Nothing Special   »   [go: up one dir, main page]

JP4330518B2 - Continuous casting method - Google Patents

Continuous casting method Download PDF

Info

Publication number
JP4330518B2
JP4330518B2 JP2004324182A JP2004324182A JP4330518B2 JP 4330518 B2 JP4330518 B2 JP 4330518B2 JP 2004324182 A JP2004324182 A JP 2004324182A JP 2004324182 A JP2004324182 A JP 2004324182A JP 4330518 B2 JP4330518 B2 JP 4330518B2
Authority
JP
Japan
Prior art keywords
slab
carbon concentration
electromagnetic stirring
segregation
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004324182A
Other languages
Japanese (ja)
Other versions
JP2006130542A (en
Inventor
裕基 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2004324182A priority Critical patent/JP4330518B2/en
Publication of JP2006130542A publication Critical patent/JP2006130542A/en
Application granted granted Critical
Publication of JP4330518B2 publication Critical patent/JP4330518B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

本発明は、鋳型内電磁撹拌を行いつつスラブ鋳片を連続鋳造法によって製造する方法に関するものであり、特にスラブ鋳片におけるホワイトバンドの発生を抑制し、ブレークアウト等の発生を効果的に防止して安定した操業を実現できる連続鋳造方法に関するものである。   The present invention relates to a method for producing a slab slab by a continuous casting method while performing electromagnetic stirring in a mold, and particularly suppresses the generation of a white band in the slab slab and effectively prevents the occurrence of a breakout or the like. The present invention relates to a continuous casting method that can realize stable operation.

鋼の連続鋳造においては、取鍋中の溶鋼を鋳型に投入し、鋳型内部で冷却(一次冷却)して凝固シェルを形成し、その後水によるスプレイ帯にガイドロールによって案内しつつ冷却して(二次冷却)凝固シェルを次第に厚くしていき、その後ピンチロールによって徐々に引き抜いて凝固完了後に鋳片としてその後の工程に送るように構成されている。   In continuous casting of steel, molten steel in a ladle is poured into a mold, cooled inside the mold (primary cooling) to form a solidified shell, and then cooled while being guided by a guide roll into a water spray zone ( (Secondary cooling) The solidified shell is gradually thickened and then gradually pulled out by a pinch roll, and after solidification is completed, the solidified shell is sent to a subsequent process as a slab.

こうした連続鋳造においては、鋳片の表面性状や内部品質の向上を目指して、鋳型内メニスカス近傍の溶鋼に磁界を作用させて溶鋼流速を制御するいわゆる電磁撹拌が行われることが多い。   In such continuous casting, so-called electromagnetic stirring is often performed to control the flow rate of molten steel by applying a magnetic field to the molten steel near the meniscus in the mold in order to improve the surface properties and internal quality of the slab.

しかしながら、電磁撹拌強度が強すぎると、鋳片の凝固遅れが発生することがあり、こうした凝固遅れは連続鋳造の操業において様々の問題を発生させる。例えば、凝固遅れが発生した箇所(凝固界面)には、ホワイトバンドと呼ばれる負偏析帯が生成することが知られている。このホワイトバンドの発生状況を模式的に図1に示す。電磁撹拌への印加電流を大きくして、溶鋼流速を速くするほど凝固シェル厚みの不均一度が大きくなり、ホワイトバンドは生成しやすくなる。またこの偏析度が或る値よりも大きくなって強い負偏析帯が形成されると、鋳片のブレークアウト(以下、「B.O.」と略記することがある)が発生することになる。   However, if the electromagnetic stirring strength is too strong, slab solidification delay may occur, and such solidification delay causes various problems in continuous casting operations. For example, it is known that a negative segregation band called a white band is generated at a portion where the solidification delay occurs (solidification interface). FIG. 1 schematically shows the occurrence of this white band. As the current applied to electromagnetic stirring is increased and the molten steel flow rate is increased, the non-uniformity of the solidified shell thickness increases and white bands are more likely to be generated. Further, when the segregation degree becomes larger than a certain value and a strong negative segregation zone is formed, a slab breakout (hereinafter sometimes abbreviated as “BO”) occurs. .

連続鋳造における電磁撹拌は、溶鋼を撹拌して溶鋼中の介在物や気泡を洗い流すことによって、これらが凝固シェル内に補足されることを防止することが目的でなされるものであり、印加強度を強くするほど品質改善効果が大きくなる。しかしながら、撹拌を強くし過ぎると上記の様なホワイトバンドが生成してB.O.などの操業トラブルに繋がるというという問題がある。   The electromagnetic stirring in continuous casting is performed for the purpose of preventing the inclusion of these in the solidified shell by stirring the molten steel to wash away inclusions and bubbles in the molten steel. The stronger it is, the greater the quality improvement effect. However, when the stirring is too strong, a white band as described above is generated and B.I. O. There is a problem that it leads to operational troubles.

こうしたホワイトバンドの発生は、鋳造速度や鋳型狭面テーパ量によっても変化するものとなる。また鋳造速度や鋳型狭面テーパ量は、ホワイトバンドに影響を与えるばかりでなく、連続鋳造機の機長や内部割れ、鋳片表面傷等の要因によって、各種鋼種成分や製品用途によっても適切に設定する必要がある。従って、これらの要件を満たした上で、B.O.が発生しない電磁撹拌条件を適切に設定する必要がある。   The occurrence of such a white band varies depending on the casting speed and the mold narrow surface taper amount. Also, the casting speed and mold narrow taper amount not only affect the white band, but also appropriately set according to various steel grade components and product applications depending on factors such as the length of the continuous casting machine, internal cracks, and slab surface scratches. There is a need to. Therefore, B.B. O. It is necessary to appropriately set the electromagnetic stirring condition that does not generate.

上記のようなホワイトバンドの発生は、鋳片断面形状によっても異なり、しかもその発生原因は様々な要因があることから、ホワイトバンドの発生を効果的に抑制するための最適な電磁撹拌条件を鋼種ごとに論理的に決定することは困難な状況であった。   The occurrence of white bands as described above varies depending on the cross-sectional shape of the slab, and there are various causes, so the optimum electromagnetic stirring conditions for effectively suppressing the occurrence of white bands are the steel type. It was difficult to make a logical decision every time.

ホワイトバンドの発生を抑制した技術として、例えば特許文献1には、鋼種成分に応じて所定の関係式を満足するように溶鋼流動速度を制御しつつ電磁撹拌を行う方法が提案されている。しかしながら、現実問題としては、溶鋼流動速度を正確に測定することは困難であり、適切な溶鋼撹拌条件を設定できないという問題がある。
特許第3257546号公報 特許請求の範囲など
As a technique that suppresses the generation of white bands, for example, Patent Document 1 proposes a method of performing electromagnetic stirring while controlling the molten steel flow rate so as to satisfy a predetermined relational expression in accordance with the steel type component. However, as a practical problem, it is difficult to accurately measure the molten steel flow rate, and there is a problem that appropriate molten steel stirring conditions cannot be set.
Japanese Patent No. 3257546 Patent Claim etc.

本発明は上記の様な事情に着目してなされたものであって、その目的は、スラブ鋳片におけるホワイトバンドの発生を抑制し、ブレークアウト等の発生を効果的に防止して安定した操業を実現できる連続鋳造方法を提供することにある。   The present invention has been made paying attention to the above-mentioned circumstances, and its purpose is to suppress the occurrence of white bands in slab slabs and to effectively prevent the occurrence of breakouts and the like, thereby achieving stable operation. It is to provide a continuous casting method that can realize the above.

本発明に係る連続鋳造方法とは、鋳型内電磁撹拌を行いつつスラブ鋳片を連続鋳造するに当たり、取鍋溶鋼の炭素濃度を[C](質量%)としたとき、スラブ鋳片コーナの夫々から70mm×70mmの範囲における偏析度Keが下記(1)式および(2)式を満足すると共に、鋳片表面から70mmよりも内部での偏析度Koが1.05以下となる様に電磁撹拌条件を制御して操業する点に要旨を有するものである。
Ke≧1.15×[C](0.073)−0.12…(1)
Ke≦1.15×[C](0.038)−0.12…(2)
但し、偏析度Keは、最小のときの炭素濃度[Cmin](質量%)と前記炭素濃度
[C]の比([Cmin]/[C])で、偏析度Koは、最大のときの炭素濃度[
Cmax](質量%)と前記炭素濃度[C]の比([Cmax]/[C])で表わ
される。
In the continuous casting method according to the present invention, when continuously casting slab slabs while performing electromagnetic stirring in the mold, when the carbon concentration of the ladle molten steel is [C] (mass%), each of the slab slab corners. To 70 mm × 70 mm within the range of the segregation degree Ke so that the following formulas (1) and (2) are satisfied and the segregation degree Ko within 70 mm from the slab surface is 1.05 or less. It has a gist in that it operates under controlled conditions.
Ke ≧ 1.15 × [C] (0.073) −0.12 (1)
Ke ≦ 1.15 × [C] (0.038) −0.12 (2)
However, the segregation degree Ke is the ratio ([Cmin] / [C]) of the carbon concentration [Cmin] (mass%) at the minimum to the carbon concentration [C], and the segregation degree Ko is the carbon at the maximum. concentration[
Cmax] (mass%) and the ratio of carbon concentration [C] ([Cmax] / [C]).

本発明の連続鋳造方法においては、取鍋溶鋼の炭素濃度を[C]が0.001〜0.25%であることが好ましい。またスラブ鋳片における軸直角断面が厚み:150〜250mm、幅:800〜1800mm程度を想定したものである。   In the continuous casting method of the present invention, the carbon concentration of the ladle molten steel is preferably [C] of 0.001 to 0.25%. In addition, the cross section perpendicular to the axis of the slab slab assumes a thickness of about 150 to 250 mm and a width of about 800 to 1800 mm.

本発明においては、スラブ鋳片の炭素含有量に応じて、スラブ鋳片コーナの所定の領域における偏析度が一定の関係式を満足すると共に、鋳片内部での偏析度を制御することによって、ホワイトバンドの発生を抑制してB.O.などの問題が発生しない連続鋳造方法が実現できた。   In the present invention, according to the carbon content of the slab slab, the segregation degree in a predetermined region of the slab slab corner satisfies a certain relational expression, and by controlling the segregation degree inside the slab, Suppress the generation of white bands O. A continuous casting method that does not cause such problems can be realized.

本発明者らは、前記課題を解決するために鋭意研究を重ねた。その結果、ホワイトバンドの原因となる凝固遅れは、鋳片断面形状が比較的扁平なスラブ鋳片の場合には、鋳型四隅コーナ部の領域で発生しやすいことが判明し、特にこうした領域での偏析度Keを、鋳片の炭素含有量(即ち、取鍋溶鋼の炭素濃度)に応じて適切な範囲となるように電磁撹拌条件を制御すれば、上記目的が達成されることを見出し、本発明を完成した。   The inventors of the present invention have made extensive studies to solve the above problems. As a result, it was found that the solidification delay causing white bands is likely to occur in the area of the corners of the mold corners, especially in the case of slab slabs with a relatively flat slab cross-sectional shape. It has been found that the above object can be achieved by controlling the magnetic stirring conditions so that the segregation degree Ke is within an appropriate range according to the carbon content of the slab (ie, the carbon concentration of the ladle molten steel). Completed the invention.

スラブ鋳片を連続鋳造したときに、鋳片の凝固遅れが発生する鋳型内領域を図2に示す。スラブ鋳片の場合には、電磁撹拌条件が適切でないときには、溶鋼流速の影響によってスラブ鋳片コーナの夫々から70mm×70mmの範囲A〜Dにおける偏析度Keが変化することになる。そして、この領域における偏析度Keをスラブ鋳片の炭素濃度(即ち、取鍋溶鋼の炭素濃度)に応じて適切な範囲となるように電磁撹拌条件を制御すれば、ホワイトバンドの発生が抑制できるのである。   FIG. 2 shows a region in the mold where the solidification delay of the slab occurs when the slab slab is continuously cast. In the case of a slab slab, when the electromagnetic stirring condition is not appropriate, the segregation degree Ke in the range A to D of 70 mm × 70 mm changes from each of the slab slab corners due to the influence of the molten steel flow velocity. And if electromagnetic stirring conditions are controlled so that the segregation degree Ke in this area | region may become an appropriate range according to the carbon concentration (namely, carbon concentration of ladle molten steel) of a slab slab, generation | occurrence | production of a white band can be suppressed. It is.

また、上記条件を満足するようにすれば、鋳片表面から70mmよりも内部での偏析度Koが必然的に1.05以下となるのであるが、このようなスラブ鋳片では、鋼板としたときに溶接部での曲げ加工性が極めて良好になることも分かった。尚、「鋳片表面から70mmよりも内部」とは、前記スラブ鋳片コーナの領域A〜Dを含めて、鋳片各表面から70mmまでの領域を除いた内部領域を意味する。   In addition, if the above conditions are satisfied, the segregation degree Ko within the slab surface is inevitably 1.05 or less than 70 mm from the slab surface. It has also been found that bending workability at the weld is sometimes very good. The phrase “inner than 70 mm from the slab surface” means an internal region excluding the region from each surface of the slab to 70 mm, including the areas A to D of the slab slab corner.

本発明方法を実施するための具体的な電磁撹拌条件としては、具体的には電磁撹拌装置を構成する電磁コイルの周波数、電流強度などが挙げられるが、これらによって溶鋼に作用する推力を変化させることになる。   Specific examples of the electromagnetic stirring condition for carrying out the method of the present invention include the frequency and current intensity of the electromagnetic coil that constitutes the electromagnetic stirring device, and these change the thrust acting on the molten steel. It will be.

本発明で対象とするスラブ鋳片の炭素濃度[C](即ち、取鍋溶鋼の炭素濃度)の範囲については、特に限定するものではないが、鋼板として使用されることを考慮すれば、0.001〜0.25%であることが好ましい。   The range of the carbon concentration [C] (that is, the carbon concentration of the ladle molten steel) of the slab cast slab targeted in the present invention is not particularly limited, but considering that it is used as a steel plate, it is 0. 0.001 to 0.25% is preferable.

また本発明で対象とする鋳片は、軸直角断面形状が扁平であるスラブを対象とするものであり、その形状は例えば厚み:150〜250mm、幅:800〜1800mm程度のものを想定したものである。   Further, the slab targeted in the present invention is intended for a slab whose cross-sectional shape perpendicular to the axis is flat, and the shape is assumed to have a thickness of about 150 to 250 mm and a width of about 800 to 1800 mm, for example. It is.

本発明方法を実施するに当たっては、電子撹拌条件以外については、特に限定するものではなく、通常の条件に従えばよいが、鋳造速度や鋳型狭面テーパ量もホワイトバンドの発生に影響を与えることも考慮し、これらの値も適切な範囲とすることが好ましい。例えば、鋳造速度は1.2〜2.0m/min程度、鋳型狭面テーパ量片面で0.5〜0.75%に設定することが好ましい。尚、鋳型狭面テーパ量とは、[(鋳型上幅−鋳型下幅)/(鋳型上幅)]×100(%)を意味し、鋳型内での熱収縮を補償するという理由で、スラブ鋳片短辺形状と表面の割れに影響を及ぼすものである。   In carrying out the method of the present invention, the conditions other than the electronic stirring conditions are not particularly limited and normal conditions may be followed. However, the casting speed and the mold narrow surface taper amount also affect the occurrence of white bands. In view of the above, it is preferable that these values are also in an appropriate range. For example, the casting speed is preferably set to about 1.2 to 2.0 m / min, and the mold narrow surface taper amount on one side is set to 0.5 to 0.75%. Note that the mold narrow surface taper amount means [(mold upper width−mould lower width) / (mould upper width)] × 100 (%), and is intended to compensate for thermal shrinkage in the mold. It affects the slab short side shape and surface cracks.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

2基の連続鋳造機用いて、カーボン濃度が異なる複数の鋼種を種々の電磁撹拌条件のものでスラブ鋳造し、各コーナ部(鋳片コーナから70mm×70mmの領域)での偏析度(Ke)とB.O発生状況および鋳片表面品質(ヘゲ疵、スリバー疵発生率)の関係について調査した。製造した各スラブ鋳片(取鍋溶鋼)の化学成分組成は下記表1に示す通りである。このとき、連続鋳造の鋳造速度は1.2〜2.0m/min、鋳片サイズ(幅)は800〜1700mmの範囲で任意に変更した。また狭面鋼板のテーパ率は片側0.50〜0.75%の範囲で鋳型サイズに応じて変更した。尚、偏析度Keについては、スラブ鋳片の表層部より中心に垂直に(鋳片幅方向に向かって)10mmピッチで直径5mm以内のドリルで切り粉を採取して炭素濃度を測定し、その最も低い値を[Cmin](質量%)とし、取鍋溶鋼の炭素濃度[C](質量%)との比([Cmin]/[C])で求めた。   Using two continuous casters, slab casting was performed on a plurality of steel types having different carbon concentrations under various electromagnetic stirring conditions, and the segregation degree (Ke) at each corner (70 mm × 70 mm region from the slab corner) And B. The relationship between the O generation status and the slab surface quality (hege and sliver generation rate) was investigated. The chemical composition of each manufactured slab slab (ladder molten steel) is as shown in Table 1 below. At this time, the casting speed of continuous casting was arbitrarily changed in the range of 1.2 to 2.0 m / min and the slab size (width) in the range of 800 to 1700 mm. Further, the taper ratio of the narrow surface steel plate was changed in the range of 0.50 to 0.75% on one side according to the mold size. As for the segregation degree Ke, the carbon concentration was measured by collecting chips with a drill having a diameter of 5 mm or less at a pitch of 10 mm perpendicularly to the center (in the width direction of the slab) from the surface layer portion of the slab slab. The lowest value was [Cmin] (mass%), and the ratio ([Cmin] / [C]) with the carbon concentration [C] (mass%) of the ladle molten steel was obtained.

Figure 0004330518
Figure 0004330518

各鋼種の炭素濃度[C]や偏析度KeがB.O.の発生や鋳片表面品質に与える影響を図3に示す。この結果から明らかな様に、鋳片の炭素濃度[C]が高くなるほど、および偏析度Keの大きい領域になるほどB.O.が発生する範囲が拡大していることが分かる。またいずれの炭素濃度[C]においても、偏析度Keを大きくし過ぎると、溶鋼流動速度が遅くなり過ぎ、電磁撹拌による洗浄効果がなくなって品質不良に繋がっていることが分かる。   The carbon concentration [C] and segregation degree Ke of each steel type are B. O. FIG. 3 shows the influence on the generation of slabs and the slab surface quality. As apparent from this result, the higher the carbon concentration [C] of the slab and the higher the segregation degree Ke, the more B. O. It can be seen that the range where this occurs is expanding. It can also be seen that at any carbon concentration [C], when the degree of segregation Ke is excessively increased, the molten steel flow rate becomes too slow, and the cleaning effect due to electromagnetic stirring is lost, leading to poor quality.

この結果に基づいて、操業トラブルや表面品質不良が発生しない操業範囲を検討した結果、前記(1)式および(2)式で規定される範囲が導くことができた。   Based on this result, as a result of examining the operation range in which operation troubles and surface quality defects do not occur, the range defined by the above formulas (1) and (2) can be derived.

本発明方法は、鋳片の炭素濃度に応じて電磁撹拌条件を制御することによって、鋳片の偏析度Keを制御し、これによって操業トラブルや表面品質不良が発生しないスラブ鋳片が得られるのであるが、このときの具体的な条件について詳細に検討した。   According to the method of the present invention, the segregation degree Ke of the slab is controlled by controlling the electromagnetic stirring conditions according to the carbon concentration of the slab, thereby obtaining a slab slab that does not cause operational troubles and surface quality defects. However, the specific conditions at this time were examined in detail.

上記実験では、電磁撹拌の際の周波数は3.0Hzとしたものであるが、電流強度を変えることによって、鋳型内での溶鋼の推力を変化させて偏析度を変えたものである。尚、ここで「推力」とは、電磁撹拌用コイルから発生する電磁力で鋳型内の溶鋼を旋回撹拌させる推進力のことであり、この推進力は真鍮の板を広面鋼板から15mm離れた位置に平行に吊るし、電流印加時の真鍮板の移動荷重をバネ秤で測定することよって算定した。   In the above experiment, the frequency during electromagnetic stirring was set to 3.0 Hz, but the segregation degree was changed by changing the thrust of the molten steel in the mold by changing the current intensity. Here, the “thrust force” is a propulsive force that causes the molten steel in the mold to be swirled and stirred by the electromagnetic force generated from the electromagnetic stirring coil, and this propulsive force is a position 15 mm away from the wide steel plate. The movement load of the brass plate when current was applied was measured by measuring with a spring balance.

用いた電磁撹拌装置における電流値と水力の関係は、下記表2に示す通りである。また、こうした電磁撹拌装置によって、電磁撹拌するときに取鍋溶鋼の炭素濃度[C]に応じた最適な電磁撹拌条件(印加電流値および推力)は下記表3に示す通りである。   The relationship between the current value and hydraulic power in the electromagnetic stirring device used is as shown in Table 2 below. Moreover, the optimal electromagnetic stirring conditions (applied current value and thrust) according to the carbon concentration [C] of the ladle molten steel when electromagnetic stirring is performed by such an electromagnetic stirring device is as shown in Table 3 below.

Figure 0004330518
Figure 0004330518

Figure 0004330518
Figure 0004330518

従って、鋼中のカーボン濃度に応じて表3の範囲内で適切に制御し、前記(1)式および(2)式の関係を満足するように、その電磁撹拌条件を適切に制御すれば良い。   Therefore, the electromagnetic stirring conditions may be appropriately controlled so as to appropriately control within the range of Table 3 according to the carbon concentration in the steel and satisfy the relations of the expressions (1) and (2). .

上記(1)式および(2)式を満足するようにして電磁撹拌を行いつつ連続鋳造すれば、基本的に鋳片表層から70mmよりも内部で偏析度Koを1.05以下にできるのであるが、偏析度Koと曲げ加工時の割れとの関係についても調査した。   If continuous casting is carried out while performing electromagnetic stirring so as to satisfy the above formulas (1) and (2), the segregation degree Ko can be basically reduced to 1.05 or less inside the slab surface layer from 70 mm. However, the relationship between the degree of segregation Ko and cracking during bending was also investigated.

このとき、取鍋溶鋼の炭素濃度[C]が0.14%である鋳片について、上記と同様にして連続鋳造したときに、得られるスラブ鋳片における表面から70mmよりも内部での偏析度Ko([Cmax]/[C])と冷間加工時の溶接部割れとの関係について調査した。尚、このときの各炭素量([Cmax]/[C])測定法は前記した方法に準じた。   At this time, when the slab having a carbon concentration [C] of the ladle molten steel of 0.14% is continuously cast in the same manner as described above, the segregation degree inside the slab slab obtained is more than 70 mm from the surface. The relationship between Ko ([Cmax] / [C]) and the weld crack during cold working was investigated. In addition, each carbon amount ([Cmax] / [C]) measuring method at this time was based on the above-mentioned method.

連続鋳造時の電磁撹拌条件を変えて内部の偏析度の異なる各種のスラブ鋳片を製造し、このスラブ鋳片から圧延することによって300×300×2(mm)の鋼板を作製し、これをアーク溶接によって試験片[600×300×2(mm)]を作製した。このとき相互の偏析部が溶接部に位置するようにした。   Various slab slabs with different internal segregation degrees are produced by changing the electromagnetic stirring conditions during continuous casting, and a 300 × 300 × 2 (mm) steel plate is produced by rolling from this slab slab. A test piece [600 × 300 × 2 (mm)] was prepared by arc welding. At this time, the mutual segregation part was positioned at the welded part.

得られた試験片について、バルジ加工(曲げ加工の一種)を行い、溶接部において偏析起因の割れが発生するときの発生率によって加工性を調査した。このとき、割れ発生の有無は目視によって判断し、その発生率(溶接部をバルジ加工した試験片枚数に対する破断した試験片枚数の割合)が10ppm(100万枚に10枚)未満のときを「○」、10ppm以上となるときを「×」と評価した。   The obtained test piece was subjected to bulge processing (a kind of bending process), and the workability was investigated by the occurrence rate when cracks due to segregation occurred in the weld. At this time, the presence or absence of occurrence of cracks is judged by visual observation, and the occurrence rate (ratio of the number of test pieces fractured to the number of test pieces obtained by bulging the welded portion) is less than 10 ppm (10 pieces per million). “O” was evaluated as “x” when 10 ppm or more.

その結果を偏析度Koとの関係で下記表4に示すが、表面から70mmよりも内部での偏析度Koを1.05以下とすることによって良好な曲げ加工性が達成されていることが分かる。   The results are shown in the following Table 4 in relation to the segregation degree Ko, and it is understood that good bending workability is achieved by setting the segregation degree Ko within 1.0 mm or less from the surface to 70 mm. .

Figure 0004330518
Figure 0004330518

ホワイトバンドの発生状況を模式的に示した説明図である。It is explanatory drawing which showed typically the generation | occurrence | production state of a white band. 凝固遅れが発生する領域を示す鋳型内の説明図である。It is explanatory drawing in the casting_mold | template which shows the area | region where solidification delay generate | occur | produces. 炭素濃度[C]と偏析度KeがB.O.の発生や鋳片表面品質に与える影響を示したグラフである。The carbon concentration [C] and the degree of segregation Ke are O. It is the graph which showed the influence which it has on generation | occurrence | production and slab surface quality.

Claims (1)

鋳型内電磁撹拌を行いつつ、軸直角断面が厚み:150〜250mm、幅:800〜1800mmであるスラブ鋳片を連続鋳造するに当たり、取鍋溶鋼の炭素濃度を[C](質量%)(但し、[C]は0.001〜0.25質量%)としたとき、スラブ鋳片コーナの夫々から70mm×70mmの範囲における偏析度Keが下記(1)式および(2)式を満足すると共に、鋳片表面から70mmよりも内部での偏析度Koが1.05以下となる様に電磁撹拌条件を制御し、かつ鋳造速度を1.2〜2.0m/min、かつ鋳型狭面テーパ量を片面で0.5〜0.75%に設定して操業することを特徴とする連続鋳造方法。
Ke≧1.15×[C](0.073)−0.12…(1)
Ke≦1.15×[C](0.038)−0.12…(2)
但し、偏析度Keは、最小のときの炭素濃度[Cmin](質量%)と前記炭素濃度[C]の比([Cmin]/[C])で、偏析度Koは、最大のときの炭素濃度[ Cmax](質量%)と前記炭素濃度[C]の比([Cmax]/[C])で表わされる。
In continuous casting of a slab slab having a thickness of 150 to 250 mm and a width of 800 to 1800 mm while performing electromagnetic stirring in the mold, the carbon concentration of the ladle molten steel is set to [C] (mass%) (however, , [C] is 0.001 to 0.25 mass%) , the segregation degree Ke in the range of 70 mm × 70 mm from each of the slab slab corners satisfies the following formulas (1) and (2): The electromagnetic stirring conditions are controlled so that the degree of segregation Ko within 70 mm from the slab surface is 1.05 or less , the casting speed is 1.2 to 2.0 m / min, and the mold narrow surface taper amount Is a continuous casting method characterized in that it is operated at a setting of 0.5 to 0.75% on one side .
Ke ≧ 1.15 × [C] (0.073) −0.12 (1)
Ke ≦ 1.15 × [C] (0.038) −0.12 (2)
However, the segregation degree Ke is the ratio ([Cmin] / [C]) of the carbon concentration [Cmin] (mass%) at the minimum to the carbon concentration [C], and the segregation degree Ko is the carbon at the maximum. It is represented by the ratio ([Cmax] / [C]) of the concentration [Cmax] (mass%) and the carbon concentration [C].
JP2004324182A 2004-11-08 2004-11-08 Continuous casting method Expired - Fee Related JP4330518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004324182A JP4330518B2 (en) 2004-11-08 2004-11-08 Continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004324182A JP4330518B2 (en) 2004-11-08 2004-11-08 Continuous casting method

Publications (2)

Publication Number Publication Date
JP2006130542A JP2006130542A (en) 2006-05-25
JP4330518B2 true JP4330518B2 (en) 2009-09-16

Family

ID=36724537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004324182A Expired - Fee Related JP4330518B2 (en) 2004-11-08 2004-11-08 Continuous casting method

Country Status (1)

Country Link
JP (1) JP4330518B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5418786B2 (en) * 2010-07-02 2014-02-19 新日鐵住金株式会社 Steel continuous casting method
CN103506586B (en) * 2012-06-20 2016-01-20 鞍钢股份有限公司 Continuous casting method for improving central shrinkage cavity of high-carbon steel billet

Also Published As

Publication number Publication date
JP2006130542A (en) 2006-05-25

Similar Documents

Publication Publication Date Title
JP4462255B2 (en) Continuous casting method for medium carbon steel
JP4330518B2 (en) Continuous casting method
JP7247777B2 (en) Steel continuous casting method
JPH11156511A (en) Steel slab continuous casting method
JP4998734B2 (en) Manufacturing method of continuous cast slab
JP2019171435A (en) Method of continuous casting
US20030041999A1 (en) Method and apparatus for improving internal quality of continuously cast steel sections
JP7226043B2 (en) Continuous casting method
JP3275835B2 (en) Continuous casting method and continuous casting machine
JP5772767B2 (en) Steel continuous casting method
JP5131992B2 (en) Continuous casting method for medium carbon steel
JP2011194421A (en) Continuous casting method for steel
JP3374761B2 (en) Continuous cast slab, continuous casting method thereof, and method of manufacturing thick steel plate
KR100971251B1 (en) Manufacturing method of cast steel for wire rod with excellent surface quality
JP2001321901A (en) Steel continuous casting method
JPH11156509A (en) Continuous casting method
JP2001334353A (en) Steel continuous casting method
JP3082834B2 (en) Continuous casting method for round slabs
JP4717357B2 (en) High-speed continuous casting method for carbon steel
JP5769645B2 (en) Continuous casting method
JPH0390263A (en) Continuous casting method
JP3395717B2 (en) Continuous casting method
JP3114679B2 (en) Continuous casting method
JP3055462B2 (en) Continuous casting method
JP2000218350A (en) Continuous casting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090616

R150 Certificate of patent or registration of utility model

Ref document number: 4330518

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees