気供給弁25および不活性ガス供給弁42は全閉となっている。その後、ある時刻T31において、圧縮空気供給弁
22を閉じ始めると同時に不活性ガス供給弁42を開き始める。そして、時刻T32において圧縮空気供給弁22は全閉、不活性ガス供給弁42は全開となって、冷却流路29を流れる冷却媒体は不活性ガスに切り替わる。時刻T31からガスタービンが停止する時刻T14の間に冷却流路29内の圧縮空気は不活性ガスによって完全に押し出される。最後に時刻T14において不活性ガス供給弁42を閉じ始め、時刻T33において不活性ガス供給弁42は全閉となる。これによって、少量の不活性ガスによって効果的に腐食の原因となる水分および酸素を冷却流路から完全に押し出すことができる。
上記の各実施例にて説明したように、本発明はガスタービンの昇速時,負荷上昇時,負荷降下時,降速時および増湿系統異常時において、増湿空気による冷却と圧縮空気による冷却とを切り替える機能を備えたものである。そして、ガスタービンの昇速および負荷上昇時においては圧縮空気を供給し、ガスタービン高温部内の冷却流路の暖機を加速し、かつ冷却媒体の露点温度を下げて水分の凝縮を防ぐことができる。また、ガスタービンの負荷降下および降速時においても圧縮空気を供給することで、水分の凝縮を防ぐことができ、さらに圧縮空気をパージガスとして利用することで停止後における腐食を抑えることができる。また、増湿系統の異常時においては、圧縮空気を補助の冷却媒体として用いることで、ガスタービン高温部の熱的負荷を増大させることなく、ガスタービンの運転を継続させることができる。
増湿空気を高温部の冷却媒体とするガスタービン。
本発明の第1の実施例である高湿分ガスタービン発電プラントの構成図。 本発明による昇速および負荷上昇時の運転方法についての説明図。 本発明による負荷降下および降速時の運転方法についての説明図。 本発明による増湿系統異常時の運転方法についての説明図。 本発明の第2の実施例である高湿分ガスタービン発電プラントの構成図。 本発明の第3の実施例である高湿分ガスタービン発電プラントの構成図。 本発明の第4の実施例である高湿分ガスタービン発電プラントの構成図。 実施例4における昇速および負荷上昇時の運転方法についての説明図。
符号の説明
1…ガスタービン、2…圧縮機、3…発電機、4…空気冷却器、5…増湿塔、6…再生器、7…燃焼器、8…給水過熱器、9…排ガス再熱器、10…水回収装置、11…煙突、12,16…ポンプ、13…脱塩装置、14…空気噴霧器、15…冷却水タンク、17…冷却器、21,37…圧縮空気供給管、22…圧縮空気供給弁、23,26,43…逆止弁、24,36…増湿空気供給管、25…増湿空気供給弁、27…混合器、28…冷却空気供給管、29…高温部冷却流路、30,31…検知器、40…不活性ガス供給源、41…不活性ガス供給管、42…不活性ガス供給弁。

Claims (8)

