Nothing Special   »   [go: up one dir, main page]

JP4453120B2 - Zoom lens - Google Patents

Zoom lens Download PDF

Info

Publication number
JP4453120B2
JP4453120B2 JP17140599A JP17140599A JP4453120B2 JP 4453120 B2 JP4453120 B2 JP 4453120B2 JP 17140599 A JP17140599 A JP 17140599A JP 17140599 A JP17140599 A JP 17140599A JP 4453120 B2 JP4453120 B2 JP 4453120B2
Authority
JP
Japan
Prior art keywords
lens
lens group
zoom lens
end state
negative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17140599A
Other languages
Japanese (ja)
Other versions
JP2001004920A (en
Inventor
治夫 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP17140599A priority Critical patent/JP4453120B2/en
Publication of JP2001004920A publication Critical patent/JP2001004920A/en
Application granted granted Critical
Publication of JP4453120B2 publication Critical patent/JP4453120B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/177Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a negative front lens or group of lenses

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は負先行型ズームレンズ、特に、超小型の2群ズームレンズに関する。
【0002】
【従来の技術】
従来、負・正群からはじまる所謂標準ズームレンズにおいて、小型化と低コスト化とを目的としたズームレンズは多数提案されている。特に、第1レンズ群を2枚のレンズのみで構成し、小型化、低コスト化と高性能化とを両立させたズームレンズとして、本発明と同一出願人の出願による特開平5−88084号公報、特開平5−249376号公報等に開示されたレンズ、また、構成枚数は多いが更に小型化した例として特開平8−334694号公報等に開示されたレンズが知られている。また、3次の非球面項を有する非球面レンズを設けた例に、本発明と同一出願人の出願による特開平10−325923号公報に開示されたレンズがある。
【0003】
しかしながら、大きな画角及び大きな変倍比を有する標準ズームレンズにおいて、更なる極限までのダウンサイジング(小型化)、コストダウン(低価格化)、及び高性能な画質の実現が望まれている。
【0004】
【発明が解決しようとする課題】
特開平5−88084号公報に記載されたズームレンズにおいては、負の第1群中の第1負レンズに非球面を設けて、主として広角側の歪曲収差を中心として収差補正を行なっている。しかしながら、広角端状態の画角、変倍比、大きさ、明るさの観点から、これらスペックの更なる向上が必要である。
【0005】
また、特開平5−249376号公報に記載されたズームレンズにおいては広角端状態の画角、変倍比、明るさの点では進歩しているが、ダウンサイジングという点では更なる向上が必要である。また、収差に関しても小型化による球面収差の変動、及び非点収差、歪曲収差、倍率色収差等の諸収差の補正の更なる向上が必要である。
【0006】
また、特開平8−334694号公報に記載されたズームレンズにおいては、広角端状態の画角、変倍比、大きさ、明るさの点では進歩しているが、構成枚数が多くコストダウンに対して不利である。極限までコストダウンする目的からすると、更なる構成枚数の削減が必要である。
【0007】
また、特開平10−325923号公報に記載されたズームレンズにおいては、負の第1群中の第1負レンズに非球面を設けて諸収差を良好に補正しているが、本発明の目的である極限までのダウンサイジング、コストダウン、及び高性能な画質の維持から大きく外れ、大型で、構成枚数の多い超広角ズームレンズになっている。従って、かなりのダウンサイジングが必要になり、この従来技術の延長線上で本願の目的を達成することは不可能である。
【0008】
本発明は、上記問題に鑑みてなされたものであり、最大画角が76°を越える大画角を含み、広角端状態のFナンバーがF3.3程度の口径比を有し、約2.7倍程度の比較的大きい変倍比を有する高性能で超小型のズームレンズを提供することを目的とする。
【0009】
【課題を解決するための手段】
上記課題を解決するために本発明は、物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2とからなり、該第1レンズ群G1と該第2レンズ群G2との空気間隔を変化させることにより変倍するズームレンズにおいて、
前記第1レンズ群G1は凹面側に非球面を有する負のレンズ成分L11と正のレンズ成分L12とからなり、
前記非球面は光軸から垂直方向の高さyにおける各非球面の頂点の接平面から光軸方向に沿った距離(サグ量)をS(y)、
近軸曲率半径をR、
円錐係数をκ、
n次の非球面係数をCnとして、以下の非球面式、
S(y)=(y2/R)/〔1+(1−κ・y2/R21/2〕+C3・|y|3+C4・y4+C5・|y|5+C6・y6+C8・y8+C10・y10+C12・y12+C14・y14
で表現したとき、
(1) 1×10-7 ≦|C3| ≦1×10-2の条件を満足し、
前記第2レンズ群G2は物体側から順に、正レンズ2枚と、負レンズと、正レンズとからなり、
望遠端状態における前記第1レンズ群G1の最も物体側の面の頂点から像面までの光軸に沿った距離をTL、
広角端状態における前記ズームレンズ全系の焦点距離をfw、
望遠端状態における前記ズームレンズ全系の焦点距離をftとそれぞれしたとき、
(3) 0.3 ≦(TL・fw)/ft20.548
の条件を満足し、
前記第2レンズ群G2の焦点距離をf2としたとき、
(4) 0.3 ≦f2/ft ≦ 0.457
の条件を満足することを特徴とするズームレンズを提供する。
【0010】
【発明の実施の形態】
以下、本発明の実施形態について添付図面を用いて説明する。まず、本発明の実施形態にかかるズームレンズの基本的なレンズ構成を説明する。本発明は基本的に負・正2群を有するズームレンズタイプの極限までの小型化、構成枚数の削減による極限までのコストダウンと大画角化、高変倍化を実現し、かつ著しい小型化とコストダウンを実現した上で、さらに高性能な画質を維持するズームレンズを提供することを特徴としている。特に、同じクラスのズームレンズに比較して、非常に小型で、構成枚数が少ない光学系であるにもかかわらず、歪曲収差、コマフレアー、望遠端状態側の球面収差が非常に良好に補正されていることが大きな特徴である。この特徴は、負の第1レンズ群G1中のレンズ成分L11に導入した非球面に対して従来技術では全く知られていなかった収差補正効果を持たせたことにより実現できたものである。
【0011】
通常、このクラスの2群ズームレンズの場合、よりコンパクトにするためには第1レンズ群と第2レンズ群との相互のパワー(屈折力)を極端に強める必要がある。この時に、球面収差の変倍による変動と望遠端状態側の球面収差の逆向きの補正形状とが収差を補正する上で特に問題になる。すなわち、レンズに要求される明るさ(Fナンバーを大きくすること)に対し、レンズ設計能力が不足しているのである。本発明では、主として上記球面収差の補正を良好に保ちつつ、今までの最小構成枚数で、現在までに無いほどダウンサイジングされたズームレンズを達成できている。
【0012】
次に、非球面、特に奇数次項の非球面係数と収差補正の関係とについて説明する。一般に非球面は光学系が回転対称なので、偶数次項の級数の和で表現されている。しかしながら、本発明ではこの級数に奇数次項を導入し、収差補正に更に有効に活用している。非球面をメリジオナル面内で考えると、奇数次項では像高Yの符号によってサグ量Xの値が異なり対称性が成立しないようにみえる。しかし、光軸をX軸とする直交座標系(X,Y,Z)をρ=(Y2+Z21/2で考えれば符号が一致するので対称性が成立する。
【0013】
3次収差は、球面系においても、偶数次項の非球面係数を有する非球面においても、屈折面が次式(A)、
(A) X=C2・ρ2+C4・ρ4+C6・ρ6+…
で示すようにρの偶数次項であるために発生するので、屈折面が奇数次項を含むということは、従来存在しない2次収差、4次収差等の偶数次の収差が発生することになる。また、単一曲面でかつ非球面の場合を想定すると、球面収差はまさに非球面係数に対応する。従って、奇数次項の非球面係数を導入することで、球面系、さらには3次の非球面項が存在しない非球面では得られない収差補正効果を得ることができる。
【0014】
また、一般的には、Xは次式(B)のように表すこともできる。
(B) X=ρ2・1/2r+C4・ρ4+C6・ρ6+…
式(B)に3次項C3と5次項C5とを加えることで次式(C)が得られる。
(C) X=ρ2・1/2r+C3・ρ3+C4・ρ4+C5・ρ5+C6・ρ6+…
例えば、2次の球面収差を導出すると、次式(D)のようになる。

Figure 0004453120
【0015】
ここで、nは屈折率、uは光軸とのなす角度、C3iは各面における非球面係数の3次項、hは入射高、Rは入射瞳半径をそれぞれ表している。3次の球面収差が入射高の4乗に比例し、瞳半径の3乗に比例するのに対し、2次の球面収差は入射高の3乗に比例し、瞳半径の2乗に比例している。従って、非球面係数の3次項を導入することにより、従来は補正することが困難であった低次の収差を補正できるので、更なるスペックの向上と高性能化とを達成することができる。以上球面収差について説明したが、歪曲収差やコマ収差等の他の収差についても同様に補正することができる。
【0016】
特に、本発明のようにズームレンズの負の第1レンズ群G1中のレンズ成分L11に上記非球面を用いると、広角側の低次の負の歪曲収差の補正能力が高くなる。このため、従来では歪曲収差の像高に対する傾き(微分値)が大きく、所謂陣笠形状をしていたが、3次項の導入により格段に改善することができる。また、コマ収差および球面収差も同様に、低次の収差がより補正できるため、例えば口径を大きくすることによって生じる入射高の比較的低い部分の負の収差を補正し、最小錯乱円を小さくすることができる。特に望遠側で効果的であり、大口径化が可能になる。また、本発明においては望遠側の軸上平行光線(軸上無限遠物点から射出された最も開口数の大きい光線)に対する偏角αが大きい面に上記非球面を導入すると、その効果が大きいため、像面側に凹面を向けた面に上記非球面を導入することが望ましい。この効果を上述したような更なるダウンサイジングの際の設計能力の向上に振り分けることによって、従来のズームレンズ以上の光学性能を得ることができる。
【0017】
次に、条件式(1)について説明する。条件式(1)は前記負の第1レンズ群G1中のレンズ成分L11に導入した非球面の3次項の非球面係数の適切な範囲を規定している。本発明で指定された上記非球面式で表現された非球面において、3次項の適切な条件設定を行うことで、広角側では歪曲収差とコマ収差との補正、望遠側では球面収差とコマ収差との補正を良好に行なうことができる。
【0018】
条件式(1)の上限値を上回る場合、非球面係数の3次項が非常に大きくなることを意味し、特に2次の球面収差の影響で入射高の比較的低い部分の球面収差(低次の球面収差)が大きく変位し、結果的に球面収差の傾き(微分値)が大きくなり、所謂うねりが顕著になり性能が低下し好ましくない。また、前記のようにコマ収差、歪曲収差等の諸収差も補正過多となり、逆に悪化する結果になる。なお、条件式(1)の上限値を1×10-3以下に設定するとより良い収差補正を行うことができる。さらに好ましくは、条件式(1)の上限値を5×10-4以下に設定すると本発明の効果を最大限に発揮できるので好ましい。
【0019】
逆に、条件式(1)の下限値を下回る場合、前記のような各収差の補正効果が薄れ、本発明の効果が十分に生かせなくなってしまう。なお、条件式(1)の下限値を5×10-6以上に設定するとより良い収差補正を行うことができる。さらに好ましくは、条件式(1)の下限値を1×10-6以上に設定すると本発明の効果を最大限に発揮できるので好ましい。また、非球面が本発明で指定された上記非球面式で表現された時、3次の非球面項C3がκ(円錐係数)の符号と逆符号の値をとることが、収差補正の観点から好ましい。
【0020】
また、本発明は、前記非球面式で表現した前記非球面の円錐係数κが、
(2) −1 < κ < 1
の条件を満足することが望ましい。
【0021】
条件式(2)は、前記負の第1レンズ群G1中のレンズ成分L11に導入した非球面のκ(円錐係数)の適切な範囲を規定している。非球面が本発明で定義された非球面式で表現されたとき、3次項の適切値に加えてκの項を最適化することで更に良好な収差補正を行うことができる。本発明の場合、κ(円錐係数)を球面以外の2次曲面をベースにした非球面を使用することによって、特に広角側の歪曲収差の補正、コマ収差の補正を助けている。
【0022】
条件式(2)の上限値を上回る場合、非球面のκ(円錐係数)が球面を越え、光軸近傍が曲率が弱く周辺部で曲率が強い楕円形状を有する非球面になり、逆に広角側の歪曲収差の補正、コマ収差の補正に悪影響を及ぼすので好ましくない。なお、条件式(2)の上限値を0.9以下に設定すると良好な収差補正をおこなうことができる。
【0023】
逆に、条件式(2)の下限値を下回る場合、非球面のκ(円錐係数)が非常に小さくなるため、周辺部分の曲率が著しく緩くなる。従って、本発明のような比較的物体側の負レンズにこのような非球面を導入すると、周辺部分の屈折力が弱まり、斜光線の入射高が高くなり、前玉径が大型化することがあるので好ましくない。なお、条件式(2)の下限値を−0.5以上に設定するとより小型化が実現できる。
【0024】
また、本発明は、望遠端状態における前記第1レンズ群G1の最も物体側の面の頂点から像面までの光軸に沿った距離をTL、
広角端状態における前記ズームレンズ全系の焦点距離をfw、
望遠端状態における前記ズームレンズ全系の焦点距離をftとそれぞれしたとき、
(3) 0.3≦(TL・fw)/ft2≦2
の条件を満足することが望ましい。
【0025】
条件式(3)は、光学系の小型化に関する条件であり、望遠端状態における光学系全系の全長TLと広角端状態、望遠端状態それぞれの焦点距離との適切な関係を規定している。条件式(3)の上限値を上回る場合、ズームレンズの焦点距離領域に対する大きさが著しく大きくなり、携帯性が悪化し、所謂標準ズームレンズとしては好ましくない。なお、条件式(3)の上限値を1以下に設定するとより良好な収差補正および小型化が実現でき、本発明の効果を最大限に発揮できる。
【0026】
逆に、条件式(3)の下限値を下回る場合、ズームレンズの焦点距離領域に対する大きさが著しく小さくなり、前記諸収差の補正が悪化し好ましくない。また、鏡筒設計時にズーム移動カム等の構造を設けることが困難になるので好ましくない。
【0027】
また、本発明は、前記第2レンズ群G2の焦点距離をf2、
望遠端状態における前記ズームレンズ全系の焦点距離をftとそれぞれしたとき、
(4) 0.3≦f2/ft≦0.6
の条件を満足することが望ましい。
【0028】
条件式(4)は第2レンズ群G2の適切なパワーバランスを規定している。上述したとおり、本発明は超小型のズームレンズに最適な解を提案するものであり、正の第2レンズ群の適切なパワーバランスは光学系全体の良好な収差バランスと実用的な大きさとを適切に設定する上で条件式(4)を満足することが望ましい。条件式(4)の上限値を上回る場合、第2レンズ群G2が弱いパワーで構成されることになる。従って、第2レンズ群G2は大型化し、変倍時の移動量が増し、結果的にバックフォーカスBFも長くなるために全系が大型化してしまい、小型化という目的から逸脱するので好ましくない。なお、条件式(4)の上限値を0.55以下に設定すると実用的な光学系の大きさに関する解を得ることができる。さらに好ましくは、条件式(4)の上限値を0.49以下に設定すると本発明の効果を最大限に発揮できるので望ましい。
【0029】
逆に、条件式(4)の下限値を下回る場合、第2レンズ群G2が強いパワーで構成されることになる。従って、本発明のような構成枚数の少ないズームレンズの場合、上述したように、特に望遠側の球面収差、コマ収差と非点収差の補正が悪化するので好ましくない。なお、条件式(4)の下限値を0.4以上に設定するとより良好な収差補正ができるので好ましい。さらに好ましくは、条件式(4)の下限値を0.42以上に設定すると本発明の効果を最大限に発揮できるので望ましい。
【0030】
また、本発明では、広角端状態における前記ズームレンズのバックフォーカスをBF、
前記ズームレンズ全系の許容する最大像高をyとそれぞれしたとき、
(5) 1.7≦BF/y≦2.5
の条件を満足することが望ましい。
【0031】
条件式(5)は広角端状態における光学系全系のバックフォーカスBFに対する条件で、光学系全系の許容できる最大画角時に対応する最大像高、換言すると像面のフォーマットサイズに対するイメージサークルの半径yで規格化した値の適切な範囲を規定している。条件式(5)の上限値を上回る場合、バックフォーカスが著しく大きくなり、小型化に反し、好ましくない。
【0032】
逆に、条件式(5)の下限値を下回る場合、バックフォーカスが著しく小さくなり、所謂一眼レフカメラのミラーに干渉してしまうので好ましくない。
【0033】
また、本発明のように小型で低コストかつ高性能のズームレンズを実現するには、第2レンズ群の構成が、物体側から少なくとも正・負・正の各レンズを有する構成にすることが望ましい。さらに好ましくは、正・正・負・正の4つのレンズのみで構成されていることが望ましい。
【0034】
また、本発明では、非球面レンズL11をガラス材料と樹脂材料との複合からなる部材により形成することが望ましい。これによりコストダウンを図ることができる。また、開口絞りは、第2レンズ群の物体側又は第2レンズ群中に設置することが望ましい。また、合焦動作は第1レンズ群G1を繰り出す(移動する)ことにより行うことが望ましいが、これに限られるものではなく、第2レンズ群又は第2レンズ群を構成する一部のレンズ成分を移動することで合焦しても良い。また、広角端状態と望遠端状態との合焦動作による繰り出し量は同一量に限定する必要はない。例えば、望遠端近傍を広角端に比べて著しく繰り出すことによりマクロ撮影をすることもできる。
【0035】
【実施例】
以下、添付図面に基づいて本発明の数値実施例を説明する。図1(a)〜(c)は第1及び第2実施例にかかるズームレンズのレンズ構成と移動軌跡とをそれぞれ示している。図1(a)は、広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態のレンズ構成をそれぞれ示している。物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2との負・正2群から構成されている。
【0036】
第1レンズ群G1は、物体側から順に、物体側に凸面を向け、像側の凹面に非球面を有する樹脂材料とガラス材料との複合からなる複合型負メニスカス非球面レンズL11と、物体側に凸面を向けた正メニスカスレンズL12とから構成され、第2レンズ群G2は、物体側から順に、正レンズL21と、負レンズL22と、正レンズL23とから構成され、該正レンズL21は2つの正レンズを有し、その2枚の正レンズの間に開口絞りSが設けられている。
【0037】
また、第2レンズ群G2の像側には変倍中に空気間隔が変化するフレアーストッパーSFが設けられている。変倍動作は広角端状態から望遠端状態に向かって、第1レンズ群G1と第2レンズ群G2との間の空気間隔が縮小するように第1レンズ群G1と第2レンズ群G2とを移動することによって行なう。また、近距離合焦動作は前群である第1レンズ群G1を物体方向に移動して行なう。
【0038】
参考例
以下の表1に参考例の諸元値を掲げる。レンズデータにおいて、面番号は物体側から数えたレンズ面の順番、rはレンズ面の曲率半径、dはレンズ面の光軸上の面間隔、nはd線(λ=587.56nm)に対する屈折率、νはアッベ数をそれぞれ表している。また、D0は物体から第1面までの光軸に沿った距離、fは焦点距離、FnoはFナンバー、2ωは画角、BFはバックフォーカス(d14+d15)をそれぞれ示している。また、非球面は光軸から垂直方向の高さyにおける各非球面の頂点の接平面から光軸方向に沿った距離をS(y)とし、近軸曲率半径をR、円錐係数をκ、n次の非球面係数をCnとするとき、以下の非球面式で与えられる。
【0039】
【数1】
S(y)=(y2/R)/〔1+(1−κ・y2/R21/2〕+C3・|y|3+C4・y4+C5・|y|5+C6・y6+C8・y8+C10・y10+C12・y12+C14・y14
【0040】
また、諸元表中の非球面には面番号の左側に★印を付し、r欄には近軸曲率半径を記載する。なお、以下全ての実施例の諸元値及び非球面において本実施例と同様の符号を用いる。
【0041】
【表1】
Figure 0004453120
Figure 0004453120
ここで、1'-POS,2”-POS等の符号は1-POSから3-POSに相当する焦点距離における近距離合焦時のデータを示している。
(条件対応値)
(1) |C3|= 0.78533×10-5
(2) κ= −0.0877
(3) (TL・fw)/ft2 =0.561
(4) f2/ft=0.472
(5) BF/y=1.974
【0042】
図2は参考例の無限遠合焦時での広角端状態における諸収差、図3は無限遠合焦時での望遠端状態における諸収差をそれぞれ示す図である。収差図において、FNOはFナンバー、Yは像高、d,gはそれぞれd線(λ=587.56nm),g線(λ=435.84nm)における収差曲線を示している。また、非点収差において、実線はサジタル像面、点線はメリジオナル像面をそれぞれ示している。なお、以下全ての実施例の収差図において、本参考例と同様の符号を用いる。これら収差図からも明らかなように、良好に収差補正がされていることがわかる。
【0043】
(第実施例)
表2に第実施例の諸元値を掲げる。
【0044】
【表2】
Figure 0004453120
Figure 0004453120
ここで、1'-POS,2”-POS等の符号は1-POSから3-POSに相当する焦点距離における近距離合焦時のデータを示している。
(条件対応値)
(1) |C3|= 0.80603×10-5
(2) κ=0.7608
(3) (TL・fw)/ft2 =0.548
(4) f2/ft=0.457
(5) BF/y=1.907
【0045】
図4は本実施例の無限遠合焦時での広角端状態における諸収差、図5は無限遠合焦時での望遠端状態における諸収差をそれぞれ示す図である。これら収差図からも明らかなように、良好に収差補正がされていることがわかる。
【0046】
【発明の効果】
以上説明したように、本発明によれば、画角2ω=76.5〜30.9゜を有し、FナンバーがF3.3〜5.8程度の口径比を有し、約2.7倍程度の比較的大きい変倍比を有する高性能で、レンズ構成枚数が著しく少ない超小型のズームレンズを提供できる。
【図面の簡単な説明】
【図1】(a)〜(c)は、参考例及び第実施例に共通するレンズ構成及び移動軌跡を示す図である。
【図2】参考例の無限遠合焦時での広角端状態における諸収差図である。
【図3】参考例の無限遠合焦時での望遠端状態における諸収差図である。
【図4】第実施例の無限遠合焦時での広角端状態における諸収差図である。
【図5】第実施例の無限遠合焦時での望遠端状態における諸収差図である。
【符号の説明】
G1 第1レンズ群
G2 第2レンズ群
L11 第1レンズ群内の非球面負レンズ成分
L12 第1レンズ群内の正レンズ成分
L21 第2レンズ群内の第1正レン
L22 第2レンズ群内の負レン
L23 第2レンズ群内の第2正レン
S 開口絞り
SF フレアーストッパー[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a negative leading zoom lens, and more particularly to an ultra-compact two-group zoom lens.
[0002]
[Prior art]
