Nothing Special   »   [go: up one dir, main page]

JP4441624B2 - Strain / temperature distribution measuring method and measuring apparatus using optical fiber - Google Patents

Strain / temperature distribution measuring method and measuring apparatus using optical fiber Download PDF

Info

Publication number
JP4441624B2
JP4441624B2 JP2007205893A JP2007205893A JP4441624B2 JP 4441624 B2 JP4441624 B2 JP 4441624B2 JP 2007205893 A JP2007205893 A JP 2007205893A JP 2007205893 A JP2007205893 A JP 2007205893A JP 4441624 B2 JP4441624 B2 JP 4441624B2
Authority
JP
Japan
Prior art keywords
optical fiber
strain
optical
frequency
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007205893A
Other languages
Japanese (ja)
Other versions
JP2009042005A (en
Inventor
和男 保苅
弥平 小山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Ibaraki University NUC
Original Assignee
Nippon Telegraph and Telephone Corp
Ibaraki University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Ibaraki University NUC filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2007205893A priority Critical patent/JP4441624B2/en
Publication of JP2009042005A publication Critical patent/JP2009042005A/en
Application granted granted Critical
Publication of JP4441624B2 publication Critical patent/JP4441624B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

本発明は、光ファイバを用いて歪や温度の分布を高精度に測定する方法及び装置に関するものである。   The present invention relates to a method and apparatus for measuring strain and temperature distribution with high accuracy using an optical fiber.

高層ビル、橋梁、ダム、飛行機、船舶、トンネルなどの構造物のヘルスモニタリングへ適用するために、光ファイバを用いて歪または温度の分布測定を行う光ファイバセンシング技術に関する研究開発が活発に進められ、試行的な実験も実施されている。   Research and development related to optical fiber sensing technology that measures strain or temperature distribution using optical fibers has been actively promoted for application to health monitoring of structures such as high-rise buildings, bridges, dams, airplanes, ships, and tunnels. Trial experiments are also being conducted.

光ファイバを用いて歪または温度の分布測定を行う光ファイバセンシング技術には、[1]光ファイバ中のブリルアン散乱を利用した方法、[2]レイリー散乱を利用した方法がある。[1]の方法は、非特許文献1に記載されているように光ファイバに光パルスを入射したときに発生する後方散乱光の1つであるブリルアン散乱光の周波数分布が光ファイバに加わる歪または温度に比例してシフトするという特性を利用して歪または温度分布を測定する方法である。また、[2]の方法は、非特許文献2、非特許文献3に記載されるように、光周波数を制御したコヒーレントOTDR(Optical Time Domain Reflectometer)で得られるレイリー散乱波形がジグザグ波形を呈し、光ファイバに加わる歪または温度が変化するとジグザグ波形が変化することを利用して歪または温度分布を測定する方法である。   Optical fiber sensing techniques for measuring strain or temperature distribution using an optical fiber include [1] a method using Brillouin scattering in an optical fiber and [2] a method using Rayleigh scattering. As described in Non-Patent Document 1, the method of [1] is a distortion in which the frequency distribution of Brillouin scattered light, which is one of backscattered light generated when an optical pulse is incident on an optical fiber, is applied to the optical fiber. Alternatively, the strain or temperature distribution is measured by utilizing the characteristic of shifting in proportion to the temperature. In the method [2], as described in Non-Patent Document 2 and Non-Patent Document 3, a Rayleigh scattering waveform obtained by coherent OTDR (Optical Time Domain Reflectometer) with optical frequency controlled exhibits a zigzag waveform, This is a method for measuring the strain or temperature distribution by utilizing the fact that the zigzag waveform changes when the strain or temperature applied to the optical fiber changes.

さらに、レイリー散乱を用いた別の方法として、コヒーレントOFDR(Optical Frequency Domain reflectometer)で得られるレイリー散乱波形を利用した歪または温度の分布測定方法が非特許文献4で報告されている。   Furthermore, as another method using Rayleigh scattering, Non-Patent Document 4 reports a strain or temperature distribution measurement method using a Rayleigh scattering waveform obtained by coherent OFDR (Optical Frequency Domain reflectometer).

しかしながら、[1]の光ファイバ中のブリルアン散乱を利用した方法を構造物のヘルスモニタリングへ適用する場合、非特許文献5に記載されているように測定精度が不足しているという課題があった。また、[2]のコヒーレントOTDRを用いた方法では、原理的に[1]のブリルアン散乱を利用した測定方法に比べ、歪または温度の変化を高感度・高精度に検出できるが、実用的ではない。さらに、レイリー散乱を用いた別の方法であるコヒーレントOFDRによる方法は、歪または温度の変化量をブリルアン散乱を利用した測定方法と同じように求めることが可能であるが、測定光の位相に関してきびしい条件が課せられることから、長距離の光ファイバの測定は難しく、したがって非特許文献4で報告されているのは20mの光ファイバについて測定した結果である。   However, when the method using the Brillouin scattering in the optical fiber of [1] is applied to the health monitoring of the structure, there is a problem that the measurement accuracy is insufficient as described in Non-Patent Document 5. . In addition, in the method using [2] coherent OTDR, in principle, the strain or temperature change can be detected with higher sensitivity and higher accuracy than the measurement method using Brillouin scattering in [1]. Absent. Furthermore, the coherent OFDR method, which is another method using Rayleigh scattering, can determine the amount of change in strain or temperature in the same manner as the measurement method using Brillouin scattering, but is strict with respect to the phase of the measurement light. Since the conditions are imposed, it is difficult to measure a long-distance optical fiber. Therefore, what is reported in Non-Patent Document 4 is a result of measurement with respect to an optical fiber of 20 m.

T.Kurashima,et.al.,“Brillouin optical fiber time domain reflectometry”,IEICE Trans.Comun.,Vol.E76−B,No.4,pp.382−390,1994.T.A. Kurashima, et. al. "Brillouin optical fiber time domain reflectometry", IEICE Trans. Comun. , Vol. E76-B, no. 4, pp. 382-390, 1994. 小山田、“レイリー散乱を利用した光ファイバの高感度歪分布測定法の提案”、信学技報、OFT98−23,1998.Oyamada, “Proposal of high-sensitivity strain distribution measurement method for optical fiber using Rayleigh scattering”, IEICE Technical Report, OFT 98-23, 1998. Y.Koyamada,et.al.,“Novel fiber−optic strain and temperature sensor with very high resolution”,IEICE Trans.Comun.,Vol.E89−B,No.5,pp.1722−1725,2006.Y. Koyamada, et. al. "Novel fiber-optical strain and temperature sensor with very high resolution", IEICE Trans. Comun. , Vol. E89-B, no. 5, pp. 1722-1725, 2006. B.J.Soller,et.al.,“Measurement of localized heating in fiber optic components with millimeter spatial resolution”,OFC2006,OFN3,2006.B. J. et al. Soller, et. al. , “Measurement of localized heating in fiber optical components with millimeter spatial resolution”, OFC 2006, OFN 3, 2006. 呉智深、“構造ヘルスモニタリングにおける光ファイバセンシングの最近の動向”、信学会光ファイバ応用技術研究会第2種研究会資料、OFT2004−2−04,2004.Jin Wu, “Recent Trends of Optical Fiber Sensing in Structural Health Monitoring,” IEICE Optical Fiber Applied Technology Research Group 2nd Class Study Material, OFT 2004-2-04, 2004.

以上述べたように、従来の光ファイバを用いた歪または温度の分布方法を構造物のヘルスモニタリングへ適用するには、いずれの方法も実用性、精度、測定可能距離の面で課題があり、実用的で高精度にかつ長距離測定できる方法が求められている。   As described above, in order to apply the strain or temperature distribution method using the conventional optical fiber to the health monitoring of the structure, any method has problems in practicality, accuracy, and measurable distance, There is a need for a practical, highly accurate and long-range measurement method.

本発明は上記の事情に鑑みてなされたもので、歪や温度変化を光ファイバの軸方向にわたる分布状態として実用的で高精度にかつ長距離測定できる光ファイバを用いた歪・温度の分布測定方法及び測定装置を提供することを目的とする。   The present invention has been made in view of the above circumstances. Strain / temperature distribution measurement using an optical fiber that can measure strain and temperature changes over a long distance as a practical distribution state along the axial direction of the optical fiber. It is an object to provide a method and a measuring device.

上記目的を達成するために本発明の光ファイバを用いた歪・温度の分布測定方法は、センシング用光ファイバに歪または温度変化が加わる前後で光周波数を変えながら繰り返し光パルスをセンシング用光ファイバに入射させると共に前記センシング用光ファイバから戻ってきたレイリー散乱光のデータを取得蓄積する第1のステップと、前記第1のステップで取得蓄積したデータに基づき相関ピーク周波数を求め、この相関ピーク周波数から光ファイバの歪変化量・温度変化量・光周波数変化量との関係を用いて光ファイバの軸方向の歪変化や温度変化を算出する第2のステップとよりなることを特徴とする。   In order to achieve the above object, the strain / temperature distribution measuring method using the optical fiber of the present invention is the optical fiber for sensing that repeats optical pulses while changing the optical frequency before and after the strain or temperature change is applied to the sensing optical fiber. A first step of acquiring and accumulating Rayleigh scattered light data returned from the sensing optical fiber and obtaining a correlation peak frequency based on the data acquired and accumulated in the first step, and the correlation peak frequency The second step of calculating the axial strain change and temperature change of the optical fiber using the relationship between the strain change amount, temperature change amount, and optical frequency change amount of the optical fiber.

また本発明の光ファイバを用いた歪・温度の分布測定方法は、センシング用光ファイバに歪または温度変化が加わる前後で光周波数νを変えながら繰り返し光パルスをセンシング用光ファイバに入射させると共に前記センシング用光ファイバから戻ってきたレイリー散乱光を取得し、散乱光パワーを光周波数νと距離zの関数として蓄積したデータp(ν,z)(変化前)とp(ν,z)(変化後)から周波数軸上における相互相関

Figure 0004441624
を計算し、相関のピークの周波数を求め、あらかじめ求めておいた歪変化量Δεおよび温度変化量ΔTと光周波数の変化量fの関係を用いて光ファイバの軸方向の歪変化Δεおよび温度変化ΔTを算出することを特徴とする。 In the strain / temperature distribution measuring method using the optical fiber of the present invention, the optical pulse is repeatedly incident on the sensing optical fiber while changing the optical frequency ν before and after the strain or temperature change is applied to the sensing optical fiber. Data p u (ν, z) (before change) and p v (ν, z) obtained by acquiring Rayleigh scattered light returned from the sensing optical fiber and storing the scattered light power as a function of optical frequency ν and distance z Cross-correlation on the frequency axis from (after change)
Figure 0004441624
Was calculated to obtain the frequency of the peak of the correlation, strain changes [Delta] [epsilon] and the axial direction of the optical fiber using the relationship in advance the distortion change amount had been determined [Delta] [epsilon] c and the temperature variation ΔT and the optical frequency variation f c A temperature change ΔT is calculated.

また本発明は、前記光ファイバを用いた歪・温度の分布測定方法において、各位置zにおいて相互相関Ruv(f,z)が0.7以上となるピーク周波数f より光ファイバの軸方向の歪変化Δεおよび温度変化ΔTを算出することを特徴とする。 According to the present invention, in the distribution measuring method of the strain and temperature with the optical fiber, axial cross-correlation R uv (f, z) is the optical fiber than the peak frequency f c to be 0.7 or more at each position z The strain change Δε and the temperature change ΔT are calculated.

また本発明の光ファイバを用いた歪・温度の分布測定装置は、センシング用光ファイバに歪または温度変化が加わる前後で光周波数を変えながら繰り返し光パルスをセンシング用光ファイバに入射させると共に前記センシング用光ファイバから戻ってきたレイリー散乱光のデータを取得蓄積する第1の手段と、前記第1の手段で取得蓄積したデータに基づき相関ピーク周波数を求め、この相関ピーク周波数から光ファイバの歪変化量・温度変化量・光周波数変化量との関係を用いて光ファイバの軸方向の歪変化や温度変化を算出する第2の手段とを具備することを特徴とするものである。   The strain / temperature distribution measuring apparatus using the optical fiber according to the present invention causes the optical fiber to repeatedly enter the sensing optical fiber while changing the optical frequency before and after the strain or temperature change is applied to the sensing optical fiber, and the sensing optical fiber. A first means for acquiring and accumulating data of Rayleigh scattered light returned from the optical fiber; a correlation peak frequency is obtained based on the data acquired and accumulated by the first means; and a distortion change of the optical fiber is calculated from the correlation peak frequency. And a second means for calculating an axial strain change and a temperature change of the optical fiber using the relationship between the amount, the temperature change amount, and the optical frequency change amount.

また本発明の光ファイバを用いた歪・温度の分布測定装置は、光周波数を安定で正確に設定でき、かつ所定量光周波数をシフトでき、連続光を出力できる光源部と、前記光源部から出た連続光を2分割する第1の光カプラと、前記第1の光カプラの一方から出た連続光をパルス化する変調器と、前記変調器からの光パルスをセンシング用光ファイバに入射させると共に前記センシング用光ファイバから戻ってきたレイリー散乱光を受光部に導く第2の光カプラと、前記第1の光カプラの他方から出た連続光であるローカル光の偏波をスクランブルする偏波制御器と、前記レイリー散乱光と前記ローカル光を混合する第3の光カップラと、前記第3の光カップラで混合されたレイリー散乱光とローカル光を検出するヘテロダイン検波器と、前記ヘテロダイン検波器からの検波信号をデジタル信号に変換するA/Dコンバータと、前記A/Dコンバータからの出力信号が入力され、センシング用光ファイバに歪または温度変化が加わる前後でのレイリー散乱光のデータが蓄積でき、歪または温度変化が加わる前のレイリー散乱光パワーと歪または温度変化が加わった後のレイリー散乱光パワー間の周波数軸上における相互相関のピーク周波数と、光ファイバの歪変化量・温度変化量・光周波数変化量との関係を用いて光ファイバの軸方向の歪変化や温度変化を算出するコンピュータとを具備することを特徴とするものである。 Further, the strain / temperature distribution measuring apparatus using the optical fiber of the present invention can set the optical frequency stably and accurately, can shift the optical frequency by a predetermined amount, can output continuous light, and the light source unit. A first optical coupler that divides the emitted continuous light into two, a modulator that pulses the continuous light emitted from one of the first optical couplers, and an optical pulse from the modulator that enters the sensing optical fiber And a second optical coupler that guides Rayleigh scattered light returned from the sensing optical fiber to a light receiving unit, and a polarization that scrambles the polarization of local light that is continuous light emitted from the other of the first optical couplers. A wave controller, a third optical coupler for mixing the Rayleigh scattered light and the local light, a heterodyne detector for detecting the Rayleigh scattered light and the local light mixed by the third optical coupler, An A / D converter for converting the detection signal from the heterodyne detector into a digital signal, the output signal from the A / D converter is inputted, the Rayleigh scattered light before and after the strain or temperature change is applied to the sensing optical fiber The peak frequency of cross-correlation on the frequency axis between the Rayleigh scattered light power before the strain or temperature change can be accumulated and the Rayleigh scattered light power after the strain or temperature change, and the strain change of the optical fiber And a computer that calculates a strain change and a temperature change in the axial direction of the optical fiber using the relationship between the temperature change amount and the optical frequency change amount.

また本発明の光ファイバを用いた歪・温度の分布測定装置は、光周波数を安定で正確に設定でき、かつ所定量光周波数をシフトでき、連続光を出力できる光源部と、前記光源部から出た連続光をパルス化する変調器と、前記変調器からの光パルスをセンシング用光ファイバに入射させると共に前記センシング用光ファイバから戻ってきたレイリー散乱光を受光部に導く光カプラと、前記光カプラからのレイリー散乱光を検出するフォトカウンティング受光部と、前記フォトカウンティング受光部からの検出信号が入力され、センシング用光ファイバに歪または温度変化が加わる前後でのレイリー散乱光のデータが蓄積でき、歪または温度変化が加わる前のレイリー散乱光パワーと歪または温度変化が加わった後のレイリー散乱光パワー間の周波数軸上における相互相関のピーク周波数と、光ファイバの歪変化量・温度変化量・光周波数変化量との関係を用いて光ファイバの軸方向の歪変化や温度変化を算出するコンピュータとを具備することを特徴とするものである。 Further, the strain / temperature distribution measuring apparatus using the optical fiber of the present invention can set the optical frequency stably and accurately, can shift the optical frequency by a predetermined amount, can output continuous light, and the light source unit. A modulator for pulsing the emitted continuous light; an optical coupler for causing the optical pulse from the modulator to enter the sensing optical fiber and guiding the Rayleigh scattered light returned from the sensing optical fiber to a light receiving unit; and A photo-counting light-receiving unit that detects Rayleigh scattered light from an optical coupler, and a detection signal from the photo-counting light-receiving unit are input , and Rayleigh scattered light data before and after a strain or temperature change is applied to the sensing optical fiber. Between the Rayleigh scattered light power before the strain or temperature change is applied and the Rayleigh scattered light power after the strain or temperature change is applied. Comprising: a peak frequency of the cross-correlation, and a computer using the relationship between the strain variation and temperature variation, the optical frequency variation of an optical fiber for calculating the distortion change or the temperature change in the axial direction of the optical fiber on the Number of axes It is characterized by doing.

本発明の光ファイバを用いた歪・温度の分布測定方法及び測定装置は、光ファイバに加わる歪または温度変化を高精度にかつ長距離光ファイバの軸方向にわたって分布状態を容易に測定することが可能である。本発明の光ファイバを用いた歪・温度の分布測定方法及び測定装置は、高層ビル、橋梁、ダム、飛行機、船舶、トンネルなどの構造物のヘルスモニタリングへ適用することが可能である。   The strain and temperature distribution measuring method and measuring apparatus using the optical fiber of the present invention can easily measure the strain or temperature change applied to the optical fiber with high accuracy and in the axial direction of the long-distance optical fiber. Is possible. The strain / temperature distribution measuring method and measuring apparatus using the optical fiber of the present invention can be applied to health monitoring of structures such as high-rise buildings, bridges, dams, airplanes, ships, and tunnels.

以下図面を参照して本発明の実施の形態を詳細に説明する。
図1(a),(b)は本発明の実施形態に係る光ファイバを用いた歪・温度の分布測定装置を示す構成説明図である。距離分解能10cm程度で測定を行うためには、高感度な受光器を用いる必要があり、ヘテロダイン検波器(図1(a))またはフォトカウンター(図1(b))の使用が考えられる。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIGS. 1A and 1B are configuration explanatory views showing a strain / temperature distribution measuring apparatus using an optical fiber according to an embodiment of the present invention. In order to perform measurement with a distance resolution of about 10 cm, it is necessary to use a highly sensitive light receiver, and use of a heterodyne detector (FIG. 1 (a)) or a photocounter (FIG. 1 (b)) can be considered.

まず、図1(a)に示すヘテロダイン検波器を使用するシステムについて説明する。図1(a)に示すように、光周波数を安定で正確に設定でき、かつ所定量光周波数をシフトでき、連続光を出力できる光源部の構成の一例として、ここでは光周波数安定化DFB−LDとSSB変調器を組み合わせた構成を示す。   First, a system using the heterodyne detector shown in FIG. As shown in FIG. 1 (a), as an example of the configuration of a light source unit that can stably and accurately set an optical frequency, shift an optical frequency by a predetermined amount, and output continuous light, here, an optical frequency stabilized DFB- The structure which combined LD and the SSB modulator is shown.

シアン化水素ガスなど分子の吸収線を利用して光周波数を安定化した光源(中心周波数変動幅:<10MHz)1としてDFB−LD(分布帰還型レーザダイオード)を使用し、光周波数を一定間隔で変えつつレイリー散乱波形を取得するために、DFB−LDから出た連続光の周波数シフタとしてSSB変調器2に通して所定量の周波数シフトを行う。前記SSB変調器2には高周波発信器3から高周波信号が入力される。ここで示した光源部は一例であり、光周波数を安定化で正確に設定でき、かつ所定量光周波数をシフトでき、連続光を出力できるのであれば前記構成以外でもよい。   DFB-LD (distributed feedback laser diode) is used as a light source (center frequency fluctuation range: <10 MHz) 1 that stabilizes the optical frequency by utilizing molecular absorption lines such as hydrogen cyanide gas, and the optical frequency is changed at regular intervals. In order to obtain a Rayleigh scattering waveform, a predetermined amount of frequency shift is performed through the SSB modulator 2 as a frequency shifter of continuous light emitted from the DFB-LD. A high frequency signal is input to the SSB modulator 2 from a high frequency transmitter 3. The light source unit shown here is an example, and any other configuration may be used as long as the optical frequency can be accurately set by stabilization, the optical frequency can be shifted by a predetermined amount, and continuous light can be output.

さらに、SSB変調器2から出た連続光を第1の光カプラ4によって2分割し、一方を信号光、他方をローカル光とする。信号光は、光変調器6として電気光学(EO)変調器によってパルス化し、第2の光カプラ4を介してセンシング用光ファイバ9に入射させる。前記光変調器6にはパルスジェネレータ5からパルス信号が入力される。なお、レイリー散乱波形に偏波依存性の影響がある場合にはその影響を除去するために第1の偏波制御器(PC)7を用いて偏波スクランブルを行い、またパルスのパワーが不足している場合は光アンプ8を挿入して増幅する必要がある。図1(a)はこれらを挿入した場合を示している。 Further, the continuous light emitted from the SSB modulator 2 the first optical coupler 4 1 by divided into two parts, to one of the signal light, and the other local light. The signal light is pulsed by an electro-optic (EO) modulator as the optical modulator 6 and is incident on the sensing optical fiber 9 via the second optical coupler 42. A pulse signal is input from the pulse generator 5 to the optical modulator 6. In the case where the Rayleigh scattering wave is affected by polarization dependence performs polarization scrambling using the first polarization controller (PC) 7 1 in order to remove the influence, also the power of the pulse If it is insufficient, an optical amplifier 8 must be inserted and amplified. FIG. 1A shows the case where these are inserted.

さらに、センシング用光ファイバ9から戻るレイリー散乱光は第2の光カプラ4を介して、3dB光カプラ10で第1の光カプラ4によって分割されたローカル光と混合されて後、ヘテロダイン光検出器11でヘテロダイン検波される。この場合、レイリー散乱光とローカル光間の偏波不整合による雑音を除去するために、ローカル光は第2の偏波制御器7で偏波スクランブルされる。前記ヘテロダイン光検出器11からの検波信号はA/Dコンバータ12でアナログ信号からデジタル信号に変換された後、コンピュータ13に送られ、2乗平均処理の後、データ蓄積される。1周波数当りの平均回数は1000〜10000である。以上の測定を、ステップバイステップで光周波数を変えつつ繰返し行う。前記コンピュータ13は、レイリー散乱光パワーの相関ピーク周波数と、光ファイバの歪変化量・温度変化量・光周波数変化量との関係を用いて光ファイバの軸方向の歪変化や温度変化を算出する。 Further, after Rayleigh scattered light returning from the sensing optical fiber 9 through the second optical coupler 4 2, are mixed with divided local light by the first optical coupler 4 1 3dB optical coupler 10, a heterodyne light Heterodyne detection is performed by the detector 11. In this case, the local light is polarization scrambled by the second polarization controller 72 in order to remove noise due to polarization mismatch between the Rayleigh scattered light and the local light. The detection signal from the heterodyne photodetector 11 is converted from an analog signal to a digital signal by the A / D converter 12, and then sent to the computer 13, where the data is accumulated after the mean square process. The average number of times per frequency is 1000 to 10,000. The above measurement is repeated step by step while changing the optical frequency. The computer 13 calculates the axial strain change and temperature change of the optical fiber using the relationship between the correlation peak frequency of the Rayleigh scattered light power and the strain change amount, temperature change amount, and optical frequency change amount of the optical fiber. .

次に、図1(b)に示すフォトカウンターを使用するシステムについて説明する。図1(b)に示すように、光周波数を安定で正確に設定でき、かつ所定量光周波数をシフトでき、連続光を出力できる光源部の構成の一例として、ここでは光周波数安定化DFB−LDとSSB変調器を組み合わせた構成を示す。   Next, a system using the photo counter shown in FIG. As shown in FIG. 1B, as an example of the configuration of the light source unit that can set the optical frequency stably and accurately, can shift the optical frequency by a predetermined amount, and can output continuous light, here, the optical frequency stabilized DFB- The structure which combined LD and the SSB modulator is shown.

シアン化水素ガスなど分子の吸収線を利用して光周波数を安定化した光源(中心周波数変動幅:<10MHz)1としてDFB−LD(分布帰還型レーザダイオード)を使用し、光周波数を一定間隔で変えつつレイリー散乱波形を取得するために、DFB−LDから出た連続光の周波数シフタとしてSSB変調器2に通して所定量の周波数シフトを行う。前記SSB変調器2には高周波発信器3から高周波信号が入力される。ここで示した光源部は一例であり、光周波数を安定化で正確に設定でき、かつ所定量光周波数をシフトでき、連続光を出力できるのであれば前記構成以外でもよい。   DFB-LD (distributed feedback laser diode) is used as a light source (center frequency fluctuation range: <10 MHz) 1 that stabilizes the optical frequency by utilizing molecular absorption lines such as hydrogen cyanide gas, and the optical frequency is changed at regular intervals. In order to obtain a Rayleigh scattering waveform, a predetermined amount of frequency shift is performed through the SSB modulator 2 as a frequency shifter of continuous light emitted from the DFB-LD. A high frequency signal is input to the SSB modulator 2 from a high frequency transmitter 3. The light source unit shown here is an example, and any other configuration may be used as long as the optical frequency can be accurately set by stabilization, the optical frequency can be shifted by a predetermined amount, and continuous light can be output.

さらに、SSB変調器2から出た連続光は、光変調器6として電気光学(EO)変調器によってパルス化し、光カプラ4を介してセンシング用光ファイバ9に入射させる。前記光変調器6にはパルスジェネレータ5からパルス信号が入力される。なお、レイリー散乱波形に偏波依存性の影響がある場合にはその影響を除去するために偏波制御器(PC)7を用いて偏波スクランブルを行い、またパルスのパワーが不足している場合は光アンプ8を挿入して増幅する必要がある。図1(b)はこれらを挿入した場合を示している。   Further, the continuous light emitted from the SSB modulator 2 is pulsed by an electro-optic (EO) modulator as the optical modulator 6 and is incident on the sensing optical fiber 9 through the optical coupler 4. A pulse signal is input from the pulse generator 5 to the optical modulator 6. If the Rayleigh scattering waveform has a polarization-dependent effect, polarization scrambling is performed using the polarization controller (PC) 7 to eliminate the influence, and the pulse power is insufficient. In this case, it is necessary to amplify by inserting the optical amplifier 8. FIG. 1B shows the case where these are inserted.

さらに、センシング用光ファイバ9から戻るレイリー散乱光は、光カプラ4を介してフォトカウンティング用光検出部14およびカウンティングモジュール15よりなるフォトカウンティング受光部16に入力され、フォトカウンティング受光部16でレイリー散乱光が検出される。前記フォトカウンティング受光部16からの検出信号はコンピュータ13に送られ、コンピュータ13はレイリー散乱光のデータ蓄積、相互相関の処理を行う。1周波数当りの平均回数は1000〜10000である。以上の測定を、ステップバイステップで光周波数を変えつつ繰返し行う。前記コンピュータ13は、レイリー散乱光パワーの相関ピーク周波数と、光ファイバの歪変化量・温度変化量・光周波数変化量との関係を用いて光ファイバの軸方向の歪変化や温度変化を算出する。   Further, Rayleigh scattered light returning from the sensing optical fiber 9 is input to the photocounting light receiving unit 16 including the photocounting light detection unit 14 and the counting module 15 via the optical coupler 4, and Rayleigh scattered by the photocounting light receiving unit 16. Light is detected. A detection signal from the photocounting light receiving unit 16 is sent to a computer 13, which performs data accumulation and cross-correlation processing of Rayleigh scattered light. The average number of times per frequency is 1000 to 10,000. The above measurement is repeated step by step while changing the optical frequency. The computer 13 calculates the axial strain change and temperature change of the optical fiber using the relationship between the correlation peak frequency of the Rayleigh scattered light power and the strain change amount, temperature change amount, and optical frequency change amount of the optical fiber. .

フォトカウンティング受光部を用いる図1(b)のシステムも、基本的動作は図1(a)のヘテロダイン検波器を用いるシステムと同じである。異なる点は、レイリー散乱光とローカル光との混合を行わないこと、および検波信号を2乗せずに平均処理することである。また、前記述べた構成光部品は一例であり、上記機能を満たすのであれば、他の部品であっても良い。   The basic operation of the system of FIG. 1B using the photocounting light receiving unit is the same as that of the system using the heterodyne detector of FIG. The difference is that mixing of Rayleigh scattered light and local light is not performed, and the detection signal is averaged without being squared. Further, the above-described constituent optical component is an example, and other components may be used as long as the above functions are satisfied.

次に本発明の測定原理を詳細に述べる。まず、光パルスの振幅を1、パルス幅をW、光周波数をνとして、時刻t=0にパルス中心が光ファイバに入射すると仮定する。このときの、光ファイバ中の各点でレイリー散乱されて時刻tにOTDRに戻る光波の電界e(t)を、コヒーレントOTDRのレイリー散乱波形をインパルス応答モデルを用いて解析すると次式で表すことができる。

Figure 0004441624
ここで、aとτはそれぞれi番目の散乱光の振幅と遅延時間、Nは光ファイバ中の全散乱点数、αは光ファイバの損失係数、cは真空における光速、nは光ファイバの屈折率である。また、−1/2≦(t−τ)/W≦1/2のときrect((t−τ)/W)=1であり、その他のときはrect((t−τ)/W)=0とする。遅延時間τはi番目の散乱点の入射端からの距離zとτ=2nfz/cなる関係で結ばれる。項rect((t−τ)/W)は光パルスが伝搬するにしたがって、散乱点の分布が変化することを表している。後方散乱光パワーp(t)は次式で与えられる。 Next, the measurement principle of the present invention will be described in detail. First, it is assumed that the amplitude of the optical pulse is 1, the pulse width is W, the optical frequency is ν, and the pulse center enters the optical fiber at time t = 0. At this time, the electric field e (t) of the light wave that is Rayleigh scattered at each point in the optical fiber and returns to OTDR at time t, and the Rayleigh scattering waveform of the coherent OTDR is analyzed using an impulse response model. Can do.
Figure 0004441624
Here, a i and τ i are the amplitude and delay time of the i-th scattered light, N is the total number of scattering points in the optical fiber, α is the loss factor of the optical fiber, c is the speed of light in vacuum, and n f is the optical fiber. Is the refractive index. Also, when -1 / 2 ≦ (t−τ i ) / W ≦ 1/2, rect ((t−τ i ) / W) = 1, and at other times rect ((t−τ i ) / W) = 0. The delay time τ i is connected to the distance z i from the incident end of the i-th scattering point and the relationship τ i = 2nfz i / c. The term rect ((t−τ i ) / W) represents that the distribution of scattering points changes as the light pulse propagates. The backscattered light power p (t) is given by the following equation.

p(t)=|e(t)|=p(t)+p(t) (2)
ここで、p(t)とp(t)は

Figure 0004441624
で与えられ、φij=2πν(τ−τ)である。φijはi番目の散乱点から戻る光波とj番目の散乱点から戻る光波の位相差を表す。なお、式(1)〜式(4)において、重要でない係数は1と置いている。 p (t) = | e ( t) | 2 = p a (t) + p b (t) (2)
Where p a (t) and p b (t) are
Figure 0004441624
And φ ij = 2πν (τ i −τ j ). φ ij represents the phase difference between the light wave returning from the i-th scattering point and the light wave returning from the j-th scattering point. In the equations (1) to (4), an unimportant coefficient is set to 1.

式(3)の右辺は各散乱点で散乱される光パワーを示しており、p(t)はその総和である。p(t)を時間tの関数として表示すると、インコヒーレントな光パルスを送信して得られるOTDR波形となり、これは光ファイバの歪や温度および光パルスの周波数にほとんど依存しない。したがって、p(t)は光ファイバの歪や温度および光パルスの周波数によって変化しない。 The right side of Equation (3) indicates the light power scattered at each scattering point, and p a (t) is the sum. When p a (t) is displayed as a function of time t, an OTDR waveform obtained by transmitting an incoherent optical pulse is obtained, which is almost independent of the strain and temperature of the optical fiber and the frequency of the optical pulse. Therefore, p a (t) does not change depending on the strain and temperature of the optical fiber and the frequency of the optical pulse.

一方、p(t)は各散乱点で散乱された光波間の干渉を示している。この項はインコヒーレントな光パルスに対して零となる。これに対して、コヒーレントな光パルスが入射する場合にはOTDR波形をジグザグ波形にする効果がある。式(4)の右辺にはcosφijが含まれており、φij=4πν(nij/c)、sij=z−zにより、φijは光周波数ν、屈折率n、および散乱点間隔sijに比例する。したがって、p(t)はν、n、sijの関数となる。さらに、屈折率nと散乱点間隔sijは光ファイバの歪や温度に依存するため、p(t)も光ファイバの歪や温度に依存する。それゆえ、コヒーレントOTDRで測定される波形は、光ファイバに加わる歪または温度に応じて変化する。このように、光ファイバにコヒーレントな光パルスを入射して得られるOTDR波形は、各散乱点から戻る光の干渉によって振幅揺らぎを呈する。この揺らぎ波形は、各点から戻る散乱光の振幅と散乱光間の位相差に依存し、位相差は遅延時間差と光周波数によって決定される。光ファイバに歪または温度の変化が生じた場合、光路長と屈折率が変化するために散乱光間の遅延時間差が変化し、これに伴ってOTDR波形が変化する。 On the other hand, p b (t) indicates interference between light waves scattered at each scattering point. This term is zero for incoherent light pulses. On the other hand, when a coherent light pulse is incident, the OTDR waveform has an effect of making a zigzag waveform. Includes a cos [phi ij on the right side of the equation (4), φ ij = 4πν (n f s ij / c), s ij = z by i -z j, φ ij is the optical frequency [nu, refractive index n f , And the scattering point spacing s ij . Therefore, p b (t) is a function of ν, n f , and s ij . Furthermore, since the refractive index n f and the scattering point interval s ij depend on the strain and temperature of the optical fiber, p b (t) also depends on the strain and temperature of the optical fiber. Therefore, the waveform measured by coherent OTDR varies depending on the strain or temperature applied to the optical fiber. Thus, the OTDR waveform obtained by injecting a coherent light pulse into the optical fiber exhibits amplitude fluctuation due to interference of light returning from each scattering point. This fluctuation waveform depends on the amplitude of the scattered light returning from each point and the phase difference between the scattered lights, and the phase difference is determined by the delay time difference and the optical frequency. When a strain or temperature change occurs in the optical fiber, the optical path length and the refractive index change, so the delay time difference between the scattered lights changes, and the OTDR waveform changes accordingly.

光周波数νを変えながら繰り返しレイリー散乱波形を取得し、散乱光パワーを光周波数νと距離zの関数p(ν、z)として蓄積する。ここで、zはz=ct/2nによって時刻tから変換した量であり、時刻tにOTDRのもどる散乱光の散乱中心点までの距離を表す。最初の時点uで測定した散乱光パワーをp(ν、z)とし、光ファイバに歪または温度の変化が生じた時点vで測定した散乱光パワーをp(ν、z)とする。p(ν、z)とp(ν、z)の周波数軸上における相互関数Ruv(f,z)を次式により求める。

Figure 0004441624
The Rayleigh scattering waveform is repeatedly acquired while changing the optical frequency ν, and the scattered light power is accumulated as a function p (ν, z) of the optical frequency ν and the distance z. Here, z is the amount converted from the time t by z = ct / 2n f, represents the distance to the scattering center point of the scattered light back the OTDR at time t. The scattered light power measured at the first time point u is defined as p u (ν, z), and the scattered light power measured at the time point v when strain or temperature change occurs in the optical fiber is defined as p v (ν, z). A mutual function R uv (f, z) on the frequency axis of p u (ν, z) and p v (ν, z) is obtained by the following equation.
Figure 0004441624

簡単のために、雑音を無視して考える。最初の時点uと次の時点vの間で歪または温度の変化がなければ、f=0においてRuv(f,z)は最大、すなわちRuv(f,z)=1となる。歪または温度の変化がある場合には、f=fにおいてRuv(f,z)は最大、すなわちRuv(f,z)=1となる。ここで、fは歪(および温度)の変化を補償してレイリー散乱波形を時点uにおける波形に戻すだけの光周波数の変化量を表す。なお、歪変化量Δεおよび温度変化量ΔTと光周波数の変化量fの関係は、使用する光ファイバ外周に被覆されている被覆材料や被覆する形状・径に大きく依存する。このため、歪変化量Δεおよび温度変化量ΔTと光周波数の変化量fの関係を使用する被覆光ファイバを用いてあらかじめ把握しておく必要がある。ここでは、一例として、光ファイバ外周の被覆の影響が非常に小さい場合について示す。この場合、歪変化量Δεおよび温度変化量ΔTを補償する光周波数の変化量fは次式で与えられる。 For simplicity, ignore the noise. If there is no strain or temperature change between the first time point u and the next time point v, then R uv (f, z) is maximum at f = 0, ie R uv (f, z) = 1. If there is a change in strain or temperature, f = f c in R uv (f, z) is maximum, i.e. R uv (f, z) = 1 and becomes. Here, f c represents the distortion (and temperature) variation of only the optical frequency return Rayleigh scattering waveform in the waveform at time u to compensate for changes in the. The relationship between the strain change amount Δε c and the temperature change amount ΔT and the optical frequency change amount f c greatly depends on the coating material coated on the outer circumference of the optical fiber to be used and the shape and diameter of the coating. Therefore, it is necessary to grasp in advance using a coated optical fiber that uses the relationship between the strain change amount Δε c and the temperature change amount ΔT and the optical frequency change amount f c . Here, as an example, a case where the influence of the coating on the outer periphery of the optical fiber is very small will be described. In this case, the optical frequency change amount f c for compensating for the strain change amount Δε c and the temperature change amount ΔT is given by the following equation.

/ν=−(1−p)Δε≒−0.78×Δε (6)
/ν=−(γ+γ)ΔT≒−(9.2×10−6)ΔT (7)
ただし
=nf/2{p12−σ(p11+p12)} (8)
ここで、p11とp12は光弾性係数、σはポアソン比、γ=(1/sij)(dsij/dT)は熱膨張係数、γ=(1/n)(dn/dT)は光温度係数である。上記説明からわかるように、時点uと時点vで測定した散乱光パワーp(ν、z)とp(ν、z)から相互相関Ruv(f,z)を計算し、その最大値を与える光周波数の変化量fから式(6)または式(7)を使用して歪変化量Δεまたは温度変化量ΔTを求めることができる。
f c / ν = − (1−p e ) Δε≈−0.78 × Δε (6)
f c / ν = - (γ s + γ n) ΔT ≒ - (9.2 × 10 -6) ΔT (7)
Where p e = n 2 f / 2 {p 12 −σ (p 11 + p 12 )} (8)
Here, p 11 and p 12 are photoelastic coefficients, σ is a Poisson ratio, γ s = (1 / s ij ) (ds ij / dT) is a thermal expansion coefficient, and γ n = (1 / n f ) (dn f / DT) is the light temperature coefficient. As can be seen from the above description, the cross-correlation R uv (f, z) is calculated from the scattered light powers p u (ν, z) and p v (ν, z) measured at the time points u and v, and the maximum value thereof is calculated. The strain change amount Δε c or the temperature change amount ΔT can be obtained from the change amount f c of the optical frequency that gives the value using Equation (6) or Equation (7).

上記方法について、計算機シミュレーションを実施した。
図2は本発明の実施形態に係るシミュレーションでの試験光ファイバを示す構成説明図である。図2に示すように、シミュレーションを行うために7つの区間A(50cm),B(10cm),C(90cm),D(20cm),E(80cm),F(100cm),G(50cm)からなる全長4mの試験光ファイバを考える。試験光ファイバの温度は常に一定とする。初期状態(時点u)では全区間における歪は零であり、時点vにおいては、区間B,D,Fに100μεの歪が加わっているとする。上記試験光ファイバに、波長1.5μm、幅1nsの光パルスを入射して歪分布測定を行うことを想定する。パルスの光周波数を500MHzステップで100GHzにわたって変化させ、各周波数においてレイリー散乱波形を取得することとし、これを計算機シミュレーションして得られた散乱光パワーを光周波数ν、散乱点までの距離zの関数として図3に示す。
Computer simulation was performed for the above method.
FIG. 2 is a configuration explanatory view showing a test optical fiber in a simulation according to the embodiment of the present invention. As shown in FIG. 2, from the seven sections A (50 cm), B (10 cm), C (90 cm), D (20 cm), E (80 cm), F (100 cm), and G (50 cm) for the simulation. Consider a test optical fiber having a total length of 4 m. The test optical fiber temperature is always constant. In the initial state (time point u), it is assumed that the strain in all the sections is zero, and at the time point v, a strain of 100 με is added to the sections B, D, and F. It is assumed that a strain distribution measurement is performed by entering an optical pulse having a wavelength of 1.5 μm and a width of 1 ns into the test optical fiber. The optical frequency of the pulse is changed over 100 GHz in 500 MHz steps, and the Rayleigh scattered waveform is acquired at each frequency. The scattered light power obtained by computer simulation is a function of the optical frequency ν and the distance z to the scattering point. As shown in FIG.

図3は本発明の実施形態に係る試験光ファイバからのレイリー散乱光パワーp(ν,z)を示す説明図である。図3に示すように、レイリー散乱波形は、いわば乱数のようなものであり、初期状態のパワー分布(a)と歪印加後のパワー分布(b)を人間の目で見比べても区別がつかない。二つのパワー分布に関して、式(5)を用いて相互相関を計算した結果を図4に示す。   FIG. 3 is an explanatory diagram showing the Rayleigh scattered light power p (ν, z) from the test optical fiber according to the embodiment of the present invention. As shown in FIG. 3, the Rayleigh scattering waveform is like a random number, and it can be distinguished even by comparing the power distribution (a) in the initial state with the power distribution (b) after applying the strain with the human eye. Absent. FIG. 4 shows the result of calculating the cross-correlation using the formula (5) for the two power distributions.

図4は図3のレイリー散乱光パワーから求めた相互相関を示す説明図である。図4に示すように、区間A(z=0−50cm),C(z=60−150cm),E(z=170−250cm),G(z=350−400cm)においてはf=0、区間B(z=50−60cm),D(z=150−170cm),F(z=250−350cm)においてはf=−15.6GHz付近で相関のピークが現れていることがわかる。式(6)を用いて相関のピーク周波数を歪に換算して求めた試験光ファイバ中の歪分布を実際値と比較して図5に示す。   FIG. 4 is an explanatory diagram showing the cross-correlation obtained from the Rayleigh scattered light power of FIG. As shown in FIG. 4, in the section A (z = 0-50 cm), C (z = 60-150 cm), E (z = 170-250 cm), and G (z = 350-400 cm), f = 0, the section In B (z = 50-60 cm), D (z = 150-170 cm), and F (z = 250-350 cm), it can be seen that a correlation peak appears in the vicinity of f = −15.6 GHz. FIG. 5 shows the strain distribution in the test optical fiber obtained by converting the correlation peak frequency into strain using Equation (6) and comparing it with the actual value.

図5は図4の結果に基づいて求めた試験光ファイバ中の歪分布(雑音がない場合)を示す特性図であり、太線はシミュレーション値、細線は実際の歪印加状態値である。なお、相関値は単なる最大値(ピーク)では意味がなく、一定以上の値となって初めて意味を持つと考えられる。このため、ここでは、相関ピークが0.7を超える位置(Z)においては、ピーク周波数から換算した歪量をその位置における歪の大きさとし、0.7以下の位置における歪の大きさは、その前後の位置における歪の大きさの中間値として求めている。シミュレーション値は実際値をよく追随しており、距離分解能10cmで測定可能なことがわかる。このように、時点uと時点vで測定した散乱光パワーp(ν、z)とp(ν、z)から相互相関Ruv(f,z)を計算し、その最大値を与える光周波数の変化量fから式(6)または式(7)を使用して歪変化量Δεまたは温度変化量ΔTを求めることができることがシミュレーションにより確認できた。 FIG. 5 is a characteristic diagram showing the strain distribution (when there is no noise) in the test optical fiber obtained based on the results of FIG. 4, where the thick line is the simulation value and the thin line is the actual strain application state value. Note that the correlation value is meaningless only at the maximum value (peak), and is considered to be meaningful only when the value exceeds a certain value. Therefore, here, at the position (Z) where the correlation peak exceeds 0.7, the amount of distortion converted from the peak frequency is the magnitude of distortion at that position, and the magnitude of distortion at a position below 0.7 is: It is obtained as an intermediate value of the magnitude of distortion at the positions before and after that. It can be seen that the simulation value closely follows the actual value and can be measured with a distance resolution of 10 cm. Thus, the light that gives the maximum value by calculating the cross-correlation R uv (f, z) from the scattered light powers p u (ν, z) and p v (ν, z) measured at the time points u and v. It was confirmed by simulation that the strain change amount Δε c or the temperature change amount ΔT can be obtained from the frequency change amount f c using the equation (6) or the equation (7).

最後に、前記シミュレーションは雑音を無視したので雑音の影響を知るために、信号対雑音比(SNR)が10dBおよび5dBの場合のシミュレーションを行った。結果を図6および図7に示す。   Finally, since the simulation ignored the noise, in order to know the influence of the noise, a simulation was performed when the signal-to-noise ratio (SNR) was 10 dB and 5 dB. The results are shown in FIG. 6 and FIG.

図6は本発明の実施形態に係る試験光ファイバに沿った歪分布(SNR=10dBの場合)を示す特性図であり、太線はシミュレーション値、細線は実際の歪印加状態値である。図7は本発明の実施形態に係る試験光ファイバに沿った歪分布(SNR=5dBの場合)を示す特性図であり、太線はシミュレーション値、細線は実際の歪印加状態値である。   FIG. 6 is a characteristic diagram showing a strain distribution (in the case of SNR = 10 dB) along the test optical fiber according to the embodiment of the present invention, where a bold line is a simulation value, and a thin line is an actual strain application state value. FIG. 7 is a characteristic diagram showing a strain distribution (in the case of SNR = 5 dB) along the test optical fiber according to the embodiment of the present invention, where a bold line is a simulation value and a thin line is an actual strain application state value.

図6より、SNR=10dBの場合には、雑音の影響をあまり受けないことがわかる。シミュレーション結果と実際値との差は1με以下である。ブリルアン散乱を利用した歪分布測定器による測定誤差は10〜50μεと報告されており、これに比べると、本測定法による誤差は1〜2桁小さくなることが期待できる。図7より、SNR=5dBとなると、区間B(z=50−60cm)における歪が測定されなくなることがわかる。   FIG. 6 shows that when SNR = 10 dB, the influence of noise is not so much. The difference between the simulation result and the actual value is 1 με or less. The measurement error by the strain distribution measuring device using Brillouin scattering is reported to be 10 to 50 με, and it can be expected that the error by this measurement method is 1 to 2 orders of magnitude smaller than this. FIG. 7 shows that when SNR = 5 dB, the strain in the section B (z = 50-60 cm) is not measured.

これらの結果より、本測定法では、概略10dB以上のSNRが必要と考えられる。ヘテロダイン検波型(図1(a))の場合、パルス幅を1ns(距離分解能10cm対応)、受信器帯域幅を1GHz、光ファイバへの入力パワーを25dBm、1周波数当たりの平均回数を10とすると、SNRは15dBと見込まれる。したがって、必要とするSNR=10dBに対して5dBの余裕があり、これを光ファイバ損失に振り向けると(0.25dB/kmとし、往復の損失を考慮)、長さ10kmの光ファイバについて測定可能である。フォトカウンティング型(図1(b))では、更なる性能向上が期待できる。 From these results, it is considered that this measurement method requires an SNR of approximately 10 dB or more. For heterodyne detection type (FIG. 1 (a)), the pulse width 1 ns (distance resolution 10cm corresponding), the receiver bandwidth 1 GHz, the average number per 25 dBm, 1 frequency input power to the optical fiber 10 4 Then, the SNR is expected to be 15 dB. Therefore, there is a margin of 5 dB for the required SNR = 10 dB, and if this is directed to the optical fiber loss (0.25 dB / km, considering round trip loss), it is possible to measure an optical fiber having a length of 10 km It is. In the photo counting type (FIG. 1B), further performance improvement can be expected.

なお、本発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施形態に亘る構成要素を適宜組み合せてもよい。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Further, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, you may combine suitably the component covering different embodiment.

本発明の実施形態に係る光ファイバを用いた歪・温度の分布測定装置を示す構成説明図である。1 is a configuration explanatory view showing a strain / temperature distribution measuring apparatus using an optical fiber according to an embodiment of the present invention. FIG. 本発明の実施形態に係るシミュレーションでの試験光ファイバを示す構成説明図である。It is composition explanatory drawing which shows the test optical fiber in the simulation which concerns on embodiment of this invention. 本発明の実施形態に係る試験光ファイバからのレイリー散乱光パワーp(ν,z)を示す説明図である。It is explanatory drawing which shows the Rayleigh scattered light power p ((nu), z) from the test optical fiber which concerns on embodiment of this invention. 図3のレイリー散乱光パワーから求めた相互相関を示す説明図である。It is explanatory drawing which shows the cross correlation calculated | required from the Rayleigh scattered light power of FIG. 図4の結果に基づいて求めた試験光ファイバ中の歪分布(雑音がない場合)を示す特性図である。It is a characteristic view which shows the distortion distribution (when there is no noise) in the test optical fiber calculated | required based on the result of FIG. 本発明の実施形態に係る試験光ファイバに沿った歪分布(SNR=10dBの場合)を示す特性図である。It is a characteristic view which shows the distortion distribution (in the case of SNR = 10 dB) along the test optical fiber which concerns on embodiment of this invention. 本発明の実施形態に係る試験光ファイバに沿った歪分布(SNR=5dBの場合)を示す特性図である。It is a characteristic view which shows the distortion distribution (in the case of SNR = 5 dB) along the test optical fiber which concerns on embodiment of this invention.

符号の説明Explanation of symbols

1…光周波数安定化光源、2…SSB変調器、3…高周波発信器、4…第1の光カプラ、4…第2の光カプラ、5…パルスジェネレータ、6…光変調器、7…第1の偏波制御器(PC)、7…第2の偏波制御器、8…光アンプ、9…センシング用光ファイバ、10…3dB光カプラ、11…ヘテロダイン光検出器、12…A/Dコンバータ、13…コンピュータ、14…フォトカウンティング用光検出部、15…カウンティングモジュール、16…フォトカウンティング受光部。 DESCRIPTION OF SYMBOLS 1 ... Optical frequency stabilization light source, 2 ... SSB modulator, 3 ... High frequency transmitter, 4 1 ... 1st optical coupler, 4 2 ... 2nd optical coupler, 5 ... Pulse generator, 6 ... Optical modulator, 7 DESCRIPTION OF SYMBOLS 1 ... 1st polarization controller (PC), 7 2 ... 2nd polarization controller, 8 ... Optical amplifier, 9 ... Optical fiber for sensing, 10 ... 3dB optical coupler, 11 ... Heterodyne photodetector, 12 ... A / D converter, 13 ... Computer, 14 ... Photo counting light detection unit, 15 ... Counting module, 16 ... Photo counting light receiving unit.

Claims (6)

センシング用光ファイバに歪または温度変化が加わる前後で光周波数を変えながら繰り返し光パルスをセンシング用光ファイバに入射させると共に前記センシング用光ファイバから戻ってきたレイリー散乱光のデータを取得蓄積する第1のステップと、
前記第1のステップで取得蓄積したデータに基づき相関ピーク周波数を求め、この相関ピーク周波数から光ファイバの歪変化量・温度変化量・光周波数変化量との関係を用いて光ファイバの軸方向の歪変化や温度変化を算出する第2のステップと
よりなることを特徴とする光ファイバを用いた歪・温度の分布測定方法。
First, the light pulse is repeatedly made incident on the sensing optical fiber while changing the optical frequency before and after the strain or temperature change is applied to the sensing optical fiber, and data of Rayleigh scattered light returned from the sensing optical fiber is acquired and accumulated. And the steps
The correlation peak frequency is obtained based on the data acquired and accumulated in the first step, and the axial direction of the optical fiber is calculated from the correlation peak frequency using the relationship between the strain change amount, temperature change amount, and optical frequency change amount of the optical fiber. A strain / temperature distribution measuring method using an optical fiber, comprising a second step of calculating a strain change and a temperature change.
センシング用光ファイバに歪または温度変化が加わる前後で光周波数νを変えながら繰り返し光パルスをセンシング用光ファイバに入射させると共に前記センシング用光ファイバから戻ってきたレイリー散乱光を取得し、散乱光パワーを光周波数νと距離zの関数として蓄積したデータp(ν,z)(変化前)とp(ν,z)(変化後)から周波数軸上における相互相関
Figure 0004441624
を計算し、相関のピークの周波数を求め、あらかじめ求めておいた歪変化量Δεおよび温度変化量ΔTと光周波数の変化量fの関係を用いて光ファイバの軸方向の歪変化Δεおよび温度変化ΔTを算出することを特徴とする光ファイバを用いた歪または温度の分布測定方法。
The light pulse is repeatedly incident on the sensing optical fiber while changing the optical frequency ν before and after the strain or temperature change is applied to the sensing optical fiber, and the Rayleigh scattered light returned from the sensing optical fiber is acquired, and the scattered light power is obtained. On the frequency axis from data p u (ν, z) (before change) and p v (ν, z) (after change) that are stored as a function of optical frequency ν and distance z
Figure 0004441624
Was calculated to obtain the frequency of the peak of the correlation, strain changes [Delta] [epsilon] and the axial direction of the optical fiber using the relationship in advance the distortion change amount had been determined [Delta] [epsilon] c and the temperature variation ΔT and the optical frequency variation f c A strain or temperature distribution measuring method using an optical fiber, characterized by calculating a temperature change ΔT.
各位置zにおいて相互相関Ruv(f,z)が0.7以上となるピーク周波数f より光ファイバの軸方向の歪変化Δεおよび温度変化ΔTを算出することを特徴とする請求項2に記載の光ファイバを用いた歪または温度の分布測定方法。 The cross-correlation R uv (f, z) at each position z is in claim 2, characterized in that to calculate the distortion change Δε and the temperature variation ΔT in the axial direction of the optical fiber than the peak frequency f c to be 0.7 or more A strain or temperature distribution measuring method using the described optical fiber. センシング用光ファイバに歪または温度変化が加わる前後で光周波数を変えながら繰り返し光パルスをセンシング用光ファイバに入射させると共に前記センシング用光ファイバから戻ってきたレイリー散乱光のデータを取得蓄積する第1の手段と、
前記第1の手段で取得蓄積したデータに基づき相関ピーク周波数を求め、この相関ピーク周波数から光ファイバの歪変化量・温度変化量・光周波数変化量との関係を用いて光ファイバの軸方向の歪変化や温度変化を算出する第2の手段と
を具備することを特徴とする光ファイバを用いた歪・温度の分布測定装置。
First, the light pulse is repeatedly made incident on the sensing optical fiber while changing the optical frequency before and after the strain or temperature change is applied to the sensing optical fiber, and data of Rayleigh scattered light returned from the sensing optical fiber is acquired and accumulated. Means of
The correlation peak frequency is obtained based on the data acquired and accumulated by the first means, and the axial direction of the optical fiber is calculated from the correlation peak frequency using the relationship between the strain variation, temperature variation, and optical frequency variation of the optical fiber. A strain / temperature distribution measuring apparatus using an optical fiber, comprising: a second means for calculating a strain change and a temperature change.
光周波数を安定で正確に設定でき、かつ所定量光周波数をシフトでき、連続光を出力できる光源部と、
前記光源部から出た連続光を2分割する第1の光カプラと、
前記第1の光カプラの一方から出た連続光をパルス化する変調器と、
前記変調器からの光パルスをセンシング用光ファイバに入射させると共に前記センシング用光ファイバから戻ってきたレイリー散乱光を受光部に導く第2の光カプラと、
前記第1の光カプラの他方から出た連続光であるローカル光の偏波をスクランブルする偏波制御器と、
前記レイリー散乱光と前記ローカル光を混合する第3の光カップラと、
前記第3の光カップラで混合されたレイリー散乱光とローカル光を検出するヘテロダイン検波器と、
前記ヘテロダイン検波器からの検波信号をデジタル信号に変換するA/Dコンバータと、
前記A/Dコンバータからの出力信号が入力され、センシング用光ファイバに歪または温度変化が加わる前後でのレイリー散乱光のデータが蓄積でき、歪または温度変化が加わる前のレイリー散乱光パワーと歪または温度変化が加わった後のレイリー散乱光パワー間の周波数軸上における相互相関のピーク周波数と、光ファイバの歪変化量・温度変化量・光周波数変化量との関係を用いて光ファイバの軸方向の歪変化や温度変化を算出するコンピュータと
を具備することを特徴とする光ファイバを用いた歪・温度の分布測定装置。
A light source that can stably and accurately set the optical frequency, shift the optical frequency by a predetermined amount, and output continuous light; and
A first optical coupler that divides the continuous light emitted from the light source unit into two parts;
A modulator for pulsing the continuous light emitted from one of the first optical couplers;
A second optical coupler that causes the optical pulse from the modulator to enter the sensing optical fiber and guides Rayleigh scattered light returned from the sensing optical fiber to a light receiving unit;
A polarization controller for scrambling the polarization of local light that is continuous light emitted from the other of the first optical couplers;
A third optical coupler that mixes the Rayleigh scattered light and the local light;
A heterodyne detector for detecting Rayleigh scattered light and local light mixed by the third optical coupler;
An A / D converter that converts a detection signal from the heterodyne detector into a digital signal;
The output signal from the A / D converter is inputted , and the Rayleigh scattered light data before and after the strain or temperature change is applied to the sensing optical fiber can be accumulated. Or the axis of the optical fiber using the relationship between the peak frequency of the cross-correlation between the Rayleigh scattered light power after the temperature change and the strain variation, temperature variation, and optical frequency variation of the optical fiber. A strain / temperature distribution measuring apparatus using an optical fiber, comprising: a computer that calculates a strain change in a direction and a temperature change.
光周波数を安定で正確に設定でき、かつ所定量光周波数をシフトでき、連続光を出力できる光源部と、
前記光源部から出た連続光をパルス化する変調器と、
前記変調器からの光パルスをセンシング用光ファイバに入射させると共に前記センシング用光ファイバから戻ってきたレイリー散乱光を受光部に導く光カプラと、
前記光カプラからのレイリー散乱光を検出するフォトカウンティング受光部と、
前記フォトカウンティング受光部からの検出信号が入力され、センシング用光ファイバに歪または温度変化が加わる前後でのレイリー散乱光のデータが蓄積でき、歪または温度変化が加わる前のレイリー散乱光パワーと歪または温度変化が加わった後のレイリー散乱光パワー間の周波数軸上における相互相関のピーク周波数と、光ファイバの歪変化量・温度変化量・光周波数変化量との関係を用いて光ファイバの軸方向の歪変化や温度変化を算出するコンピュータと
を具備することを特徴とする光ファイバを用いた歪・温度の分布測定装置。
A light source that can stably and accurately set the optical frequency, shift the optical frequency by a predetermined amount, and output continuous light; and
A modulator for pulsing the continuous light emitted from the light source unit;
An optical coupler that causes the optical pulse from the modulator to enter a sensing optical fiber and guides Rayleigh scattered light returned from the sensing optical fiber to a light receiving unit;
A photocounting light receiving unit for detecting Rayleigh scattered light from the optical coupler;
The detection signal from the photo-counting light receiving unit is input , and Rayleigh scattered light data before and after the strain or temperature change is applied to the sensing optical fiber can be accumulated, and the Rayleigh scattered light power and distortion before the strain or temperature change is applied. Or the axis of the optical fiber using the relationship between the peak frequency of the cross correlation on the frequency axis between the Rayleigh scattered light power after the temperature change and the strain variation, temperature variation, and optical frequency variation of the optical fiber. A strain / temperature distribution measuring apparatus using an optical fiber, comprising: a computer that calculates a strain change in a direction and a temperature change.
JP2007205893A 2007-08-07 2007-08-07 Strain / temperature distribution measuring method and measuring apparatus using optical fiber Active JP4441624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007205893A JP4441624B2 (en) 2007-08-07 2007-08-07 Strain / temperature distribution measuring method and measuring apparatus using optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007205893A JP4441624B2 (en) 2007-08-07 2007-08-07 Strain / temperature distribution measuring method and measuring apparatus using optical fiber

Publications (2)

Publication Number Publication Date
JP2009042005A JP2009042005A (en) 2009-02-26
JP4441624B2 true JP4441624B2 (en) 2010-03-31

Family

ID=40442904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007205893A Active JP4441624B2 (en) 2007-08-07 2007-08-07 Strain / temperature distribution measuring method and measuring apparatus using optical fiber

Country Status (1)

Country Link
JP (1) JP4441624B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017154190A1 (en) * 2016-03-11 2017-09-14 ニューブレクス株式会社 Rayleigh measurement system and rayleigh measurement method

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5354497B2 (en) * 2009-07-10 2013-11-27 ニューブレクス株式会社 Distributed fiber optic pressure sensor system
JP2011232138A (en) * 2010-04-27 2011-11-17 Neubrex Co Ltd Distribution type optical fiber sensor
JP5769676B2 (en) 2012-08-17 2015-08-26 公益財団法人地球環境産業技術研究機構 Material pressure, temperature, strain distribution measurement system, carbon dioxide underground storage monitoring method using the system, method of evaluating the effect of formation of carbon dioxide on formation stability, and ice formation monitoring method
EP2730947A1 (en) * 2012-11-12 2014-05-14 Technische Universität Hamburg-Harburg Lidar measuring system and lidar measuring process
CN103852332A (en) * 2014-03-10 2014-06-11 东南大学 Damaged cable load linear displacement progressive recognition method based on space coordinate monitoring
CN103852300A (en) * 2014-03-10 2014-06-11 东南大学 Progressive recognition method for damaged cable loads through generalized displacement and angle monitoring
CN103913320A (en) * 2014-03-10 2014-07-09 东南大学 Method for progressively recognizing damaged cable, load and angular displacement based on angle monitoring
CN103913337A (en) * 2014-03-10 2014-07-09 东南大学 Generalized displacement cable force monitoring defective cable load progressive identification method
CN103852330A (en) * 2014-03-10 2014-06-11 东南大学 Method for recognizing damaged cables, loads and linear displacement based on cable force monitoring
CN103913322A (en) * 2014-03-10 2014-07-09 东南大学 Method for recognizing fault cable and load based on angular displacement angle monitoring
CN103913332A (en) * 2014-03-10 2014-07-09 东南大学 Method for recognizing damaged cable and load based on angular displacement strain monitoring
CN103913339A (en) * 2014-03-10 2014-07-09 东南大学 Method for recognizing fault cable, load and generalized displacement based on angle monitoring
CN103913329A (en) * 2014-03-10 2014-07-09 东南大学 Generalized displacement hybrid monitoring damaged cable load identification method
JP6280445B2 (en) * 2014-05-23 2018-02-14 日本電信電話株式会社 Coherent optical frequency domain reflectometry measurement system
CN105571645A (en) * 2016-01-25 2016-05-11 潘祖国 Automatic dam monitoring method
JP6616204B2 (en) * 2016-02-03 2019-12-04 日本電信電話株式会社 Optical fiber backward Rayleigh scattered light waveform analysis method and optical fiber backward Rayleigh scattered light waveform analyzer
EP4170281B1 (en) * 2020-06-22 2024-11-06 Nippon Telegraph And Telephone Corporation Distortion change measuring device and distortion change measuring method
CN113686255A (en) * 2021-08-17 2021-11-23 广东电网有限责任公司 Strain positioning method, device, equipment and medium for optical fiber circuit
WO2023058160A1 (en) * 2021-10-06 2023-04-13 ニューブレクス株式会社 Rayleigh intensity pattern measurement device and rayleigh intensity pattern measurement method
WO2024171332A1 (en) * 2023-02-15 2024-08-22 日本電信電話株式会社 Brillouin gain analysis device, and brillouin gain analysis method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017154190A1 (en) * 2016-03-11 2017-09-14 ニューブレクス株式会社 Rayleigh measurement system and rayleigh measurement method
JPWO2017154190A1 (en) * 2016-03-11 2018-10-04 ニューブレクス株式会社 Rayleigh measuring system and Rayleigh measuring method
US10620019B2 (en) 2016-03-11 2020-04-14 Neubrex Co., Ltd. Rayleigh measurement system and Rayleigh measurement method

Also Published As

Publication number Publication date
JP2009042005A (en) 2009-02-26

Similar Documents

Publication Publication Date Title
JP4441624B2 (en) Strain / temperature distribution measuring method and measuring apparatus using optical fiber
CN107917738B (en) Distributed optical fiber sensing system capable of simultaneously measuring temperature, strain and vibration
KR100930342B1 (en) Distribution fiber optic sensor system
Koyamada et al. Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR
US9157811B2 (en) Dispersion and loss spectrum auto-correction distributed optical fiber raman temperature sensor
CN102739311B (en) Fiber failure positioner and localization method thereof based on chaos visible laser
CN101743460B (en) Dual source auto-correction in distributed temperature systems
US8734011B2 (en) Distributed optical fiber temperature sensor based on optical fiber delay
KR101182650B1 (en) Distributed optical fiber sensor and sensing method using bbrillouin scattering
Liehr et al. Incoherent optical frequency domain reflectometry and distributed strain detection in polymer optical fibers
CN110518969B (en) Optical cable vibration positioning device and method
CN104568019A (en) Multimode fiber-based method and multimode fiber-based system for simultaneously measuring temperature and strain
JP7299584B2 (en) SPECIAL OPTICAL FIBER FOR MEASURING THREE-DIMENSIONAL CURVE SHAPE AND MANUFACTURING METHOD THEREOF, AND SYSTEM FOR MEASURING THREE-DIMENSIONAL CURVE SHAPE USING SPECIAL OPTICAL FIBER
Shatarah et al. Distributed temperature sensing in optical fibers based on Raman scattering: theory and applications
CN101794506B (en) Method and device for data calibration in distributed optical fiber temperature sensing system
CN210981350U (en) Distributed optical fiber humidity and temperature simultaneous detection device
Li et al. R-DTS with heat transfer functional model for perceiving the surrounding temperature
CN107782696A (en) The sensor-based system and method for distributed liquid refractivity are measured using tapered fiber
CN104729751A (en) Distributed optical fiber temperature and stress sensor based on Brillouin scattering
CN107727122B (en) Double-end detection combined Raman and Brillouin scattering distributed optical fiber sensing device
Eiselt et al. Optical fiber for remote sensing with high spatial resolution
CN110887527B (en) Device and method for simultaneously detecting humidity and temperature of distributed optical fibers
CN105352626B (en) A kind of demodulation method and device of Concatenate optical fiber Raman temperature system
CN201637507U (en) Chromatic dispersion and loss spectrum self-correcting distributed optical fiber Raman temperature sensor
RU2428682C1 (en) Method for thermal nondestructive inspection of thermal-technical state of long, non-uniform and hard-to-reach objects

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090513

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20090617

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20090806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091207

R150 Certificate of patent or registration of utility model

Ref document number: 4441624

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140122

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250