  1. 空気を圧縮する圧縮機と、該圧縮機から導かれる圧縮空気を加湿する増湿塔と、燃料と前記増湿塔から供給される増湿空気とを燃焼させる燃焼器と、該燃焼器で発生する燃焼ガスによって駆動されるガスタービンと、該燃焼器から排出される排ガスと前記燃焼器に供給される増湿空気とを熱交換する再生器と、前記圧縮機で発生する圧縮空気をガスタービン高温部に冷却空気として供給する圧縮空気供給系統と、前記増湿塔で加湿された増湿空気を前記ガスタービン高温部供給する増湿空気供給系統とを備えた高湿分ガスタービン発電プラントにおいて、
    前記圧縮空気供給系統上の圧縮空気の流量を調整する圧縮空気供給弁と、前記増湿空気供給系統上の増湿空気の流量を調整する増湿空気供給弁とを有し、
    前記ガスタービンの昇速時もしくは負荷上昇時に、前記圧縮空気供給弁を全開、前記増湿空気供給弁を全閉にして前記ガスタービン高温部に圧縮空気のみを供給し、ガスタービン高温部の温度もしくはガスタービン高温部を代用する部位の温度から求めたガスタービン高温部の推定温度が冷却媒体の温度よりも上昇した場合に、前記圧縮空気供給弁及び前記増湿空気供給弁の開閉状態を切り替えて前記ガスタービン高温部に増湿空気のみを供給するように構成したことを特徴とする高湿分ガスタービン発電プラント。
  2. 請求項1に記載の高湿分ガスタービン発電プラントにおいて、
    前記ガスタービンの負荷降下時もしくは降速時に、ガスタービン冷却空気の供給を前記増湿空気供給系統から前記圧縮空気供給系統に切り替えるように構成したことを特徴とする高湿分ガスタービン発電プラント。
  3. 請求項1に記載の高湿分ガスタービン発電プラントにおいて、
    前記増湿空気供給系統の異常時に、ガスタービン冷却空気の供給を前記増湿空気供給系統から前記圧縮空気供給系統に切り替えるように構成したことを特徴とする高湿分ガスタービン発電プラント。
  4. 請求項1に記載の高湿分ガスタービン発電プラントにおいて、
    前記増湿空気供給系統の異常時に、増湿空気の湿分と圧力の少なくとも一方がある閾値以下になった場合に、ガスタービン冷却空気の供給を前記増湿空気供給系統から前記圧縮空気供給系統に切り替えるように構成したことを特徴とする高湿分ガスタービン発電プラント。
  5. 空気を圧縮する圧縮機と、該圧縮機から導かれる圧縮空気を加湿する増湿塔と、燃料と前記増湿塔から供給される増湿空気とを燃焼させる燃焼器と、該燃焼器で発生する燃焼ガスによって駆動されるガスタービンと、該燃焼器から排出される排ガスと前記燃焼器に供給される増湿空気とを熱交換する再生器と、前記圧縮機で発生する圧縮空気をガスタービン高温部に冷却空気として供給する圧縮空気供給系統と、前記増湿塔で加湿された増湿空気を前記ガスタービン高温部に供給する増湿空気供給系統とを備えた高湿分ガスタービン発電プラントの運転方法において、
    前記圧縮空気供給系統上の圧縮空気の流量を調整する圧縮空気供給弁と、前記増湿空気供給系統上の増湿空気の流量を調整する増湿空気供給弁とを有し、
    前記ガスタービンの昇速時もしくは負荷上昇時に、前記圧縮空気供給弁を全開、前記増湿空気供給弁を全閉にして前記ガスタービン高温部に圧縮空気のみを供給し、ガスタービン高温部の温度もしくはガスタービン高温部を代用する部位の温度から求めたガスタービン高温部の推定温度が冷却媒体の温度よりも上昇した場合に、前記圧縮空気供給弁及び前記増湿空気供給弁の開閉状態を切り替えて前記ガスタービン高温部に増湿空気のみを供給することを特徴とする高湿分ガスタービン発電プラントの運転方法。
  6. 請求項5に記載の高湿分ガスタービン発電プラントの運転方法において、
    前記ガスタービンの負荷降下時もしくは降速時に、増湿空気による冷却から圧縮空気による冷却に切り替えることを特徴とする高湿分ガスタービン発電プラントの運転方法。
  7. 請求項5に記載の高湿分ガスタービン発電プラントの運転方法において、
    前記増湿空気供給系統の異常時に、増湿空気による冷却から圧縮空気による冷却に切り替えることを特徴とする高湿分ガスタービン発電プラントの運転方法。
  8. 請求項5に記載の高湿分ガスタービン発電プラントの運転方法において、
    前記増湿空気供給系統の異常時に、増湿空気の湿分と圧力の少なくとも一方がある閾値以下になった時に、増湿空気による冷却から圧縮空気による冷却に切り替えることを特徴とする高湿分ガスタービン発電プラントの運転方法。
JP2004192457A 2004-06-30 2004-06-30 高湿分ガスタービン発電プラント Expired - Lifetime JP4457778B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004192457A JP4457778B2 (ja) 2004-06-30 2004-06-30 高湿分ガスタービン発電プラント
US11/167,468 US7587887B2 (en) 2004-06-30 2005-06-28 Advanced humid air turbine power plant
EP05014230.6A EP1612375B1 (en) 2004-06-30 2005-06-30 Humid air turbine power plant and method of cooling such a plant
US12/537,669 US20090293493A1 (en) 2004-06-30 2009-08-07 Advanced humid air turbine power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004192457A JP4457778B2 (ja) 2004-06-30 2004-06-30 高湿分ガスタービン発電プラント

Publications (2)

Publication Number Publication Date
JP2006016971A JP2006016971A (ja) 2006-01-19
JP4457778B2 true JP4457778B2 (ja) 2010-04-28

Family

ID=34937735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004192457A Expired - Lifetime JP4457778B2 (ja) 2004-06-30 2004-06-30 高湿分ガスタービン発電プラント

Country Status (3)

Country Link
US (2) US7587887B2 (ja)
EP (1) EP1612375B1 (ja)
JP (1) JP4457778B2 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4100316B2 (ja) * 2003-09-30 2008-06-11 株式会社日立製作所 ガスタービン設備
JP4457778B2 (ja) * 2004-06-30 2010-04-28 株式会社日立製作所 高湿分ガスタービン発電プラント
JP4275690B2 (ja) * 2006-09-07 2009-06-10 株式会社日立製作所 ガスタービンシステム
WO2008074099A1 (en) * 2006-12-21 2008-06-26 Dut Pty Ltd A process for improving gas turbine power output in hot weather
US7841186B2 (en) * 2007-01-31 2010-11-30 Power Systems Mfg., Llc Inlet bleed heat and power augmentation for a gas turbine engine
JP4466667B2 (ja) * 2007-03-19 2010-05-26 株式会社日立製作所 高湿分空気利用ガスタービン,高湿分空気利用ガスタービンの制御装置及び高湿分空気利用ガスタービンの制御方法
US8033116B2 (en) * 2008-05-06 2011-10-11 General Electric Company Turbomachine and a method for enhancing power efficiency in a turbomachine
JP5143060B2 (ja) * 2009-03-11 2013-02-13 株式会社日立製作所 2軸ガスタービン
US8267639B2 (en) * 2009-03-31 2012-09-18 General Electric Company Systems and methods for providing compressor extraction cooling
US8707709B2 (en) * 2009-03-31 2014-04-29 General Electric Company Systems and methods for controlling compressor extraction cooling
US9334808B2 (en) * 2010-08-05 2016-05-10 Mitsubishi Hitachi Power Systems, Ltd. Combustor and the method of fuel supply and converting fuel nozzle for advanced humid air turbine
US20130111916A1 (en) * 2011-11-07 2013-05-09 General Electric Company System for operating a power plant
DE102011087000B4 (de) * 2011-11-24 2013-11-14 Robert Bosch Gmbh Vorrichtung zur Messung wenigstens einer Abgaskomponente in einem Abgaskanal eines Verbrennungsprozesses
JP5452634B2 (ja) * 2012-01-06 2014-03-26 株式会社日立製作所 高湿分空気利用ガスタービンに設置されるガスタービン燃焼器の燃料制御方法及び燃料制御装置
IN2014DN07991A (ja) * 2012-03-28 2015-05-01 Alstom Technology Ltd
US9403600B2 (en) * 2012-05-01 2016-08-02 Lockheed Martin Corporation Integrated thermal protection and leakage reduction in a supersonic air intake system
US9797310B2 (en) 2015-04-02 2017-10-24 General Electric Company Heat pipe temperature management system for a turbomachine
JP6585073B2 (ja) 2015-04-02 2019-10-02 ゼネラル・エレクトリック・カンパニイ ターボ機械におけるホイールおよびバケットのためのヒートパイプ温度管理システム
JP6578136B2 (ja) * 2015-05-29 2019-09-18 三菱日立パワーシステムズ株式会社 コンバインドサイクルプラント、その制御装置及び起動方法
CN110285446B (zh) * 2019-05-17 2020-10-27 浙江浙能技术研究院有限公司 一种控制燃气轮机氮氧化物排放的方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3068348B2 (ja) 1992-09-10 2000-07-24 株式会社東芝 複合発電システム
US5579631A (en) 1994-04-28 1996-12-03 Westinghouse Electric Corporation Steam cooling of gas turbine with backup air cooling
US6105362A (en) * 1995-09-22 2000-08-22 Kabushiki Kaisha Toshiba Combined cycle power plant with gas turbine cooling system
JP3825090B2 (ja) * 1996-07-24 2006-09-20 三菱重工業株式会社 コンバインドサイクル発電プラント
JP3977909B2 (ja) * 1997-11-26 2007-09-19 三菱重工業株式会社 回収式蒸気冷却ガスタービン
JPH11200895A (ja) * 1998-01-05 1999-07-27 Mitsubishi Heavy Ind Ltd ガスタービン停止過程における回転数制御方法
US6272841B2 (en) * 1998-01-23 2001-08-14 Mitsubishi Heavy Industries, Ltd. Combined cycle power plant
JPH11257006A (ja) 1998-03-17 1999-09-21 Hitachi Ltd 発電システム
US6578354B2 (en) * 2000-01-21 2003-06-17 Hitachi, Ltd. Gas turbine electric power generation equipment and air humidifier
US6851265B2 (en) * 2002-02-19 2005-02-08 Siemens Westinghouse Power Corporation Steam cooling control for a combined cycle power plant
JP4457778B2 (ja) * 2004-06-30 2010-04-28 株式会社日立製作所 高湿分ガスタービン発電プラント

Also Published As

Publication number Publication date
EP1612375B1 (en) 2016-01-06
US20070017227A1 (en) 2007-01-25
US20090293493A1 (en) 2009-12-03
EP1612375A2 (en) 2006-01-04
US7587887B2 (en) 2009-09-15
JP2006016971A (ja) 2006-01-19
EP1612375A3 (en) 2012-02-29

Similar Documents

Publication Publication Date Title
JP4457778B2 (ja) 高湿分ガスタービン発電プラント
AU2009259589B2 (en) Method and device for operating a steam power station comprising a steam turbine and a process steam consumer
EP2333255B1 (en) Fossil fuel combustion thermal power system including carbon dioxide separation and capture unit
JP4705018B2 (ja) ガスタービン組の運転方法
JP3068925B2 (ja) コンバインドサイクル発電プラント
JP2005534883A (ja) 廃熱式蒸気発生装置
JP3431435B2 (ja) コンバインド発電プラントおよびクローズド空気冷却ガスタービンシステム
US20040172947A1 (en) Turbine equipment and combined cycle power generation equipment and turbine operating method
JP4779741B2 (ja) ヒートポンプシステム,ヒートポンプシステムの軸封方法,ヒートポンプシステムの改造方法
JP4373420B2 (ja) コンバインド発電プラントおよびクローズド空気冷却ガスタービンシステム
US6851265B2 (en) Steam cooling control for a combined cycle power plant
US8327615B2 (en) Combined cycle powered generating plant having reduced start-up time
JP4691950B2 (ja) ガスタービン及びその冷媒供給方法
Rao Evaporative gas turbine (EvGT)/humid air turbine (HAT) cycles
FR3001768A1 (fr) Installation a turbine a gaz et procede de regulation de ladite installation
US20160146060A1 (en) Method for operating a combined cycle power plant
US8534038B2 (en) Combined power plant
JPH11257006A (ja) 発電システム
JP5901194B2 (ja) ガスタービン冷却システム及びガスタービン冷却方法
JP3872407B2 (ja) コンバインド発電プラントおよびクローズド空気冷却ガスタービンシステム
JP2005344528A (ja) コンバインドサイクル発電プラントおよびその起動運転方法
JP4473464B2 (ja) コンバインドサイクル発電プラントの運転方法
JP3446185B2 (ja) 蒸気冷却ガスタービンの運転方法
JPH1073008A (ja) コンバインドサイクルプラント及びその起動停止方法
JP2004232531A (ja) ガスタービン設備

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100201

R151 Written notification of patent or utility model registration

Ref document number: 4457778

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140219

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250