Nothing Special   »   [go: up one dir, main page]

JP4396352B2 - Welding state inspection method and inspection device - Google Patents

Welding state inspection method and inspection device Download PDF

Info

Publication number
JP4396352B2
JP4396352B2 JP2004093090A JP2004093090A JP4396352B2 JP 4396352 B2 JP4396352 B2 JP 4396352B2 JP 2004093090 A JP2004093090 A JP 2004093090A JP 2004093090 A JP2004093090 A JP 2004093090A JP 4396352 B2 JP4396352 B2 JP 4396352B2
Authority
JP
Japan
Prior art keywords
plate
welding
weld bead
heat input
state inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004093090A
Other languages
Japanese (ja)
Other versions
JP2005279653A (en
Inventor
昌平 今井
正敏 矢島
紀夫 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004093090A priority Critical patent/JP4396352B2/en
Publication of JP2005279653A publication Critical patent/JP2005279653A/en
Application granted granted Critical
Publication of JP4396352B2 publication Critical patent/JP4396352B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Arc Welding In General (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

本発明は、プラズマ溶接などにより板材を突合せ溶接した溶接状態の検査方法と検査装置に関する。   The present invention relates to a welding state inspection method and inspection apparatus in which plate materials are butt-welded by plasma welding or the like.

近年、自動車の車体あるいは部品は、テーラードブランク材を使用し、プレス成形することが多用されている。テーラードブランク材は、板厚、材質、強度などが異なる異種板材の端面を突合せ溶接したものであるが、この接合状態は慎重に検査する必要がある。   In recent years, the body or parts of automobiles are frequently used by press-molding using tailored blank materials. Tailored blanks are butt-welded end faces of dissimilar plate materials with different plate thicknesses, materials, strengths, etc., but this bonded state must be carefully inspected.

このテーラードブランク材をプレス成形する場合、接合部の接合状態が不十分で、例えば、溶接ビードに溶け込み不足、穴明きあるいは割れなどがあれば、良好なプレス成形ができない虞がある。   When press-molding this tailored blank material, there is a possibility that satisfactory press-molding cannot be performed if the joining state of the joint portion is insufficient, for example, if the weld bead is not sufficiently melted, perforated or cracked.

従来から行なわれている接合状態の検査方法としては、突合せ接合部の溶接ビードを板材の裏側から観察する方法がある。この検査方法は、溶接ビードが板厚方向に貫通している状態を目視あるいは何らかの方法で直接観察するので、溶接ビードの溶け込み深さの良否の判定を直接的に確実にかつ迅速に行なうことができ、極めて有効な方法である。   As a conventional method for inspecting a joining state, there is a method of observing a weld bead of a butt joint from the back side of a plate material. In this inspection method, since the state in which the weld bead penetrates in the plate thickness direction is observed visually or directly by some method, it is possible to directly and reliably and quickly determine whether the weld bead has a penetration depth. This is a very effective method.

しかし、溶接作業は、板材をクランプした状態で上方から溶接することが多く、反対の裏面から観察することは検査作業が困難で非能率となる場合が多い。   However, the welding work is often welded from above with the plate material clamped, and observing from the opposite back surface is often inefficient and inefficient.

そこで、最近提案された検査方法として下記特許文献1がある。この検査方法は、突合せ溶接における溶接ビードの幅と溶け込み深さが正の相関関係にあることを前提とし、溶接ビードを光切断法などによりプロファイルを測定し、ワークの上底面を含む平面の座標データと、溶接ビードの表面を表す形状曲線の座標データとに基づいて、溶込みに対応する有効なビード幅を数値演算処理により算出するものである。   Therefore, there is the following Patent Document 1 as a recently proposed inspection method. This inspection method is based on the premise that the weld bead width and penetration depth in butt welding are positively correlated, and the profile of the plane including the top and bottom surfaces of the workpiece is measured by measuring the profile of the weld bead using the optical cutting method. Based on the data and the coordinate data of the shape curve representing the surface of the weld bead, an effective bead width corresponding to penetration is calculated by numerical calculation processing.

しかし、突合せ溶接は、種々の条件によって接合状態が変化することから、溶接ビードの幅と溶け込み深さが常に所定の相関関係にあるものでもなく、また、この方法では板材の裏側から観察しないので、例えば、製品に対し全量検査する場合には、検査の信頼性が低減し、確実に製品品質の向上を図ることは難しい。
特開平10−296481号公報(図1、要約など参照)
However, in butt welding, since the joining state changes depending on various conditions, the width of the weld bead and the penetration depth are not always in a predetermined correlation, and this method does not observe from the back side of the plate material. For example, when the entire quantity is inspected for a product, the reliability of the inspection is reduced, and it is difficult to reliably improve the product quality.
Japanese Patent Laid-Open No. 10-296481 (see FIG. 1, abstract, etc.)

本発明は、上記従来技術に伴う課題を解決し、突合せ接合した溶接部の溶接ビードの溶け込み状態、板厚の変化状態などを簡単にかつ迅速に検知することができる溶接状態の検査方法と検査装置を提供することを目的とする。   The present invention solves the problems associated with the above-described conventional technology, and a welding state inspection method and inspection that can easily and quickly detect the welding state of the weld bead of the butt-welded welded portion, the state of change in the plate thickness, and the like. An object is to provide an apparatus.

上記目的を達成する本発明は、一対の板材を突合せ溶接した溶接部の溶接ビードを、入熱方向下流側から観察する溶接状態の検査する場合、入熱方向下流側の板面から突出する前記溶接ビードの先端までの突出高さを非破壊で測定し、当該突出高さから前記溶接部の実効板厚を演算し、この実効板厚と前記一対の板材の内の薄板材の板厚と比較し溶接の良否を判断することを特徴とする。 The present invention that achieves the above-mentioned object is characterized in that when the weld bead of a welded portion obtained by butt-welding a pair of plate materials is inspected in a welding state in which the weld bead is observed from the downstream side in the heat input direction, the protrusion protruding from the plate surface on the downstream side in the heat input direction. Non-destructively measuring the protrusion height to the tip of the weld bead, calculating the effective plate thickness of the weld from the protrusion height, and the effective plate thickness and the plate thickness of the thin plate member of the pair of plate members It is characterized in that the quality of welding is judged by comparison.

本発明は、突合せ溶接した後の板材を、例えば、次の工程に搬送する途中に反転した状態で、溶接部の入熱方向下流側となる板面からの溶接ビードの先端までの突出高さを測定するので、一義的に溶接ビードの溶け込み状態が確認できる。つまり、溶接ビードが板面から突出していると、溶接ビードが板厚方向に貫通していることになり、確実に溶け込んでいることが簡単に確認できる。   The present invention is a projection height from the plate surface which is the downstream side in the heat input direction of the welded portion to the tip of the weld bead in a state where the plate material after the butt welding is reversed while being conveyed to the next step, for example. Therefore, the weld bead penetration state can be uniquely confirmed. That is, if the weld bead protrudes from the plate surface, the weld bead has penetrated in the plate thickness direction, and it can be easily confirmed that the weld bead has surely melted.

また、測定した突出高さから溶接部の実効板厚を演算し、この実効板厚と一対の板材の内の薄板材の板厚と比較すれば、溶接時に板材の肉が溶接ビードに流れ込むことにより薄肉化した板厚の変化状態が判断でき、製品品質の良否を簡単に判断できる。 Also, if the effective plate thickness of the welded part is calculated from the measured protrusion height and compared with the plate thickness of the thin plate member of the pair of plate members , the plate material will flow into the weld bead during welding. As a result, it is possible to determine the change state of the thinned plate thickness, and to easily determine the quality of the product.

前記溶接部の実効板厚は、測定した突出高さと両板材の目違い量とから演算すれば、目違いがある板材の溶接状態までも判断できる。   If the effective plate thickness of the welded portion is calculated from the measured protruding height and the difference between the two plate members, it is possible to determine even the welded state of the plate member having the difference.

前記溶接ビードの入熱側に生じる凹み深さと入熱方向下流側の突出量が所定の相関関係を有していることを前提にし、測定した突出高さと両板材の目違い量とから板材の板厚減少率を前記式(1)により算出し、品質確保の上から許容される限界値と比較すれば、溶接時に板材の肉が溶接ビードに流れ込むことにより薄肉化した板厚の変化状態が数値的に判断できる。   Assuming that the depth of the dent generated on the heat input side of the weld bead and the amount of protrusion on the downstream side in the heat input direction have a predetermined correlation, the plate material is determined from the measured protrusion height and the difference between the two plate materials. When the plate thickness reduction rate is calculated by the above formula (1) and compared with the limit value allowed from the viewpoint of quality assurance, the plate thickness change state is reduced by the flow of the plate material into the weld bead during welding. Can be judged numerically.

特に、テーラードブランク材のように薄板材の板厚が限界まで薄肉化されていると、薄板材の板厚と比較すれば、強度的品質の良否が極めて簡単にかつ速やかに判断できる。   In particular, when the thickness of the thin plate material is reduced to the limit as in the case of a tailored blank material, the quality of the strength quality can be judged very simply and quickly compared with the thickness of the thin plate material.

しかも、溶接にプラズマ溶接を用いると、両板材の突合せが容易となるので、作業性、製品の品質などが向上し、極めて実利的である。   In addition, when plasma welding is used for welding, it is easy to butt both plate materials, so that workability, product quality, and the like are improved, which is extremely useful.

さらに、溶接ビードの入熱方向下流側の突出高さを非破壊で測定するので、製品を全量にわたり簡単に検査することができる。特に、流れ作業により生産している場合に、全量検査し、検査結果を直ちに作業開始部にフィードバックすれば、不良品の発生を防止できる。   Furthermore, since the protruding height of the weld bead downstream in the heat input direction is measured nondestructively, the product can be easily inspected over the entire amount. In particular, in the case of production by flow work, if the whole quantity is inspected and the inspection result is immediately fed back to the work start section, the occurrence of defective products can be prevented.

以下、本発明の実施の形態を、図面を参照しつつ説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1はプレス成形品の一例を示す斜視図、図2は同プレス成形品用のテーラードブランク材を示す斜視図、図3は図2のY部を示し、(A)はプラズマ溶接している状態を示す縦断面図、(B)は同横断面図、(C)は溶接完了後の状態を示す縦断面図である。   1 is a perspective view showing an example of a press-formed product, FIG. 2 is a perspective view showing a tailored blank material for the press-formed product, FIG. 3 shows a Y portion of FIG. 2, and (A) is plasma-welded. The longitudinal cross-sectional view which shows a state, (B) is the cross-sectional view, (C) is a longitudinal cross-sectional view which shows the state after welding completion.

たとえば、自動車の車体とアクスルを連結するサスペンション部品は、図1に示すように、サイドメンバ1,2と、クロスメンバ3,4とを有し、サイドメンバ1,2の端部をクロスメンバ3,4を介して連結した閉構造体である。   For example, as shown in FIG. 1, a suspension part for connecting a vehicle body and an axle has side members 1 and 2 and cross members 3 and 4, and the end portions of the side members 1 and 2 are connected to the cross member 3. , 4 are connected to each other through a closed structure.

このサスペンション部品は、図2に示すように、4枚の板材を相互に溶接したテーラードブランク材Tを使用し、プレス成形している。このテーラードブランク材Tは、サイドメンバ1,2を形成するための2枚の厚板材11,12と、クロスメンバ3,4を形成するための2枚の薄板材13,14とからなり、水平な基板(不図示)上に厚板材11,12を多少末広がりとなるように相互に離間して設置し、その間に薄板材13,14を配置し、相互に溶接接合する。 The suspension components, as shown in FIG. 2, by using the tailored blank material T B with a welded four plate members to each other, and press-molding. The tailored blank T B is the two thick plates 11, 12 for forming the side members 1 and 2, consists of two thin plate 13 and 14 for forming the cross member 3 and 4, Thick plate materials 11 and 12 are placed on a horizontal substrate (not shown) so as to be somewhat divergent, and thin plate materials 13 and 14 are arranged therebetween and welded together.

この接合時には、板材相互の隙間の大きさが突合せ溶接の良否に直接影響するので、各板材の配置は、位置決めピン(不図示)により高精度に位置合わせし、図3(A)に示すように、厚板材11と薄板材13の端部を突合せた状態とする。そして、クランプした状態で厚板材11と薄板材13の端部をプラズマ溶接すると、溶接ビードBが形成され、両板材11,13が接合する。   At the time of joining, since the size of the gap between the plate materials directly affects the quality of the butt welding, each plate material is positioned with high precision by positioning pins (not shown), as shown in FIG. In addition, the end portions of the thick plate material 11 and the thin plate material 13 are brought into a butted state. And if the edge part of the thick board | plate material 11 and the thin board | plate material 13 is plasma-welded in the clamped state, the weld bead B will be formed and both board | plate materials 11 and 13 will join.

正常に形成された溶接ビードBは、図3(C)に示すように、入熱側の表面が厚板材11側から薄板材13側に向かってなだらかに傾斜した凹曲面状を呈し、入熱方向下流側となる面が垂れ下がった凸曲面状をしている。実験によれば、この溶接ビード表面に生じた凹み部rの凹み量dと、入熱方向下流側の溶接ビードBの突出量cとは、相関関係を有していることが判明している。具体的には、両者は略等しい関係を有している。   As shown in FIG. 3C, the weld bead B formed normally has a concave curved surface in which the surface on the heat input side is gently inclined from the thick plate material 11 side toward the thin plate material 13 side. The surface on the downstream side in the direction has a convex curved surface shape that hangs down. According to experiments, it has been found that the dent amount d of the dent portion r generated on the surface of the weld bead has a correlation with the protrusion amount c of the weld bead B on the downstream side in the heat input direction. . Specifically, both have a substantially equal relationship.

ただし、プラズマ溶接の状態によっては、薄板材13がより多くの熱を受けて溶融し、板厚が薄くなるので、テーラードブランク材Tの成形には、入熱に注意を払う必要がある。例えば、両板材11,13を支持する支持台16に、逃し溝17を形成し、両板材11,13の突合せ溶接時に、この逃し溝17を通ってシールドガスを流し、溶接ビードBを下方から温度制御すると、成長する溶接ビードBの大きさを制御でき、入熱方向下流側まで溶け込ませることもでき、テーラードブランク材Tの成形には好ましい。 However, the state of the plasma welding melts receives more heat thin plate 13, since the plate thickness becomes thin, the molding of the tailored blank T B, it is necessary to pay attention to heat input. For example, a relief groove 17 is formed in the support base 16 that supports both plate members 11 and 13, and when the both plate members 11 and 13 are butt welded, a shield gas is passed through the relief groove 17, and the weld bead B is passed from below. When the temperature control, can control the size of the weld bead B to grow, also can be dissolve until heat input direction downstream side, the forming of tailored blank T B preferred.

本実施形態は、プラズマ溶接を使用している。これは板材相互の隙間の大きさをレーザ溶接より大きくでき、作業性が向上するからである。なお、実験によれば、3.2mmの厚板材11と1.8mmの薄板材13を突合せた状態で、レーザ溶接を行なった場合には、厚板材11と薄板材13の隙間は、0.1mm以下に管理しなければ、溶け落ちが生じ、溶接されないこともあるが、プラズマ溶接の場合には、前記隙間は、0.3〜0.5mm程度でも溶け落ちがなく、良好に溶接されることが判明している。   This embodiment uses plasma welding. This is because the size of the gap between the plate materials can be made larger than that of laser welding, and workability is improved. According to the experiment, when laser welding is performed in a state where the thick plate material 11 of 3.2 mm and the thin plate material 13 of 1.8 mm are abutted, the gap between the thick plate material 11 and the thin plate material 13 is 0. If it is not controlled to 1 mm or less, melt-off may occur and welding may not occur. However, in the case of plasma welding, the gap does not melt even if it is about 0.3 to 0.5 mm, and is welded well. It has been found.

プラズマ溶接時のトーチ15の傾斜状態についても検証した。トーチ15の傾斜は、両板材11,13の突合せ面に対し0°〜20°の傾斜角αで薄板材側に傾斜させ、進行方向(白抜き矢印方向)で10°〜20°の傾斜角βで後傾させると、薄板材の肉厚が低減せず良好な溶接状態が得られることが判明している。   The inclined state of the torch 15 during plasma welding was also verified. The inclination of the torch 15 is inclined to the thin plate material side with an inclination angle α of 0 ° to 20 ° with respect to the abutting surfaces of the two plate materials 11 and 13, and the inclination angle of 10 ° to 20 ° in the traveling direction (the direction of the white arrow). It has been found that if the plate is tilted backward by β, the thickness of the thin plate material is not reduced and a good welded state can be obtained.

このようにして形成されたテーラードブランク材Tは、基本的には入熱方向下流側の板面から溶接ビードBが突出した良好な溶接状態が得られるが、各板材を所定位置に設置する場合に使用する位置決めピンの摩耗あるいは各板材端面の切断不良などがあれば、各板材の整合性、突合せ不良あるいは真直度が不十分となり、両板材の突合せ面に大きな隙間が生じ、プラズマ溶接であっても穴明きやアンダーフィルなどの溶接不良を起こすことがある。したがって、溶接後には各テーラードブランク材Tの溶接状態を検査することが好ましい。 Thus tailored blank T B which is formed by is basically good welding state in which the weld bead B from the plate surface of the heat input direction downstream side protruding obtained, placing each sheet in a predetermined position If the positioning pins used in this case are worn or the end faces of each plate material are cut poorly, the consistency, butt failure or straightness of each plate material will be insufficient, and a large gap will be created on the butt surfaces of both plate materials, which may cause plasma welding. Even in such cases, welding defects such as drilling and underfill may occur. Therefore, after the welding it is preferable to inspect the weld state of the tailored blank T B.

本実施形態の溶接状態の検査方法は、例えば、テーラードブランク材Tを次の工程に搬送する途中に反転し、入熱方向下流側の面を上にした状態で、検査装置20を使用して、板面からの溶接ビードBの突出高さaを非破壊で測定するものである。 Inspection method of the weld state of the present embodiment, for example, inverted in the middle of conveying the tailored blank T B to the next step, while the top surface of the heat input direction downstream side, using the inspection device 20 The protrusion height a of the weld bead B from the plate surface is measured nondestructively.

図4は本実施形態に係る検査装置を示す斜視図、図5は図4の溶接ビード部分を拡大して示す要部斜視図、図6は溶接ビードの画像データを示す図である。   FIG. 4 is a perspective view showing the inspection apparatus according to the present embodiment, FIG. 5 is an enlarged perspective view of a main part showing the weld bead portion of FIG. 4, and FIG. 6 is a view showing image data of the weld bead.

検査装置20は、図4に示すように、6軸ロボットからなる作動部21と、この作動部21の先端に設けられ、レーザ光を溶接ビードBに照射するレーザ変位計などの光照射部22と、この光照射部22から照射され板面や溶接ビードBで反射されたレーザ光を受光するCCDカメラ等の撮像部23と、撮像部23で得られたデータを演算処理し所定の画像データにするコンピュータなどの演算処理部(不図示)と、を備えている。   As shown in FIG. 4, the inspection device 20 includes an operation unit 21 composed of a 6-axis robot, and a light irradiation unit 22 such as a laser displacement meter that is provided at the tip of the operation unit 21 and irradiates the weld bead B with laser light. And an imaging unit 23 such as a CCD camera that receives the laser beam irradiated from the light irradiation unit 22 and reflected by the plate surface or the weld bead B, and the image data obtained by the imaging unit 23 are subjected to arithmetic processing to obtain predetermined image data. And an arithmetic processing unit (not shown) such as a computer.

なお、前記作動部21は、水平な基板上に立設され、光照射部22は、この基板の水平な上面を基準に反転されたテーラードブランク材Tを検査することになっている。 Incidentally, the actuating portion 21 is erected on a horizontal substrate, the light irradiation unit 22 is adapted to inspecting the tailored blank T B which is reverse the horizontal upper surface of the substrate to the reference.

溶接ビードBの板面からの突出高さaは、溶接ビードBにスリット光を照射する光切断法や、溶接ビードBの幅方向(溶接方向に対し直交する方向)にスポット光を走査させるスキャン測距法などにより測定できるが、前者の場合につき例示的に説明する。   The protruding height a of the weld bead B from the plate surface is determined by a light cutting method in which the weld bead B is irradiated with slit light, or a scan in which spot light is scanned in the width direction of the weld bead B (direction perpendicular to the weld direction). Although it can be measured by a distance measuring method or the like, the former case will be described as an example.

光照射部22は、作動部21により所定位置に移動しセットされ、スリット的なレーザ光を溶接ビードBや板面に対し所定の角度で照射するように位置調節されている。撮像部23は、溶接ビードBや板面からの反射光を受光し、受光位置と輝度などを検知し、検知したデータは、演算処理部に入力され演算された後、モニターに画像データとして表示される。   The light irradiation unit 22 is moved and set to a predetermined position by the operating unit 21, and the position is adjusted so as to irradiate the welding laser beam and the plate surface with a slit-like laser beam at a predetermined angle. The imaging unit 23 receives the reflected light from the weld bead B or the plate surface, detects the light receiving position and luminance, and the detected data is input to the arithmetic processing unit and calculated, and then displayed as image data on the monitor. Is done.

例えば、図5に示す溶接ビードBに照射するレーザ光は、溶接ビードBの略中央部分から所定のマージンm,m’分だけ離れた間とし、その端部をエンドラインl,lとすると、撮像部23は、エンドラインl,l上の点p,pと、その間の5点p〜pの8箇所で受光位置と輝度などを検知し、データを取得する。なお、後述する目違い量b、つまり、両板材11,13の下面11a,13aがずれている量は、水平面で溶接する場合には、ほとんど無視できる量であることから、本実施形態では照射レーザ光は、溶接ビードBを含む板面を照射している。 For example, the laser beam applied to the weld bead B shown in FIG. 5 is between a predetermined margin m and m ′ from the substantially central portion of the weld bead B, and the end portions thereof are end lines l 1 and l 2 . then, the imaging unit 23, and p 1, p 2 points on the end line l 1, l 2, is detected and the light receiving position and brightness at eight therebetween 5 points p 3 ~p 8, to retrieve data . In addition, since the amount of misalignment b described later, that is, the amount by which the lower surfaces 11a and 13a of the two plate members 11 and 13 are displaced is an amount that can be almost ignored when welding on a horizontal plane, in this embodiment, irradiation is performed. The laser beam irradiates the plate surface including the weld bead B.

これら8箇所のデータは、演算処理部に入力され演算され、図6に示す溶接ビードBの画像データとしてモニターに表示される。この画像データも、図5に示すレーザ光照射部と対応し、前記エンドラインl,lに対応するエンドラインL,Lが表示され、溶接ビードBの各測定点p〜pに対応して、その高さ値が、エンドラインL,Lと交差する基準線Lからの離間量としてプロットされ、表示されている。基準線Lは、測定点pとpに対応するプロットPとPを結ぶ線分である。 The data at these eight locations is input to the arithmetic processing unit and calculated, and displayed on the monitor as image data of the weld bead B shown in FIG. The image data is also corresponds to the laser beam irradiation section shown in FIG. 5, the end line l 1, end line L 1, L 2 corresponding to l 2 is displayed, the measurement points p 1 ~p weld bead B 8 corresponds to a height value, is plotted as spaced from the reference line L 3 which crosses the end line L 1, L 2, are displayed. Reference line L 3 is a line segment connecting the plot P 1 and P 8 corresponding to the measurement points p 1 and p 8.

したがって、図6に示す画像データでは、プロットP〜Pが基準線Lから上方に位置すれば、溶接ビードBが板面より突出し、入熱方向下流側の板面まで溶け込み、正常な溶接ビードBが形成されていることを意味し、逆に、図中一点差線で示すように、前記プロットP〜Pが基準線Lから下方にある場合は、溶接ビードBが下面まで溶け込んでおらず、正常に溶接されていないことを意味する。また、場合によっては、プロットP〜Pが基準線Lと同一線上に並んだ状態あるいは交差した状態なども生じるが、これらはいずれも正常に溶接されていないことを意味する。 Therefore, in the image data shown in FIG. 6, if the plots P 3 to P 8 are located above the reference line L 3 , the weld bead B protrudes from the plate surface and melts to the plate surface on the downstream side in the heat input direction. This means that the weld bead B is formed, and conversely, as shown by the one-point difference line in the figure, when the plots P 3 to P 8 are below the reference line L 3 , the weld bead B is the bottom surface. It means that it has not melted and is not welded properly. In some cases, the plots P 3 to P 8 may be aligned or intersected with the reference line L 3 , which means that they are not normally welded.

さらに、本実施形態の検査では、溶接ビードBの突出高さaも測定できることから、この突出高さaに基づき板材の状態、つまり、薄板材13の板厚減少率までも後述の式により算出し、溶接による板厚の変化状態までも検査可能である。   Furthermore, in the inspection of the present embodiment, since the protrusion height a of the weld bead B can also be measured, the state of the plate material, that is, the plate thickness reduction rate of the thin plate material 13 is also calculated by the following formula based on the protrusion height a. In addition, it is possible to inspect even the plate thickness change state due to welding.

溶接ビードBの突出高さから板厚減少率を求める点に関し詳述する。   The point which calculates | requires plate | board thickness reduction | decrease rate from the protrusion height of the weld bead B is explained in full detail.

図7,8は図3(C)に相当する図で、図7は厚板材と薄板材を突合せ溶接したとき、厚板材の下面が薄板材の下面より上位に位置する状態を示す断面概略図、図8は逆に厚板材の下面が薄板材の下面より下位に位置する状態を示す断面概略図である。   FIGS. 7 and 8 correspond to FIG. 3C, and FIG. 7 is a schematic cross-sectional view showing a state in which the lower surface of the thick plate material is positioned higher than the lower surface of the thin plate material when the thick plate material and the thin plate material are butt welded. FIG. 8 is a schematic cross-sectional view showing a state where the lower surface of the thick plate material is positioned lower than the lower surface of the thin plate material.

例えば、図7に示すように、薄板材13の下面13aが厚板材11の下面11aより低い位置で、目違いに突合せ溶接した場合を想定し、各部の長さあるいは位置を次のように定めたとする。   For example, as shown in FIG. 7, assuming the case where the lower surface 13a of the thin plate material 13 is lower than the lower surface 11a of the thick plate material 11 and butt-welded in a mistake, the length or position of each part is determined as follows. Suppose.

a:P,Pを結んだ線分と溶接ビードBの最下端までの距離であり、溶接ビード先端までの突出高さ。 a: Distance between the segment connecting P 1 and P 2 and the lowest end of the weld bead B, and the protruding height to the tip of the weld bead.

b:両板材11,13の下面11a,13aがずれている量であり、両板材11,13の目違い量。     b: The amount by which the lower surfaces 11a, 13a of the two plate members 11, 13 are displaced, and the difference between the two plate members 11, 13.

c:両板材11,13の内、反転測定時には高位に位置する板面からの最大突出量であり、図7では薄板材13の下面13aから溶接ビードBの最下端までの距離。     c: The maximum protruding amount from the plate surface positioned at a higher position during the reversal measurement of both plate materials 11 and 13, and the distance from the lower surface 13a of the thin plate material 13 to the lowest end of the weld bead B in FIG.

d:溶接部の入熱側に生じる溶接ビードBの凹み部rの深さ。     d: Depth of the recess r of the weld bead B generated on the heat input side of the weld.

:溶接ビードBを中心とし所定のマージンmだけ離れた位置の厚板材11の下面11a上の点。 P 1 : A point on the lower surface 11 a of the thick plate 11 at a position separated from the weld bead B by a predetermined margin m.

:溶接ビードBを中心とし所定のマージンm’だけ離れた位置の薄板材13の下面13a上の点。 P 2 : A point on the lower surface 13 a of the thin plate 13 at a position separated from the weld bead B by a predetermined margin m ′.

T:実効板厚。ここに、「実効板厚」とは、溶接ビードBの凹み部rの最下部と、厚板材11の下面11aまたは薄板材13の下面13aの内、前記最下部に近いものとの間の板厚をいう。     T: Effective plate thickness. Here, the “effective plate thickness” is a plate between the lowermost portion of the recess r of the weld bead B and the lower surface 11a of the thick plate member 11 or the lower surface 13a of the thin plate member 13 that is close to the lowermost portion. Thickness.

:薄板材13の板厚。 T 0 : Plate thickness of the thin plate material 13.

図7から、実効板厚Tを数式で示すと、   From FIG. 7, when the effective plate thickness T is expressed by a mathematical formula,

Figure 0004396352
Figure 0004396352

ここに、薄板材13の下面13aが厚板材11の下面11aより下方に位置している場合には、「b」に(+)符号を付す。なお、逆に上方に位置している場合には、(−)符号を付す。   Here, when the lower surface 13 a of the thin plate material 13 is positioned below the lower surface 11 a of the thick plate material 11, a (+) sign is attached to “b”. On the other hand, if it is located on the upper side, a (−) sign is attached.

前述したように実験により、両板材を突合せ溶接した溶接部の入熱側に生じる凹み部rの深さdは、入熱方向下流側の板面での溶接ビードBの突出量cに略等しいことが判明していることから、d=cとすれば、前記式(1)は、   As described above, the depth d of the recessed portion r generated on the heat input side of the welded portion where both plate materials are butt welded by the experiment is substantially equal to the protrusion amount c of the weld bead B on the plate surface on the downstream side in the heat input direction. From this fact, if d = c, the equation (1) is

Figure 0004396352
Figure 0004396352

となる。 It becomes.

図7から   From FIG.

Figure 0004396352
Figure 0004396352

つまり、           That means

Figure 0004396352
Figure 0004396352

であるため、この式(3)を式(2)に代入すると Therefore, substituting this equation (3) into equation (2)

Figure 0004396352
Figure 0004396352

となる。 It becomes.

したがって、(4)式から明らかなように、突出高さaと両板材の目違い量bが判明すれば、溶接部の実効板厚Tを求めることができる。   Therefore, as is clear from the equation (4), the effective plate thickness T of the welded portion can be obtained if the protrusion height a and the difference amount b between the two plate members are found.

この結果、板厚減少率(T/T)は、次の式で表される。 As a result, the thickness reduction rate (T / T 0 ) is expressed by the following equation.

Figure 0004396352
Figure 0004396352

一方、図8に示すように、薄板材13の下面13aが厚板材11の下面11aより高い位置で、目違いに突合せ溶接した場合には、前記各式は、次のようになる。   On the other hand, as shown in FIG. 8, when the lower surface 13a of the thin plate material 13 is butt-welded at a position higher than the lower surface 11a of the thick plate material 11, the above formulas are as follows.

図8から、実効板厚Tを数式で示すと、   From FIG. 8, when the effective plate thickness T is expressed by a mathematical formula,

Figure 0004396352
Figure 0004396352

前記同様、d=c とすれば、前記式(1’)は、   Similarly to the above, if d = c, the formula (1 ') is

Figure 0004396352
Figure 0004396352

となる。 It becomes.

ここに、薄板材13の下面13aが厚板材11の下面11aより上方に位置している場合には、「b」に(−)符号を付すと、
図8から
Here, when the lower surface 13a of the thin plate material 13 is located above the lower surface 11a of the thick plate material 11, "-" sign is attached to "b"
From FIG.

Figure 0004396352
Figure 0004396352

つまり、           That means

Figure 0004396352
Figure 0004396352

であるため、この式(3’)を式(2’)に代入すると Therefore, substituting this equation (3 ') into equation (2')

Figure 0004396352
Figure 0004396352

となる。 It becomes.

この結果、板厚減少率(T/T)は、次の式で表される。 As a result, the thickness reduction rate (T / T 0 ) is expressed by the following equation.

Figure 0004396352
Figure 0004396352

つまり、 That means

Figure 0004396352
Figure 0004396352

したがって、式(6)と式(6’)とは、「b」に「+」「−」の概念があれば、同じ式となるので、溶接ビードBの突出高さaから板厚減少率T/Tを求める場合には、式(6)を使用することができる。 Therefore, since the formulas (6) and (6 ′) are the same formulas if “b” has the concept of “+” and “−”, the thickness reduction rate is calculated from the protruding height a of the weld bead B. When calculating T / T 0 , equation (6) can be used.

前述したものは、板厚が相違する場合の突き合わせ溶接であるが、板厚が同厚の場合についても、溶接ビードBの突出高さaと板厚減少率T/Tの関係式を求めると、下記のようになる。 The foregoing is butt welding when the plate thicknesses are different, but the relational expression between the projection height a of the weld bead B and the plate thickness reduction rate T / T 0 is also obtained when the plate thicknesses are the same. And the following.

図9は同厚の板材31と33を突合せ溶接したとき、板材31の下面31aが板材33の下面33aより上位に位置する状態を示す断面図、図10は逆に板材31の下面31aが板材33の下面33aより下位に位置する状態を示す断面図である。なお、図9,10においても、各部の長さあるいは位置は、前記図7,8のものと同様とする。   FIG. 9 is a cross-sectional view showing a state in which the lower surface 31a of the plate material 31 is positioned higher than the lower surface 33a of the plate material 33 when the same thickness plate materials 31 and 33 are butt welded. FIG. 10 shows the lower surface 31a of the plate material 31 on the contrary. It is sectional drawing which shows the state located below the lower surface 33a of 33. FIG. 9 and 10, the length or position of each part is the same as that in FIGS.

図9を用いて、板厚減少率(T/T)を数式で示すと、前記式(6)と同様の下記の式(6’’)で表すことができる。 When the plate thickness reduction rate (T / T 0 ) is expressed by a mathematical formula using FIG. 9, it can be expressed by the following formula (6 ″) similar to the formula (6).

Figure 0004396352
Figure 0004396352

一方、図10を用いて、板厚減少率(T/T)を数式で示すと、前記式(6’)と同様の下記の式(6’’’)で表すことができる。 On the other hand, when the plate thickness reduction rate (T / T 0 ) is expressed by a mathematical formula using FIG. 10, it can be expressed by the following formula (6 ′ ″) similar to the formula (6 ′).

Figure 0004396352
Figure 0004396352

なお、いずれの式も重複を避けるため、計算過程は省略する。   In addition, in order to avoid duplication in any formula, the calculation process is abbreviate | omitted.

したがって、同厚の板材の場合も、同じ式となるので、溶接ビードBの突出高さaと両板材の目違い量bから板厚減少率T/Tを求める場合には、式(6)を使用することができる。 Therefore, since the same formula is used for the same thickness plate material, when the plate thickness reduction rate T / T 0 is obtained from the protruding height a of the weld bead B and the difference amount b between the two plate materials, the formula (6 ) Can be used.

このようにして算出した板厚減少率T/Tの値が、品質確保の上からどの程度かを実験により検証した結果、限界値としては、0.8程度が好ましいことが判明した。
つまり、
T/T≧0.8
という関係を有することが好ましい。ただし、この限界値は、特に限定されるものではなく、品質確保の上から任意に定めることができるものである。
As a result of verifying the value of the thickness reduction rate T / T 0 calculated in this way from the viewpoint of ensuring quality, it was found that the limit value is preferably about 0.8.
That means
T / T 0 ≧ 0.8
It is preferable to have the relationship. However, this limit value is not particularly limited, and can be arbitrarily determined from the viewpoint of quality assurance.

したがって、検査結果の板厚減少率と、品質確保の上から定めた限界値と比較すれば、溶接時に板材の肉が溶接ビードBに流れ込むことにより薄肉化した状態が品質確保の上から好ましいか否かが分かり、板厚の変化状態からも溶接の良否、製品品質の良否が判断できる。   Therefore, if the plate thickness reduction rate of the inspection result is compared with the limit value determined from ensuring the quality, is it preferable from the viewpoint of ensuring the quality that the thickness of the plate material flows into the weld bead B during welding? It can be determined whether or not the quality of the welding and the quality of the product are good also from the change state of the plate thickness.

特に、テーラードブランク材Tのように板厚が薄い側の板材は限界まで薄肉化されている場合に、板厚減少率T/Tが前記限界値と比較すると、強度的な面での品質の良否判定ができ、しかもこの判定を極めて良好にかつ速やかに行なうことができる。 In particular, plate material having a thickness of a thin side as tailored blank T B is if it is thinned to the limit, when the sheet thickness reduction ratio T / T 0 is compared with the limit value, the intensity of view The quality can be judged, and this judgment can be performed very well and promptly.

次に、突合せ溶接した成形品の検査を説明する。   Next, inspection of a butt welded molded product will be described.

厚板材11と薄板材13を水平な支持台16上で突合せた状態でクランプし、上方からトーチ15を用いて溶接すると、両板材の突合せ端部に溶接ビードBが形成されたテーラードブランク材Tとなる。 When the thick plate material 11 and the thin plate material 13 are clamped in a state where they are abutted on a horizontal support base 16 and are welded from above using a torch 15, a tailored blank material T in which a weld bead B is formed at the abutting ends of both plate materials. B.

このテーラードブランク材Tの溶接状態の検査は、図4に示すように、反転した状態で行なう。反転されたテーラードブランク材Tが検査装置20の下部に移動すると、作動部21により光照射部22が作動され、溶接ビードBに対し所定位置にセットされる。 Inspection of the weld state of the tailored blank T B, as shown in FIG. 4, carried out in an inverted state. When inverted tailored blank T B is moved to the lower part of the inspection apparatus 20, the light irradiation unit 22 is operated by the operation unit 21, it is set at a predetermined position relative to the weld bead B.

光照射部22からは、所定の角度でスリットレーザ光が照射され、板面や溶接ビードBで反射し、撮像部23に受光される。撮像部23では、受光した光から受光位置と輝度などが検知され、この検知した値は、コンピュータで演算され、所定のモニターに、図6に示すような溶接ビードBの突出高さaを示す画像データとして表示される。   From the light irradiation unit 22, slit laser light is irradiated at a predetermined angle, reflected by the plate surface or the weld bead B, and received by the imaging unit 23. In the imaging unit 23, the light receiving position and the brightness are detected from the received light, and the detected values are calculated by a computer and indicate a protruding height a of the weld bead B as shown in FIG. 6 on a predetermined monitor. Displayed as image data.

板面より円弧状に突出している溶接ビードBの場合には、画像データは、溶接方向と平行な所定のエンドラインL,Lと直交する基準線Lより上方に滑らかな円弧状をしたプロットP〜Pとして表示される。したがって、この溶接ビードBは、入熱方向下流側の板面まで溶け込んでおり、正常に形成されていることが分かる。 In the case of the weld bead B projecting in an arc shape from the plate surface, the image data has a smooth arc shape above a reference line L 3 perpendicular to predetermined end lines L 1 and L 2 parallel to the welding direction. Plots P 3 to P 8 are displayed. Therefore, it can be seen that the weld bead B is melted to the plate surface on the downstream side in the heat input direction and is formed normally.

しかし、円弧状でない他の状態の溶接ビードBの場合には、基準線Lより下方または同一線上、あるいは基準線LとクロスしたプロットP〜Pとして表示される。この溶接ビードBは、確実に板面から突出していないため、溶け込み不足であることが分かる。この場合は、プロットP〜Pのどの部分が不良であるか、高さ不足となっているかなどの情報を、直ちに溶接作業開始部にフィードバックし、位置決めピンの交換、逃し溝17に適用されたシールドガスの量を調節するなど、所定の溶接不良の原因を除去すると、製品品質の低下を防止することができる。 However, in the case of the weld bead B in the other state is not a circular arc shape is displayed as a plot P 3 to P 8 were lower or cross collinear or reference line L 3, the reference line L 3. Since the weld bead B does not reliably protrude from the plate surface, it is understood that the weld bead B is insufficiently melted. In this case, information such as which part of the plots P 3 to P 8 is defective or insufficient height is immediately fed back to the welding work start part, and is applied to the replacement of the positioning pin and the relief groove 17. If the cause of the predetermined welding failure is removed, for example, by adjusting the amount of the shield gas produced, it is possible to prevent the product quality from deteriorating.

また、前記式(6)との関係について言えば、薄板材13の板厚「T」は既知であり、溶接ビード先端までの突出高さ「a」は、円弧状に配列されたプロットP〜Pの内、ピークとなるプロットPの基準線Lからの離間量から分かる。両板材11,13の目違い量「b」は、水平な支持台16上でクランプした状態で溶接しているので、殆ど無視できる。ただし、この目違い量bを測定する場合は、反転されたテーラードブランク材Tが載置されている基板の表面を基準に前記プロットPとPを定め、その値の差を求めればよい。 Further, regarding the relationship with the above formula (6), the plate thickness “T 0 ” of the thin plate 13 is known, and the protrusion height “a” to the tip of the weld bead is plotted in the arc P. of 3 to P 8, seen from the spacing from the reference line L 3 plots P to be peaks. The difference amount “b” between the two plate members 11 and 13 is almost negligible because they are welded in a clamped state on the horizontal support 16. However, when measuring the tongue and groove amount b is determined the plot P 1 and P 8 relative to the surface of the substrate inverted tailored blank T B is placed, by obtaining the difference between the value Good.

したがって、これらの数値を用いて演算処理部に入力し、前記式(6)を用いて演算すれば、板厚減少率T/Tを求めることができる。 Therefore, if these numerical values are input to the arithmetic processing unit and are calculated using the equation (6), the plate thickness reduction rate T / T 0 can be obtained.

求めた板厚減少率の値と、品質確保の上から定めた限界値である0.8と比較し、その結果を、前記画像データの一部としてモニターに表示すると、溶接による板厚減少状態が許容範囲か否かも分かる。   Compare the obtained thickness reduction rate value with 0.8, which is the limit value determined from quality assurance, and display the result on the monitor as a part of the image data. It is also known whether or not is within an allowable range.

以上説明したように、本実施形態によれば、熱方向下流側の板面から突出する溶接ビードBの突出高さを非破壊で測定するので、この突出高さaから直ちに溶接ビードBの溶込み深さが分かり、溶接状態の良否を高い信頼度で簡単にかつ迅速に判断できる。   As described above, according to the present embodiment, since the protruding height of the weld bead B protruding from the plate surface on the downstream side in the heat direction is measured nondestructively, the welding bead B is immediately melted from the protruding height a. The depth of penetration is known, and the quality of the welded state can be judged easily and quickly with high reliability.

また、溶接ビードBの突出高さaや、場合によっては目違い量bの測定結果が分かると、板厚減少率T/Tも求めることができるので、この板厚減少の点からも溶接状態の良否が分かる。特に、テーラードブランク材Tのように板厚が薄い側の板材は限界まで薄肉化されていると、薄板材13の板厚減少率と限界値を比較すれば、強度に関する品質維持が可能か否かも判断でき、極めて有効なものとなる。特に、相互に板厚の相違するテーラードブランク材の場合には、薄板材の板厚減少率が分かると、強度的な品質を保持できることから極めて有効なものである。相互に同厚の板材の場合も、同様に、強度的な品質保持から有効となる。さらに、溶接にプラズマ溶接を用いると、端面の隙間を不必要に厳格にすることもないので、作業性の面で好ましいものとなる。 Further, if the measurement result of the protruding height a of the weld bead B or the misalignment amount b is known in some cases, the plate thickness reduction rate T / T 0 can also be obtained. You can see the condition. In particular, the side of the plate material thickness is thin as tailored blank T B is thinned to the limit, the comparison of sheet thickness reduction rate and the limit value of the thin plate member 13, or can maintain quality on Strength It can be judged whether or not, and it becomes extremely effective. In particular, in the case of tailored blank materials having mutually different plate thicknesses, it is extremely effective to know the strength reduction quality if the plate thickness reduction rate of the thin plate material is known. Similarly, in the case of plate materials having the same thickness, it is effective from the standpoint of maintaining quality. Furthermore, when plasma welding is used for welding, the gap between the end faces is not unnecessarily strict, which is preferable in terms of workability.

本発明は、上述した実施の形態に限定されるものではなく、特許請求の範囲内で種々改変することができる。例えば、前記実施形態では、溶接状態の測定を溶接ビードBの溶接方向の1箇所で行なっているが、これを複数箇所で行い、それぞれの箇所でプロットP〜Pを取得すれば、略溶接ビードB全体の溶接状態を検査することもできる。 The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims. For example, in the above embodiment, it is performed a measurement of the welding conditions at one place in the welding direction of a welding bead B, which was carried out at a plurality of positions, by obtaining a plot P 1 to P 8 for each occurrence, approximately The weld state of the entire weld bead B can also be inspected.

また、前記実施形態では、液圧成形品Wとして自動車の車体構造材であるサイドメンバについて説明したが、これのみでなくドアプレート、バンパーなど他の構造材でもよい。   In the above-described embodiment, the side member, which is a vehicle body structural material, is described as the hydraulic molded product W. However, other structural materials such as a door plate and a bumper may be used.

本発明にかかる溶接状態の検査方法と検査装置は、サイドメンバなどの自動車の車体構造材に使用するテーラードブランク材の溶接部分の検査に適している。   INDUSTRIAL APPLICABILITY The welding state inspection method and inspection apparatus according to the present invention are suitable for inspection of welded portions of tailored blank materials used for automobile body structural materials such as side members.

プレス成形品の一例を示す斜視図である。It is a perspective view which shows an example of a press-formed product. 同プレス成形品用のテーラードブランク材を示す斜視図である。It is a perspective view which shows the tailored blank material for the press molded products. 図2のY部を示し、(A)はプラズマ溶接している状態を示す縦断面図、(B)は同横断面図、(C)は溶接完了後の状態を示す縦断面図である。2 is a longitudinal sectional view showing a state where plasma welding is performed, FIG. 2B is a transverse sectional view thereof, and FIG. 2C is a longitudinal sectional view showing a state after completion of welding. 本発明の実施形態に係る検査装置を示す斜視図である。It is a perspective view showing the inspection device concerning the embodiment of the present invention. 図4の溶接ビード部分を拡大して示す要部斜視図である。It is a principal part perspective view which expands and shows the weld bead part of FIG. 溶接ビードの画像データを示す図である。It is a figure which shows the image data of a weld bead. 厚板材と薄板材を突き合わせた状態の概略図である。It is the schematic of the state which faced | matched the thick plate material and the thin plate material. 厚板材と薄板材を突き合わせた状態の概略図である。It is the schematic of the state which faced | matched the thick plate material and the thin plate material. 同厚板材を突き合わせた状態の概略図である。It is the schematic of the state which faced | matched the same thick board | plate material. 同厚板材を突き合わせた状態の概略図である。It is the schematic of the state which faced | matched the same thick board | plate material.

符号の説明Explanation of symbols

11,12…厚板材、
13,14…薄板材、
22…光照射部、
23…撮像部、
a…溶接ビード先端の突出高さ、
b…両板材の目違い量の絶対値、
c…溶接ビードの板面からの突出量、
d…凹み部の深さ、
r…凹み部、
B…溶接ビード、
T…実効板厚、
…薄板材の板厚、
…テーラードブランク材。
11, 12 ... Thick plate material,
13, 14 ... Thin plate material,
22 ... light irradiation part,
23 ... Imaging unit,
a: Projection height of the weld bead tip,
b: Absolute value of the difference between both plate materials,
c: Projection amount of the weld bead from the plate surface,
d: Depth of the recess,
r ... dent,
B ... weld bead,
T: Effective plate thickness,
T 0 ... the thickness of the thin plate material,
T B ... tailored blank.

Claims (8)

一対の板材を突合せ溶接した溶接部の溶接ビードを、入熱方向下流側から観察する溶接状態の検査方法であって、入熱方向下流側の板面から突出する前記溶接ビードの先端までの突出高さを非破壊で測定し、当該突出高さから前記溶接部の実効板厚を演算し、この実効板厚と前記一対の板材の内の薄板材の板厚と比較し溶接の良否を判断することを特徴とする溶接状態の検査方法。 A welding state inspection method for observing a weld bead of a welded portion obtained by butt welding a pair of plate materials from the downstream side in the heat input direction, and protruding from the plate surface on the downstream side in the heat input direction to the tip of the weld bead Measure the height nondestructively, calculate the effective plate thickness of the weld from the protrusion height, and compare the effective plate thickness with the plate thickness of the thin plate of the pair of plate materials to determine the quality of the weld The inspection method of the welding state characterized by performing. 前記溶接状態の検査方法は、前記突出高さと両板材の目違い量から前記溶接部の実効板厚を演算することを特徴とする請求項1に記載の溶接状態の検査方法。 The welding state inspection method according to claim 1, wherein the welding state inspection method calculates an effective plate thickness of the welded portion from the protrusion height and a difference between both plate members. 前記溶接状態の検査方法は、前記溶接ビードの入熱側に生じる凹み部の深さが、入熱方向下流側の板面の内、入熱側を下とし下流側を上としたときの高位に位置する板面からの最大突出量に相当することを前提とし、前記突出高さから前記板材の板厚減少率を次式(1)により演算し、強度的品質を確保する上から任意に定められた許容される限界値と比較し溶接の良否を判断することを特徴とする請求項2に記載の溶接状態の検査方法。
Figure 0004396352
である。
The welding state inspection method is such that the depth of the dent generated on the heat input side of the weld bead is a high level when the heat input side is down and the downstream side is up in the plate surface on the downstream side in the heat input direction. Assuming that it corresponds to the maximum protrusion amount from the plate surface located at the position, the plate thickness reduction rate of the plate material is calculated from the protrusion height according to the following equation (1) , and is arbitrarily selected from the viewpoint of ensuring the strength quality. The welding state inspection method according to claim 2, wherein the quality of welding is judged by comparing with a predetermined allowable limit value.
Figure 0004396352
It is.
前記溶接は、プラズマ溶接である請求項1〜3のいずれかに記載の溶接状態の検査方法。   The said welding is plasma welding, The inspection method of the welding state in any one of Claims 1-3. 一対の板材を突合せ溶接した溶接部の溶接ビードを、入熱方向下流側から観察する溶接状態の検査装置であって、入熱方向下流側の板面から突出する前記溶接ビードの先端までの突出高さを非破壊で測定し、当該突出高さから前記溶接部の実効板厚を演算し、この実効板厚と前記一対の板材の内の薄板材の板厚と比較し溶接の良否を判断することを特徴とする溶接状態の検査装置。 A welding state inspection device for observing a weld bead of a welded portion where a pair of plate materials are butt welded from the downstream side in the heat input direction, and protruding from the plate surface on the downstream side in the heat input direction to the tip of the weld bead Measure the height nondestructively, calculate the effective plate thickness of the weld from the protrusion height, and compare the effective plate thickness with the plate thickness of the thin plate of the pair of plate materials to determine the quality of the weld A welded state inspection device characterized by: 前記溶接状態の検査装置は、前記突出高さと両板材の目違い量から前記溶接部の実効板厚を演算することを特徴とする請求項5に記載の溶接状態の検査装置。   The welding state inspection device according to claim 5, wherein the welding state inspection device calculates an effective plate thickness of the welded portion from the protrusion height and a difference amount between both plate members. 前記溶接状態の検査装置は、
レーザ光を溶接ビードに照射する光照射部と、
該光照射部から照射され板面や溶接ビードで反射されたレーザ光を受光する撮像部と、
該撮像部で得られたデータを演算処理し所定の画像データにする演算処理部と、
を備え
一対の板材を突合せ溶接した溶接部の入熱側に生じる凹み部の深さが、入熱方向下流側の板面の内、入熱側を下とし下流側を上としたときの高位に位置する板面からの最大突出量に相当することを前提とし、
該突出高さから前記板材の板厚減少率を次式(1)により算出し、強度的品質を確保する上から任意に定められた許容される限界値と比較し溶接の良否を判断することを特徴とする請求項6に記載の溶接状態の検査装置。
Figure 0004396352
である。
The welding state inspection device is:
A light irradiation unit for irradiating the welding bead with laser light;
An imaging unit that receives the laser beam irradiated from the light irradiation unit and reflected by the plate surface or the weld bead;
An arithmetic processing unit that performs arithmetic processing on the data obtained by the imaging unit to obtain predetermined image data;
The depth of the dent that occurs on the heat input side of the welded part where a pair of plate materials are butt welded is high when the heat input side is on the bottom and the downstream side is on the bottom of the plate surface on the downstream side in the heat input direction. Assuming that it corresponds to the maximum protruding amount from the plate surface located in
The thickness reduction rate of the plate material is calculated from the protruding height by the following formula (1), and compared with an allowable limit value arbitrarily determined from the viewpoint of ensuring strength quality, the quality of welding is judged. The welding state inspection apparatus according to claim 6.
Figure 0004396352
It is.
前記溶接は、プラズマ溶接である請求項5〜7のいずれかに記載の溶接状態の検査装置。   The welding apparatus according to claim 5, wherein the welding is plasma welding.
JP2004093090A 2004-03-26 2004-03-26 Welding state inspection method and inspection device Expired - Lifetime JP4396352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004093090A JP4396352B2 (en) 2004-03-26 2004-03-26 Welding state inspection method and inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004093090A JP4396352B2 (en) 2004-03-26 2004-03-26 Welding state inspection method and inspection device

Publications (2)

Publication Number Publication Date
JP2005279653A JP2005279653A (en) 2005-10-13
JP4396352B2 true JP4396352B2 (en) 2010-01-13

Family

ID=35178588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004093090A Expired - Lifetime JP4396352B2 (en) 2004-03-26 2004-03-26 Welding state inspection method and inspection device

Country Status (1)

Country Link
JP (1) JP4396352B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5364517B2 (en) * 2009-09-10 2013-12-11 本田技研工業株式会社 Plasma torch and plasma arc welding method
JP5674355B2 (en) * 2010-06-30 2015-02-25 三菱アルミニウム株式会社 Welding method of aluminum material
JP5818009B2 (en) * 2012-03-09 2015-11-18 トヨタ自動車株式会社 Weld hardness evaluation method
WO2016159404A1 (en) * 2015-03-27 2016-10-06 주식회사 호원 Apparatus for inspecting weld bead
CN113588541B (en) * 2021-06-30 2023-07-14 北京卫星制造厂有限公司 Test method for liquid filling forming performance and forming rule of splice welding plate
CN113607632B (en) * 2021-06-30 2023-09-29 北京卫星制造厂有限公司 Test device for liquid filling forming performance and forming rule of splice welding plate
CN115255704B (en) * 2022-06-13 2024-06-11 中国第一汽车股份有限公司 Process optimization method for split joint of unequal-thickness split-welded plate stamping part

Also Published As

Publication number Publication date
JP2005279653A (en) 2005-10-13

Similar Documents

Publication Publication Date Title
JP4696325B2 (en) Automatic welding and defect repair method and automatic welding equipment
CN108883495B (en) Method and device for monitoring a seam, in particular during joining by means of laser radiation
JP5142775B2 (en) Welding quality inspection method and apparatus
KR102235832B1 (en) Portable type welding inspection appatatus and inspection method
KR102299184B1 (en) Laser welding monitoring system using Optical Coherence Tomography
JPH06285655A (en) Method and equipment for welding
JP4396352B2 (en) Welding state inspection method and inspection device
US20100001044A1 (en) Full penetration weld joint
JPH10296481A (en) Inspecting method for welded state
EP1057581B1 (en) Groove shape for single butt welding and inspection method of weld zone thereof
JP6278852B2 (en) Welding method of heat transfer copper fin for metal cask and metal cask with heat transfer copper fin
JP2018171622A (en) Method for manufacturing welded light-weight h-shaped steel
US6822188B1 (en) Method for shaping materials with plasma-inducing high-energy radiation
CN114633057A (en) Method for producing welded component
JP2001047232A (en) Shape of groove in one-side butt welding and inspection method of weld zone in one-side butt welding
JP7198450B2 (en) METHOD FOR DETECTING SHAPE OF JOINT PORTION OF JOINTED MEMBER, QUALITY CONTROL METHOD FOR JOINTED MEMBER USING THE SAME, AND DEVICE THEREOF
JP2000015474A (en) Inspecting method of weld zone in welded tube
JP3064072B2 (en) Method and apparatus for detecting weld shape during butt welding
JPH08112689A (en) Detection of butt work position of butt welding
JP4333389B2 (en) Apparatus and method for determining weld bead deviation
JP2000167678A (en) Laser beam welding method
KR102666005B1 (en) Quality prediction method and system based on welding surface shape of resistance spot welding
JP2001038467A (en) Method and device for checking welding quality
Piwowarczyk et al. Possibilities of using scanning acoustic microscopy to analyze incompatibilities in braze welded joints
JPH0972721A (en) Method and apparatus for diagnosing welded part of thin plate material of continuous processing line

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4396352

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4

EXPY Cancellation because of completion of term