JP4315528B2 - Mixed gas fire extinguishing agent, fire extinguisher, high pressure gas container, and fire extinguishing equipment - Google Patents
Mixed gas fire extinguishing agent, fire extinguisher, high pressure gas container, and fire extinguishing equipment Download PDFInfo
- Publication number
- JP4315528B2 JP4315528B2 JP20402499A JP20402499A JP4315528B2 JP 4315528 B2 JP4315528 B2 JP 4315528B2 JP 20402499 A JP20402499 A JP 20402499A JP 20402499 A JP20402499 A JP 20402499A JP 4315528 B2 JP4315528 B2 JP 4315528B2
- Authority
- JP
- Japan
- Prior art keywords
- fire extinguishing
- fire
- mol
- argon
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Fire-Extinguishing Compositions (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、ナトリウム・リチウム・アルミニウム・マグネシウム・チタニウム・ジルコニウム及びこれらの合金の火災(消防法に基づく危険物では第二類・第三類に指定されている金属類の火災)に対して高い消火能力を有する消火薬剤、消火器、高圧ガス容器、及び消火設備に関するものである。
【0002】
【従来の技術】
近年、金属材料としてアルミニウム・マグネシウム・チタニウム・ジルコニウム・ネオジウム・ナトリウム・リチウム及びこれらの合金が広く使用され、それらの種類も増加してきている。又、その用途の増大・多岐化により、火災事故も増加している現状がある。
【0003】
かかる金属類は、消防法に基づく危険物では第二類・第三類に指定されている非常に危険な物質である。これらの金属類の火災は、一旦事故が発生すると火勢の拡大も早く、燃焼温度も高く、通常の消火剤では消火困難となり、消火が遅延されれば莫大な損害を蒙ることとなり、初期段階での確実な消火を特に必要とされている。
【0004】
このような金属火災に対して、水を含有する泡消火薬剤や強化液消火薬剤や第三種浸潤剤消火薬剤のような水系消火薬剤を使用すると、消火効果がないばかりか、金属火災と接触するとその高い燃焼温度により水等が分解し、火勢を煽ったり分解ガスを発生し、爆発する恐れがあるので絶対に使用できない。
【0005】
また、従来より知られているハロン1301(CF3Br)やハロン1211(CF3C1Br)やFE−13(CHF3)やFM−200(C3HF7)のようなハロゲン化物消火薬剤や炭酸ガス消火薬剤は、金属火災に使用すると分解し、炎を煽るのみで消火の用途としては使用することが出来ない。
【0006】
かかる金属火災に対して有効な消火薬剤として、金属火災用粉末消火薬剤や乾燥砂を挙げることが出来る。金属火災用粉末消火薬剤は、消火器等に充填し金属火災の表面に粉末を放出し3〜5cmの厚さに覆い窒息と冷却により消火効果を発揮する。また、乾燥砂はスコップ等で金属火災の表面に乾燥砂を放出し3〜5cmの厚さに覆うことにより消火効果を発揮する。
【0007】
しかしながら、粉末消火薬剤や乾燥砂は、環境汚染や使用上の制約等があり、金属火災に対して有効で環境に優しい消火薬剤が出現することを期待されている現状がある。
【0008】
【発明が解決しようとする課題】
金属火災用粉末消火薬剤は、二類・三類の金属類危険物に対して消火効果があり、古くから広く使用されている。その消火効果は、実績からも消防法からも認知されている所である。しかし、使用する上で「塩化ナトリウム・塩化カリウム・塩化カルシウム等の塩化物や炭酸ナトリウム・炭酸カリウム等の炭酸塩やほう酸等の粉体」を主成分とした微粉末であるため、消火時に燃焼物全体に放出被覆することが困難で消火がし辛いとか、放出した消火薬剤が微粉末であり腐食性を有するため消火後の周辺環境に甚大な被害を蒙ったり、長期の貯蔵により固化し使用に絶え難いという不都合が指摘されている。また、乾燥砂等は消火効果が小さいとか、消火方法に制約がある(スコップ等の人手による方法となる)という不都合があった。
【0009】
【課題を解決するための手段】
しかるべき現状を踏まえて、消火性能に優れ、腐食・汚染等の恐れが少なく取扱も平易な消火薬剤を種々検討した結果、アルゴンと窒素を限られた範囲のモル比率で混合したガスが金属類の火災に対して消火性能に優れ、且つ人体や環境に優しく、取扱も平易であり、経時的な安定性にも優れていることを見いだし本発明を完成するに至ったのである。
【0010】
【発明の実施の形態】
以下、本発明の一実施の形態を詳細に説明する。
本発明の混合ガス消火薬剤は、アルゴンと窒素を限られた範囲のモル比率で混合して得られたものである。アルゴンのモル比率は10%から90%であり、窒素のモル比率も10%から90%である。
【0011】
アルゴンが10%未満のモル比率では、二類・三類の金属類危険物に対して初期の目的どおり消火効果を発揮することが出来ない。同様に窒素も10%未満のモル比率では、二類・三類の金属類危険物に対して初期の目的どおり消火効果を発揮することが出来ない。
【0012】
アルゴンと窒素を限られた範囲のモル比率で混合したとき、金属類の火災に対して消火効果を発揮するが、その理由は次のようであると考えられる。
通常、金属類の火災は高温度で酸化燃焼している為、炭酸ガスやハロゲン化物消火薬剤は分解し、炎を煽り消火することが出来ない。
【0013】
しかしながらアルゴン・窒素は安定した化合物で不活性なガスである。アルゴンは金属火災の高温に接したときも、分解しないと考えられる。窒素はある温度までは安定であるが、約800℃以上の金属と接すると部分的に分解し窒化金属を生成すると考えられる。
【0014】
本発明に基づく混合ガス消火薬剤の金属類の火災に対する消火効果は、上記したアルゴンと窒素が金属火災に接したときの性質によってもたらされていると考えられる。即ち、混合ガス消火薬剤は、金属類の火災に対して、酸素濃度を低下させて消火を促す希釈効果(主にアルゴンによる作用)と、窒化金属が部分的に形成されたことによる燃焼特性の変化に基づき消火を促す熱化学的効果(主に窒素による作用)とが相乗的に発揮され、優れた消火効果を有すると考えられる。以下の実施例・比較例からも明らかなようにアルゴンと窒素を限られた範囲のモル比率で混合したとき、初めて初期の目的の消火効果を発揮する。
【0015】
本発明の混合ガス消火薬剤は、従来のガス系消火薬剤と同様に高圧ガス容器や消火器に充填して使用される。消火器として、固定配管消火設備として、目的に応じて使用でき、所定の消火効果を提供するものである。
【0016】
【実施例】
次に、実施例・比較例を挙げて本発明の混合ガス消火薬剤について説明する。尚、本発明の効果は、実施例のみの混合比率に限定されるものでない。金属類も実施例のみに限定されるものでなく、広く知られている二類・三類の金属類危険物に対しても同様の効果が得られるものである。
実施例の組成を表1に記載する。
【0017】
【表1】
【0018】
比較例の組成を表2に記載する。
【0019】
【表2】
【0020】
実験例1.
上記実施例及び比較例に基づくガス消火薬剤を用いて、高圧ガスボンベに800gずつ充填し、マグネシウム切削粉に対する消火試験を行った。
試験はほぼ密閉された368リットル(700mm×700mm×750mm)容器のほぼ中央に200gのマグネシウム切削粉を330mm×330mmのSUS容器に均一に敷き詰めてセットし、トーチ棒で着火した。燃焼面積が半分になった時点で扉を閉め、ガス放出を開始した。炎が納まり内部の赤熱が黒くなった時点で完全消火と判断した。併せて、熱電対を金属粉の温度を測定しながら、消火の判断を行った。
【0021】
消火の有無と消火ガス濃度の算出と酸素濃度測定を行なった。消火ガス濃度は放出したガス重量からガス容積を求め算出した。酸素濃度は磁気式酸素濃度計(MAG−167:島津 製作所製)を用いて測定した。
その結果を表3に記載する。
【0022】
【表3】
【0023】
実験例2.
上記実施例及び比較例に基づくガス消火薬剤を用いて、高圧ガスボンベに800gずつ充填し、ジルコニウム切削粉に対する消火試験を行った。
試験はほぼ密閉された368リットル(700mm×700mm×750mm)容器のほぼ中央に100gのジルコニウム切削粉を330mm×330mmのSUS容器に均一に敷き詰めてセットし、トーチ棒で着火した。燃焼面積が半分になった時点で扉を閉め、ガス放出を開始した。炎が納まり内部の赤熱が黒くなった時点で完全消火と判断した。併せて、熱電対を金属粉の温度を測定しながら、消火の判断を行った。
【0024】
消火の有無と消火ガス濃度の算出と酸素濃度測定を行なった。消火ガス濃度は放出したガス重量からガス容積を求め算出した。酸素濃度は磁気式酸素濃度計(MAG−167:島津 製作所製)を用いて測定した。
その結果を表4に記載する。
【0025】
【表4】
【0026】
【発明の効果】
以上のように、本発明によれば金属火災に対して低いガス濃度で消火でき、消火後の酸素濃度の低下も少なく、優れた消火効果が得られる。[0001]
BACKGROUND OF THE INVENTION
The present invention is high against fires of sodium, lithium, aluminum, magnesium, titanium, zirconium and their alloys (fires of metals designated as Class 2 and Class 3 for dangerous goods based on the Fire Service Act). The present invention relates to a fire extinguishing agent having a fire extinguishing capability, a fire extinguisher, a high-pressure gas container, and a fire extinguishing equipment .
[0002]
[Prior art]
In recent years, aluminum, magnesium, titanium, zirconium, neodymium, sodium, lithium, and alloys thereof have been widely used as metal materials, and their types are increasing. In addition, the number of fire accidents is increasing due to the increase in use and diversification.
[0003]
Such metals are extremely dangerous substances designated as the second and third classes of dangerous goods under the Fire Service Law. Fires of these metals, once the accident occurs, the fire spreads quickly, the combustion temperature is high, and it is difficult to extinguish with normal extinguishing agents, and if fire extinguishing is delayed, it will suffer enormous damage. There is a particular need for reliable fire fighting.
[0004]
When using water-based foam extinguishing agents, reinforced liquid extinguishing agents or third-class infiltrating extinguishing agents against such metal fires, there is no fire extinguishing effect. Then, because of the high combustion temperature, water and the like are decomposed, and there is a risk of exploding fire and generating decomposed gas, so there is a risk of explosion.
[0005]
Also, conventionally known halide fire extinguishing agents and carbon dioxide extinguishing agents such as Halon 1301 (CF3Br), Halon 1211 (CF3C1Br), FE-13 (CHF3) and FM-200 (C3HF7) are useful for metal fires. When used, it decomposes and can only be used for extinguishing fires.
[0006]
Examples of fire extinguishing agents effective against such metal fires include powder fire extinguishing agents for metal fires and dry sand. Powder fire extinguishing chemicals for metal fires are filled in a fire extinguisher or the like, release powder onto the surface of metal fires, cover to a thickness of 3 to 5 cm, and exert a fire extinguishing effect by suffocation and cooling. Moreover, dry sand exhibits a fire extinguishing effect by discharging dry sand onto the surface of a metal fire with a scoop or the like and covering it to a thickness of 3 to 5 cm.
[0007]
However, powder fire extinguishing agents and dry sand have environmental pollution, restrictions on use, etc., and there is a current situation where it is expected that fire extinguishing agents that are effective against metal fires and are environmentally friendly will appear.
[0008]
[Problems to be solved by the invention]
Powder fire extinguishing chemicals for metal fires have a fire extinguishing effect on two or three kinds of metal dangerous materials and have been widely used for a long time. The fire-extinguishing effect is recognized by both the results and the Fire Service Act. However, since it is a fine powder mainly composed of “chlorides such as sodium chloride, potassium chloride, calcium chloride, and carbonates such as sodium carbonate and potassium carbonate, and boric acid”, it burns when extinguishing the fire. It is difficult to cover the entire product and it is difficult to extinguish the fire, or the fire extinguishing agent released is fine powder and corrosive, so it will cause severe damage to the surrounding environment after fire extinguishing or solidify by long-term storage It has been pointed out that it is difficult to maintain. In addition, dry sand or the like has a disadvantage that the fire extinguishing effect is small or the fire extinguishing method is limited (a manual method such as a scoop).
[0009]
[Means for Solving the Problems]
Based on the current situation, as a result of various investigations on fire extinguishing agents that have excellent fire extinguishing performance and are easy to handle with little risk of corrosion and contamination, a mixture of argon and nitrogen in a limited molar ratio is a metal The present invention has been completed by finding that it has excellent fire extinguishing performance against fires of the above type, is friendly to the human body and the environment, is easy to handle, and has excellent stability over time.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described in detail.
The mixed gas fire extinguishing agent of the present invention is obtained by mixing argon and nitrogen in a limited molar ratio. The molar ratio of argon is 10% to 90%, and the molar ratio of nitrogen is also 10% to 90%.
[0011]
When the molar ratio of argon is less than 10%, the fire extinguishing effect cannot be exerted as intended for the second and third kinds of metal hazardous materials. Similarly, if the molar ratio of nitrogen is less than 10%, the fire extinguishing effect cannot be exerted as intended for the second and third kinds of dangerous metals.
[0012]
When argon and nitrogen are mixed in a limited molar ratio, the fire extinguishing effect is exhibited against fires of metals. The reason is considered as follows.
Usually, metal fires are oxidized and burned at high temperatures, so carbon dioxide and halide fire extinguishing agents decompose and cannot be extinguished.
[0013]
However, argon and nitrogen are stable compounds and inert gases. Argon is not expected to decompose when exposed to the high temperatures of metal fires. Nitrogen is stable up to a certain temperature, but it is considered that when it comes into contact with a metal at about 800 ° C. or higher, it is partially decomposed to form metal nitride.
[0014]
It is considered that the fire extinguishing effect of the mixed gas fire extinguishing agent based on the present invention against a metal fire is brought about by the above-described properties when argon and nitrogen come into contact with the metal fire. In other words, the mixed gas fire extinguishing agent has a dilution effect (mainly due to argon) that lowers the oxygen concentration and promotes fire extinguishing for metal fires, and combustion characteristics due to partial formation of metal nitride. It is considered that the thermochemical effect (mainly action by nitrogen) that promotes fire extinguishing based on the change is synergistically exhibited and has an excellent fire extinguishing effect. As is clear from the following examples and comparative examples, when the argon and nitrogen are mixed at a limited molar ratio, the initial fire extinguishing effect is exhibited for the first time.
[0015]
The mixed gas fire extinguishing agent of the present invention is used by filling a high pressure gas container or a fire extinguisher in the same manner as a conventional gas extinguishing agent. As a fire extinguisher, as a fixed pipe fire extinguishing equipment, it can be used according to the purpose and provides a predetermined fire extinguishing effect.
[0016]
【Example】
Next, the mixed gas fire extinguishing agent of the present invention will be described with reference to examples and comparative examples. In addition, the effect of this invention is not limited to the mixing ratio only of an Example. The metals are not limited to the examples, and the same effects can be obtained for the widely known 2 and 3 types of dangerous metals.
The compositions of the examples are listed in Table 1.
[0017]
[Table 1]
[0018]
The composition of the comparative example is listed in Table 2.
[0019]
[Table 2]
[0020]
Experimental Example 1
Using the gas fire extinguishing agent based on the above Examples and Comparative Examples, 800 g each was filled into a high pressure gas cylinder, and a fire extinguishing test was performed on magnesium cutting powder.
In the test, 200 g of magnesium cutting powder was uniformly spread on a 330 mm × 330 mm SUS container and set in a substantially 368 liter (700 mm × 700 mm × 750 mm) container at the center, and ignited with a torch bar. When the combustion area was halved, the door was closed and gas was released. It was judged that the fire was completely extinguished when the flame had settled and the internal red heat turned black. In addition, fire extinguishing was determined while measuring the temperature of the metal powder using a thermocouple.
[0021]
Existence of fire extinguishing, extinguishing gas concentration and oxygen concentration measurement were performed. The extinguishing gas concentration was calculated by obtaining the gas volume from the released gas weight. The oxygen concentration was measured using a magnetic oxygen concentration meter (MAG-167: manufactured by Shimadzu Corporation).
The results are listed in Table 3.
[0022]
[Table 3]
[0023]
Experimental Example 2.
Using the gas fire extinguishing agent based on the above Examples and Comparative Examples, 800 g each was filled into a high pressure gas cylinder, and a fire extinguishing test was performed on zirconium cutting powder.
In the test, 100 g of zirconium cutting powder was uniformly spread on a 330 mm × 330 mm SUS container and set in a substantially 368 liter (700 mm × 700 mm × 750 mm) container at the center, and ignited with a torch bar. When the combustion area was halved, the door was closed and gas was released. It was judged that the fire was completely extinguished when the flame had settled and the internal red heat turned black. In addition, fire extinguishing was determined while measuring the temperature of the metal powder using a thermocouple.
[0024]
Existence of fire extinguishing, extinguishing gas concentration and oxygen concentration measurement were performed. The extinguishing gas concentration was calculated by obtaining the gas volume from the released gas weight. The oxygen concentration was measured using a magnetic oxygen concentration meter (MAG-167: manufactured by Shimadzu Corporation).
The results are listed in Table 4.
[0025]
[Table 4]
[0026]
【The invention's effect】
As described above, according to the present invention, it is possible to extinguish a metal fire with a low gas concentration, and there is little decrease in the oxygen concentration after the fire extinguishing, and an excellent fire extinguishing effect is obtained.
Claims (8)
酸化燃焼する金属粉に対して放出される
混合ガス消火薬剤。Whole argon is contained in a range of 10 mol% to 90 mol% with is constituted by argon and nitrogen and only becomes 100 mol%, and
A mixed gas fire extinguishing agent released against oxidatively burning metal powder .
請求項1に記載の混合ガス消火薬剤。The mixed gas fire extinguishing agent according to claim 1, wherein the metal powder is magnesium cutting powder or zirconium cutting powder.
消火器。Consists of only argon and nitrogen and contains argon in the range of 10 to 90 mol% to 100 mol% as a whole, and is filled with a mixed gas fire extinguishing agent that is released against oxidatively burning metal powder Fire extinguisher.
請求項3に記載の消火器。The fire extinguisher according to claim 3, wherein the metal powder is magnesium cutting powder or zirconium cutting powder.
高圧ガス容器。Consists of only argon and nitrogen and contains argon in the range of 10 to 90 mol% to 100 mol% as a whole, and is filled with a mixed gas fire extinguishing agent that is released against oxidatively burning metal powder High pressure gas container.
請求項5に記載の高圧ガス容器。The high-pressure gas container according to claim 5, wherein the metal powder is magnesium cutting powder or zirconium cutting powder.
消火設備。Fire extinguishing equipment that discharges a mixed gas fire extinguishing agent composed of only argon and nitrogen and containing argon in the range of 10 mol% to 90 mol% to a total of 100 mol% against oxidatively burning metal powder .
請求項7に記載の消火設備。The fire extinguishing equipment according to claim 7, wherein the metal powder is magnesium cutting powder or zirconium cutting powder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20402499A JP4315528B2 (en) | 1999-07-19 | 1999-07-19 | Mixed gas fire extinguishing agent, fire extinguisher, high pressure gas container, and fire extinguishing equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20402499A JP4315528B2 (en) | 1999-07-19 | 1999-07-19 | Mixed gas fire extinguishing agent, fire extinguisher, high pressure gas container, and fire extinguishing equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001029501A JP2001029501A (en) | 2001-02-06 |
JP4315528B2 true JP4315528B2 (en) | 2009-08-19 |
Family
ID=16483508
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20402499A Expired - Fee Related JP4315528B2 (en) | 1999-07-19 | 1999-07-19 | Mixed gas fire extinguishing agent, fire extinguisher, high pressure gas container, and fire extinguishing equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4315528B2 (en) |
-
1999
- 1999-07-19 JP JP20402499A patent/JP4315528B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2001029501A (en) | 2001-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5055208A (en) | Fire extinguishing compositions | |
CA2127341C (en) | Fire extinguishing composition | |
Ni et al. | Performance evaluation of water mist with bromofluoropropene in suppressing gasoline pool fires | |
EP0513249A1 (en) | Compositions for extinguishing fires | |
EP3755438B1 (en) | Fire extinguishing powder, for a, b, c, d, f and k class fires and its application in suppression of catastrophic fires, the absorption of oil and its derivatives and revitalization of land degradation caused by fire | |
WO2014025929A2 (en) | Misting, flooding, and pre-coating system for fire suppression | |
JP2013541361A (en) | Fire extinguishing composition producing extinguishing substance by high temperature sublimation | |
US6736989B2 (en) | Reduction of HF | |
Balanyuk | Study of fire-extinguishing efficiency of environmentally friendly binary aerosol-nitrogen mixtures | |
US8257607B1 (en) | Fluorocarbon-free, environmentally friendly, natural product-based, and safe fire extinguishing agent | |
US20010000911A1 (en) | Reduction of HF | |
MXPA96004320A (en) | Extinguishing method and compositions of fire, favorable for the oz | |
JP4315528B2 (en) | Mixed gas fire extinguishing agent, fire extinguisher, high pressure gas container, and fire extinguishing equipment | |
US3090749A (en) | Fire extinguisher compositions for metal fires | |
US20080000647A1 (en) | Non-Ferrous Metal Cover Gases | |
Rajput et al. | Fire extinguishing agents: sort and comparison | |
RU2699752C1 (en) | Liquid fire-extinguishing composition for fire extinguishing of class d1 | |
US4923621A (en) | Extinguishing combustible metal fires | |
WO1991008799A1 (en) | Copper powder fire extinguishant | |
US2569979A (en) | Fire extinguishing liquids and process | |
EP0309881B1 (en) | Method for extinguishing difficult to extinguish burning materials | |
Rhein et al. | Extinction of lithium fires: Thermodynamic computations and experimental data from literature | |
Xiaomeng et al. | Influence of potassium nitrate on the combustion rate of a water-based aerosol fire extinguishing agent | |
RU1819644C (en) | Method of preparing of compositions for fire-extinguishing | |
JPS60142869A (en) | Fire extinguishing composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060314 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090127 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20090305 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090318 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090401 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090512 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090519 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4315528 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120529 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150529 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |