JP4396561B2 - Induction hardening steel - Google Patents
Induction hardening steel Download PDFInfo
- Publication number
- JP4396561B2 JP4396561B2 JP2005098220A JP2005098220A JP4396561B2 JP 4396561 B2 JP4396561 B2 JP 4396561B2 JP 2005098220 A JP2005098220 A JP 2005098220A JP 2005098220 A JP2005098220 A JP 2005098220A JP 4396561 B2 JP4396561 B2 JP 4396561B2
- Authority
- JP
- Japan
- Prior art keywords
- steel
- less
- induction hardening
- content
- delayed fracture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 42
- 239000010959 steel Substances 0.000 title claims description 42
- 230000006698 induction Effects 0.000 title claims description 37
- 230000003111 delayed effect Effects 0.000 claims description 40
- 239000006104 solid solution Substances 0.000 claims description 24
- 239000000203 mixture Substances 0.000 claims description 8
- 229910052758 niobium Inorganic materials 0.000 claims description 7
- 229910052698 phosphorus Inorganic materials 0.000 claims description 7
- 229910052796 boron Inorganic materials 0.000 claims description 6
- 239000012535 impurity Substances 0.000 claims description 6
- 229910052720 vanadium Inorganic materials 0.000 claims description 6
- 229910052726 zirconium Inorganic materials 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 229910052717 sulfur Inorganic materials 0.000 claims description 3
- 238000005242 forging Methods 0.000 description 6
- 230000009466 transformation Effects 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 5
- 229910001566 austenite Inorganic materials 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000001556 precipitation Methods 0.000 description 5
- 238000005336 cracking Methods 0.000 description 4
- 229910000734 martensite Inorganic materials 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 238000005204 segregation Methods 0.000 description 4
- 238000005496 tempering Methods 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 229910001563 bainite Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 238000003754 machining Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 238000006757 chemical reactions by type Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910001562 pearlite Inorganic materials 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 229910000669 Chrome steel Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910000677 High-carbon steel Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
Images
Landscapes
- Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
- Heat Treatment Of Articles (AREA)
Description
本発明は、高周波焼入れ用鋼に関する。具体的には、本発明は、溶製して素材とした後に熱間鍛造及び機械加工した後に高周波焼入れままでも遅れ破壊が発生し難いことから、例えば往復動機関のクランクシャフト用として好適に用いられる耐遅れ破壊性に優れた高周波焼入れ用鋼に関する。 The present invention relates to induction hardening steel. Specifically, the present invention is suitable for use as, for example, a crankshaft of a reciprocating engine, because delayed fracture is unlikely to occur even after induction forging and machining after being melted into a raw material, even after induction hardening. The present invention relates to a steel for induction hardening excellent in delayed fracture resistance.
ガソリンエンジンやディーゼルエンジン等の往復動機関のクランクシャフトは、コネクティングロッドによって伝達された燃焼工程のピストンの下降運動を回転運動に変換することにより、連続した回転力としてエンジンの出力を取り出すための部品である。このクランクシャフトは、大荷重を受けながら高速回転するため、高い強度や剛性が求められる。このため、クランクシャフトは、一般的に、高炭素鋼やクロムモリブデン鋼さらにはニッケルクロム鋼等からなる素材を型打鍛造した後に、高周波焼入れ及び焼戻しを行ってから、研削等の機械加工を行うことにより、製造されてきた。近年、クランクシャフトは、エンジンのいっそうの高速化に対応するためにさらなる疲労強度の向上が求められるようになっており、このために、焼戻しの低温化又は省略が検討されている。 The crankshaft of a reciprocating engine such as a gasoline engine or diesel engine is a component for extracting the engine output as a continuous rotational force by converting the downward movement of the piston in the combustion process transmitted by the connecting rod into a rotational motion It is. Since this crankshaft rotates at a high speed while receiving a large load, high strength and rigidity are required. For this reason, the crankshaft is generally subjected to induction hardening and tempering after material forging made of high carbon steel, chrome molybdenum steel, nickel chrome steel, etc., and then machining such as grinding. Has been manufactured. In recent years, the crankshaft has been required to further improve the fatigue strength in order to cope with the higher speed of the engine. For this reason, the tempering temperature has been reduced or omitted.
しかしながら、単に焼戻しの低温化又は省略を行うと、残留応力等により荷重が負荷されてからある時間経過後に突然破壊を生じる現象、すなわち遅れ破壊(時間遅れ破壊)が発生する恐れがある。 However, if the tempering is simply performed at a low temperature or omitted, there is a possibility that a phenomenon that abrupt destruction occurs, that is, a delayed fracture (time delayed fracture) occurs after a certain time has elapsed since the load is applied due to residual stress or the like.
この遅れ破壊は、広義には、水素による鋼の脆化又は破壊を意味する。腐食環境下での静的時間遅れ破壊は、通常、応力腐食割れ(Stress Corrosion Cracking)と呼ばれ、鉄地が溶解するアノード反応型のき裂形成と水素を吸収し粒界に沿って割れが進展するカソード反応型のき裂形成とがある。 This delayed fracture broadly means embrittlement or fracture of steel by hydrogen. Static time-delayed fracture in a corrosive environment is usually called stress corrosion cracking, which is an anodic reaction type crack that dissolves iron and absorbs hydrogen and cracks along grain boundaries. There is a cathodic reaction-type crack formation.
これに対し、狭義の遅れ破壊は、高周波焼入れを行った焼入れ鋼材に大気環境下で生じる破壊を意味する。すなわち、高周波焼入れ後に焼戻しの低温化又は省略を行って製造されるクランクシャフトは、残留オーステナイトが絶えずマルテンサイトに変態を続けるために膨張し、表面の残留圧縮応力が増大して内部の引張応力を高めてその分布状態を悪化させる。このため、このクランクシャフトには、内部に存在する微少欠陥部に水素の集中が促進されて脆くなるため、遅れ破壊が発生し易くなる。 On the other hand, the delayed fracture in a narrow sense means a fracture that occurs in an atmospheric environment in a quenched steel material that has been induction-hardened. That is, the crankshaft manufactured by induction hardening or lowering the temperature of the tempering is expanded or the retained austenite continuously expands to martensite, and the residual compressive stress on the surface increases to increase the internal tensile stress. To increase its distribution. For this reason, in this crankshaft, concentration of hydrogen is promoted in a minute defect portion existing in the crankshaft and becomes brittle, so that delayed fracture is likely to occur.
特許文献1には、C:0.40〜0.70%(本明細書では特にことわりがない限り「%」は「質量%」を意味するものとする)、Si:0.05〜0.8%、Mn:0.5〜2.0%、S:0.01〜0.15%、P:0.01〜0.07%、Cr:0.1〜1.5%、Ti:0.005〜0.05%、Nb:0.005〜0.05%、B:0.0005〜0.005%、Al:0.005〜0.05%、N:0.005〜0.02%を含有する鋼組成を有する鋼を熱間鍛造した後に空冷又は放冷することによりフェライト−パーライト組織とする発明が開示されている。 In Patent Document 1, C: 0.40 to 0.70% (in this specification, “%” means “mass%” unless otherwise specified), Si: 0.05 to 0.00. 8%, Mn: 0.5 to 2.0%, S: 0.01 to 0.15%, P: 0.01 to 0.07%, Cr: 0.1 to 1.5%, Ti: 0 0.005-0.05%, Nb: 0.005-0.05%, B: 0.0005-0.005%, Al: 0.005-0.05%, N: 0.005-0.02 An invention is disclosed in which a ferrite-pearlite structure is obtained by hot-forging a steel having a steel composition containing% after air forging or cooling.
しかしながら、本発明者らが鋭意検討を重ねた結果、特許文献1に記載された高周波焼入れ用高靱性熱間非調質鋼に係る発明は、C:0.40〜0.70%、B:0.0005〜0.005%、P:0.01〜0.07%、N:0.005〜0.020%の鋼組成を有しており、C含有量が高いために遅れ破壊感受性が高く、さらにP含有量及びN含有量が高い場合には鋼中の固溶B量に対して粒界のP量が過剰となるとともに粒界にBNの析出が促進されることにより、粒界の靱性が低下して遅れ破壊が発生し易くなる。このため、この発明によっても、高周波焼入れままでも遅れ破壊の発生を十分に抑制して、例えば、往復動機関のクランクシャフト用として好適に用いることができる高周波焼入れ用鋼を提供することはできない。 However, as a result of intensive studies by the present inventors, the invention relating to the high toughness hot non-tempered steel for induction hardening described in Patent Document 1 is C: 0.40 to 0.70%, B: It has a steel composition of 0.0005 to 0.005%, P: 0.01 to 0.07%, N: 0.005 to 0.020%, and because of its high C content, it has delayed fracture susceptibility. When the P content and the N content are high, the P amount at the grain boundary becomes excessive with respect to the solid solution B amount in the steel, and the precipitation of BN is promoted at the grain boundary. The toughness of the steel is reduced, and delayed fracture is likely to occur. For this reason, even with this invention, it is not possible to provide a steel for induction hardening that can be suitably used, for example, for a crankshaft of a reciprocating engine by sufficiently suppressing the occurrence of delayed fracture even with induction hardening.
本発明の目的は、製品形状へ機械加工した後に高周波焼入れままでも遅れ破壊が発生し難いことから、例えば往復動機関のクランクシャフト用として好適に用いることができる耐遅れ破壊性に優れた高周波焼入れ用鋼を提供することである。 The object of the present invention is that it is difficult to cause delayed fracture even after induction hardening after being machined into a product shape. Therefore, for example, induction hardening excellent in delayed fracture resistance that can be suitably used for a crankshaft of a reciprocating engine. Is to provide steel.
本発明は、高周波焼入れままでも遅れ破壊を生じないためにC含有量を0.40%未満と低く設定するとともに、高周波焼入れ性能を確保するためにP、N及びB含有量を最適化すれば、高周波焼入れままでも遅れ破壊の発生を防止することができるとともに高周波焼入れ性能も確保でき、これにより、疲労強度及び生産性をいずれも向上することができるという新規な技術思想に基づいてなされたものである。 The present invention sets the C content as low as less than 0.40% in order to prevent delayed fracture even when induction hardening is performed, and optimizes the P, N, and B contents in order to ensure induction hardening performance. In addition, it is possible to prevent delayed fracture even with induction hardening and to ensure induction hardening performance, thereby making it possible to improve both fatigue strength and productivity. It is.
本発明は、質量%で、C:0.20〜0.38%、Si:0.35〜2.0%、Mn:0.05〜2.0%、P:0.030%以下、S:0.0
4〜0.1%、Cr:0.05〜2.0%、N:0.010%以下、B:0.0003〜0.0030%、Al:0.001〜0.05%を含有し、固溶B:(0.0061×P−0.00001)%以上、残部Fe及び不可避的不純物からなる鋼組成を有することを特徴とする耐遅れ破壊性に優れた高周波焼入れ用鋼である。
The present invention is by mass%, C: 0.20 to 0.38% , Si: 0.35 to 2.0%, Mn: 0.05 to 2.0%, P: 0.030% or less, S : 0.0
4 to 0.1%, Cr: 0.05 to 2.0%, N: 0.010% or less, B: 0.0003 to 0.0030%, Al: 0.001 to 0.05% Solid solution B: (0.0061 × P-0.00001)% or more, steel for induction hardening excellent in delayed fracture resistance , characterized by having a steel composition composed of the balance Fe and inevitable impurities.
この本発明に係る高周波焼入れ用鋼では、さらに、Ti:0.01〜0.15%、Nb:0.01〜0.10%、Zr:0.01〜0.10%及びV:0.01〜0.20%からなる群から選ばれた1種又は2種以上を含有することが望ましい。 In the steel for induction hardening according to the present invention, Ti: 0.01 to 0.15%, Nb: 0.01 to 0.10%, Zr: 0.01 to 0.10%, and V: 0.00. It is desirable to contain one or more selected from the group consisting of 01 to 0.20%.
これらの本発明に係る高周波焼入れ用鋼では、さらに、Ca:0.0003%以上0.020%以下を含有することが望ましい。
これらの本発明に係る高周波焼入れ用鋼は、往復動機関のクランクシャフト用として用いられることが、望ましい。
In the steel for induction hardening according to the present invention, it is desirable to further contain Ca: 0.0003% or more and 0.020% or less.
These induction hardening steels according to the present invention are preferably used for a crankshaft of a reciprocating engine.
本発明により、製品形状へ機械加工した後に高周波焼入れままでも遅れ破壊が発生し難いことから、例えば往復動機関のクランクシャフト用として好適に用いることができる耐遅れ破壊性に優れた高周波焼入れ用鋼を提供することができる。このため、例えばクランクシャフトの耐遅れ破壊特性を改善して生産能率を落とさずに、その疲労強度を向上することができる。 According to the present invention, delayed fracture is less likely to occur even after induction hardening after being machined into a product shape. Therefore, for example, steel for induction hardening excellent in delayed fracture resistance that can be suitably used as a crankshaft for a reciprocating engine. Can be provided. For this reason, for example, the fatigue strength of the crankshaft can be improved without decreasing the production efficiency by improving the delayed fracture resistance.
以下、本発明に係る高周波焼入れ用鋼を実施するための最良の形態を、詳細に説明する。まず、本発明に係る高周波焼入れ用鋼の組成を限定する理由を説明する。
C:0.20%以上0.40%未満
Cは、鋼中にあっては含有量が多くなるほど強度及び硬さを増加し、靱性を低下するという炭化物の形態的効果を通じて破壊感受性が増加する。高周波焼入れ後の硬さは、C含有量に比例して増加するため、遅れ破壊が発生し易くなり、0.40%以上では遅れ破壊の発生頻度が増加する。一方、C含有量が0.20%未満では高周波焼入れ後の表面硬さが低下する等、所望の機械的性質を確保できない。そこで、本実施の形態では、C含有量は0.20%以上0.40%未満と限定する。同様の観点から、C含有量の上限は0.35%であることが望ましく、下限は0.25%であることが望ましい。
Hereinafter, the best mode for carrying out the induction hardening steel according to the present invention will be described in detail. First, the reason for limiting the composition of the steel for induction hardening according to the present invention will be described.
C: 0.20% or more and less than 0.40% C increases the susceptibility to fracture through the morphological effect of carbide that increases strength and hardness and decreases toughness as the content increases in steel. . Since the hardness after induction hardening increases in proportion to the C content, delayed fracture is likely to occur, and the occurrence frequency of delayed fracture increases at 0.40% or more. On the other hand, if the C content is less than 0.20%, the desired mechanical properties cannot be ensured, for example, the surface hardness after induction hardening decreases. Therefore, in the present embodiment, the C content is limited to 0.20% or more and less than 0.40%. From the same viewpoint, the upper limit of the C content is desirably 0.35%, and the lower limit is desirably 0.25%.
Si:0.35%以上2.0%以下
Siは、0.35%以上含有することにより溶製時に脱酸剤として鋼に作用するとともに、強化元素としても芯部硬さの向上に寄与する。しかし、Si含有量が2.0%を超えると芯部の靱性を劣化させるばかりでなく、被削性や冷間鍛造性にも悪影響を及ぼし生産性を低下する。そこで、本発明では、Si含有量は0.35%以上2.0%以下と限定する。同様の観点から、Si含有量の下限は0.5%であることが望ましく、上限は1.5%であることが望ましい。
Si: 0.35% or more and 2.0% or less Si contains 0.35% or more, so that it acts on steel as a deoxidizer during melting and contributes to improvement in core hardness as a strengthening element. . However, if the Si content exceeds 2.0%, not only the toughness of the core is deteriorated, but also the machinability and cold forgeability are adversely affected and the productivity is lowered. Therefore, in the present invention, the Si content is limited to 0.35% or more and 2.0% or less. From the same viewpoint, the lower limit of the Si content is desirably 0.5%, and the upper limit is desirably 1.5%.
Mn:0.05%以上2.0%以下
Mnは、0.05%以上含有することにより、強度及び靭性を高めるとともに、焼入れ性を向上してCの共析濃度を上げ、初析フェライトの析出を抑制する。しかし、2.0%を超えて含有すると、ベイナイト組織の生成を招いて耐磨耗性及び被削性を顕著に低下する。そこで、本発明では、Mn含有量は0.05%以上2.0%以下と限定する。同様の観点から、Mn含有量の下限は0.5%であることが望ましく、上限は1.5%であることが望ましい。
Mn: 0.05% or more and 2.0% or less By containing 0.05% or more, Mn increases strength and toughness, improves hardenability and raises the eutectoid concentration of C. Suppresses precipitation. However, if the content exceeds 2.0%, the formation of a bainite structure is caused and the wear resistance and machinability are remarkably lowered. Therefore, in the present invention, the Mn content is limited to 0.05% or more and 2.0% or less. From the same viewpoint, the lower limit of the Mn content is desirably 0.5%, and the upper limit is desirably 1.5%.
P:0.030%以下
Pは、本発明では不可避的不純物であり、P含有量が0.030%を超えるとオーステナイト粒界に粒界偏析を起こし、粒界強度を低下させて遅れ破壊が発生し易くなる。そこで、本発明では、P含有量は0.030%以下と限定する。同様の観点から、P含有量の上限は0.025%であることが望ましい。
P: 0.030% or less P is an unavoidable impurity in the present invention. When the P content exceeds 0.030%, grain boundary segregation occurs at the austenite grain boundary, and the grain boundary strength is lowered and delayed fracture occurs. It tends to occur. Therefore, in the present invention, the P content is limited to 0.030% or less. From the same viewpoint, the upper limit of the P content is preferably 0.025%.
S:0.005%以上0.1%以下
Sは含有量が増すことにより硫化物として析出して被削性を改善する。しかし、S含有量が0.005%未満ではその効果が十分でなく、0.1%を超えると鋼中に硫化物の個数が増加し、研削割れの発生頻度が増加するとともに、Sの増加により熱間加工性が低下する。そこで、本発明では、S含有量は0.005%以上0.1%以下と限定する。同様の観点から、S含有量は、0.04%以上0.1%以下が望ましく、0.04%以上0.06%以下であることがより望ましい。
S: 0.005% or more and 0.1% or less S increases in content and precipitates as a sulfide to improve machinability. However, if the S content is less than 0.005%, the effect is not sufficient. If the S content exceeds 0.1%, the number of sulfides in the steel increases, the frequency of occurrence of grinding cracks increases, and S increases. As a result, hot workability decreases. Therefore, in the present invention, the S content is limited to 0.005% or more and 0.1% or less. From the same viewpoint, the S content is preferably 0.04% or more and 0.1% or less, and more preferably 0.04% or more and 0.06% or less.
Cr:0.05%以上2.0%以下
Crは、0.05%以上含有することにより、フェライト率の低減及びAc1変態点及びAc3変態点を低下するとともに、Ac1変態点及びAc3変態点間隔を狭めてマルテンサイト粒界へのベイナイト析出、未固溶フェライトの残存がなくなることにより、均一なマルテンサイトを得ることが可能となる。しかし、2.0%を超えて含有するとベイナイト組織の生成を招き、耐磨耗性及び被削性を顕著に低下させる。そこで、本発明では、Cr含有量は0.05%以上2.0%以下と限定する。同様の観点から、Cr含有量の下限は0.1%であることが望ましく、上限は1.5%であることが望ましい。
Cr: 0.05% or more and 2.0% or less Cr is contained in an amount of 0.05% or more, thereby reducing the ferrite ratio and lowering the Ac 1 transformation point and Ac 3 transformation point, as well as the Ac 1 transformation point and Ac. By narrowing the interval between the three transformation points and eliminating bainite precipitation at the martensite grain boundaries and residual undissolved ferrite, uniform martensite can be obtained. However, if the content exceeds 2.0%, a bainite structure is formed, and the wear resistance and machinability are significantly reduced. Therefore, in the present invention, the Cr content is limited to 0.05% to 2.0%. From the same viewpoint, the lower limit of the Cr content is desirably 0.1%, and the upper limit is desirably 1.5%.
N:0.010%以下
Nは、本発明においては重要な役割を果たす元素である。N含有量が0.010%以下であれば、粒界の固溶N量が減少しBNの形成を防ぎ固溶Bが多くなり、粒界強度が向上し遅れ破壊の発生を防止できる。そこで、本発明では、N含有量は0.010%以下と限定する。同様の観点から、N含有量の上限は0.008%であることが望ましい。
N: 0.010% or less under <br/> N is an important role element in the present invention. If the N content is 0.010% or less, the amount of solid solution N at the grain boundary decreases, the formation of BN is prevented, the amount of solid solution B increases, the grain boundary strength is improved, and the occurrence of delayed fracture can be prevented. Therefore, in the present invention, the N content is limited to 0.010% or less. From the same viewpoint, the upper limit of the N content is preferably 0.008%.
B:0.0003%以上0.0030%以下
Bは、本発明において重要な役割を果たす元素である。B含有量が0.0003%以上であると、固溶状態でオーステナイト粒界に偏析を起こしP、Cu等の脆化元素を粒界から排除して粒界の強度を増加させる。しかし、B含有量が0.0030%を超えると、逆に粒界強度の低下を招く。そこで、本発明では、B含有量は0.0003%以上0.0030%以下と限定する。同様の観点から、B含有量の下限は0.0005%であることが望ましく、上限は0.0030%であることが望ましい。
B: 0.0003% to 0.0030% B is an element that plays an important role in the present invention. When the B content is 0.0003% or more, segregation occurs in the austenite grain boundaries in a solid solution state, and embrittlement elements such as P and Cu are excluded from the grain boundaries to increase the strength of the grain boundaries. However, if the B content exceeds 0.0030%, the grain boundary strength decreases conversely. Therefore, in the present invention, the B content is limited to 0.0003% or more and 0.0030% or less. From the same viewpoint, the lower limit of the B content is preferably 0.0005%, and the upper limit is preferably 0.0030%.
Al:0.001%以上0.05%以下
Alは、脱酸作用及び結晶粒微細化作用を奏するとともに、鋼中でNと結合してAlNとなり、固溶Nを完全に固定し、BN析出を防止する。しかし、Al含有量が0.05%を超えると、このような効果は飽和し、むしろ靱性を低下させる。そこで、本発明では、Al含有量は0.001%以上0.05%以下と限定する。同様の観点から、Al含有量の下限は0.01%であることが望ましい。
Al: 0.001% or more and 0.05% or less Al has a deoxidizing action and a grain refining action, and combined with N in the steel to become AlN, completely fixing the solid solution N, and BN precipitation To prevent. However, when the Al content exceeds 0.05%, such an effect is saturated, and rather the toughness is lowered. Therefore, in the present invention, the Al content is limited to 0.001% or more and 0.05% or less. From the same viewpoint, the lower limit of the Al content is desirably 0.01%.
固溶B:(0.0061×P−0.00001)%以上
Bは、オーステナイト粒界に偏析を起こしP、Cu等の脆化元素を粒界から排除し粒界強度を増加させる作用を奏するが、P添加量に応じて遅れ破壊の発生を抑制するのに必要な固溶状態にある固溶B量が変動する。溶製時に、Al含有量とTi、Nb、Zr又はVのうちの1つか2つ以上の元素の添加量を調整することにより粒界に偏析する固溶B量を調整することができる。
Solid solution B: (0.0061 × P−0.00001)% or more B has the effect of causing segregation at the austenite grain boundary and removing embrittlement elements such as P and Cu from the grain boundary to increase the grain boundary strength. However, the amount of solid solution B in the solid solution state necessary for suppressing the occurrence of delayed fracture varies depending on the amount of P added. At the time of melting, the amount of solid solution B segregated at the grain boundaries can be adjusted by adjusting the Al content and the addition amount of one or more elements of Ti, Nb, Zr or V.
固溶Bは、全B量を測定し、電解抽出法で窒化物を抽出し、両者の差を求めることにより、求めた。Pとの関係から固溶Bが(0.0061×P−0.00001)%以上であれば、遅れ破壊を発生しない。そこで、本発明では、固溶Bは(0.0061×P−0.00001)%以上と限定する。同様の観点から、固溶Bの下限は、0.0002%以上であることが望ましい。 Solid solution B was determined by measuring the total amount of B, extracting nitride by electrolytic extraction, and determining the difference between the two. If the solid solution B is (0.0061 × P−0.00001)% or more from the relationship with P, delayed fracture does not occur. Therefore, in the present invention, the solid solution B is limited to (0.0061 × P−0.00001)% or more. From the same viewpoint, the lower limit of the solid solution B is preferably 0.0002% or more.
Ti:0.01%以上0.15%以下、Nb:0.01%以上0.10%以下、Zr:0.01%以上0.10%以下、及び、V:0.01%以上0.20%以下からなる群から選ばれた1種又は2種以上
本発明では、Ti、Nb、Zr又はVは、いずれも、必要に応じて添加される任意添加元素である。これらの元素を1種単独で、又は2種以上を組み合わせて添加することにより、鋼中でNと結合して炭窒化物を析出させることにより固溶Nを完全固定して、BNの析出防止を図ることができる。
Ti: 0.01% to 0.15%, Nb: 0.01% to 0.10%, Zr: 0.01% to 0.10%, and V: 0.01% to 0.1%. In the present invention, one, two or more selected from the group consisting of 20% or less , any of Ti, Nb, Zr or V is an optional additive element added as necessary. By adding one of these elements alone or in combination of two or more, solid solution N is completely fixed by bonding with N in the steel and precipitating carbonitride, thereby preventing precipitation of BN. Can be achieved.
そこで、これらの元素を添加する場合には、鋼中で炭窒化物を形成するための必要量添加すればよく、Ti:0.01%以上0.15%以下、V:0.01%以上0.20%以下、Nb:0.01%以上0.10%以下、Zr:0.01%以上0.10%以下と限定する。 Therefore, when these elements are added, the necessary amount for forming carbonitride in steel may be added, Ti: 0.01% or more and 0.15% or less, V: 0.01% or more It is limited to 0.20% or less, Nb: 0.01% or more and 0.10% or less, Zr: 0.01% or more and 0.10% or less.
Ca:0.0003%以上0.020%以下
本発明では、Caは必要に応じて添加される任意添加元素である。Caは、0.0003%以上含有することにより被削性を高める。しかし、0.020%を超えて含有してもかかる効果は飽和し、コストが嵩むばかりである。
そこで、Caを添加する場合には、その含有量は0.0003%以上0.020%以下と限定することが望ましい。
Ca: 0.0003% or more and 0.020% or less In the present invention, Ca is an optional additive element added as necessary. Ca improves the machinability by containing 0.0003% or more. However, even if the content exceeds 0.020%, such an effect is saturated and the cost is increased.
Therefore, when Ca is added, its content is desirably limited to 0.0003% or more and 0.020% or less.
残部Fe及び不可避的不純物
上記以外の組成は、Fe及び不可避的不純物である。不可避的不純物としては、上述したP以外に、Ni、Mo、Cuがある。Ni及びMoは、遅れ破壊に対し特に影響はないため、Ni含有量は0.30%以下、Mo含有量は0.15%以下とすることが望ましい。また、CuもPと同様に粒界強度を低下させ遅れ破壊を発生し易くなるため、Cu含有量は0.30%以下であることが望ましい。
The balance Fe and inevitable impurities Other compositions than the above are Fe and inevitable impurities. Inevitable impurities include Ni, Mo, and Cu in addition to P described above. Since Ni and Mo have no particular effect on delayed fracture, it is desirable that the Ni content is 0.30% or less and the Mo content is 0.15% or less. Also, Cu, like P, lowers the grain boundary strength and easily causes delayed fracture, so the Cu content is desirably 0.30% or less.
本実施の形態の高周波焼入れ用鋼は、このような鋼組成を有するが、特にC含有量を0.20%以上0.40%未満と低く設定するとともにP含有量を0.030%以下に制限し、固溶B≧(0.0061×P−0.00001)%と限定することにより、オーステナイトを安定化してマルテンサイトへの変態を抑制するとともに固溶Bにより粒界を強化し、同時に粒界へのPの偏析を防止し、これにより、高周波焼入れままでも遅れ破壊を生じないとともに高周波焼入れ性能も確保できる。 The steel for induction hardening according to the present embodiment has such a steel composition. In particular, the C content is set to be as low as 0.20% or more and less than 0.40% and the P content is set to 0.030% or less. By restricting and limiting the solid solution B ≧ (0.0061 × P−0.00001)%, the austenite is stabilized and the transformation to martensite is suppressed and the grain boundary is strengthened by the solid solution B. The segregation of P to the grain boundary is prevented, whereby delayed fracture does not occur even with induction hardening, and induction hardening performance can be secured.
このため、本発明によれば耐疲労特性及び生産性をいずれも向上することができる。
このように、本発明により、製品形状へ機械加工した後に高周波焼入れままでも遅れ破壊が発生し難いことから、例えば往復動機関のクランクシャフト用として好適に用いることができる耐遅れ破壊性に優れた高周波焼入れ用鋼材を提供できる。
For this reason, according to the present invention, both fatigue resistance and productivity can be improved.
As described above, according to the present invention, delayed fracture is less likely to occur even after induction hardening after machining into a product shape, and thus, for example, excellent delayed fracture resistance that can be suitably used for a crankshaft of a reciprocating engine. It can provide steel for induction hardening.
表1に示す化学組成を有する鋼材を容量50kgの真空誘導加熱炉で溶製し、直径210mmのインゴットにした。このインゴットを通常の方法で1250℃に加熱した後、熱間鍛造して65mmの丸棒に鍛伸した。なお、鍛造仕上げ温度は1000℃とし、熱間鍛造後は室温まで大気放冷した。 A steel material having a chemical composition shown in Table 1 was melted in a vacuum induction heating furnace having a capacity of 50 kg to form an ingot having a diameter of 210 mm. The ingot was heated to 1250 ° C. by a normal method and then hot forged to forge into a 65 mm round bar. The forging finishing temperature was 1000 ° C., and after hot forging, the product was allowed to cool to room temperature.
大気放冷後、試験片の表面に垂直に切断した面を研磨して被検面とし適当な腐食方法により被検面を腐食し、顕微鏡により組織を確認した。全ての試料の組織は、いずれも、フェライト−パーライト組織であった。 After being allowed to cool to the atmosphere, the surface cut perpendicular to the surface of the test piece was polished to be a test surface, the test surface was corroded by an appropriate corrosion method, and the structure was confirmed with a microscope. All the samples had a ferrite-pearlite structure.
そして、この丸棒に通常の方法により旋削加工を施して、外径60mm、内径50mm、高さ80mmのパイプを作製し、高さ方向の中央で50mm幅の全肉厚にHV 450となるように高周波焼入れを施した。なお、HVは49.03Nの試験力の条件で測定した。 Then, this round bar is turned by a normal method to produce a pipe having an outer diameter of 60 mm, an inner diameter of 50 mm, and a height of 80 mm, and the total thickness of 50 mm width becomes HV 450 at the center in the height direction. Was subjected to induction hardening. HV was measured under the condition of a test force of 49.03N.
その後、遅れ破壊の評価のため4.1%塩酸に10分間浸漬して割れの有無を確認する遅れ破壊の加速試験を行った。結果を表1にあわせて示す。表1の「4.1%HCl(10分)割れ」の欄における○印は割れなしを示し、×印は割れありを示す。 Then, for the evaluation of delayed fracture, an accelerated test for delayed fracture was conducted by immersing in 4.1% hydrochloric acid for 10 minutes to confirm the presence or absence of cracks. The results are shown in Table 1. In the column of “4.1% HCl (10 minutes) cracking” in Table 1, “O” indicates no cracking, and “X” indicates cracking.
表1における鋼No.1〜14は、いずれも、固溶B≧(0.0061×P−0.00001)%を満足しない、あるいは本発明で規定するその他の条件を満足しないため、耐遅れ破壊性及び硬度を両立することができなかった。 Steel No. 1 in Table 1 1 to 14 do not satisfy the solid solution B ≧ (0.0061 × P−0.00001)%, or do not satisfy the other conditions defined in the present invention, so that both delayed fracture resistance and hardness are compatible. I couldn't.
これに対し、表1における鋼No.15〜23は、いずれも、本発明で規定する条件を全て満足するため、耐遅れ破壊性及び硬度を両立することができた。 In contrast, steel No. 1 in Table 1 was used. Since all of Nos. 15 to 23 satisfy all the conditions defined in the present invention, both delayed fracture resistance and hardness could be achieved.
さらに、表1における鋼No.2は、固溶B≧(0.0061×P−0.00001)%を満足するもののC含有量が0.45%と本発明の上限を超えるため、オーステナイトを安定化できないためマルテンサイトへの変態を抑制することができず、また固溶Bにより粒界を強化することができず、遅れ破壊が発生した。また、鋼No.14は、固溶B≧(0.0061×P−0.00001)%を満足するもののP含有量が0.035%と本発明の上限を超えるため、粒界強化する以上に粒界脆化元素であるPが粒界に多く偏析し、遅れ破壊が発生した。 Furthermore, the steel No. 1 in Table 1 was used. 2 satisfies the solid solution B ≧ (0.0061 × P−0.00001)%, but the C content exceeds 0.45% and the upper limit of the present invention. The transformation could not be suppressed, and the grain boundaries could not be strengthened by the solid solution B, and delayed fracture occurred. Steel No. 14 satisfies the solid solution B ≧ (0.0061 × P−0.00001)%, but the P content exceeds 0.035%, which exceeds the upper limit of the present invention. A large amount of element P was segregated at the grain boundaries, and delayed fracture occurred.
図1は、本例で得られた結果にもとづきP(%)と固溶B(BE)%との関係を示すグラフである。同図に示すように、本発明の鋼においては、P:0.030%以下かつ固溶B≧(0.0061×P−0.00001)%を満足すれば、遅れ破壊は発生しない。 FIG. 1 is a graph showing the relationship between P (%) and solute B (BE)% based on the results obtained in this example. As shown in the figure, in the steel of the present invention, if P: 0.030% or less and solid solution B ≧ (0.0061 × P−0.00001)% are satisfied, delayed fracture does not occur.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005098220A JP4396561B2 (en) | 2004-03-31 | 2005-03-30 | Induction hardening steel |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004105276 | 2004-03-31 | ||
JP2005098220A JP4396561B2 (en) | 2004-03-31 | 2005-03-30 | Induction hardening steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005314810A JP2005314810A (en) | 2005-11-10 |
JP4396561B2 true JP4396561B2 (en) | 2010-01-13 |
Family
ID=35442528
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005098220A Active JP4396561B2 (en) | 2004-03-31 | 2005-03-30 | Induction hardening steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4396561B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5299104B2 (en) * | 2009-06-15 | 2013-09-25 | 新日鐵住金株式会社 | Induction hardening steel |
CN101948987B (en) * | 2010-09-21 | 2012-05-30 | 武汉钢铁(集团)公司 | Manufacturing method of high-strength and high-toughness steel plate |
KR101225330B1 (en) * | 2010-09-29 | 2013-01-25 | 현대제철 주식회사 | High strength free-cutting new non-heat treated steel for crankshaft with excellent fatigue strength and method of manufacturing the non-heat treated steel |
JP5790443B2 (en) * | 2011-11-24 | 2015-10-07 | 新日鐵住金株式会社 | Hot-dip galvanized steel sheet and manufacturing method thereof |
KR101388409B1 (en) * | 2012-02-28 | 2014-04-25 | 현대제철 주식회사 | Non quenched and tempered steel and method of manufacturing the non quenched and tempered steel |
-
2005
- 2005-03-30 JP JP2005098220A patent/JP4396561B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2005314810A (en) | 2005-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1867745B1 (en) | Ferritic heat-resistant steel | |
JP6027302B2 (en) | High strength tempered spring steel | |
US6793744B1 (en) | Martenstic stainless steel having high mechanical strength and corrosion | |
JP5655366B2 (en) | Bainite steel | |
JP6680142B2 (en) | High-strength seamless oil country tubular good and method for manufacturing the same | |
WO2017119224A1 (en) | Large crankshaft | |
CN107709594B (en) | Bolt | |
JP5859384B2 (en) | Large high strength forged steel | |
JP4396561B2 (en) | Induction hardening steel | |
JP2006037177A (en) | Age-hardening steel | |
JP6620490B2 (en) | Age-hardening steel | |
JP3535112B2 (en) | Hot tool steel excellent in erosion resistance and high temperature strength and high temperature member made of the hot tool steel | |
JP5050515B2 (en) | Non-tempered steel containing V for crankshaft | |
JP3747585B2 (en) | High hardness martensitic stainless steel with excellent workability and corrosion resistance | |
JP2022130746A (en) | Non-heat-treated forged component and non-heat-treated forging steel | |
JP4044460B2 (en) | Cold forming spring steel | |
JP7333729B2 (en) | Ferritic stainless steel bars, automotive fuel system parts and automotive fuel system parts | |
JP4450217B2 (en) | Non-tempered steel for soft nitriding | |
JPH07188840A (en) | High strength steel excellent in hydrogen embrittlement resistance and its production | |
JP7270420B2 (en) | Hot forged non-heat treated parts, manufacturing method thereof, and steel materials for hot forged non-heat treated parts | |
JP4175276B2 (en) | Induction hardening steel and crankshaft using the same | |
JP2013072104A (en) | Steel excellent in toughness and wear resistance | |
US11274354B2 (en) | Steel material, crankshaft, and automobile component | |
JP4302480B2 (en) | High hardness steel with excellent cold workability | |
JP4975261B2 (en) | Manufacturing method of high strength steel with excellent delayed fracture resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070322 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090520 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090602 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090731 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090929 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091012 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121030 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4396561 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131030 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131030 Year of fee payment: 4 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131030 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |