JP4314811B2 - Anti-counterfeit ink and anti-counterfeit printed matter - Google Patents
Anti-counterfeit ink and anti-counterfeit printed matter Download PDFInfo
- Publication number
- JP4314811B2 JP4314811B2 JP2002334487A JP2002334487A JP4314811B2 JP 4314811 B2 JP4314811 B2 JP 4314811B2 JP 2002334487 A JP2002334487 A JP 2002334487A JP 2002334487 A JP2002334487 A JP 2002334487A JP 4314811 B2 JP4314811 B2 JP 4314811B2
- Authority
- JP
- Japan
- Prior art keywords
- counterfeit
- printed
- fine particles
- ink
- counterfeit ink
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Credit Cards Or The Like (AREA)
- Pigments, Carbon Blacks, Or Wood Stains (AREA)
- Inks, Pencil-Leads, Or Crayons (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、近赤外線領域の吸収を利用した偽造防止インク用組成物及び偽造防止インク、並びにこれを用いた偽造防止印刷物に関するものである。
【0002】
【従来の技術】
従来から、預貯金の通帳や身分証明書、クレジットカード、キャッシュカード、小切手、航空券、道路通行券、乗車券、プリペードカード、商品券、証券等の有価印刷物については、偽造を防止するための方法として、その基材や印刷方法に特殊な工夫を施すことが行われてきた。
【0003】
例えば、基材に透かしを入れた特殊印刷(特許文献1)、微細な絵柄の印刷(特許文献2)、バーコードに代表される幾何学形状印刷を用いたデジタル処理化等が行われている。しかし、透かしを入れた特殊印刷の用紙はコストが高く、バーコード印刷はコピー等で簡単に偽造が可能である。また、微細な絵柄の印刷は、現在のカラーコピー機やコンピュータの画像処理技術の向上と、更に人の目による確認という曖昧な要素が加わるため、偽造防止効果が低く汎用的ではない。
【0004】
上記以外の偽造防止方法として、300〜780nmの可視光領域の吸収が少なく且つ600〜1800nmの近赤外線を吸収する印刷インクを利用して、印刷物の真贋情報を検出する方法が提案されている。例えば、可視光領域に吸収の少ない近赤外線吸収材料と樹脂を混合したインクで印刷したものは、その印刷面に赤外線レーザーを照射すると特定波長のみ吸収されるため、反射若しくは透過光を読み取ることで真贋の判定が可能となる。
【0005】
このような近赤外線を吸収する印刷インクとして、フタロシアニン化合物を用いた偽造防止インクが提案されている(特許文献3)。しかしながら、近赤外線吸収材料であるフタロシアニン化合物は、その吸収特性が温度や紫外線等の影響によって低減するため、耐候性に劣るという欠点があった。
【0006】
一方、YやLa等の6ホウ化物微粒子、酸化ルテニウム微粒子等を含む分散膜が、太陽光線の近赤外線を断熱する日射遮蔽膜として提案されている(特許文献4、特許文献5)。しかし、この日射遮蔽膜は窓等からの日射を遮って、室内の温度上昇を防ぐためのものであり、6ホウ化物微粒子や酸化ルテニウム微粒子等の無機微粒子を偽造防止インクに応用することについては全く検討されていなかった。
【0007】
【特許文献1】
特開平09−261418号公報
【特許文献2】
特開平05−338388号公報
【特許文献3】
特開平04−320466号公報
【特許文献4】
特開平11−181336号公報
【特許文献5】
特開2000−096034号公報
【0008】
【発明が解決しようとする課題】
本発明は、このような従来の事情に鑑みてなされたものであり、可視光領域を透過し且つ近赤外線領域に吸収をもつ近赤外線吸収材料を利用して、印刷物の真贋を判定でき、しかも耐候性に優れた偽造防止インク用組成物及び偽造防止インクを提供することを目的とする。
【0009】
また、本発明は、この偽造防止インク用組成物及び偽造防止インクを用いることによって、コピー等では複製が不可能であり、目視判定によらず機械的に確実に真贋の判定ができ、しかも耐侯性に優れていて安価な偽造防止印刷物を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記の目的を達成するため、本発明が提供する偽造防止インク用組成物は、近赤外線吸収材料として、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Sr、Caのいずれかの6ホウ化物微粒子、酸化ルテニウム微粒子、及び酸化レニウム微粒子から選ばれた少なくとも1種の微粒子を含むことを特徴とする。また、前記微粒子の表面は、Si、Ti、Al、Zrから選ばれた少なくとも1種の化合物で被覆されていても良い。
【0011】
上記本発明の偽造防止インク用組成物は、前記微粒子と共に、近赤外線を透過する着色顔料を含有することができる。その場合、前記着色顔料は、Cu−Fe−Mn、Cu−Cr、Cu−Cr−Mn、Cu−Cr−Mn−Ni、Cu−Cr−Fe、Co−Cr−Feのいずれかの複合酸化物、チタンブラック、窒化チタン、酸窒化チタン、暗色アゾ顔料、ペリレンブラック顔料、アニリンブラック顔料、カーボンブラックから選ばれた少なくとも1種の近赤外線を透過する黒色顔料であることが好ましい。
【0012】
また、本発明が提供する偽造防止インクは、上記したいずれかの偽造防止インク用組成物、即ち前記微粒子を含むか又は前記微粒子と共に着色顔料を含有する偽造防止インク用組成物を、溶媒中に分散させたことを特徴とするものである。この偽造防止インクの前記溶媒中には、有機バインダーを含むことができる。
【0013】
更に、本発明が提供する偽造防止印刷物は、上記したいずれかの偽造防止インクを、被印刷基材の片面又は両面に印刷したことを特徴とするものである。
【0014】
上記本発明の偽造防止印刷物においては、前記被印刷基材の片面又は両面の少なくとも偽造防止インクの印刷膜上に、更に近赤外線を透過する着色顔料を含有した着色インクを印刷塗布することができる。この場合、前記着色インクは、着色顔料として、Cu−Fe−Mn、Cu−Cr、Cu−Cr−Mn、Cu−Cr−Mn−Ni、Cu−Cr−Fe、Co−Cr−Feのいずれかの複合酸化物、チタンブラック、窒化チタン、酸窒化チタン、暗色アゾ顔料、ペリレンブラック顔料、アニリンブラック顔料、カーボンブラックから選ばれた少なくとも1種の近赤外線を透過する黒色顔料含有することが好ましい。
【0015】
【発明の実施の形態】
本発明において、偽造防止インク用組成物及び偽造防止インクに用いる近赤外線吸収材料は、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Sr、Caの6ホウ化物微粒子、あるいは酸化ルテニウム微粒子又は酸化レニウム微粒子である。これらの無機微粒子は、暗色系の材料であるが、微細な微粒子状では、可視光領域(380〜780nm)に透過率のピークを持ち、近赤外線領域(600〜1800nm)に透過率のボトムを持つ透過特性を示す。
【0016】
これらの無機微粒子を含む本発明の偽造防止インクは、可視光領域の吸収が少なく且つ近赤外線領域に吸収をもつため、その印刷面に赤外線レーザーを照射したとき特定の波長を吸収する。従って、この偽造防止インクを被印刷基材の片面又は両面に印刷した印刷物は、特定波長の近赤外線を照射してその反射若しくは透過を読み取ることによって、反射量又は透過量の違いから、印刷物の真贋を判定することができる。
【0017】
例えば、後述する実施例1のLaB6微粒子を含有する偽造防止インクは、図1に示すような透過プロファイルを有している。図1から分るように、この偽造防止インクは、可視光領域に透過率のピークを持つため着色が少なく、同時に近赤外線領域に透過率のボトム(吸収ピーク)があるため、その情報を赤外線センサーで読み取ることにより、その情報を用いて印刷物の真贋を判定することが可能である。
【0018】
本発明で近赤外線吸収材料として用いる上記6ホウ化物微粒子、酸化ルテニウム微粒子又は酸化レニウム微粒子は、いずれも無機微粒子であるため、耐侯性に優れている。耐候性を更に向上させるために、その微粒子表面をSi、Ti、Al、Zrの1種又は2種以上の化合物で被覆することができる。これらの化合物は基本的に透明であり、添加したことによって可視光透過率を低下させることはない。
【0019】
また、上記近赤外線吸収材料の透過特性は、6ホウ化物微粒子等の無機微粒子の大きさによっても変化する。即ち、無機微粒子の粒子径が小さいほど、可視光領域の透過率のピークと近赤外線領域の吸収のボトムとの透過率差は大きくなる。逆に粒子径が大きいと、その透過率差が小さくなり、可視光透過率のピークに対する近赤外線の吸収が低下する。そのため、近赤外線吸収材料である6ホウ化物微粒子、酸化ルテニウム微粒子、及び酸化レニウム微粒子の大きさは、目的とする使用方法等に応じて適宜設定することが望ましい。
【0020】
本発明による偽造防止インクの場合、その近赤外線吸収材料として用いる無機微粒子、即ち6ホウ化物微粒子、酸化ルテニウム微粒子、及び酸化レニウム微粒子の粒子径は2μm以下が好ましい。粒子径が2μmを超えると、上記透過率のピークと近赤外線領域の吸収とのボトムの差が小さくなり、可視光領域の透明性を有する近赤外線吸収材料としての効果が低減するからである。
【0021】
また、被印刷基材として用いる透明基材の透明性を維持したり、又は下地印刷の透視可能な透明性を維持したい場合など、実質的に透明な偽造防止コードやバーコードを印刷するためには、無機微粒子の粒子径は更に小さい方が好ましい。即ち、実質的に透明性を保持したまま近赤外線を効率良く吸収する印刷膜を必要とする場合には、偽造防止インク中の無機微粒子の粒子径は800nm以下とすることが好ましい。800nmを超える粒子径の無機微粒子は光を大きく散乱するため、優れた透明性を保持した偽造防止印刷が難しいからである。
【0022】
特に、可視光領域の透明性を重視する偽造防止印刷の場合には、無機粒子による光の散乱をより考慮する必要がある。無機微粒子の粒子径が200nmよりも大きいと、幾何学散乱若しくはミー散乱によって400〜780nmの可視光線領域の光を散乱し、半曇りガラスのようになり、鮮明な透明性が得られないからである。
【0023】
従って、偽造防止印刷に澄んだ透明性を必要とする場合は、無機微粒子の粒子径は200nm以下が好ましく、100nm以下が更に好ましい。粒子径が200nm以下になると、光散乱が低減してレイリー散乱領域になり、散乱光は粒子径の6乗に反比例して低減するため、粒子径の減少に伴って透明性が向上する。また、粒子径が100nm以下になると、散乱光は非常に少なくなり更に好ましい。また、近赤外光線においても、粒子径を小さくすることで散乱が減少し、吸収効率が上昇するため好ましい。
【0024】
本発明の偽造防止インク用組成物は、上記6ホウ化物微粒子、酸化ルテニウム微粒子、又は酸化レニウム微粒子を含むが、これらの無機微粒子と共に、近赤外線を透過する着色顔料を含むことができる。このような着色顔料を含むことによって、人の目に感じる可視光領域では着色顔料と同等の色を呈するが、近赤外線領域では特徴的な吸収を持つ着色した偽造防止インク及びその偽造防止印刷物を得ることができる。尚、この着色した偽造防止インクは、可視光領域における吸収が少ないため、着色顔料の色調は保持される。
【0025】
例えば、近赤外線を透過する着色顔料として黒色顔料を混合した偽造防止インクは、黒色顔料のみを含む黒色インクと比較すると、人の目には同等の黒色として認識されるが、赤外線を照射して比較すると異なる透過プロファイルを有することが読み取れる。従って、この黒色の偽造防止インクを用いた印刷物、例えばバーコード印刷した印刷物は、近赤外線吸収材料を含まない通常の黒色インクをダミーとして印刷することで、更に複雑で高度な偽造防止が可能となる。
【0026】
また、本発明の偽造防止インクを被印刷基材の片面又は両面に印刷した印刷物の印刷膜上に、黒色顔料その他の近赤外線と透過する着色顔料を用いた着色インクを塗布又は印刷して偽造防止印刷物とすることもできる。この偽造防止印刷物は、人の目には黒又はその他に着色されて認識されるが、その同じ領域に赤外線でのみ読み取れる文字や記号等が隠れて印刷されているため、赤外線を照射することによって印刷物の真贋を判定することができる。
【0027】
このような着色顔料としては、近赤外線を透過する黒色顔料が好ましい。また、黒色顔料の好ましい具体例としては、Cu−Fe−Mn、Cu−Cr、Cu−Cr−Mn、Cu−Cr−Mn−Ni、Cu−Cr−Fe、Co−Cr−Fe等の複合酸化物、あるいはチタンブラック、窒化チタン、酸窒化チタン、暗色アゾ顔料、ペリレンブラック顔料、アニリンブラック顔料、カーボンブラックを挙げることができる。
【0028】
偽造防止インク中における黒色顔料の粒子径は、近赤外線吸収材料である上記6ホウ化物微粒子、酸化ルテニウム微粒子及び酸化レニウム微粒子と同様に、2μm以下が好ましい。
【0029】
また、透明な被印刷基材の透明性を維持し、又は下地印刷の透視可能な透明性を維持したい場合には、黒色顔料の粒子径も小さい方が好ましい。この場合、黒色の偽造防止インクや、偽造防止印刷膜上に印刷する黒色インクについて、そのインク中の黒色顔料の粒子径は800nm以下が好ましい。
【0030】
特に可視光領域の透明性を重視する場合には、黒色粒子の粒子径は200nm以下、好ましくは100nm以下が良い。その理由は、上述した近赤外線吸収材料である6ホウ化物微粒子、酸化ルテニウム微粒子及び酸化レニウム微粒子の場合と同様である。
【0031】
また、黒色顔料の粒子径を小さくすることで色調に深みが現れ、意匠的に好まれやすい。更にまた、微細な印刷を必要とする場合は、粒子径を小さくすることで光の散乱が少なくなるため、印刷パターンの輪郭が明瞭になり好ましい。
【0032】
本発明の偽造防止インクは、近赤外線吸収材料である上記6ホウ化物微粒子、酸化ルテニウム微粒子、又は酸化レニウム微粒子、及び必要に応じて着色顔料を溶媒中に分散させることで作製する。溶媒としては、エタノール等のアルコール類、メチルエチルケトン等のケトン類、トルエンやキシレン等、使用目的に応じて選択することが可能である。その際、上記微粒子や着色顔料を分散させる方法としては、特に限定されないが、超音波や媒体撹拌ミル等を使用すれば、粒子をほぐして微細化することができるので好ましい。
【0033】
また、上記偽造防止用インクは、溶媒中に有機バインダーを含むことができる。有機樹脂バインダーとしては、特に限定されず、例えば、アクリル系、ウレタン系、エポキシ系、フッ素系、ビニル系、ロジン系等何れでも良く、用途に適したものが選択可能である。
【0034】
また、上記偽造防止インクは、必要に応じて、グラビヤインク、スクリーンインク、オフセットインク、溶融熱転写インクなど、印刷方法に応じた一般的な配合が可能であり、また、可塑剤、酸化剤防止剤、増粘剤、ワックス等の添加剤を含むことができる。
【0035】
上記偽造防止インクを被印刷基材の表面に通常の方法により塗布又は印刷することにより、偽造防止印刷物を得ることができる。その場合、一般的には有機バインダーを含むため、溶媒を蒸発させて有機バインダーを硬化させることで、被印刷基材との結着性が優れ、良好な表面強度を有する印刷膜を得ることができる。尚、有機バインダーの硬化方法としては、紫外線硬化、熱硬化、常温硬化等が挙げられる。
【0036】
また、偽造防止インクが有機バインダーを含まない場合には、被印刷基材に塗布又は印刷し、溶媒を蒸発させることで印刷膜が得られる。ただし、この場合には、印刷膜の剥離や微粒子の脱落を防止するため、その上に透明樹脂からなるカバー層を設けることが好ましい。
【0037】
偽造防止印刷物中における近赤外線吸収材料の含有量は、目的とする用途に応じて変更可能であるが、通常は0.01g/m2以上が好ましい。0.01g/m2未満の使用量では、近赤外線領域の吸収が顕著に表れないため、偽造防止インクとして機能させることが難しい。また、含有量の上限は特に限定されないが、5g/m2以上になると可視光領域の光を大幅に吸収してしまうため、透明性を維持する必要がある場合には5g/m2より少ない含有量が好ましい。尚、上記含有量は、全てのフィラーが印刷面に入射する光線に対して同等に作用するため、1m2当たりの量で評価することができる。
【0038】
偽造防止インクを印刷するための被印刷基材は、目的とする用途にあったものを使用すればよく、紙の他に、樹脂とパルプの混合物、樹脂フィルム等を用いることができる。また、シール上に偽造防止インクで印刷し、このシールを被印刷基材に貼付してもかまわない。
【0039】
このようにして作製した本発明の偽造防止印刷物は、コピー等では複製が不可能であって、目視判定によらず、赤外線を照射し且つその反射又は透過を検出することによって機械的に確実に、真贋の判定を行うことができる。しかも、赤外線吸収材料としてホウ化物微粒子、酸化ルテニウム微粒子又は酸化レニウム微粒子の無機微粒子を用い、これを印刷法により被印刷基材に適用するため、耐候性に優れ、安価な偽造防止印刷物を提供することができる。
【0040】
【実施例】
次に、実施例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に限定されるわけではない。尚、膜の光学特性は、分光光度計U−4000(日立製作所(株)製)を用いて測定した。実施例中の可視光透過率は、JIS R3106に従って測定を行った。また、平均分散粒子径は、動的光散乱法を用いた測定装置ELS−8000(大塚電子(株)製)により測定した平均値をもって示した。
【0041】
実施例1
20gのLaB6微粒子をシランカップリング剤と共にエタノール78gに撹拌混合し、これを分散処理して、平均分散粒子径が100nmの分散液Aを作製した。この分散液Aの100gを、紫外線硬化樹脂UV3701(東亞合成(株)製)20gと混合して、偽造防止インクとした。
【0042】
被印刷基材として厚さ50μmの透明PETフィルムを使用し、その表面に上記偽造防止インクをバーコーターにより成膜した。この膜を70℃で1分間乾燥して溶媒を蒸発させた後、高圧水銀ランプを用いて紫外線を照射し、紫外線硬化樹脂を硬化させた。
【0043】
得られた印刷膜の可視光透過率は76%であった。また、可視光領域の550nmの透過率は78%であり、近赤外線領域の800nmの透過率は44%、900nmの透過率は35%、1000nmの透過率は33%であった。この印刷膜の透過プロファイルを図1に示す。
【0044】
このように、赤外線吸収材料としてLaB6微粒子を含む印刷膜は、可視光領域では高い透過率を示し、近赤外線領域では透過率が顕著に低くなっている。従って、実施例1の印刷膜は、近赤外線領域の光線を用いてデータ処理することにより真贋を判定でき、偽造防止印刷物として有効であることが分る。
【0045】
参考例
近赤外線を透過する黒色顔料Paliotol Black L0080(BASF製)20gを、高分子系分散剤と共にエタノール78gに撹拌混合し、これを分散処理して、平均分散粒子径120nmの分散液Bを作製した。この分散液Bを、上記実施例1における分散液A及び紫外線硬化樹脂UV3701(東亞合成(株)製)と混合して、黒色の偽造防止インクを作製した。
【0046】
被印刷基材として厚さ50μmの透明PETフィルムを使用し、その表面に上記黒色の偽造防止インクをバーコーターにより成膜した。この膜を70℃で1分間乾燥して溶媒を蒸発させた後、高圧水銀ランプを用いて紫外線を照射し、紫外線硬化樹脂を硬化させた。
【0047】
得られた印刷膜の可視光透過率は1%であった。また、可視光領域の550nmの透過率は1%であり、近赤外線領域の800nmの透過率は24%、900nmの透過率は20%、1000nmの透過率は19%であった。この印刷膜の透過プロファイルを図2に示す。
【0048】
比較例1
上記参考例における分散液Bを、紫外線硬化樹脂UV3701(東亞合成(株)製)と混合し、近赤外線吸収材料を含まない黒色インクとした。この黒色インクを用い、上記参考例と同様にして、厚さ50μmの透明PETフィルム上に印刷膜を形成した。
【0049】
得られた印刷膜の可視光透過率は1%であった。また、可視光領域の550nmの透過率は1%であり、近赤外線領域の800nmの透過率は78%、900nmの透過率は82%、1000nmの透過率は85%であった。この印刷膜の透過プロファイルを図2に示す。
【0050】
図2に示した参考例と比較例1の各印刷膜の透過プロファイから、参考例の印刷膜は可視光領域では比較例1と同様の黒色を示すが、近赤外線領域では透過率が大きく異なることが分る。従って、参考例の黒色の印刷膜は、肉眼では同一の黒色印刷として認識されるが、近赤外線領域の光線を用いたデータ処理によって検出可能であり、偽造防止印刷物として有効であることが分る。
【0051】
【発明の効果】
本発明によれば、可視光領域の光を透過し且つ近赤外線領域に吸収をもち、耐候性に優れた偽造防止インク用組成物及び偽造防止インクを提供することができる。また、この偽造防止インク用組成物及び偽造防止インクを用いることによって、コピー等では複製が不可能であり、目視判定によらず機械的に簡単且つ確実に真贋の判定ができ、しかも耐侯性に優れた安価な偽造防止印刷物を提供することができる。
【0052】
更に、近赤外線を透過する着色顔料と併用することにより、可視光領域の光を透過し且つ近赤外線領域に吸収をもち、耐候性に優れ、黒色等に着色した偽造防止インク用組成物及び偽造防止インクを提供することができる。この着色した偽造防止インクは、着色顔料のみのインクと組合わせて印刷することにより、一層複雑で、偽造防止効果の高い偽造防止印刷物を得ることができる。
【図面の簡単な説明】
【図1】 本発明のLaB6微粒子を含む偽造防止インクによる実施例1の印刷膜の透過プロファイルを示すグラフである。
【図2】 LaB6微粒子と黒色顔料を含む偽造防止インクによる参考例の印刷膜の透過プロファイルと、黒色インクによる比較例1の印刷膜の透過プロファイルを示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an anti-counterfeit ink composition and anti-counterfeit ink using absorption in the near infrared region, and an anti-counterfeit printed matter using the same.
[0002]
[Prior art]
Conventionally, methods for preventing counterfeiting of valuable printed matter such as bank passbooks and identification cards, credit cards, cash cards, checks, air tickets, road tickets, tickets, prepaid cards, gift certificates, securities, etc. As a result, special techniques have been applied to the base material and printing method.
[0003]
For example, special printing with a watermark on the base material (Patent Document 1), fine pattern printing (Patent Document 2), digital processing using geometric shape printing represented by barcodes, and the like are performed. . However, special printing paper with a watermark is expensive, and bar code printing can be easily counterfeited by copying or the like. In addition, printing of fine patterns is not universal because it has an ambiguous element of improvement in current image processing technology of color copiers and computers and confirmation by human eyes.
[0004]
As a method for preventing counterfeiting other than the above, there has been proposed a method for detecting authenticity information of a printed matter by using printing ink that has little absorption in the visible light region of 300 to 780 nm and absorbs near infrared rays of 600 to 1800 nm. For example, what is printed with an ink that is a mixture of a near-infrared absorbing material and a resin that absorbs little light in the visible light region is absorbed only at a specific wavelength when the printed surface is irradiated with an infrared laser. Authenticity can be determined.
[0005]
As a printing ink that absorbs such near infrared rays, a forgery prevention ink using a phthalocyanine compound has been proposed (Patent Document 3). However, the phthalocyanine compound, which is a near-infrared absorbing material, has a drawback in that its weatherability is inferior because its absorption characteristics are reduced by the influence of temperature, ultraviolet rays and the like.
[0006]
On the other hand, a dispersion film containing hexaboride fine particles such as Y and La, ruthenium oxide fine particles, and the like has been proposed as a solar radiation shielding film that insulates near infrared rays of sunlight (Patent Documents 4 and 5). However, this solar shading film is intended to block solar radiation from windows and the like to prevent an increase in indoor temperature. Regarding application of inorganic fine particles such as hexaboride fine particles and ruthenium oxide fine particles to anti-counterfeit inks. It was not considered at all.
[0007]
[Patent Document 1]
JP 09-261418 A [Patent Document 2]
JP 05-338388 A [Patent Document 3]
Japanese Patent Laid-Open No. 04-320466 [Patent Document 4]
Japanese Patent Laid-Open No. 11-181336 [Patent Document 5]
JP 2000-096034 A
[Problems to be solved by the invention]
The present invention has been made in view of such conventional circumstances, and it is possible to determine the authenticity of a printed matter by using a near-infrared absorbing material that transmits the visible light region and absorbs in the near-infrared region. An object of the present invention is to provide an anti-counterfeit ink composition and an anti-counterfeit ink excellent in weather resistance.
[0009]
In addition, the present invention uses the anti-counterfeit ink composition and the anti-counterfeit ink, so that it cannot be duplicated by copying or the like, can be reliably determined mechanically regardless of visual determination, and is resistant to damage. It is an object to provide an anti-counterfeit printed material that is excellent in property and inexpensive.
[0010]
[Means for Solving the Problems]
In order to achieve the above-described object, the anti-counterfeit ink composition provided by the present invention includes, as a near-infrared absorbing material, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er. , Tm, Yb, Lu, Sr, Ca hexaboride fine particles, ruthenium oxide fine particles, and at least one fine particle selected from rhenium oxide fine particles. The surface of the fine particles may be coated with at least one compound selected from Si, Ti, Al, and Zr.
[0011]
The anti-counterfeit ink composition of the present invention may contain a coloring pigment that transmits near infrared rays together with the fine particles. In that case, the colored pigment is a complex oxide of any one of Cu—Fe—Mn, Cu—Cr, Cu—Cr—Mn, Cu—Cr—Mn—Ni, Cu—Cr—Fe, and Co—Cr—Fe. It is preferably a black pigment that transmits at least one near infrared ray selected from titanium black, titanium nitride, titanium oxynitride, dark azo pigment, perylene black pigment, aniline black pigment, and carbon black.
[0012]
Further, the anti-counterfeit ink provided by the present invention includes any of the anti-counterfeit ink compositions described above, that is, the anti-counterfeit ink composition containing the fine particles or containing the coloring pigment together with the fine particles in a solvent. It is characterized by being dispersed. The solvent of the anti-counterfeit ink can contain an organic binder.
[0013]
Furthermore, the anti-counterfeit printed matter provided by the present invention is characterized in that one of the above-described anti-counterfeit inks is printed on one side or both sides of a substrate to be printed.
[0014]
In the anti-counterfeit printed matter of the present invention, a color ink containing a color pigment that transmits near-infrared rays can be further printed on at least one anti-counterfeit printing film on one or both sides of the substrate to be printed. . In this case, the colored ink is any one of Cu-Fe-Mn, Cu-Cr, Cu-Cr-Mn, Cu-Cr-Mn-Ni, Cu-Cr-Fe, and Co-Cr-Fe as a color pigment. It is preferable to contain a black pigment which transmits at least one kind of near infrared ray selected from the composite oxides, titanium black, titanium nitride, titanium oxynitride, dark azo pigment, perylene black pigment, aniline black pigment, and carbon black.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the near-infrared absorbing material used for the anti-counterfeit ink composition and the anti-counterfeit ink is Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, They are Lu, Sr, and Ca hexaboride fine particles, or ruthenium oxide fine particles or rhenium oxide fine particles. These inorganic fine particles are dark-colored materials, but in the case of fine fine particles, they have a transmittance peak in the visible light region (380 to 780 nm) and a transmittance bottom in the near infrared region (600 to 1800 nm). It shows the transmission characteristics.
[0016]
The anti-counterfeit ink of the present invention containing these inorganic fine particles absorbs a specific wavelength when the printed surface is irradiated with an infrared laser because it has little absorption in the visible light region and absorption in the near infrared region. Therefore, a printed matter obtained by printing this anti-counterfeit ink on one or both sides of the substrate to be printed is irradiated with near-infrared rays of a specific wavelength and the reflection or transmission is read, so that the difference in the reflection amount or the transmission amount is detected. Authenticity can be determined.
[0017]
For example, the forgery prevention ink containing LaB 6 fine particles of Example 1 described later has a transmission profile as shown in FIG. As can be seen from FIG. 1, this anti-counterfeit ink has a transmittance peak in the visible light region and is therefore less colored, and at the same time there is a bottom (absorption peak) of transmittance in the near infrared region. By reading with a sensor, it is possible to determine the authenticity of the printed matter using the information.
[0018]
The hexaboride fine particles, ruthenium oxide fine particles, or rhenium oxide fine particles used as the near-infrared absorbing material in the present invention are all inorganic fine particles and thus have excellent weather resistance. In order to further improve the weather resistance, the surface of the fine particles can be coated with one or more compounds of Si, Ti, Al, and Zr. These compounds are basically transparent, and adding them does not reduce the visible light transmittance.
[0019]
Further, the transmission characteristics of the near-infrared absorbing material change depending on the size of inorganic fine particles such as hexaboride fine particles. That is, the smaller the particle size of the inorganic fine particles, the larger the difference in transmittance between the peak of transmittance in the visible light region and the bottom of absorption in the near infrared region. Conversely, when the particle size is large, the difference in transmittance decreases, and near infrared absorption with respect to the peak of visible light transmittance decreases. Therefore, it is desirable to appropriately set the sizes of hexaboride fine particles, ruthenium oxide fine particles, and rhenium oxide fine particles, which are near-infrared absorbing materials, according to the intended use method and the like.
[0020]
In the case of the anti-counterfeit ink according to the present invention, the particle diameter of the inorganic fine particles used as the near-infrared absorbing material, that is, hexaboride fine particles, ruthenium oxide fine particles, and rhenium oxide fine particles is preferably 2 μm or less. This is because if the particle diameter exceeds 2 μm, the difference between the peak of the transmittance and the bottom of absorption in the near infrared region becomes small, and the effect as a near infrared absorbing material having transparency in the visible light region is reduced.
[0021]
In addition, in order to maintain the transparency of a transparent substrate used as a substrate to be printed or to maintain the transparency of the base printing that can be seen through, for printing a substantially transparent anti-counterfeit code or barcode. The particle diameter of the inorganic fine particles is preferably smaller. That is, when a printed film that efficiently absorbs near infrared rays while substantially maintaining transparency is required, the particle diameter of the inorganic fine particles in the anti-counterfeit ink is preferably 800 nm or less. This is because inorganic fine particles having a particle diameter exceeding 800 nm greatly scatter light, so that anti-counterfeit printing with excellent transparency is difficult.
[0022]
In particular, in the case of anti-counterfeit printing that places importance on transparency in the visible light region, it is necessary to consider light scattering by inorganic particles. If the particle size of the inorganic fine particles is larger than 200 nm, the light in the visible light region of 400 to 780 nm is scattered by geometrical scattering or Mie scattering, and it becomes like semi-cloudy glass, so that clear transparency cannot be obtained. is there.
[0023]
Therefore, when clear transparency is required for anti-counterfeit printing, the particle size of the inorganic fine particles is preferably 200 nm or less, and more preferably 100 nm or less. When the particle diameter is 200 nm or less, light scattering is reduced to form a Rayleigh scattering region, and the scattered light is reduced in inverse proportion to the sixth power of the particle diameter, so that the transparency is improved as the particle diameter decreases. Moreover, when the particle diameter is 100 nm or less, the scattered light is extremely reduced, which is more preferable. Further, near-infrared rays are also preferable because the scattering is reduced and the absorption efficiency is increased by reducing the particle diameter.
[0024]
The anti-counterfeit ink composition of the present invention contains the hexaboride fine particles, ruthenium oxide fine particles, or rhenium oxide fine particles, and can contain a color pigment that transmits near-infrared rays together with these inorganic fine particles. By including such a colored pigment, a colored anti-counterfeiting ink having a characteristic absorption in the near-infrared region and a colored anti-counterfeiting ink that exhibits the same color as the colored pigment in the visible light region perceived by human eyes. Obtainable. The colored anti-counterfeit ink has little absorption in the visible light region, so that the color tone of the colored pigment is maintained.
[0025]
For example, an anti-counterfeit ink mixed with a black pigment as a color pigment that transmits near-infrared is recognized as equivalent black to the human eye when compared with a black ink containing only a black pigment. By comparison, it can be seen that they have different transmission profiles. Therefore, printed matter using this black anti-counterfeit ink, for example, printed matter printed with bar code, can be printed with a normal black ink that does not contain near-infrared absorbing material as a dummy, making it possible to prevent more complicated and advanced forgery. Become.
[0026]
Further, forgery is carried out by applying or printing a black pigment or other colored ink that transmits near-infrared rays on a printed film of a printed matter obtained by printing the anti-counterfeit ink of the present invention on one or both sides of a substrate to be printed. It can also be a prevention printed matter. This anti-counterfeit printed matter is recognized by human eyes as being colored in black or other colors, but since characters and symbols that can only be read with infrared rays are hidden in the same area, it is printed by irradiating with infrared rays. The authenticity of the printed material can be determined.
[0027]
As such a colored pigment, a black pigment which transmits near infrared rays is preferable. Further, preferable specific examples of the black pigment include composite oxidation of Cu—Fe—Mn, Cu—Cr, Cu—Cr—Mn, Cu—Cr—Mn—Ni, Cu—Cr—Fe, Co—Cr—Fe, and the like. Or titanium black, titanium nitride, titanium oxynitride, dark azo pigment, perylene black pigment, aniline black pigment, and carbon black.
[0028]
The particle diameter of the black pigment in the anti-counterfeit ink is preferably 2 μm or less, like the hexaboride fine particles, ruthenium oxide fine particles and rhenium oxide fine particles which are near infrared absorbing materials.
[0029]
Moreover, when it is desired to maintain the transparency of a transparent substrate to be printed or to maintain the transparency of the base printing, it is preferable that the particle diameter of the black pigment is small. In this case, the particle diameter of the black pigment in the black anti-counterfeit ink or the black ink printed on the anti-counterfeit print film is preferably 800 nm or less.
[0030]
In particular, when importance is attached to the transparency in the visible light region, the particle diameter of the black particles is 200 nm or less, preferably 100 nm or less. The reason is the same as in the case of the hexaboride fine particles, ruthenium oxide fine particles, and rhenium oxide fine particles, which are the near-infrared absorbing materials described above.
[0031]
In addition, by reducing the particle size of the black pigment, the color tone becomes deeper and it is easy to favor the design. Furthermore, when fine printing is required, the scattering of light is reduced by reducing the particle diameter, which is preferable because the outline of the printed pattern becomes clear.
[0032]
The anti-counterfeit ink of the present invention is prepared by dispersing the above hexaboride fine particles, ruthenium oxide fine particles, or rhenium oxide fine particles, which are near-infrared absorbing materials, and, if necessary, a color pigment in a solvent. As the solvent, alcohols such as ethanol, ketones such as methyl ethyl ketone, toluene, xylene and the like can be selected according to the purpose of use. At this time, the method for dispersing the fine particles and the color pigment is not particularly limited, but it is preferable to use an ultrasonic wave or a medium stirring mill because the particles can be loosened and refined.
[0033]
The anti-counterfeit ink may contain an organic binder in the solvent. The organic resin binder is not particularly limited, and for example, any of acrylic, urethane, epoxy, fluorine, vinyl, rosin and the like can be selected.
[0034]
Further, the anti-counterfeit ink can be blended in general according to the printing method such as gravure ink, screen ink, offset ink, and melt heat transfer ink, if necessary, and also includes a plasticizer and an antioxidant. And additives such as thickeners and waxes.
[0035]
A forgery-preventing printed matter can be obtained by applying or printing the anti-counterfeit ink on the surface of a substrate to be printed by a usual method. In that case, since it generally contains an organic binder, it is possible to obtain a printed film having excellent binding strength and excellent surface strength by evaporating the solvent and curing the organic binder. it can. Examples of the method for curing the organic binder include ultraviolet curing, thermal curing, and room temperature curing.
[0036]
When the anti-counterfeit ink does not contain an organic binder, a printed film can be obtained by applying or printing on a substrate to be printed and evaporating the solvent. In this case, however, it is preferable to provide a cover layer made of a transparent resin on the printed film in order to prevent peeling of the printed film and removal of fine particles.
[0037]
The content of the near-infrared absorbing material in the anti-counterfeit printed material can be changed according to the intended use, but is usually preferably 0.01 g / m 2 or more. When the amount used is less than 0.01 g / m 2 , absorption in the near infrared region does not appear remarkably, so that it is difficult to function as a forgery prevention ink. Moreover, although the upper limit of content is not specifically limited, When it becomes 5 g / m < 2 > or more, it will absorb light of visible region significantly, and when transparency needs to be maintained, it is less than 5 g / m < 2 >. Content is preferred. The above content is to act equally with respect to light all of the filler is incident on the printing surface, it can be evaluated in an amount per 1 m 2.
[0038]
The substrate to be printed for printing the anti-counterfeit ink may be any one that meets the intended application. In addition to paper, a mixture of resin and pulp, a resin film, or the like can be used. Alternatively, printing may be performed on the seal with anti-counterfeit ink, and this seal may be attached to the substrate to be printed.
[0039]
The anti-counterfeit printed matter of the present invention produced in this way cannot be duplicated by copying or the like, and mechanically and reliably by irradiating infrared rays and detecting the reflection or transmission regardless of visual judgment. Authenticity can be determined. In addition, boride fine particles, ruthenium oxide fine particles, or rhenium oxide fine particles are used as the infrared absorbing material, and this is applied to a substrate to be printed by a printing method. Therefore, an anti-counterfeit printed matter that is excellent in weather resistance and inexpensive is provided. be able to.
[0040]
【Example】
EXAMPLES Next, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples. The optical properties of the film were measured using a spectrophotometer U-4000 (manufactured by Hitachi, Ltd.). The visible light transmittance in the examples was measured according to JIS R3106. Moreover, the average dispersed particle diameter is shown as an average value measured by a measuring device ELS-8000 (manufactured by Otsuka Electronics Co., Ltd.) using a dynamic light scattering method.
[0041]
Example 1
20 g of LaB 6 fine particles were stirred and mixed with 78 g of ethanol together with a silane coupling agent, and this was subjected to a dispersion treatment to prepare a dispersion A having an average dispersed particle diameter of 100 nm. 100 g of this dispersion A was mixed with 20 g of an ultraviolet curable resin UV3701 (manufactured by Toagosei Co., Ltd.) to obtain a forgery prevention ink.
[0042]
A transparent PET film having a thickness of 50 μm was used as a substrate to be printed, and the anti-counterfeit ink was formed on the surface thereof by a bar coater. This film was dried at 70 ° C. for 1 minute to evaporate the solvent, and then irradiated with ultraviolet rays using a high pressure mercury lamp to cure the ultraviolet curable resin.
[0043]
The visible light transmittance of the obtained printed film was 76%. Further, the transmittance at 550 nm in the visible light region was 78%, the transmittance at 800 nm in the near infrared region was 44%, the transmittance at 900 nm was 35%, and the transmittance at 1000 nm was 33%. The transmission profile of this printed film is shown in FIG.
[0044]
As described above, the printed film containing LaB 6 fine particles as the infrared absorbing material shows a high transmittance in the visible light region and has a significantly low transmittance in the near infrared region. Therefore, it can be seen that the printed film of Example 1 is effective as an anti-counterfeit printed matter because it is possible to determine authenticity by processing data using light in the near infrared region.
[0045]
Reference Example 20 g of black pigment Pariotol Black L0080 (manufactured by BASF) that transmits near-infrared rays is stirred and mixed with 78 g of ethanol together with a polymeric dispersant, and this is dispersed to prepare dispersion B having an average dispersed particle size of 120 nm. did. This dispersion B was mixed with the dispersion A in Example 1 and the ultraviolet curable resin UV3701 (manufactured by Toagosei Co., Ltd.) to produce a black anti-counterfeit ink.
[0046]
A transparent PET film having a thickness of 50 μm was used as a substrate to be printed, and the black anti-counterfeit ink was formed on the surface thereof by a bar coater. This film was dried at 70 ° C. for 1 minute to evaporate the solvent, and then irradiated with ultraviolet rays using a high pressure mercury lamp to cure the ultraviolet curable resin.
[0047]
The visible light transmittance of the obtained printed film was 1%. Further, the transmittance at 550 nm in the visible light region was 1%, the transmittance at 800 nm in the near infrared region was 24%, the transmittance at 900 nm was 20%, and the transmittance at 1000 nm was 19%. The transmission profile of this printed film is shown in FIG.
[0048]
Comparative Example 1
Dispersion B in the above Reference Example was mixed with UV curable resin UV3701 (manufactured by Toagosei Co., Ltd.) to obtain a black ink that did not contain a near infrared absorbing material. Using this black ink, a printed film was formed on a transparent PET film having a thickness of 50 μm in the same manner as in the above Reference Example .
[0049]
The visible light transmittance of the obtained printed film was 1%. Further, the transmittance at 550 nm in the visible light region was 1%, the transmittance at 800 nm in the near infrared region was 78%, the transmittance at 900 nm was 82%, and the transmittance at 1000 nm was 85%. The transmission profile of this printed film is shown in FIG.
[0050]
From the transmission profiles of the printed films of the reference example and the comparative example 1 shown in FIG. 2, the printed film of the reference example shows the same black color as the comparative example 1 in the visible light region, but the transmittance is greatly different in the near infrared region. I understand that. Therefore, the black printed film of the reference example is recognized by the naked eye as the same black print, but can be detected by data processing using light in the near-infrared region and is effective as an anti-counterfeit printed matter. .
[0051]
【The invention's effect】
According to the present invention, it is possible to provide an anti-counterfeit ink composition and an anti-counterfeit ink that transmit light in the visible light region and absorb in the near-infrared region and have excellent weather resistance. In addition, by using the anti-counterfeit ink composition and the anti-counterfeit ink, it is impossible to reproduce by copying, etc., and it is possible to easily and surely determine authenticity without relying on visual determination, and to improve the weather resistance. An excellent and inexpensive anti-counterfeit printed matter can be provided.
[0052]
Furthermore, when used in combination with a coloring pigment that transmits near-infrared rays, the composition for anti-counterfeiting ink that transmits light in the visible light region and absorbs light in the near-infrared region, has excellent weather resistance, and is colored black or the like. Prevention ink can be provided. This colored anti-counterfeit ink can be printed in combination with an ink containing only a colored pigment to obtain a more complex anti-counterfeit printed matter having a higher anti-counterfeit effect.
[Brief description of the drawings]
FIG. 1 is a graph showing a permeation profile of a printed film of Example 1 using an anti-counterfeit ink containing LaB 6 fine particles of the present invention.
FIG. 2 is a graph showing a transmission profile of a printed film of a reference example using an anti-counterfeit ink containing LaB 6 fine particles and a black pigment, and a transmission profile of a printed film of Comparative Example 1 using a black ink.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002334487A JP4314811B2 (en) | 2002-11-19 | 2002-11-19 | Anti-counterfeit ink and anti-counterfeit printed matter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002334487A JP4314811B2 (en) | 2002-11-19 | 2002-11-19 | Anti-counterfeit ink and anti-counterfeit printed matter |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008316420A Division JP2009108324A (en) | 2008-12-12 | 2008-12-12 | Anti-forgery ink and forgery prevented printed matter |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004168842A JP2004168842A (en) | 2004-06-17 |
JP4314811B2 true JP4314811B2 (en) | 2009-08-19 |
Family
ID=32698851
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002334487A Expired - Lifetime JP4314811B2 (en) | 2002-11-19 | 2002-11-19 | Anti-counterfeit ink and anti-counterfeit printed matter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4314811B2 (en) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101225265B (en) * | 2007-01-16 | 2011-04-27 | 中国印钞造币总公司 | False-proof ink having obvious contrast for absorption/reflection of different-waveband infrared lights |
JP5477526B2 (en) * | 2008-07-28 | 2014-04-23 | 凸版印刷株式会社 | Anti-counterfeit ink, anti-counterfeit medium and anti-counterfeit sticker |
DE102008049595A1 (en) * | 2008-09-30 | 2010-04-01 | Merck Patent Gmbh | Infrared absorbing inks |
CA2826015C (en) * | 2011-02-01 | 2020-12-15 | Reserve Bank Of Australia | Transparent infrared absorbing materials |
CN103625153B (en) * | 2012-08-23 | 2015-09-09 | 中国人民银行印制科学技术研究所 | Optical storage Security element, manufacture method, application and the optical element for the manufacture of process |
JP6160830B2 (en) * | 2013-12-20 | 2017-07-12 | 住友金属鉱山株式会社 | Anti-counterfeit ink printed film and anti-counterfeit printed matter |
EP3252113B1 (en) * | 2015-01-27 | 2020-11-25 | Sumitomo Metal Mining Co., Ltd. | Near-infrared ray absorbing microparticle dispersion solution, production method thereof, counterfeit-preventing ink composition using said near-infrared ray absorbing microparticle dispersion solution, and anti-counterfeit printed matter using said near-infrared ray absorbing microparticles |
TWI740814B (en) * | 2015-01-27 | 2021-10-01 | 日商住友金屬礦山股份有限公司 | Anti-counterfeiting ink composition for lithographic printing and anti-counterfeiting printed matter |
JPWO2016121839A1 (en) * | 2015-01-27 | 2017-11-02 | 住友金属鉱山株式会社 | Near-infrared absorbing fine particle dispersion and production method thereof, anti-counterfeit ink composition using near-infrared absorbing fine particle dispersion, and anti-counterfeit printed matter using near-infrared absorbing fine particles |
TWI704190B (en) | 2015-12-18 | 2020-09-11 | 日商住友金屬礦山股份有限公司 | Composition for anti-counterfeiting ink, anti-counterfeiting ink, anti-counterfeiting print, and method of composition for anti-counterfeiting ink |
JP6835067B2 (en) * | 2016-04-01 | 2021-02-24 | 住友金属鉱山株式会社 | Infrared absorbing material, infrared absorbing material dispersion, infrared absorbing material dispersion, infrared absorbing material dispersion combined transparent base material, infrared absorbing transparent base material |
CN108624119A (en) * | 2017-03-24 | 2018-10-09 | 卡西欧计算机株式会社 | The manufacturing method of ink, printing equipment, printing process and forming object |
EP3643757A4 (en) | 2017-06-19 | 2021-03-24 | Sumitomo Metal Mining Co., Ltd. | Counterfeit-preventing ink composition, counterfeit-preventing ink, printed article for counterfeit prevention, and method for producing counterfeit-preventing ink composition |
EP3660107A4 (en) * | 2017-07-24 | 2021-05-05 | Sumitomo Metal Mining Co., Ltd. | Infrared absorbing fine particle dispersion powder, dispersion liquid containing infrared absorbing fine particle dispersion powder, ink containing infrared absorbing fine particle dispersion powder, anti-counterfeit ink, and printed matter for anti-counterfeiting |
JP6835030B2 (en) | 2018-04-27 | 2021-02-24 | カシオ計算機株式会社 | Method for manufacturing a heat-expandable sheet, a method for manufacturing a heat-expandable sheet, and a method for manufacturing a modeled object |
CN109517508B (en) * | 2018-10-31 | 2021-01-26 | 湖南航天三丰科工有限公司 | Aqueous optical stealth coating material |
JP7358785B2 (en) | 2019-06-05 | 2023-10-11 | 住友金属鉱山株式会社 | Anti-counterfeiting ink composition, anti-counterfeiting ink, anti-counterfeiting printed matter |
JP6937998B2 (en) * | 2019-12-19 | 2021-09-22 | 大日本印刷株式会社 | Laminated body, and printing or drawing method for the laminated body |
WO2024190676A1 (en) * | 2023-03-10 | 2024-09-19 | 三井金属鉱業株式会社 | Compound, compound particles, near-infrared transmission material, and near-infrared transmission film |
-
2002
- 2002-11-19 JP JP2002334487A patent/JP4314811B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2004168842A (en) | 2004-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6160830B2 (en) | Anti-counterfeit ink printed film and anti-counterfeit printed matter | |
JP4314811B2 (en) | Anti-counterfeit ink and anti-counterfeit printed matter | |
AU2007251399B2 (en) | Security inks containing infrared absorbing metal compounds | |
RU2637223C2 (en) | Magnetic or magnetized particles of pigment and layers with optical effect | |
JP2009108324A (en) | Anti-forgery ink and forgery prevented printed matter | |
EP2207854B1 (en) | Security element | |
EP1550077B1 (en) | Laser engraving methods, and articles having laser engraving thereon | |
RU2623259C2 (en) | Method of intaglio process attribute printing with a lot of characteristics | |
JP4989466B2 (en) | Machine-readable security elements for security products | |
US20080290649A1 (en) | Laser Transfer of Security Features | |
CN107532030B (en) | Fine particle dispersion, process for producing the same, forgery-preventing ink composition, and forgery-preventing printed matter | |
CN102202908A (en) | Security document and methods of producing it | |
KR20180014687A (en) | Optical effect layer generation method | |
JP7433329B2 (en) | printed matter | |
JP5034499B2 (en) | Anti-counterfeit print medium and method for judging authenticity of anti-counterfeit print medium | |
JP5281773B2 (en) | Ink composition | |
CN107429097B (en) | Near-infrared absorbing fine particle dispersion, method for producing same, forgery-preventing ink composition, and forgery-preventing printed matter | |
CN110049876A (en) | Low energy curability lithographic printing ink and letterpress ink and printing process | |
CN110049875A (en) | Low energy curability lithographic printing ink and letterpress ink and printing process | |
CN107429098B (en) | Near-infrared absorbing fine particle dispersion, method for producing same, forgery-preventing ink composition, and forgery-preventing printed matter | |
JP2000309736A (en) | Infrared-absorbing ink composition and printed matter using same | |
JP4138082B2 (en) | Intermediate transfer recording medium and printed matter | |
US8002190B2 (en) | Stability of covert pigments | |
RU2335404C2 (en) | Print, method of recording, method of information recognition and system of information recognition | |
JP4323578B2 (en) | Articles for forming laser marking |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050203 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080215 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080219 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080421 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081014 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081212 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090428 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090511 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4314811 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120529 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130529 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140529 Year of fee payment: 5 |
|
EXPY | Cancellation because of completion of term |