Conventionally, many so-called standard zoom lenses starting from the negative and positive groups have been proposed for the purpose of downsizing and cost reduction. In particular, as a zoom lens in which the first lens group is composed of only two lenses, and which achieves both miniaturization, cost reduction and high performance, Japanese Patent Application Laid-Open No. 5-88084 filed by the same applicant as the present invention. A lens disclosed in Japanese Patent Laid-Open No. 5-249376 and the like, and a lens disclosed in Japanese Patent Laid-Open No. 8-334694, etc. are known as an example in which the number of constituents is large but the size is further reduced. An example of providing an aspheric lens having a third-order aspheric term is a lens disclosed in Japanese Patent Application Laid-Open No. 10-325923 filed by the same applicant as the present invention.
[0003]
However, in a standard zoom lens having a large angle of view and a large zoom ratio, further downsizing (miniaturization), cost reduction (cost reduction), and realization of high performance image quality are desired.
[0004]
[Problems to be solved by the invention]
In the zoom lens described in Japanese Patent Laid-Open No. 5-88084, the first negative lens in the negative first group is provided with an aspherical surface, and aberration correction is performed mainly with respect to distortion on the wide angle side. However, further improvement of these specifications is necessary from the viewpoint of the angle of view, zoom ratio, size, and brightness at the wide-angle end state.
[0005]
Further, the zoom lens described in Japanese Patent Laid-Open No. 5-249376 has advanced in terms of the angle of view, zoom ratio, and brightness at the wide-angle end state, but further improvement is required in terms of downsizing. is there. Further, with respect to aberrations, it is necessary to further improve correction of various aberrations such as fluctuations in spherical aberration due to miniaturization and astigmatism, distortion, and lateral chromatic aberration.
[0006]
The zoom lens described in Japanese Patent Application Laid-Open No. 8-334694 has advanced in terms of the angle of view, zoom ratio, size, and brightness in the wide-angle end state, but the number of components is large and the cost is reduced. On the other hand, it is disadvantageous. For the purpose of reducing the cost to the limit, it is necessary to further reduce the number of components.
[0007]
In the zoom lens described in Japanese Patent Laid-Open No. 10-325923, the first negative lens in the negative first group is provided with an aspherical surface to correct various aberrations satisfactorily. This is far from the ultimate downsizing, cost reduction, and maintenance of high-performance image quality, and it is a large, ultra-wide-angle zoom lens with many components. Therefore, considerable downsizing is required and it is impossible to achieve the objectives of the present application on this prior art extension.
[0008]
The present invention has been made in view of the above problems, and includes a large angle of view with a maximum angle of view exceeding 76 °, an F-number at the wide angle end state having an aperture ratio of about F3.3, and about 2. An object of the present invention is to provide a high-performance and ultra-compact zoom lens having a relatively large zoom ratio of about 7 times.
[0009]
[Means for Solving the Problems]
In order to solve the above problems, the present invention includes, in order from the object side, a first lens group G1 having a negative refractive power and a second lens group G2 having a positive refractive power, and the first lens group G1. In the zoom lens that changes the magnification by changing the air gap between the second lens group G2 and the second lens group G2,
The first lens group G1 includes a negative lens component L11 having an aspheric surface on the concave surface side and a positive lens component L12.
The aspheric surface has a distance (sag amount) along the optical axis direction from the tangent plane of each aspheric surface at a height y in the vertical direction from the optical axis, S (y),
The paraxial radius of curvature is R,
The cone coefficient is κ,
Assuming that the nth-order aspheric coefficient is Cn, the following aspheric expression:
S (y) = (y 2 / R) / [1+ (1−κ · y 2 / R 2 ) 1/2 ] + C 3 · | y | 3 + C 4 · y 4 + C 5 · | y | 5 + C 6 · y 6 + C 8 · y 8 + C10 · y 10 + C12 · y 12 + C14 · y 14
When expressed in
(1) 1 × 10 -7 ≦ | C3 | satisfy the condition of ≦ 1 × 10 -2,
The second lens group G2 in order from the object side, and two positive lenses, a negative lens, and a positive lens,
The distance along the optical axis from the apex of the surface closest to the object side of the first lens group G1 in the telephoto end state to the image plane is TL,
The focal length of the entire zoom lens system in the wide-angle end state is fw,
When the focal length of the entire zoom lens system in the telephoto end state is ft,
(3) 0.3 ≦ (TL · fw) / ft 20.548
Satisfy the conditions of
When the focal length of the second lens group G2 and the f 2,
(4) 0.3 ≦ f2 / ft ≦ 0.457
A zoom lens characterized by satisfying the following conditions is provided.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings. First, a basic lens configuration of a zoom lens according to an embodiment of the present invention will be described. The present invention is basically a zoom lens type having two groups of negative and positive, downsizing to the limit, reducing cost to the limit by reducing the number of components, realizing a large angle of view, and a high zoom ratio, and being extremely small It is characterized by providing a zoom lens that can maintain higher performance image quality while reducing cost and cost. In particular, compared to zoom lenses of the same class, distortion, coma flare, and spherical aberration on the telephoto end are corrected very well despite the fact that the optical system is very compact and has a small number of components. It is a great feature. This feature can be realized by providing an aspherical surface introduced to the lens component L11 in the negative first lens group G1 with an aberration correction effect that was not known at all in the prior art.
[0011]
Usually, in the case of this class of two-group zoom lens, in order to make it more compact, it is necessary to extremely increase the mutual power (refractive power) between the first lens group and the second lens group. At this time, the variation due to the magnification of the spherical aberration and the correction shape in the opposite direction of the spherical aberration on the telephoto end state side are particularly problematic in correcting the aberration. That is, the lens design capability is insufficient for the brightness required for the lens (increasing the F number). In the present invention, it is possible to achieve a zoom lens that has been downsized as much as ever, with the minimum number of constituent elements so far, while maintaining good correction of the spherical aberration.
[0012]
Next, the relationship between the aspheric surface, in particular, the aspheric coefficient of the odd-order term and the aberration correction will be described. In general, an aspherical surface is represented by the sum of a series of even-order terms because the optical system is rotationally symmetric. However, in the present invention, an odd-order term is introduced into this series and used more effectively for aberration correction. Considering the aspherical surface in the meridional plane, it appears that the odd-order terms have different values of the sag amount X depending on the sign of the image height Y, and symmetry is not established. However, if the orthogonal coordinate system (X, Y, Z) having the optical axis as the X-axis is considered as ρ = (Y 2 + Z 2 ) 1/2 , the signs coincide, so that symmetry is established.
[0013]
The third-order aberration is that the refracting surface is expressed by the following formula (A) in both a spherical system and an aspheric surface having an even-order aspheric coefficient.
(A) X = C 2 · ρ 2 + C 4 · ρ 4 + C 6 · ρ 6 + ...
Since this occurs because it is an even-order term of ρ, the fact that the refractive surface includes an odd-order term means that even-order aberrations such as second-order aberration and fourth-order aberration that do not exist conventionally occur. Further, assuming a single curved surface and an aspheric surface, the spherical aberration corresponds to the aspheric coefficient. Therefore, by introducing an aspheric coefficient of odd-order terms, it is possible to obtain an aberration correction effect that cannot be obtained by a spherical system, or an aspheric surface that does not have a third-order aspheric term.
[0014]
In general, X can also be expressed as in the following formula (B).
(B) X = ρ 2 · 1 / 2r + C 4 · ρ 4 + C 6 · ρ 6 +...
By adding the third-order term C3 and the fifth-order term C5 to the equation (B), the following equation (C) is obtained.
(C) X = ρ 2 · 1 / 2r + C3 · ρ 3 + C4 · ρ 4 + C5 · ρ 5 + C6 · ρ 6 + ...
For example, when second-order spherical aberration is derived, the following equation (D) is obtained.
Figure 0004453120
[0015]
Here, n is the refractive index, u is the angle formed with the optical axis, C3i is the third-order term of the aspheric coefficient on each surface, h is the incident height, and R is the entrance pupil radius. The third-order spherical aberration is proportional to the fourth power of the incident height and proportional to the third power of the pupil radius, whereas the second-order spherical aberration is proportional to the third power of the incident height and proportional to the second power of the pupil radius. ing. Therefore, by introducing the third-order term of the aspheric coefficient, low-order aberrations that have been difficult to correct in the past can be corrected, so that further improvement in specifications and higher performance can be achieved. Although spherical aberration has been described above, other aberrations such as distortion and coma can be corrected in the same manner.
[0016]
In particular, when the aspherical surface is used for the lens component L11 in the negative first lens group G1 of the zoom lens as in the present invention, the ability to correct low-order negative distortion on the wide angle side is enhanced. For this reason, in the past, the distortion (differential value) of the distortion aberration with respect to the image height was large and the so-called Jinkasa shape was used, but it can be markedly improved by introducing a third-order term. Similarly, coma and spherical aberration can also be corrected for low-order aberrations. For example, negative aberrations at relatively low incident heights caused by increasing the aperture are corrected, and the minimum circle of confusion is reduced. be able to. This is particularly effective on the telephoto side and enables a large aperture. In the present invention, if the aspherical surface is introduced into a surface having a large declination α with respect to a parallel beam on the telephoto side (a beam having the largest numerical aperture emitted from an infinite object point on the axis), the effect is large. For this reason, it is desirable to introduce the aspherical surface into a surface with the concave surface facing the image surface side. By allocating this effect to the improvement of the design capability at the time of further downsizing as described above, it is possible to obtain optical performance higher than that of a conventional zoom lens.
[0017]
Next, conditional expression (1) will be described. Conditional expression (1) defines an appropriate range of the aspheric coefficient of the third-order term of the aspheric surface introduced to the lens component L11 in the negative first lens group G1. In the aspherical surface expressed by the above-mentioned aspherical surface specified in the present invention, by appropriately setting the third-order term, correction of distortion aberration and coma aberration on the wide angle side, and spherical aberration and coma aberration on the telephoto side Can be satisfactorily corrected.
[0018]
When the upper limit value of the conditional expression (1) is exceeded, it means that the third-order term of the aspheric coefficient becomes very large. (Spherical aberration) is greatly displaced, resulting in an increase in the slope (differential value) of the spherical aberration, so-called waviness becomes noticeable, and the performance deteriorates. In addition, as described above, various aberrations such as coma and distortion are excessively corrected, resulting in worsening. If the upper limit of conditional expression (1) is set to 1 × 10 −3 or less, better aberration correction can be performed. More preferably, the upper limit value of the conditional expression (1) is set to 5 × 10 −4 or less because the effects of the present invention can be maximized.
[0019]
On the other hand, if the lower limit value of conditional expression (1) is not reached, the correction effect of each aberration as described above is weakened, and the effect of the present invention cannot be fully utilized. If the lower limit of conditional expression (1) is set to 5 × 10 −6 or more, better aberration correction can be performed. More preferably, the lower limit value of the conditional expression (1) is set to 1 × 10 −6 or more because the effect of the present invention can be maximized. In addition, when the aspherical surface is expressed by the above-mentioned aspherical expression specified in the present invention, the third-order aspherical term C3 takes a value opposite to the sign of κ (conical coefficient). To preferred.
[0020]
In the present invention, the aspherical cone coefficient κ expressed by the aspherical expression is
(2) −1 <κ <1
It is desirable to satisfy the following conditions.
[0021]
Conditional expression (2) defines an appropriate range of κ (cone coefficient) of the aspherical surface introduced into the lens component L11 in the negative first lens group G1. When the aspheric surface is expressed by the aspheric expression defined in the present invention, it is possible to perform further better aberration correction by optimizing the term of κ in addition to the appropriate value of the third-order term. In the case of the present invention, the correction of distortion on the wide-angle side and the correction of coma are particularly aided by using an aspheric surface with a κ (conic coefficient) based on a quadric surface other than a spherical surface.
[0022]
If the upper limit of conditional expression (2) is exceeded, the aspherical surface κ (cone coefficient) exceeds the spherical surface, and the vicinity of the optical axis becomes an aspherical surface having an elliptical shape with a weak curvature and a strong curvature at the periphery, and conversely a wide angle This is unfavorable because it adversely affects the correction of distortion on the side and the correction of coma. If the upper limit value of conditional expression (2) is set to 0.9 or less, good aberration correction can be performed.
[0023]
On the other hand, when the lower limit value of conditional expression (2) is not reached, κ (cone coefficient) of the aspheric surface becomes very small, so that the curvature of the peripheral portion becomes remarkably gentle. Therefore, when such an aspherical surface is introduced into a comparatively object-side negative lens as in the present invention, the refractive power of the peripheral portion is weakened, the incident height of oblique rays is increased, and the front lens diameter is increased. This is not preferable. In addition, when the lower limit value of the conditional expression (2) is set to −0.5 or more, further downsizing can be realized.
[0024]
In the present invention, the distance along the optical axis from the vertex of the most object-side surface of the first lens group G1 to the image plane in the telephoto end state is TL,
The focal length of the entire zoom lens system in the wide-angle end state is fw,
When the focal length of the entire zoom lens system in the telephoto end state is ft,
(3) 0.3 ≦ (TL · fw) / ft 2 ≦ 2
It is desirable to satisfy the following conditions.
[0025]
Conditional expression (3) is a condition relating to downsizing of the optical system, and defines an appropriate relationship between the total length TL of the entire optical system in the telephoto end state and the focal lengths of the wide-angle end state and the telephoto end state. . When the upper limit of conditional expression (3) is exceeded, the size of the zoom lens with respect to the focal length region becomes remarkably large and portability deteriorates, which is not preferable as a so-called standard zoom lens. If the upper limit value of conditional expression (3) is set to 1 or less, better aberration correction and miniaturization can be realized, and the effects of the present invention can be maximized.
[0026]
On the other hand, if the lower limit value of conditional expression (3) is not reached, the size of the zoom lens with respect to the focal length region becomes remarkably small, and the correction of the various aberrations deteriorates. Further, it is not preferable because it becomes difficult to provide a structure such as a zoom moving cam when designing the lens barrel.
[0027]
In the present invention, the focal length of the second lens group G2 is f2,
When the focal length of the entire zoom lens system in the telephoto end state is ft,
(4) 0.3 ≦ f2 / ft ≦ 0.6
It is desirable to satisfy the following conditions.
[0028]
Conditional expression (4) defines an appropriate power balance of the second lens group G2. As described above, the present invention proposes an optimal solution for an ultra-compact zoom lens, and an appropriate power balance of the positive second lens group can provide a good aberration balance and a practical size of the entire optical system. It is desirable to satisfy the conditional expression (4) in setting appropriately. When the upper limit value of conditional expression (4) is exceeded, the second lens group G2 is configured with weak power. Accordingly, the second lens group G2 is increased in size, the amount of movement during zooming is increased, and as a result, the back focus BF is also lengthened. As a result, the entire system is increased in size. If the upper limit of conditional expression (4) is set to 0.55 or less, a practical solution for the size of the optical system can be obtained. More preferably, it is desirable to set the upper limit of conditional expression (4) to 0.49 or less because the effects of the present invention can be maximized.
[0029]
Conversely, if the lower limit value of conditional expression (4) is not reached, the second lens group G2 is configured with a strong power. Therefore, in the case of a zoom lens having a small number of components as in the present invention, as described above, correction of spherical aberration, coma and astigmatism on the telephoto side is particularly undesirable. It is preferable to set the lower limit of conditional expression (4) to 0.4 or more because better aberration correction can be performed. More preferably, setting the lower limit value of conditional expression (4) to 0.42 or more is desirable because the effects of the present invention can be maximized.
[0030]
In the present invention, the back focus of the zoom lens in the wide-angle end state is set to BF,
When the maximum image height allowed by the entire zoom lens system is y,
(5) 1.7 ≦ BF / y ≦ 2.5
It is desirable to satisfy the following conditions.
[0031]
Conditional expression (5) is a condition for the back focus BF of the entire optical system in the wide-angle end state, and the maximum image height corresponding to the allowable maximum angle of view of the entire optical system, in other words, the image circle for the format size of the image plane. An appropriate range of values normalized by the radius y is defined. When the value exceeds the upper limit value of the conditional expression (5), the back focus is remarkably increased, which is unfavorable against downsizing.
[0032]
On the other hand, if the lower limit value of conditional expression (5) is not reached, the back focus is remarkably reduced and interferes with the mirror of a so-called single-lens reflex camera.
[0033]
Further, to achieve a small, low-cost, high-performance zoom lens as in the present invention, the configuration of the second lens group is configured to have at least positive-negative-positive individual lens from the object side Is desirable. More preferably, it is desirable that consists of only positive-positive-negative-positive four lens.
[0034]
In the present invention, it is desirable to form the aspheric lens L11 by a member made of a composite of a glass material and a resin material. Thereby, cost reduction can be aimed at. The aperture stop is preferably installed on the object side of the second lens group or in the second lens group. Further, the focusing operation is desirably performed by extending (moving) the first lens group G1, but is not limited to this, and some lens components constituting the second lens group or the second lens group. You may focus by moving. Further, the feeding amount by the focusing operation in the wide-angle end state and the telephoto end state need not be limited to the same amount. For example, macro photography can be performed by extending the vicinity of the telephoto end significantly compared to the wide-angle end.
[0035]
【Example】
Hereinafter, numerical examples of the present invention will be described with reference to the accompanying drawings. FIGS. 1A to 1C show the lens configuration and movement trajectory of the zoom lenses according to the first and second embodiments, respectively. 1A shows a lens configuration in the wide-angle end state, FIG. 1B shows an intermediate focal length state, and FIG. 1C shows a lens configuration in the telephoto end state. In order from the object side, the first lens group G1 having negative refractive power and the second lens group G2 having positive refractive power are composed of two negative and positive groups.
[0036]
The first lens group G1 includes, in order from the object side, a composite negative meniscus aspheric lens L11 made of a composite of a resin material and a glass material having a convex surface facing the object side and an aspheric surface on the concave surface on the image side; to a positive meniscus lens L12 having a convex surface, the second lens unit G2, in order from the object side, a positive lens L 21, a negative lens L 22, and a positive lens L 23 Prefecture, positive lens L 21 has two positive lenses, an aperture stop S is provided between the two positive lenses.
[0037]
Further, a flare stopper SF is provided on the image side of the second lens group G2 so that the air interval changes during zooming. In the zooming operation, the first lens group G1 and the second lens group G2 are moved so that the air gap between the first lens group G1 and the second lens group G2 decreases from the wide-angle end state toward the telephoto end state. Do by moving. The short-distance focusing operation is performed by moving the first lens group G1, which is the front group, in the object direction.
[0038]
( Reference example )
Table 1 below listed the various values of the reference example. In the lens data, the surface number is the order of the lens surface counted from the object side, r is the radius of curvature of the lens surface, d is the surface interval on the optical axis of the lens surface, and n is the refraction with respect to the d-line (λ = 587.56 nm). The rate and ν represent the Abbe number, respectively. D0 is the distance along the optical axis from the object to the first surface, f is the focal length, Fno is the F number, 2ω is the angle of view, and BF is the back focus (d14 + d15). The aspherical surface is defined as S (y), the distance along the optical axis direction from the tangent plane of each aspherical surface at a height y in the vertical direction from the optical axis, the paraxial radius of curvature is R, the conic coefficient is κ, When the nth-order aspheric coefficient is Cn, it is given by the following aspheric expression.
[0039]
[Expression 1]
S (y) = (y 2 / R) / [1+ (1−κ · y 2 / R 2 ) 1/2 ] + C 3 · | y | 3 + C 4 · y 4 + C 5 · | y | 5 + C 6 · y 6 + C 8・ Y 8 + C10 ・ y 10 + C12 ・ y 12 + C14 ・ y 14
[0040]
In addition, the aspherical surface in the specification table is marked with a star on the left side of the surface number, and the paraxial radius of curvature is described in the r column. It should be noted that the same reference numerals as those in the present embodiment are used in the specification values and aspheric surfaces of all the embodiments below.
[0041]
[Table 1]
Figure 0004453120
Figure 0004453120
Here, symbols such as 1′-POS, 2 ″ -POS indicate data at the time of focusing at a short distance at a focal length corresponding to 1-POS to 3-POS.
(Conditional value)
(1) | C3 | = 0.78533 × 10 -5
(2) κ = −0.0877
(3) (TL · fw) / ft 2 = 0.561
(4) f2 / ft = 0.472
(5) BF / y = 1.974
[0042]
FIG. 2 is a diagram showing various aberrations in the wide-angle end state when focusing on infinity in the reference example , and FIG. 3 is a diagram showing various aberrations in the telephoto end state when focusing on infinity. In the aberration diagrams, FNO is the F number, Y is the image height, and d and g are aberration curves at the d-line (λ = 587.56 nm) and g-line (λ = 435.84 nm), respectively. In astigmatism, the solid line represents the sagittal image plane, and the dotted line represents the meridional image plane. In the following the aberrations of all embodiments is the same as the other embodiment. As is apparent from these aberration diagrams, it can be seen that the aberrations are corrected satisfactorily.
[0043]
(First Embodiment)
Table 2 lists the specification values of the first embodiment.
[0044]
[Table 2]
Figure 0004453120
Figure 0004453120
Here, symbols such as 1′-POS, 2 ″ -POS indicate data at the time of focusing at a short distance at a focal length corresponding to 1-POS to 3-POS.
(Conditional value)
(1) | C3 | = 0.80603 × 10 -5
(2) κ = 0.7608
(3) (TL · fw) / ft 2 = 0.548
(4) f2 / ft = 0.457
(5) BF / y = 1.907
[0045]
FIG. 4 is a diagram showing various aberrations in the wide-angle end state when focusing on infinity according to the present embodiment, and FIG. 5 is a diagram showing various aberrations in the telephoto end state when focusing on infinity. As is apparent from these aberration diagrams, it can be seen that the aberrations are corrected satisfactorily.
[0046]
【The invention's effect】
As described above, according to the present invention, the angle of view is 2ω = 76.5 to 30.9 °, the F-number has an aperture ratio of about F3.3 to 5.8, and about 2.7. It is possible to provide an ultra-compact zoom lens having a high performance with a relatively large zoom ratio of about double and an extremely small number of lenses.
[Brief description of the drawings]
FIGS. 1A to 1C are diagrams illustrating lens configurations and movement trajectories common to a reference example and a first example.
FIG. 2 is a diagram of various types of aberration at the wide-angle end state when focusing on infinity of the reference example.
FIG. 3 is a diagram illustrating various aberrations in a telephoto end state when focusing on infinity according to a reference example .
FIG. 4 is a diagram illustrating various aberrations in the wide-angle end state when focusing on infinity according to the first example.
FIG. 5 is a diagram illustrating various aberrations in the telephoto end state at the time of focusing on infinity according to the first example.
[Explanation of symbols]
First positive lens of the positive lens component L21 in the second lens group aspherical negative lens component L12 in the first lens group G1 first lens unit G2 second lens group L11 in the first lens group
L22 negative lens in the second lens group
L23 second positive lens in the second lens group
S Aperture stop SF Flare stopper

Claims (4)

物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2とからなり、該第1レンズ群G1と該第2レンズ群G2との空気間隔を変化させることにより変倍するズームレンズにおいて、
前記第1レンズ群G1は凹面側に非球面を有する負のレンズ成分L11と正のレンズ成分L12とからなり、
前記非球面は光軸から垂直方向の高さyにおける各非球面の頂点の接平面から光軸方向に沿った距離(サグ量)をS(y)、
近軸曲率半径をR、
円錐係数をκ、
n次の非球面係数をCnとして、以下の非球面式、
S(y)=(y2/R)/〔1+(1−κ・y2/R21/2〕+C3・|y|3+C4・y4+C5・|y|5+C6・y6+C8・y8+C10・y10+C12・y12+C14・y14
で表現したとき、
(1) 1×10-7 ≦ |C3| ≦ 1×10-2の条件を満足し、
前記第2レンズ群G2は物体側から順に、正レンズ2枚と、負レンズと、正レンズとからなり、
望遠端状態における前記第1レンズ群G1の最も物体側の面の頂点から像面までの光軸に沿った距離をTL、
広角端状態における前記ズームレンズ全系の焦点距離をfw、
望遠端状態における前記ズームレンズ全系の焦点距離をftとそれぞれしたとき、
(3) 0.3 ≦ (TL・fw)/ft20.548
の条件を満足し、
前記第2レンズ群G2の焦点距離をf2としたとき、
(4) 0.3 ≦ f2/ft ≦ 0.457
の条件を満足することを特徴とするズームレンズ。
In order from the object side, the air gap between the first lens group G1 having negative refractive power and a second lens group G2 having positive refractive power, the first lens group G1 and the second lens group G2 In a zoom lens that changes magnification by changing
The first lens group G1 includes a negative lens component L11 having an aspheric surface on the concave surface side and a positive lens component L12.
The aspheric surface has a distance (sag amount) along the optical axis direction from the tangent plane of each aspheric surface at a height y in the vertical direction from the optical axis, S (y),
The paraxial radius of curvature is R,
The cone coefficient is κ,
Assuming that the nth-order aspheric coefficient is Cn,
S (y) = (y 2 / R) / [1+ (1−κ · y 2 / R 2 ) 1/2 ] + C 3 · | y | 3 + C 4 · y 4 + C 5 · | y | 5 + C 6 · y 6 + C 8・ Y 8 + C10 ・ y 10 + C12 ・ y 12 + C14 ・ y 14
When expressed in
(1) 1 × 10 -7 ≦ | C3 | satisfy the condition of ≦ 1 × 10 -2,
The second lens group G2 in order from the object side, and two positive lenses, a negative lens, and a positive lens,
The distance along the optical axis from the apex of the surface closest to the object side of the first lens group G1 in the telephoto end state to the image plane is TL,
The focal length of the entire zoom lens system in the wide-angle end state is fw,
When the focal length of the entire zoom lens system in the telephoto end state is ft,
(3) 0.3 ≦ (TL · fw) / ft 2 ≦ 0.548
Satisfy the conditions of
When the focal length of the second lens group G2 and the f 2,
(4) 0.3 ≦ f2 / ft ≦ 0.457
A zoom lens that satisfies the following conditions.
前記非球面式で表わされる前記非球面の円錐係数κは、
(2) −1 < κ < 1
の条件を満足することを特徴とする請求項1記載のズームレンズ。
The aspherical cone coefficient κ expressed by the aspherical expression is
(2) −1 <κ <1
The zoom lens according to claim 1, wherein the following condition is satisfied.
広角端状態における前記ズームレンズのバックフォーカスをBF、
前記ズームレンズ全系の許容する最大像高をyとそれぞれしたとき、
(5) 1.7 ≦ BF/y ≦ 2.5
の条件を満足することを特徴とする請求項1または2に記載のズームレンズ。
The back focus of the zoom lens in the wide-angle end state is BF,
When the maximum image height allowed by the entire zoom lens system is y,
(5) 1.7 ≦ BF / y ≦ 2.5
The zoom lens according to claim 1 or 2, characterized by satisfying the condition.
前記第1レンズ群G1中の非球面を有する前記負レンズ成分L11はガラス材料と樹脂材料との複合からなる部材により形成されていることを特徴とする請求項1乃至のいずれか1項に記載のズームレンズ。Any one of claims 1 to 3 wherein the negative lens component L11 having an aspheric surface in the first lens group G1 is characterized in that it is formed by a member made of a composite of glass and resin materials Zoom lens described in 1.
JP17140599A 1999-06-17 1999-06-17 Zoom lens Expired - Lifetime JP4453120B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17140599A JP4453120B2 (en) 1999-06-17 1999-06-17 Zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17140599A JP4453120B2 (en) 1999-06-17 1999-06-17 Zoom lens

Publications (2)

Publication Number Publication Date
JP2001004920A JP2001004920A (en) 2001-01-12
JP4453120B2 true JP4453120B2 (en) 2010-04-21

Family

ID=15922550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17140599A Expired - Lifetime JP4453120B2 (en) 1999-06-17 1999-06-17 Zoom lens

Country Status (1)

Country Link
JP (1) JP4453120B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4497514B2 (en) * 2003-09-11 2010-07-07 フジノン株式会社 Wide angle zoom lens
JP4802658B2 (en) 2005-10-25 2011-10-26 コニカミノルタオプト株式会社 Magnification optical system, imaging lens device, and digital device
JP4898200B2 (en) 2005-11-30 2012-03-14 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP5235619B2 (en) 2008-11-12 2013-07-10 キヤノン株式会社 Optical element and optical system having the same
US8411368B2 (en) 2009-02-02 2013-04-02 Panasonic Corporation Zoom lens system, interchangeable lens apparatus and camera system
JP5340759B2 (en) 2009-02-02 2013-11-13 パナソニック株式会社 Zoom lens system, interchangeable lens device, and camera system
JP5280232B2 (en) 2009-02-02 2013-09-04 パナソニック株式会社 Zoom lens system, interchangeable lens device, and camera system

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3033138B2 (en) * 1990-06-13 2000-04-17 ミノルタ株式会社 Compact zoom lens
JPH0588084A (en) * 1991-09-30 1993-04-09 Nikon Corp Zoom lens of two-group constitution
JP3200925B2 (en) * 1992-03-05 2001-08-20 株式会社ニコン Zoom lens with wide angle of view
JP3180411B2 (en) * 1992-03-06 2001-06-25 株式会社ニコン Standard zoom lens
JPH0611650A (en) * 1992-03-10 1994-01-21 Nikon Corp Zoom lens
JP3331223B2 (en) * 1992-03-30 2002-10-07 オリンパス光学工業株式会社 Small two-group zoom lens
JP3258375B2 (en) * 1992-06-01 2002-02-18 オリンパス光学工業株式会社 Small two-group zoom lens
JP3268824B2 (en) * 1992-06-01 2002-03-25 オリンパス光学工業株式会社 Small two-group zoom lens
JPH06337374A (en) * 1993-05-31 1994-12-06 Nikon Corp Zoom lens having vibration proof function
JP3331011B2 (en) * 1993-07-08 2002-10-07 オリンパス光学工業株式会社 Small two-group zoom lens
JPH07104182A (en) * 1993-10-04 1995-04-21 Casio Comput Co Ltd Photographic lens
JP3404862B2 (en) * 1994-01-17 2003-05-12 株式会社ニコン Optical system with flare stopper
JPH0933810A (en) * 1995-07-20 1997-02-07 Sony Corp Zoom lens
JP4051731B2 (en) * 1996-09-04 2008-02-27 株式会社ニコン High magnification zoom lens
JPH10282417A (en) * 1997-04-10 1998-10-23 Minolta Co Ltd Compact zoom lens
JPH1152235A (en) * 1997-07-31 1999-02-26 Canon Inc Zoom lens

Also Published As

Publication number Publication date
JP2001004920A (en) 2001-01-12

Similar Documents

Publication Publication Date Title
US8867147B2 (en) Imaging lens, optical apparatus equipped therewith and method for manufacturing imaging lens
US6844991B2 (en) Fisheye lens
JP3822268B2 (en) Zoom lens
JP3769373B2 (en) Bright wide-angle lens
JP3200925B2 (en) Zoom lens with wide angle of view
US20090185293A1 (en) Wide-angle lens, optical apparatus, and method for focusing
JPH05157965A (en) Wide-angle lens
JP2000338397A (en) Zoom lens
JPH0868941A (en) High-magnification zoom lens
JPH10148756A (en) Compact wide-angle zoom lens
JPH1020193A (en) Zoom lens
JPH10246854A (en) Compact wide-angle lens
JP4654506B2 (en) Zoom lens
JP4453120B2 (en) Zoom lens
JP3441958B2 (en) 3-group zoom lens
JPH09211327A (en) Zoom lens
JP4210876B2 (en) Zoom lens
JPH10197794A (en) Zoom lens
JPH06130298A (en) Compact zoom lens
JP2000275525A (en) Variable focal length lens system
JPH07104183A (en) Bright triplet lens
JP3415765B2 (en) Zoom lens
JPH07140390A (en) Variable power lens
JPH11211985A (en) Zoom lens
JP3744042B2 (en) Zoom lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4453120

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term