JP4331244B1 - Gel fuel for fuel cells - Google Patents
Gel fuel for fuel cells Download PDFInfo
- Publication number
- JP4331244B1 JP4331244B1 JP2008078989A JP2008078989A JP4331244B1 JP 4331244 B1 JP4331244 B1 JP 4331244B1 JP 2008078989 A JP2008078989 A JP 2008078989A JP 2008078989 A JP2008078989 A JP 2008078989A JP 4331244 B1 JP4331244 B1 JP 4331244B1
- Authority
- JP
- Japan
- Prior art keywords
- fuel
- gel
- polymer compound
- fuel cell
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/22—Fuel cells in which the fuel is based on materials comprising carbon or oxygen or hydrogen and other elements; Fuel cells in which the fuel is based on materials comprising only elements other than carbon, oxygen or hydrogen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J13/00—Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
- B01J13/0052—Preparation of gels
- B01J13/0065—Preparation of gels containing an organic phase
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/232—Organic compounds containing nitrogen containing nitrogen in a heterocyclic ring
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/234—Macromolecular compounds
- C10L1/238—Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L7/00—Fuels produced by solidifying fluid fuels
- C10L7/02—Fuels produced by solidifying fluid fuels liquid fuels
- C10L7/04—Fuels produced by solidifying fluid fuels liquid fuels alcohol
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Sustainable Energy (AREA)
- Sustainable Development (AREA)
- Life Sciences & Earth Sciences (AREA)
- Electrochemistry (AREA)
- Manufacturing & Machinery (AREA)
- Dispersion Chemistry (AREA)
- Fuel Cell (AREA)
- Inert Electrodes (AREA)
Abstract
【課題】高い出力を取出すことが可能な燃料電池用ジェル状燃料を提供する。
【解決手段】橋掛け剤により橋掛けされて網状をなす、OH基およびCOOH基から選ばれる少なくとも1つの基、またはC=N結合を有する高分子化合物と、この網状高分子化合物に取込まれた液状燃料成分と、助触媒とを含むことを特徴とする燃料電池用ジェル状燃料。
【選択図】 なしA gel fuel for a fuel cell capable of obtaining a high output is provided.
A polymer compound having at least one group selected from an OH group and a COOH group, or a C═N bond, which is crosslinked by a crosslinking agent to form a network, and is incorporated into the network polymer compound. A fuel cell gel fuel comprising a liquid fuel component and a cocatalyst.
[Selection figure] None
Description
本発明は、燃料電池に用いられるジェル状燃料に関する。 The present invention relates to a gel fuel used in a fuel cell.
メタノールまたはジエチルエーテルを液体燃料として用いる燃料電池は、前記燃料が供給されるアノード(燃料極)と、酸化剤(酸素、空気)が供給されるカソード(空気極)と、これらアノードおよびカソードの間に介在された高分子電解質膜とから構成されたセルを起電部として有する。アノードは、高分子電解質膜に接する触媒層と、この触媒層に積層されたカーボンペーパのような拡散層とから構成されている。カソードは、高分子電解質膜に接する触媒層と、この触媒層に積層されたカーボンペーパのような拡散層とから構成されている。 A fuel cell using methanol or diethyl ether as a liquid fuel has an anode (fuel electrode) to which the fuel is supplied, a cathode (air electrode) to which an oxidant (oxygen, air) is supplied, and the anode and cathode. A cell composed of a polymer electrolyte membrane interposed between the electrodes is provided as an electromotive portion. The anode is composed of a catalyst layer in contact with the polymer electrolyte membrane and a diffusion layer such as carbon paper laminated on the catalyst layer. The cathode is composed of a catalyst layer in contact with the polymer electrolyte membrane and a diffusion layer such as carbon paper laminated on the catalyst layer.
前記燃料電池において、液体燃料であるメタノールまたはジエチルエーテルは揮発性で可燃性を有するため、取扱いに注意を要する。 In the fuel cell, methanol or diethyl ether, which is a liquid fuel, is volatile and flammable, so it needs to be handled with care.
このようなことから、特許文献1にはマイクロカプセルにメタノールのような液体燃料を内包させて液体燃料を固体化させて取り扱い易くする技術が開示されている。
しかしながら、前記特許文献1に記載された液体燃料内包マイクロカプセルは燃料電池に使用した場合、燃料極の触媒層へのメタノールの到達速度が遅く、その触媒層での発電に必要な酸化反応が低下するため、出力が低下する。 However, when the liquid fuel-containing microcapsule described in Patent Document 1 is used in a fuel cell, the arrival speed of methanol to the catalyst layer of the fuel electrode is slow, and the oxidation reaction necessary for power generation in the catalyst layer is reduced. Therefore, the output decreases.
本発明は、燃料極の触媒層へのメタノールのような液状燃料成分の到達速度が速く、かつ燃料極での燃料成分の酸化反応を活性化させる機能を有することにより、高い出力を取出すことが可能な燃料電池用ジェル状燃料を提供することを目的とする。 The present invention can take out a high output by having a function of activating the oxidation reaction of the fuel component at the fuel electrode with a fast arrival speed of the liquid fuel component such as methanol to the catalyst layer of the fuel electrode. An object is to provide a gel fuel for a fuel cell.
本発明によると、長鎖アルキル基にNCO基を結合したイソシアネートからなる橋掛け剤により橋掛けされた網状をなし、OH基およびCOOH基から選ばれる少なくとも1つの基、またはC=N結合を有する高分子化合物と、この網状高分子化合物に取込まれたメタノールと、助触媒とを含み、せん断粘性率が3000〜290000dyn・s/cm 2 であることを特徴とする燃料電池用ジェル状燃料が提供される。 According to the present invention, a network is formed by crosslinking with an isocyanate having an NCO group bonded to a long-chain alkyl group, and has at least one group selected from an OH group and a COOH group, or a C═N bond. a polymer compound, and methanol was incorporated into the mesh polymeric compound, and a cocatalyst seen including a fuel cell for gel-like fuels, wherein the shear viscosity is 3000~290000dyn · s / cm 2 Is provided.
本発明によれば、高い出力を取出すことが可能な燃料電池用ジェル状燃料を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the gel fuel for fuel cells which can take out a high output can be provided.
以下、本発明の実施形態に係る燃料電池用ジェル状燃料を詳細に説明する。 Hereinafter, the fuel cell gel fuel according to the embodiment of the present invention will be described in detail.
実施形態に係る燃料電池用ジェル状燃料は、橋掛け剤により橋掛けされて網状をなす、OH基およびCOOH基から選ばれる少なくとも1つの基、またはC=N結合を有する高分子化合物と、この網状高分子化合物に取込まれた液状燃料成分と、助触媒とを含有する。 The gel fuel for a fuel cell according to the embodiment includes at least one group selected from an OH group and a COOH group, which is crosslinked by a crosslinking agent to form a network, or a polymer compound having a C═N bond, It contains a liquid fuel component incorporated in the network polymer compound and a promoter.
高分子化合物は、OH基およびCOOH基から選ばれる少なくとも1つの基、またはC=N結合を有する脂肪族系高分子化合物が好ましい。OH基を有する脂肪族系高分子化合物は、例えばポリビニルアルコール、ポリエチレングリコール等を挙げることができる。COOH基を有する脂肪族系高分子化合物は、例えばポリアクリル酸等を挙げることができる。OH基およびCOOH基を有する脂肪族系高分子化合物は、例えばポリアルギン酸等を挙げることができる。C=N結合を有する脂肪族系高分子化合物は、例えばポリエチレンイミン等を挙げることができる。 The polymer compound is preferably an aliphatic polymer compound having at least one group selected from an OH group and a COOH group, or a C═N bond. Examples of the aliphatic polymer compound having an OH group include polyvinyl alcohol and polyethylene glycol. Examples of the aliphatic polymer compound having a COOH group include polyacrylic acid. Examples of the aliphatic polymer compound having an OH group and a COOH group include polyalginic acid. Examples of the aliphatic polymer compound having a C═N bond include polyethyleneimine.
橋掛け剤は、例えば長鎖アルキル基にNCO基を結合したイソシアネートが好ましい。イソシアネートは、例えばメチレンジイソシアネート、トルイレンジイソシアネート等を用いることができる。 The crosslinking agent is preferably, for example, an isocyanate having an NCO group bonded to a long chain alkyl group. As the isocyanate, for example, methylene diisocyanate, toluylene diisocyanate and the like can be used.
燃料成分は、例えばメタノール、エタノールのような低級アルコールまたはジメチルエーテルのエーテルを用いることができる。 As the fuel component, for example, a lower alcohol such as methanol or ethanol or an ether of dimethyl ether can be used.
助触媒は、ジェル状燃料を燃料電池の燃料極と接するときにジェル状燃料中の燃料成分の酸化反応を活性化(促進)する作用を有し、例えばポリフィリンを用いることができる。 The cocatalyst has an action of activating (promoting) the oxidation reaction of the fuel component in the gel fuel when the gel fuel is in contact with the fuel electrode of the fuel cell. For example, polyphyrin can be used.
実施形態に係る燃料電池用ジェル状燃料は、例えば次のような方法により製造することができる。 The gel fuel for a fuel cell according to the embodiment can be manufactured, for example, by the following method.
まず、反応容器内に高分子化合物および橋掛け剤を溶剤と共に入れ、加温下で撹拌、混合して高分子化合物の橋掛け反応を行う。つづいて、反応物を加温した状態で溶剤を減圧除去して網状高分子化合物(網状ジェル)を得る。例えば、OH基を有する脂肪族系高分子化合物の場合、このOH基が橋掛け剤と反応して橋掛けされて網状ジェルが生成される。次いで、網状ジェルを撹拌しながら、液状燃料成分を徐々に添加し、全量添加後にさらに撹拌を続行して全体が均一になった時点で撹拌を停止して燃料電池用ジェル状燃料を製造する。なお、助触媒は網状ジェルを調製する原料段階で配合するか、網状ジェルの調製後、液状燃料成分の添加前に配合することができる。 First, a polymer compound and a crosslinking agent are placed in a reaction vessel together with a solvent, and stirred and mixed under heating to carry out a crosslinking reaction of the polymer compound. Subsequently, the solvent is removed under reduced pressure while the reaction product is heated to obtain a network polymer compound (network gel). For example, in the case of an aliphatic polymer compound having an OH group, the OH group reacts with a crosslinking agent to be crosslinked to produce a reticulated gel. Next, the liquid fuel component is gradually added while stirring the mesh gel, and stirring is further continued after addition of the entire amount. When the whole becomes uniform, stirring is stopped and a gel fuel for a fuel cell is manufactured. The cocatalyst can be blended in the raw material stage for preparing the reticulated gel, or can be blended after the reticulated gel is prepared and before the liquid fuel component is added.
実施形態に係る燃料電池用ジェル状燃料は、せん断粘性率が100〜1500000dyn・s/cm2であることが好ましい。ジェル状燃料のせん断粘性率は、主に網状高分子化合物の橋掛け度合に相関する。せん断粘性率を100dyn・s/cm2未満にすると、網状高分子化合物による液状燃料成分の取込み性(内包性)が低下する虞がある。一方、ジェル状燃料のせん断粘性率が1500000dyn・s/cm2を超えると、網状高分子化合物に取込まれた液状燃料成分の放出性が低下して燃料電池への適用において燃料極の触媒層への液状燃料成分の到達速度が遅くなる虞がある。より好ましい燃料電池用ジェル状燃料せん断粘性率は1000〜300000dyn・s/cm2である。 The gel fuel for a fuel cell according to the embodiment preferably has a shear viscosity of 100 to 1500,000 dyn · s / cm 2 . The shear viscosity of the gel fuel is mainly correlated with the degree of crosslinking of the reticulated polymer compound. If the shear viscosity is less than 100 dyn · s / cm 2 , there is a possibility that the uptake property (inclusive property) of the liquid fuel component by the reticulated polymer compound may be lowered. On the other hand, when the shear viscosity of the gel fuel exceeds 1500000 dyn · s / cm 2 , the release property of the liquid fuel component incorporated in the reticulated polymer compound is reduced, and the catalyst layer of the fuel electrode is applied to the fuel cell. There is a possibility that the arrival speed of the liquid fuel component to the will slow down. The gel fuel shear viscosity for the fuel cell is more preferably 1000 to 300,000 dyn · s / cm 2 .
実施形態に係る燃料電池用ジェル状燃料中の高分子化合物および橋掛け剤の配合割合は、高分子化合物0.3〜60重量%、橋掛け剤0.01〜20重量%にすることが好ましい。このような配合割合にすることによって、液状燃料成分の取込み性(内包性)と液状燃料成分の放出性のバランスが良好な網状高分子化合物(網状ジェル)を形成することが可能になる。 The blending ratio of the polymer compound and the crosslinking agent in the gel fuel for the fuel cell according to the embodiment is preferably 0.3 to 60% by weight of the polymer compound and 0.01 to 20% by weight of the crosslinking agent. . By using such a blending ratio, it becomes possible to form a network polymer compound (network gel) having a good balance between the liquid fuel component uptake (encapsulation) and the liquid fuel component release.
実施形態に係る燃料電池用ジェル状燃料中の網状高分子化合物(網状ジェル)とこの網状ジェルに取込まれる液状燃料成分の配合割合は、網状ジェル0.5〜85重量%、液状燃料成分15〜99.5重量%にすることが好ましい。このような配合割合にすることによって、燃料電池への適用において燃料極の触媒層への液状燃料成分の到達速度を一層速めることが可能になる。 The blending ratio of the network polymer compound (network gel) in the fuel cell gel fuel and the liquid fuel component taken into the network gel is 0.5 to 85% by weight of the network gel, and the liquid fuel component 15 It is preferable to make it -99.5 weight%. By using such a blending ratio, it is possible to further increase the arrival speed of the liquid fuel component to the catalyst layer of the fuel electrode in application to a fuel cell.
実施形態に係る燃料電池用ジェル状燃料中の網状高分子化合物(網状ジェル)とこの網状ジェルと共存する助触媒の配合割合は、網状ジェル0.5〜85重量%、助触媒0.001〜30重量%にすることが好ましい。 The blending ratio of the reticulated polymer compound (reticular gel) and the co-catalyst coexisting with the reticulated gel in the fuel fuel gel fuel according to the embodiment is 0.5 to 85% by weight of the reticulated gel, and 0.001 to 0.001 of the promoter. It is preferably 30% by weight.
以上説明した実施形態に係る燃料電池用ジェル状燃料によれば、燃料電池への適用において以下のような作用・効果を奏する。 According to the gel fuel for a fuel cell according to the embodiment described above, the following operations and effects can be achieved when applied to a fuel cell.
(1)燃料電池用ジェル状燃料は、橋掛け剤により橋掛けされた網状高分子化合物を有し、これに液状燃料成分を取込んでいるため、燃料電池の燃料極の触媒層への供給において網状高分子化合物から液状燃料成分が速やかに放出して触媒層に到達する。すなわち、液状燃料成分の触媒層への到達速度を速めることが可能になる。その結果、触媒層で発電に必要な酸化反応が十分になされるため、燃料電池の出力密度を向上できる。 (1) The gel fuel for a fuel cell has a network polymer compound cross-linked by a cross-linking agent, and a liquid fuel component is taken into this, so that it is supplied to the catalyst layer of the fuel electrode of the fuel cell. The liquid fuel component is rapidly released from the network polymer compound and reaches the catalyst layer. That is, the arrival speed of the liquid fuel component to the catalyst layer can be increased. As a result, since the oxidation reaction necessary for power generation is sufficiently performed in the catalyst layer, the output density of the fuel cell can be improved.
(2)網状高分子化合物から適切な量の液状燃料成分を燃料極の触媒層に到達させ、触媒層で速やかに酸化反応させることが可能で、未反応の液状燃料成分が触媒層に滞留するのを抑制できる。また、網状高分子化合物と共に含有される助触媒により触媒層に到達した液状燃料成分を活性化して酸化反応を促進するため、未反応の液状燃料成分が触媒層に滞留するのをより一層抑制することが可能になる。その結果、未反応の液状燃料成分が触媒層から高分子電解質膜に拡散して酸化極に達するクロスオーバ現象を低減することができる。 (2) An appropriate amount of the liquid fuel component from the network polymer compound can reach the catalyst layer of the fuel electrode and can be rapidly oxidized in the catalyst layer, and the unreacted liquid fuel component stays in the catalyst layer. Can be suppressed. In addition, the co-catalyst contained together with the network polymer compound activates the liquid fuel component that has reached the catalyst layer to promote the oxidation reaction, thereby further suppressing the unreacted liquid fuel component from staying in the catalyst layer. It becomes possible. As a result, the crossover phenomenon in which the unreacted liquid fuel component diffuses from the catalyst layer to the polymer electrolyte membrane and reaches the oxidation electrode can be reduced.
(3)前記(2)と同様な作用、未反応の液状燃料成分の触媒層への滞留抑制、によって発熱を抑えることができるため、発電効率を向上できる。 (3) Since the heat generation can be suppressed by the same action as the above (2) and the retention of unreacted liquid fuel component in the catalyst layer, the power generation efficiency can be improved.
(4)液状燃料単体を用いる場合に比べて液状燃料成分の漏洩による燃料電池搭載器機の損害を低減できる。 (4) It is possible to reduce damage to the fuel cell device due to leakage of the liquid fuel component as compared with the case of using the liquid fuel alone.
(5)前記(1)〜(3)の作用により燃料電池のダウンサイジングが可能になる。 (5) The fuel cell can be downsized by the actions (1) to (3).
以下、本発明の実施例を詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
(実施例1)
[網状高分子化合物の調製]
三口丸底フラスコにホモジナイザー(エムエステー社製;ホモジナイザーPH91)、リービッヒ冷却管および滴下漏斗を取り付けた反応容器をシリコンオイルバスに浸した。
Example 1
[Preparation of reticulated polymer compound]
A reaction vessel equipped with a homogenizer (manufactured by MEST; homogenizer PH91), a Liebig condenser and a dropping funnel in a three-necked round bottom flask was immersed in a silicon oil bath.
高分子化合物であるポリビニルアルコール(アルドリッチ社製;重量平均分子量31000〜50000)30重量部、橋掛け剤であるメチレンジイソシアネート(アルドリッチ社製)5重量部、助触媒であるポルフィリン0.5重量部を溶剤である1,2−ジクロロエチレン(アルドリッチ社製)64.5重量部に添加して溶液を調製した。この溶液を反応容器内に入れ、550℃の温度条件下にてホモジナイザーによって3000rpmの条件で2時間攪拌を行なった。反応容器の内容物を300mLのナシ型フラスコに移し替えた後、ロータリーエバポレイター(柴田理科機器製;RI−210)に装着し、湯浴下で溶剤成分である1,2−ジクロロエチレンを1時間減圧除去して数平均分子量が100000のポルフィリン分散網状高分子化合物(網状ジェル)を調製した。 30 parts by weight of polyvinyl alcohol (manufactured by Aldrich; weight average molecular weight 31000-50000) as a polymer compound, 5 parts by weight of methylene diisocyanate (manufactured by Aldrich) as a crosslinking agent, and 0.5 part by weight of porphyrin as a co-catalyst. A solution was prepared by adding to 64.5 parts by weight of 1,2-dichloroethylene (Aldrich) as a solvent. This solution was put in a reaction vessel and stirred for 2 hours at 3000 rpm with a homogenizer under a temperature condition of 550 ° C. After the contents of the reaction vessel were transferred to a 300 mL pear-shaped flask, they were mounted on a rotary evaporator (manufactured by Shibata Science Instruments; RI-210), and 1,2-dichloroethylene, which is a solvent component, was placed in a hot water bath for 1 hour. A porphyrin-dispersed network polymer compound (network gel) having a number average molecular weight of 100,000 was prepared by removing under reduced pressure.
[燃料の製造]
得られたポルフィリン分散網状高分子化合物(網状ジェル)10gをドラフトチャンバー内で300mLのビーカーに入れ、ビーカー内の網状ジェルをホモジナイザー(エムエステー社製;ホモジナイザーPH91)を用いて攪拌しながらメタノール90gを徐々に添加した。メタノールの全量を添加した後、攪拌を30分間続行して全体が均一化された燃料電池用ジェル状燃料を製造した。
[Manufacture of fuel]
10 g of the obtained porphyrin-dispersed network polymer compound (network gel) was placed in a 300 mL beaker in a draft chamber, and 90 g of methanol was stirred while the network gel in the beaker was stirred using a homogenizer (MEST Co., Ltd .; homogenizer PH91). Slowly added. After the total amount of methanol was added, stirring was continued for 30 minutes to produce a fuel cell gel fuel that was made uniform throughout.
(実施例2〜8)
網状ジェルの調製で用いられる高分子化合物、橋掛け剤、助触媒および溶剤を下記表1に示す材料を用い、これらの材料を同表1に示す割合で配合し、かつジェル状燃料の製造時に用いられる網状ジェルとメタノールを同表1に示す割合で配合した以外、実施例1と同様な方法で燃料電池用ジェル状燃料を製造した。なお、高分子化合物であるポリエチレンイミンは重量平均分子量が2000〜350000、ポリアルギン酸は重量平均分子量が3000〜450000、ポリアクリル酸は重量平均分子量が2500〜200000のものを用いた。
(Examples 2 to 8)
The polymer compound, crosslinking agent, co-catalyst and solvent used in the preparation of the reticulated gel are used in the materials shown in Table 1 below, and these materials are blended in the proportions shown in Table 1 and the gel fuel is produced. A gel fuel for a fuel cell was produced in the same manner as in Example 1 except that the reticulated gel and methanol used were blended in the proportions shown in Table 1. Polyethyleneimine, which is a polymer compound, had a weight average molecular weight of 2000 to 350,000, polyalginic acid had a weight average molecular weight of 3000 to 450,000, and polyacrylic acid had a weight average molecular weight of 2500 to 200000.
また、得られた実施例1〜8のジェル状燃料のせん断粘性率を下記表1に併記する。
(比較例1)
1重量%のアルギン酸ナトリウムメタノール溶液50mLを100mLのビーカーに入れた。10gの塩化カルシウムを100mLのビーカーに取り、蒸留水を加えて100mLとした。この塩化カルシウム水溶液をホモジナイザー(エムエステー社製;ホモジナイザーPH91)を用いて100rpm速度で撹拌しながら、アルギン酸ナトリウムメタノール溶液をスポイトを用いて徐々に滴下した。生成した微粒子を25メッシュのガーゼでろ過し、ガーゼ上の粒子をメタノール固体燃料(マイクロカプセル燃料)として回収した。
(Comparative Example 1)
50 mL of a 1 wt% sodium alginate methanol solution was placed in a 100 mL beaker. 10 g of calcium chloride was taken in a 100 mL beaker and distilled water was added to make 100 mL. While stirring this calcium chloride aqueous solution at a rate of 100 rpm using a homogenizer (manufactured by MEST Co .; homogenizer PH91), a sodium alginate methanol solution was gradually added dropwise using a dropper. The produced fine particles were filtered with a 25 mesh gauze, and the particles on the gauze were collected as methanol solid fuel (microcapsule fuel).
[燃料電池の評価]
<単セルの組み立て>
パーフルオロアルキルスルホン膜(デュポン社製商標名;ナフィオン112膜)の一方の面に白金−ルテニウム触媒層および炭素粉末−カーボンペーパの拡散層をこの順序で熱圧着してアノード(燃料極)を形成し、さらに前記パーフルオロアルキルスルホン膜の他方の面に白金触媒層および炭素粉末−カーボンペーパの拡散層をこの順序で熱圧着してカソード(空気極)を形成して電極面積5cm2の膜電極を作製した。つづいて、この膜電極の両面にコラムフロー流路を有するカーボン製セパレータおよび集電体をこの順序でそれぞれ積層し、ボルト締めすることにより評価用単セルを組み立てた。
[Evaluation of fuel cell]
<Assembly of single cell>
A platinum-ruthenium catalyst layer and a carbon powder-carbon paper diffusion layer are thermocompression-bonded in this order on one side of a perfluoroalkylsulfone membrane (DuPont brand name; Nafion 112 membrane) to form an anode (fuel electrode). Further, a platinum catalyst layer and a carbon powder-carbon paper diffusion layer are thermocompression bonded in this order on the other surface of the perfluoroalkylsulfone membrane to form a cathode (air electrode) to form a membrane electrode having an electrode area of 5 cm 2 . Was made. Subsequently, a carbon separator having a column flow channel on both sides of the membrane electrode and a current collector were laminated in this order, and bolted to assemble a single cell for evaluation.
<単セル評価>
実施例1〜8および比較例1の燃料を単セルのアノード側に7mL/分の流速でそれぞれ送液し、空気を単セルのカソード側に14mL/分の流速で送液し、50℃の各単セルの電流−電圧特性を測定した。その結果を図1および図2に示す。
図1および図2から明らかなように実施例1〜8の燃料は、比較例1の燃料に比べて高い出力電圧を取り出すことができることがわかる。
<Single cell evaluation>
The fuels of Examples 1 to 8 and Comparative Example 1 were respectively sent to the anode side of the single cell at a flow rate of 7 mL / min, and air was supplied to the cathode side of the single cell at a flow rate of 14 mL / min. The current-voltage characteristics of each single cell were measured. The results are shown in FIG. 1 and FIG.
As is clear from FIGS. 1 and 2, the fuels of Examples 1 to 8 can extract a higher output voltage than the fuel of Comparative Example 1.
Claims (4)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008078989A JP4331244B1 (en) | 2008-03-25 | 2008-03-25 | Gel fuel for fuel cells |
US12/353,094 US20090241411A1 (en) | 2008-03-25 | 2009-01-13 | Gel-like fuel for fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008078989A JP4331244B1 (en) | 2008-03-25 | 2008-03-25 | Gel fuel for fuel cells |
Publications (2)
Publication Number | Publication Date |
---|---|
JP4331244B1 true JP4331244B1 (en) | 2009-09-16 |
JP2009238378A JP2009238378A (en) | 2009-10-15 |
Family
ID=41115011
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008078989A Expired - Fee Related JP4331244B1 (en) | 2008-03-25 | 2008-03-25 | Gel fuel for fuel cells |
Country Status (2)
Country | Link |
---|---|
US (1) | US20090241411A1 (en) |
JP (1) | JP4331244B1 (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3355269A (en) * | 1966-06-20 | 1967-11-28 | Gen Foam Corp | Gelled fuel and process |
US4898921A (en) * | 1987-06-03 | 1990-02-06 | Montclair State College | Conducting polymer films, method of manufacture and applications therefor |
US6921593B2 (en) * | 2001-09-28 | 2005-07-26 | Hewlett-Packard Development Company, L.P. | Fuel additives for fuel cell |
US7255947B2 (en) * | 2003-10-17 | 2007-08-14 | The Gillette Company | Fuel substance and associated cartridge for fuel cell |
-
2008
- 2008-03-25 JP JP2008078989A patent/JP4331244B1/en not_active Expired - Fee Related
-
2009
- 2009-01-13 US US12/353,094 patent/US20090241411A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
US20090241411A1 (en) | 2009-10-01 |
JP2009238378A (en) | 2009-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1294667C (en) | Metal oxide-carbon composite catalyst support and fuel cell comprising the same | |
CN1238922C (en) | Fuel cell activating method | |
JP5839161B2 (en) | Gas diffusion layer for fuel cell and manufacturing method thereof | |
CN100438158C (en) | Membrane-electrode assembly for fuel cell and fuel cell system comprising same | |
Tran et al. | Compositional effects of gel polymer electrolyte and battery design for zinc‐air batteries | |
JP4130792B2 (en) | Membrane-electrode structure and polymer electrolyte fuel cell using the same | |
JP4575330B2 (en) | Anode for fuel cell, method for producing the same, and fuel cell having the same | |
KR20060086117A (en) | A polymer electrolyte membrane for fuel cell, a method for preparing the same, and a fuel cell system comprising the same | |
JP2003203646A (en) | Manufacturing method of fuel cell membrane-electrode- gasket joint body and fuel cell containing the same | |
CN1786047A (en) | Polymer electrolyte and fuel cell employing the same | |
WO2011074327A1 (en) | Gas diffusion layer for fuel cell, and membrane electrode assembly using said gas diffusion layer for fuel cell | |
JP2015527706A (en) | Microporous layer with hydrophilic additive | |
JP2007527103A (en) | Membrane electrode unit | |
JP2007165245A (en) | Fuel cell reaction layer, fuel cell, and manufacturing method of fuel cell reaction layer | |
CN102195046A (en) | Membrane-electrode assembly for fuel cell, method of manufacturing membrane-electrode assembly for fuel cell, and fuel cell system | |
CN1853296A (en) | Membrane-electrode unit for direct methanol fuel cells and method for the production thereof | |
JP2002536565A (en) | Non-woven web | |
CN1551389A (en) | Membrane electrode assembly,and its preparation method and solid polymer fuel cell | |
US7947410B2 (en) | Fuel cell electrodes with triazole modified polymers and membrane electrode assemblies incorporating same | |
CN1299373C (en) | Electrode for fuel cell and method of manufacturing the electrode | |
JP4331244B1 (en) | Gel fuel for fuel cells | |
WO2002019454A1 (en) | Fuel cell unit and its manufacturing method | |
JPH07147162A (en) | Manufacture of jointed body of electrolytic film and electrode | |
JP2006085984A (en) | Mea for fuel cell and fuel cell using this | |
JP2002252001A (en) | Gas diffusion electrode and solid high polymer type fuel cell equipped with this |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090526 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090617 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120626 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |