Nothing Special   »   [go: up one dir, main page]

JP4325797B2 - Flying object positioning device - Google Patents

Flying object positioning device Download PDF

Info

Publication number
JP4325797B2
JP4325797B2 JP2004037601A JP2004037601A JP4325797B2 JP 4325797 B2 JP4325797 B2 JP 4325797B2 JP 2004037601 A JP2004037601 A JP 2004037601A JP 2004037601 A JP2004037601 A JP 2004037601A JP 4325797 B2 JP4325797 B2 JP 4325797B2
Authority
JP
Japan
Prior art keywords
flying object
positioning
receiver
gps
launch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004037601A
Other languages
Japanese (ja)
Other versions
JP2004325435A (en
Inventor
朝子 守屋
浩武 森崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Aerospace Co Ltd
Original Assignee
IHI Aerospace Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Aerospace Co Ltd filed Critical IHI Aerospace Co Ltd
Priority to JP2004037601A priority Critical patent/JP4325797B2/en
Publication of JP2004325435A publication Critical patent/JP2004325435A/en
Application granted granted Critical
Publication of JP4325797B2 publication Critical patent/JP4325797B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Description

本発明は、GPSを使用して飛翔体の自己の位置を検出するのに用いられる飛翔体の測位装置に関するものである。   The present invention relates to a flying object positioning device used for detecting the position of a flying object using GPS.

GPS(Global Positioning System)は、複数のGPS衛星からの信号を受信して自己の位置を検出するシステムであって、航空機、船舶及び車両等の各種移動体の測位や、測地・測量などに用いられている。また、GPS衛星からの信号は、精密測位用のPコードと、粗測位用のC/Aコードと呼ばれる2種類の信号により変調されており、粗測位用のC/Aコードが一般用として開放されている。   The GPS (Global Positioning System) is a system that receives signals from a plurality of GPS satellites and detects its own position, and is used for positioning of various mobile objects such as aircraft, ships, and vehicles, and for geodetic and surveying. It has been. In addition, signals from GPS satellites are modulated by two types of signals called precision positioning P-code and coarse positioning C / A code, and the coarse positioning C / A code is open for general use. Has been.

また、上記のC/Aコードを使用して測位精度を高める方法としては、デファレンシャルGPS(以下、『DGPS』とする)がある。このDGPSは、複数のGPS衛星からの信号と、緯度経度が明らかな無線航路標識等の基地局からの信号を受信し、その信号を誤差補正情報として用いることで、Pコードを使用したGPS並みの測位精度を得ることができる。
『第2版・航空宇宙工学便覧』丸善 平成4年9月30日 第1063頁
Further, as a method for improving the positioning accuracy using the C / A code, there is a differential GPS (hereinafter referred to as “DGPS”). This DGPS receives signals from a plurality of GPS satellites and a signal from a base station such as a wireless navigation route sign whose latitude and longitude are obvious, and uses the signals as error correction information, so that it is equivalent to GPS using a P code. Positioning accuracy can be obtained.
“Second Edition, Aerospace Engineering Handbook” Maruzen, September 30, 1992, page 1063

ところで、近年では、ロケット弾、砲弾及びミサイル等のように飛翔時間の短い飛翔体にもGPSを用いることが検討されている。しかしながら、精密測位用のPコードを使用するGPSは、当然のことながら高価であるうえに、簡単に入手し得るものではない。   By the way, in recent years, the use of GPS for a flying object with a short flight time such as a rocket, a cannonball, and a missile has been studied. However, the GPS using the P-code for precise positioning is naturally expensive and not easily available.

これに対して、粗測位用のC/Aコードを使用するGPSは、比較的安価であるとともに入手も容易であるが、受信機の電源投入後、定位置で一定時間GPS衛星を追尾して可視のGPS衛星の配置を記憶する必要がある。また、DGPSは、基地局からの信号を誤差補正情報として長時間取得することで測位精度を高めているので、充分な測位精度を確保するには時間がかかる。   On the other hand, a GPS using a coarse positioning C / A code is relatively inexpensive and easy to obtain, but after turning on the receiver, the GPS satellite is tracked at a fixed position for a certain period of time. It is necessary to memorize the arrangement of visible GPS satellites. In addition, since DGPS increases positioning accuracy by acquiring a signal from a base station as error correction information for a long time, it takes time to ensure sufficient positioning accuracy.

このため、C/Aコードを使用するGPS及びDGPSは、上記したような飛翔体、すなわち飛翔時間が比較的短く、発射位置が不特定であり、緊急発射が要求されるような飛翔体への適用が困難であった。また、この種の飛翔体は、多くの場合、ロンチャ、キャニスター及び砲身などのように電波を遮断する金属製構造物に収容されているか、航空機の翼下のように機体が障害となって衛星信号を受信し難い位置に取り付けられている。したがって、発射以前において、搭載した受信機でGPS衛星の信号を受信することが困難であり、このような状況もC/Aコードを使用するGPS及びDGPSの上記飛翔体への適用を困難にしていた。   For this reason, GPS and DGPS using the C / A code are used for flying objects such as those described above, that is, flying objects with a relatively short flight time, an unspecified launch position, and emergency launch required. It was difficult to apply. Also, this type of flying object is often housed in a metal structure that cuts off radio waves, such as launchers, canisters, and gun barrels, or satellite signals that are hindered by aircraft such as under the wings of aircraft. Is installed at a position where it is difficult to receive. Therefore, it is difficult to receive GPS satellite signals with the installed receiver before launch, and this situation also makes it difficult to apply GPS and DGPS using the C / A code to the above-mentioned flying object. It was.

本発明は、上記従来の状況に鑑みて成されたもので、C/Aコードを使用するGPS及びDGPSを用いて、とくに、飛翔時間が比較的短く、発射位置が不特定であり、緊急発射が要求されるような飛翔体の高精度測位を行うことができる飛翔体の測位装置を提供することを目的としている。   The present invention has been made in view of the above-described conventional situation. In particular, using GPS and DGPS using a C / A code, the flight time is relatively short, the launch position is unspecified, and the emergency launch is performed. It is an object of the present invention to provide a flying object positioning apparatus that can perform high-precision positioning of a flying object that requires the above.

本発明の飛翔体の測位装置は、請求項1として、飛翔体の発射装置に設けられ且つ複数のGPS衛星からの信号と基地局からの信号を受信して自己の位置を検出する主受信機と、飛翔体に搭載され且つ複数のGPS衛星からの信号を受信して自己の位置を検出する搭載受信機を備え、主受信機から搭載受信機にデータを入力する有線のデータ入力経路を介して双方を分離可能に接続し、主受信機から搭載受信機に入力するデータとして、複数のGPS衛星の配置情報と、発射時における飛翔体の方位や発射角度に基づいて予測した飛翔体の飛翔経路を示す三次元飛翔情報を含み、発射後の飛翔体においてGPS衛星の配置情報と三次元飛翔情報を照合しつつ単独測位を行う構成とし、請求項2として、飛翔体が、発射用の金属製構造物に収容してある構成としており、上記構成をもって従来の課題を解決するための手段としている。 According to a first aspect of the present invention, a positioning device for a flying object is provided in the launching apparatus for a flying object, and receives a signal from a plurality of GPS satellites and a signal from a base station to detect its own position. Through a wired data input path for inputting data from the main receiver to the on-board receiver, which is mounted on the flying object and receives signals from a plurality of GPS satellites to detect its position. As the data to be input to the onboard receiver from the main receiver, the flying of the flying object predicted based on the arrangement information of multiple GPS satellites and the direction and angle of the flying object at the time of launching It includes a three-dimensional flight information indicating a route, and is configured to perform independent positioning while collating GPS satellite arrangement information with the three-dimensional flight information in the post-launched flight body. Housed in structure There Te configuration as to have, and a means for solving the conventional problems with the above configuration.

本発明の請求項1に係わる飛翔体の測位装置では、主受信機において、複数のGPS衛星からの信号と基地局からの信号を常に受信し、基地局からの信号を誤差補正情報として用いて、各信号に基づいて自己の位置を検出し、そのデータを有線のデータ入力経路により飛翔体の搭載受信機に入力する。   In the flying object positioning device according to claim 1 of the present invention, the main receiver always receives signals from a plurality of GPS satellites and signals from the base station, and uses the signals from the base station as error correction information. Based on each signal, the position of itself is detected, and the data is input to the flying vehicle-mounted receiver through a wired data input path.

つまり、主受信機には、C/Aコードを使用するDGPSの受信機を用いることが可能であり、これによりC/Aコードを使用するGPSよりも高精度のデータが得られる。また、搭載受信機は、電源を投入した時点で主受信機から高精度のデータが入力されて直ちに初期設定が成されるので、C/Aコードを使用するGPSを用いることが可能となる。   That is, it is possible to use a DGPS receiver that uses a C / A code as the main receiver, thereby obtaining data with higher accuracy than GPS using a C / A code. Further, since the on-board receiver is immediately initialized when high-precision data is input from the main receiver when the power is turned on, the GPS using the C / A code can be used.

そして、飛翔体の測位装置は、飛翔体の発射と共に、データ入力経路の部分で主受信機と搭載受信機を分離する。このとき、飛翔体の測位装置は、任意の発射位置で飛翔体を緊急発射したとしても、その発射以前に、常に測位を行っている主受信機から搭載受信機にデータを入力しているので、飛翔体の発射後においても、搭載受信機が主受信機と等価の測位精度を維持する。   The flying object positioning device separates the main receiver and the on-board receiver at the data input path along with the launching of the flying object. At this time, even if the flying object positioning device urgently launches the flying object at an arbitrary launch position, data is input from the main receiver that is always positioning to the on-board receiver before that launching. Even after launching the flying object, the on-board receiver maintains positioning accuracy equivalent to that of the main receiver.

また、飛翔体の発射後、搭載受信機は、基地局からの信号を受信せずに、複数のGPS衛星からの信号を受信して測位を行うことになるが、主受信機からのデータすなわち基地局からの信号を含むデータを記憶しているので、飛翔体の飛翔時間が短いものであれば、目標に到達するまでに発生する測位誤差はきわめて小さいものとなる。
さらに、上記の飛翔体の測位装置では、主受信機から搭載受信機に入力するデータに、複数のGPS衛星の配置情報と、発射時における飛翔体の方位や発射角度に基づいて予測した飛翔体の飛翔経路を示す三次元飛翔情報が含まれているので、飛翔体の発射直後には、単独測位を行うに際して、搭載受信機によるGPS衛星の捕捉及び選択を短時間で行い得ることとなる。また、飛翔体の発射後には、単独測位を行いつつ三次元飛翔情報に基づいて飛翔体を飛翔させる。
In addition, after launching the flying object, the on-board receiver will receive signals from multiple GPS satellites without receiving signals from the base station, and will perform positioning. Since the data including the signal from the base station is stored, if the flying time of the flying object is short, the positioning error generated before reaching the target is extremely small.
Further, in the above-mentioned flying object positioning device, the data input from the main receiver to the on-board receiver includes the flying object predicted based on the arrangement information of a plurality of GPS satellites and the direction and launch angle of the projectile at the time of launch. Since the three-dimensional flight information indicating the flight route is included, immediately after launching the flying object, the GPS satellite can be captured and selected by the on-board receiver in a short time when performing independent positioning. Further, after launching the flying object, the flying object is caused to fly based on the three-dimensional flight information while performing independent positioning.

本発明の請求項2に係わる飛翔体の測位装置では、飛翔体が、発射用の金属製構造物に収容してある。この場合、金属製構造物が電波を遮断するので、飛翔体に搭載した受信機で信号を受信することはできない。これに対して、当該飛翔体の測位装置では、主受信機で常に信号を受信し、そのデータを搭載受信機に入力しているので、発射用の金属製構造物に収容した飛翔体に適用し得る。   In the flying object positioning apparatus according to claim 2 of the present invention, the flying object is accommodated in a metal structure for launching. In this case, since the metal structure blocks radio waves, the signal cannot be received by the receiver mounted on the flying object. On the other hand, in the positioning device of the flying object, the signal is always received by the main receiver and the data is input to the on-board receiver, so that it is applied to the flying object housed in the metal structure for launching. Can do.

本発明の請求項1に係わる飛翔体の測位装置によれば、例えば、飛翔時間が比較的短く、発射位置が不特定であり、緊急発射が要求されるような飛翔体に好適であって、C/Aコードを使用するGPS及びDGPSを用いて、上記飛翔体の測位精度や目標到達精度を向上させることができ、また、上記GPS及びDGPSの利用により生産コストの低減も実現することができる。
さらに、上記の飛翔体の測位装置によれば、複数のGPS衛星の配置情報を主受信機から搭載受信機に入力することにより、飛翔体の発射直後に、搭載受信機によるGPS衛星の捕捉及び選択を短時間で行うことができる。これにより、飛翔体が高速度に達する以前に、単独測位や誘導制御を迅速に開始することができると共に、飛翔体の目標到達精度をより高めることができ、また、単独測位や誘導制御の早期開始に伴って、誘導制御の駆動力とともに誘導制御用の装置やエネルギー源の容量を小さくして、飛翔体の軽量化を実現することができる。さらに、飛翔中において、一旦選択したGPS衛星の信号が受信不能になるような事態が生じても、GPS衛星の再捕捉及び選択を短時間で行うことができる。
そしてさらに、上記の飛翔体の測位装置によれば、GPS衛星の配置情報に加えて、発射時における飛翔体の方位や発射角度に基づいて予測した飛翔体の飛翔経路を示す三次元飛翔情報を主受信機から搭載受信機に入力することから、飛翔中の飛翔体に姿勢変化が生じても、GPS衛星を常に捕捉し且つ選択して単独測位を良好に継続することができる。
According to the positioning apparatus for a flying object according to claim 1 of the present invention, for example, it is suitable for a flying object in which the flight time is relatively short, the launch position is unspecified, and emergency launch is required, Using the GPS and DGPS using the C / A code, the positioning accuracy and target arrival accuracy of the flying object can be improved, and the production cost can be reduced by using the GPS and DGPS. .
Further, according to the above-mentioned flying object positioning device, by inputting the arrangement information of a plurality of GPS satellites from the main receiver to the on-board receiver, the GPS satellite can be captured by the on-board receiver immediately after the launch of the flying body. Selection can be made in a short time. This makes it possible to quickly start single positioning and guidance control before the flying object reaches a high speed, and to further improve the target arrival accuracy of the flying object. Along with the start, it is possible to reduce the capacity of the guidance control device and the energy source together with the driving force of the guidance control, thereby realizing the weight reduction of the flying object. Furthermore, even if a situation occurs in which the GPS satellite signal once selected cannot be received during flight, the GPS satellite can be re-acquired and selected in a short time.
Further, according to the above-mentioned flying object positioning device, in addition to the positioning information of the GPS satellite, the three-dimensional flight information indicating the flying path of the flying object predicted based on the direction and the launch angle of the flying object at the time of launching Since input from the main receiver to the on-board receiver is performed, even if a posture change occurs in the flying object in flight, the GPS satellite can always be captured and selected to continue the independent positioning well.

本発明の請求項2に係わる飛翔体の測位装置によれば、請求項1と同様の効果を得ることができるうえに、ロンチャ、キャニスター及び砲身等のように電波を遮断する発射用の金属製構造物に収容した飛翔体に対しても、GPSを用いた測位装置の適用を実現することができる。   According to the positioning apparatus for a flying object according to claim 2 of the present invention, the same effect as that of claim 1 can be obtained, and a launch metal, such as a launcher, a canister, a gun barrel, etc., can be used. The application of a positioning device using GPS can also be realized for a flying object housed in a structure.

図1は本発明の飛翔体の測位装置の一実施例を説明する図である。図示の飛翔体の測位装置は、飛翔体Aの発射装置Bに設けた主受信機1と、飛翔体Aに搭載した搭載受信機2と、主受信機1から搭載受信機2にデータを入力するデータ入力経路3を備えている。   FIG. 1 is a view for explaining an embodiment of a flying object positioning apparatus of the present invention. The flying object positioning apparatus shown in the figure is the main receiver 1 provided in the launching apparatus B of the flying object A, the mounted receiver 2 mounted on the flying object A, and data is input from the main receiver 1 to the mounted receiver 2. The data input path 3 is provided.

飛翔体Aは、例えば、飛翔時間が比較的短く、発射位置が不特定であり、緊急発射が要求されるようなものであって、より具体的には、ロケット弾、砲弾及びミサイル等であり、発射装置Bにおいて、ロンチャ、キャニスター及び砲身等の金属製構造物Cに収容してある。   The flying object A is, for example, a flight time that is relatively short, a launch position is unspecified, and emergency launch is required, and more specifically, a rocket, a cannonball, a missile, and the like. The launcher B is housed in a metal structure C such as a launcher, canister, or barrel.

主受信機1は、C/Aコードを使用するDGPSの受信機であり、複数のGPS衛星S1からの信号と、経度緯度が明らかである基地局S2からの信号を受信して自己の位置を検出し、とくに、基地局S2からの信号を誤差補正情報として用いることにより、C/Aコードを使用するGPSの受信機よりも高い測位精度を有している。なお、主受信機1は、当然のことながら、発射装置Bにおいて、各信号を常に受信し得る状態に設けてある。また、基地局S2には、航空機や船舶等の無線航路標識や放送局などが含まれる。   The main receiver 1 is a DGPS receiver using a C / A code, and receives a signal from a plurality of GPS satellites S1 and a signal from a base station S2 whose longitude and latitude are clear to determine its own position. In particular, by using a signal from the base station S2 as error correction information, the positioning accuracy is higher than that of a GPS receiver using a C / A code. Of course, the main receiver 1 is provided in a state in which each signal can always be received in the launching device B. The base station S2 includes radio navigation signs such as aircraft and ships, broadcast stations, and the like.

搭載受信機2は、C/Aコードを使用するGPSの受信機であり、複数のGPS衛星S1からの信号を受信して自己の位置を検出する。また、飛翔体Aでは、搭載受信機2からのデータを制御回路4に入力し、飛翔体の姿勢制御などを行うようにしている。   The on-board receiver 2 is a GPS receiver that uses a C / A code, and receives signals from a plurality of GPS satellites S1 to detect its own position. In the flying object A, data from the on-board receiver 2 is input to the control circuit 4 so as to perform attitude control of the flying object.

データ入力経路3は、信号を伝達する電線や光ファイバーなどのケーブル、コネクタ類及びその周辺機器を含むもので、例えば飛翔体Aの側部に対して係脱可能なコネクタにより、主受信機1と搭載受信機2を分離可能に接続している。   The data input path 3 includes cables such as electric wires and optical fibers for transmitting signals, connectors, and peripheral devices. For example, the data input path 3 is connected to the main receiver 1 by a connector that can be attached to and detached from the side of the flying object A. The on-board receiver 2 is detachably connected.

上記構成を備えた飛翔体の測位装置は、主受信機1において、複数のGPS衛星S1からの信号と基地局S2からの信号を常に受信し、自己の位置を検出すると共に、初期位置、衛星軌道歴並びに複数のGPS衛星S1の配置情報、GPS時刻、時計、誤差補正データ、電離層補正パラメータ及び飛翔体の飛翔経路を示す三次元飛翔情報等のデータを有線のデータ入力経路3により飛翔体Aの搭載受信機2に入力する。このとき、飛翔体の測位装置は、主受信機1が常時測位を行うので、当該装置を搭載した発射装置Bが移動するものであっても構わない。   The flying object positioning device having the above-described configuration is such that the main receiver 1 always receives signals from a plurality of GPS satellites S1 and signals from the base station S2, detects its own position, as well as an initial position, a satellite Orbital history and data such as arrangement information of a plurality of GPS satellites S1, GPS time, clock, error correction data, ionosphere correction parameters, and three-dimensional flight information indicating the flight path of the flying object are transmitted by a wired data input path 3 to the flying object A. To the onboard receiver 2. At this time, since the main receiver 1 always performs positioning of the flying object positioning device, the launching device B on which the device is mounted may move.

また、搭載受信機2では、飛翔体Aが電波を遮断する金属製構造物Cに収容してあるので、飛翔体Aの発射以前にGPS衛星S1の信号を直接受信することはできないが、電源を投入した時点で主受信機1からデータが入力されるので、誤差補正情報を含む高精度のデータに基づいて直ちに初期設定が成される。   In the on-board receiver 2, since the flying object A is housed in a metal structure C that blocks radio waves, the GPS satellite S1 signal cannot be directly received before the flying object A is launched. Since the data is input from the main receiver 1 at the time when is input, the initial setting is immediately made based on the high-precision data including the error correction information.

そして、飛翔体の測位装置は、飛翔体Aの発射に伴って、例えば飛翔体Aからデータ入力経路3のコネクタを離脱させることにより、主受信機1と搭載受信機2を分離する。このとき、飛翔体の測位装置は、任意の位置で飛翔体Aを発射したとしても、その発射以前に、常に測位を行っている主受信機1から搭載受信機2にデータを入力しているので、飛翔体Aの発射後においても、搭載受信機2が主受信機1と等価の測位精度を維持する。   Then, the flying object positioning device separates the main receiver 1 and the mounted receiver 2 by, for example, detaching the connector of the data input path 3 from the flying object A as the flying object A is launched. At this time, even if the flying object positioning device fires the flying object A at an arbitrary position, data is input to the on-board receiver 2 from the main receiver 1 that always performs positioning before the launching. Therefore, even after the launch of the flying object A, the on-board receiver 2 maintains the positioning accuracy equivalent to that of the main receiver 1.

また、飛翔体Aの発射後、搭載受信機2は、基地局S2からの信号を受信せずに、複数のGPS衛星S1からの信号だけを受信して測位を行うことになるが、主受信機1からのデータすなわち基地局S2からの信号を含むデータを記憶しているので、とくに飛翔体Aの飛翔時間が短いものであれば、目標に到達するまでに発生する測位誤差はきわめて小さい。   In addition, after launching the flying object A, the on-board receiver 2 receives only signals from a plurality of GPS satellites S1 and does not receive signals from the base station S2, but performs positioning. Since the data including the data from the aircraft 1, that is, the data including the signal from the base station S2, is stored, if the flight time of the flying object A is particularly short, the positioning error that occurs before reaching the target is extremely small.

このようにして、飛翔体の測位装置は、C/Aコードを使用するDGPSの主受信機1、及びC/Aコードを使用するGPSの搭載受信機2を用いて、上記飛翔体Aの測位精度や目標到達精度を向上させるものとなり、また、電波を遮断する発射用の金属製構造物Cに収容した飛翔体Aに対しても充分に適用し得ることが明らかであり、そしてさらに、C/Aコードを使用するGPS及びDGPSの利用によって生産コストの低減なども実現し得るものとなる。   In this way, the flying object positioning device uses the DGPS main receiver 1 that uses the C / A code and the GPS-mounted receiver 2 that uses the C / A code to determine the position of the flying object A. It is clear that the accuracy and the target arrival accuracy can be improved, and that it can be sufficiently applied to the flying object A accommodated in the metal structure C for launching that cuts off radio waves. The production cost can be reduced by using GPS and DGPS using the / A code.

ここで、当該飛翔体の測位装置では、主受信機1から搭載受信機2に入力するデータとして、複数のGPS衛星S1の配置情報と、飛翔体Aの飛翔経路を示す三次元飛翔情報を含んでいるので、発射後の飛翔体Aが高速度に達する以前に、飛翔体Aの単独測位や誘導制御を迅速に開始することができ、また、飛翔中におけるGPS衛星S1の再捕捉や選択も短時間で行うことができる。   Here, in the positioning device of the flying object, the data input from the main receiver 1 to the on-board receiver 2 includes the arrangement information of the plurality of GPS satellites S1 and the three-dimensional flight information indicating the flying path of the flying object A. Therefore, before the projectile A after launch reaches a high speed, the single positioning and guidance control of the projectile A can be started quickly, and the GPS satellite S1 can be re-acquired and selected during the flight. It can be done in a short time.

例えば、単にC/AコードのGPSを使用した飛翔体では、発射直後に複数のGPS衛星を捕捉し、その中から測位に適したGPS衛星を選択し、選択したGPS衛星からの信号を受信して測位を開始することから、発射直後から測位開始までに時間がかかる。このため、測位開始までの間に飛翔体の速度が増大し、高速度になってから誘導制御を開始するので、誘導制御のために大きな駆動力が必要になり、誘導制御の装置やエネルギー源の容量も大きくなる。また、飛翔中において、飛翔体の姿勢変化とともにアンテナの向きが変わり、一旦選択したGPS衛星からの信号が受信不能になった場合、GPS衛星を再捕捉して選択するのに時間がかかる。   For example, a flying object that simply uses GPS with C / A code captures multiple GPS satellites immediately after launch, selects a GPS satellite suitable for positioning from among them, and receives a signal from the selected GPS satellite. It takes time from the start of positioning to the start of positioning. For this reason, the speed of the flying object increases before the positioning starts, and the guidance control is started after the speed becomes high. Therefore, a large driving force is required for the guidance control. The capacity of will also increase. Further, when the direction of the antenna is changed along with the change in the attitude of the flying object during flight, and it becomes impossible to receive a signal from the GPS satellite once selected, it takes time to recapture and select the GPS satellite.

これに対して、当該飛翔体の測位装置では、主受信機1において、複数のGPS衛星S1を捕捉してGPS衛星S1の配置情報を取得すると共に、選択したGPS衛星S1からの信号と基地局S2からの信号により常に測位を行って、これらのデータを搭載受信機2に入力しており、飛翔体Aの発射時には、発射装置Bにおける飛翔体Aの方位や発射角度などに基づいて飛翔体Aの飛翔経路を予測し、これを飛翔経路を示す三次元飛翔情報として主受信機1から搭載受信機2に入力する。   On the other hand, in the positioning device of the flying object, the main receiver 1 acquires a plurality of GPS satellites S1 to acquire the arrangement information of the GPS satellites S1, and the signals and base stations from the selected GPS satellites S1. The positioning is always performed by the signal from S2, and these data are input to the onboard receiver 2, and when the flying object A is launched, the flying object is based on the direction and the launch angle of the flying object A in the launching device B. A flight path of A is predicted, and this is input from the main receiver 1 to the on-board receiver 2 as three-dimensional flight information indicating the flight path.

これにより、当該飛翔体の測位装置では、飛翔体Aの発射とともにデータ入力経路3を切り離し、飛翔体Aは、複数のGPS衛星S1からの信号を受信して単独測位を行いながら飛翔するが、この際、発射直前に搭載受信機2に入力したGPS衛星S1の配置情報と三次元飛翔情報を制御回路4等に含まれる演算器で照合することにより、発射直後から極めて短時間で複数のGPS衛星S1を捕捉して測位に適したGPS衛星S1を選択し、単独測位や誘導制御を開始して飛翔し続ける。   Thereby, in the positioning device of the flying object, the data input path 3 is disconnected together with the launching of the flying object A, and the flying object A flies while receiving signals from a plurality of GPS satellites S1 and performing independent positioning. At this time, by comparing the positioning information of the GPS satellite S1 input to the onboard receiver 2 immediately before the launch and the three-dimensional flight information with an arithmetic unit included in the control circuit 4 or the like, a plurality of GPS can be obtained in an extremely short time immediately after the launch. The satellite S1 is captured and a GPS satellite S1 suitable for positioning is selected, and independent positioning and guidance control are started to continue flying.

つまり、当該飛翔体の測位装置では、三次元飛翔情報に基づいて飛翔経路上での飛翔体Aの姿勢変化を予め把握しているので、GPS衛星S1の配置情報と飛翔体Aの三次元飛翔情報に基づいて、飛翔中に選択すべきGPS衛星S1の順番を決めておくことで、飛翔体Aの姿勢が変化してアンテナの向きが変わっても、次のGPS衛星S1を速やかに選択して単独測位を良好に継続することができる。   That is, since the positioning device of the flying object grasps in advance the posture change of the flying object A on the flight path based on the three-dimensional flying information, the arrangement information of the GPS satellite S1 and the three-dimensional flying of the flying object A By determining the order of the GPS satellites S1 to be selected during the flight based on the information, even if the attitude of the flying object A changes and the direction of the antenna changes, the next GPS satellite S1 can be quickly selected. Independent positioning can be continued well.

なお、一般に、ロケット弾、砲弾及びミサイル等の飛翔体Aの飛翔時間は、GPS衛星S1の位置移動速度に比べて非常に短いので、発射直前に入力したGPS衛星S1の情報が有効でなくなる前に目標に到達することができる。   In general, the flight time of the flying object A such as a rocket bullet, a cannonball, and a missile is very short compared with the position movement speed of the GPS satellite S1, so that the information of the GPS satellite S1 input immediately before the launch becomes invalid. Can reach the goal.

このように、当該測位装置を用いた飛翔体Aでは、発射から単独測位を開始するまでに時間がかかることはなく、高速度に達する以前に単独測位や誘導制御を迅速に開始することができるので、誘導制御のための駆動力も小さくて済み、誘導制御の装置やエネルギー源の容量を小さくして軽量化を実現し得るものとなり、また、飛翔中における単独測位も良好に継続できるので、目標到達精度が高くなる。   Thus, in the flying object A using the positioning device, it does not take time to start single positioning from launch, and single positioning and guidance control can be quickly started before reaching high speed. Therefore, the driving force for guidance control can be reduced, and the weight of the guidance control device and energy source can be reduced to achieve weight reduction. In addition, independent positioning during flight can be continued well. Achievement accuracy increases.

さらに、この種の飛翔体Aでは、上記した飛翔中の姿勢変化以外に、発射や飛翔中の分離イベント等の際に、振動、衝撃、減速又は加速の加速度、及びスピンによる遠心力などが加わり、これらの外力によりGPS衛星S1からの信号がドップラーシフトしたり、GPS受信機の構成品である基準周波数発信器がドリフトしたりすることで、一旦捕捉したGPS衛星S1からの信号を見失うことがある。   Further, in this type of projectile A, in addition to the above-described change in attitude during flight, vibration, impact, acceleration of deceleration or acceleration, and centrifugal force due to spin, etc. are added during a separation event during launch or flight. Because of these external forces, the signal from the GPS satellite S1 may be Doppler shifted, or the reference frequency transmitter that is a component of the GPS receiver may drift, so that the signal from the GPS satellite S1 once captured may be lost. is there.

これに対して、当該飛翔体の測位装置によれば、先述したように発射後のGPS衛星S1の捕捉及び選択を短時間で行うことができるので、飛翔体Aに加わる外力などにより、一旦捕捉したGPS衛星S1からの信号を見失っても、GPS衛星S1の再捕捉及び選択を容易に行うことができ、このように時間的損失が少ないことからも、誘導制御の迅速化並びに飛翔体Aの軽量化に貢献し得るものとなる。   On the other hand, according to the positioning device of the flying object, since the GPS satellite S1 after the launch can be captured and selected in a short time as described above, it is temporarily captured by an external force applied to the flying object A or the like. Even if the signal from the GPS satellite S1 is lost, the GPS satellite S1 can be easily re-acquired and selected, and the time loss is thus small. It can contribute to weight reduction.

なお、上記実施例では、飛翔体Aがロンチャ、キャニスター及び砲身等の金属製構造物Cに収容してある場合を説明したが、当該飛翔体の測位装置は、航空機の翼下のように機体が障害となって衛星信号を受信し難い位置に取り付けられている飛翔体にも当然適用可能であり、この場合にも上記実施例と同様の効果を得ることができる。   In the above embodiment, the case where the flying object A is housed in a metal structure C such as a launcher, a canister, and a gun barrel has been described. However, the positioning apparatus for the flying object has a structure similar to that of a wing of an aircraft. Of course, the present invention can also be applied to a flying object attached at a position where it is difficult to receive a satellite signal. In this case, the same effect as in the above embodiment can be obtained.

また、上記実施例における飛翔体の測位装置は、C/AコードのGPSを用いたDGPSにより高精度の測位を行うものであるが、C/AコードのGPSよりも高精度であるPコードのGPSを使用することも当然可能である。   In addition, the flying object positioning device in the above embodiment performs high-accuracy positioning by DGPS using the C / A code GPS, but the P-code is more accurate than the C / A code GPS. Of course, it is also possible to use GPS.

本発明に係わる飛翔体の測位装置の一実施例を説明するブロック図である。It is a block diagram explaining one Example of the positioning apparatus of the flying body concerning this invention.

符号の説明Explanation of symbols

A 飛翔体
B 発射装置
C 発射用の金属製構造物
S1 GPS衛星
S2 基地局
1 主受信機
2 搭載受信機
3 データ入力経路
A projectile B launcher C metal structure for launch S1 GPS satellite S2 base station 1 main receiver 2 onboard receiver 3 data input path

Claims (2)

複数のGPS衛星からの信号と基地局からの信号を受信して自己の位置を検出する主受信機と、飛翔体に搭載され且つ複数のGPS衛星からの信号を受信して自己の位置を検出する搭載受信機を備え、主受信機から搭載受信機にデータを入力する有線のデータ入力経路を介して双方を分離可能に接続し、
主受信機から搭載受信機に入力するデータとして、複数のGPS衛星の配置情報と、発射時における飛翔体の方位や発射角度に基づいて予測した飛翔体の飛翔経路を示す三次元飛翔情報を含み、
発射後の飛翔体においてGPS衛星の配置情報と三次元飛翔情報を照合しつつ単独測位を行うことを特徴とする飛翔体の測位装置。
A main receiver that receives signals from multiple GPS satellites and signals from the base station to detect its own position, and detects its position by receiving signals from multiple GPS satellites mounted on the flying object Connected to each other via a wired data input path for inputting data from the main receiver to the on-board receiver ,
The data input from the main receiver to the onboard receiver includes the location information of multiple GPS satellites and three-dimensional flight information that indicates the flight path of the flying object predicted based on the direction and launch angle of the flying object at the time of launch. ,
A positioning apparatus for a flying object, which performs independent positioning while collating positioning information of a GPS satellite and three-dimensional flight information in a flying object after launch .
飛翔体が、発射用の金属製構造物に収容してあることを特徴とする請求項1に記載の飛翔体の測位装置。   2. The flying object positioning device according to claim 1, wherein the flying object is accommodated in a metal structure for launching.
JP2004037601A 2003-04-10 2004-02-16 Flying object positioning device Expired - Lifetime JP4325797B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004037601A JP4325797B2 (en) 2003-04-10 2004-02-16 Flying object positioning device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003106001 2003-04-10
JP2004037601A JP4325797B2 (en) 2003-04-10 2004-02-16 Flying object positioning device

Publications (2)

Publication Number Publication Date
JP2004325435A JP2004325435A (en) 2004-11-18
JP4325797B2 true JP4325797B2 (en) 2009-09-02

Family

ID=33513025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004037601A Expired - Lifetime JP4325797B2 (en) 2003-04-10 2004-02-16 Flying object positioning device

Country Status (1)

Country Link
JP (1) JP4325797B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050031125A1 (en) * 2003-08-08 2005-02-10 Arthur Acampora Global-positioning-system data integrator and distribution system
JP5339280B2 (en) * 2008-12-12 2013-11-13 独立行政法人 宇宙航空研究開発機構 Multiple antenna positioning device

Also Published As

Publication number Publication date
JP2004325435A (en) 2004-11-18

Similar Documents

Publication Publication Date Title
AU731385B2 (en) GPS guided munition
US6237496B1 (en) GPS guided munition
KR960014821B1 (en) Autonomous precision weapon delivery system and method using synthetic array radar
KR100990386B1 (en) Flight control system and control method of unmanned Aerial Vehicle
KR101560580B1 (en) Navigation apparatus for projectiles and control method thereof
EP3680617B1 (en) Restoring navigational performance for a navigational system
CN112424069B (en) Emergency track disengaging device and emergency track disengaging method
JP5338464B2 (en) Inertial navigation device, flying object, and navigation data calculation method
US8076621B2 (en) Integrated reference source and target designator system for high-precision guidance of guided munitions
US8637798B2 (en) Integrated reference source and target designator system for high-precision guidance of guided munitions
US8487812B1 (en) Method for self-aligning a beamforming sensor to simplify vehicle installation
US5397079A (en) Process for the autonomous positional control of guided missiles
JP4325797B2 (en) Flying object positioning device
EP1207403A1 (en) Method for determining the position of reference axes in an inertial navigation system of an object in respect with the basic coordinates and embodiments thereof
JP2002162195A (en) Missile guidance system
JPH06213669A (en) Calibration method for set value of coordinate system of inertia reference device of moving body
AU748028B2 (en) GPS guided munition
AU748654B2 (en) GPS guided munition
King et al. The International GMLRS Development Program-A GPS/INS application to extend the range and effectiveness of the basic multiple launch rocket system (MLRS)
OT et al. Design of INS aided receiver integrity monitoring algorithm (ARIM) for GNSS integrated navigation systems
JP2005134197A (en) Electric wave positioning system
CN111895865B (en) Satellite guidance ammunition guidance method for reducing requirements of set data
Markgraf Phoenix GPS Tracking System Flight Report
Stubbs et al. Integration of GPS into a ballistic missile navigation solution
Madni et al. Shuttle navigation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090603

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4325797

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term