Nothing Special   »   [go: up one dir, main page]

JP4389627B2 - Method for producing flexible metal laminate - Google Patents

Method for producing flexible metal laminate Download PDF

Info

Publication number
JP4389627B2
JP4389627B2 JP2004098775A JP2004098775A JP4389627B2 JP 4389627 B2 JP4389627 B2 JP 4389627B2 JP 2004098775 A JP2004098775 A JP 2004098775A JP 2004098775 A JP2004098775 A JP 2004098775A JP 4389627 B2 JP4389627 B2 JP 4389627B2
Authority
JP
Japan
Prior art keywords
film
laminated
flexible metal
producing
metal laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004098775A
Other languages
Japanese (ja)
Other versions
JP2005280153A (en
Inventor
隆一 亀井
哲也 山本
和祐 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2004098775A priority Critical patent/JP4389627B2/en
Publication of JP2005280153A publication Critical patent/JP2005280153A/en
Application granted granted Critical
Publication of JP4389627B2 publication Critical patent/JP4389627B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

本発明は、加圧加熱成形装置で製造される積層板の製造方法に関する。特には、電子電気機器等に用いられるフレキシブル金属積層板の製造方法に関する。   The present invention relates to a method for manufacturing a laminated plate manufactured by a pressure heating molding apparatus. In particular, the present invention relates to a method for manufacturing a flexible metal laminate used in electronic and electrical equipment.

電子電気機器印刷回路基板に用いられる積層板の代表例として、フレキシブルプリント配線板(Flexible Printed Circuits、以下FPCと略す)が挙げられる。   As a typical example of a laminated board used for an electronic / electrical equipment printed circuit board, there is a flexible printed circuit (hereinafter abbreviated as FPC).

フレキシブルプリント配線板に使用されるフレキシブル金属積層体である銅張りポリイミドフィルム(以下CCLと略す)には、銅箔、ポリイミドベースフィルム、エポキシ系熱硬化型接着剤の3つの材料で構成される安価な3層タイプと、接着剤層を有しない2層タイプ、さらにはポリイミドベースフィルムと同質のポリイミド系接着剤を有した3層タイプ(以下擬似2層という)のものがある。   A copper-clad polyimide film (hereinafter abbreviated as CCL), which is a flexible metal laminate used for flexible printed wiring boards, is made of three materials: copper foil, polyimide base film, and epoxy thermosetting adhesive. Three-layer type, two-layer type having no adhesive layer, and three-layer type (hereinafter referred to as pseudo-two-layer) having a polyimide adhesive of the same quality as the polyimide base film.

2層タイプ及び擬似2層タイプの製造は、接着剤を使用しないでポリイミドフィルムにほぼ直接銅をメッキしたり(メッキ2層CCL)、銅箔にポリアミック酸を塗布乾燥し、イミド化することでポリイミドフィルムを用いることなくポリイミド層を形成したり(キャスト2層CCL)、熱圧着性のポリイミド層を表面に形成したポリイミドフィルムを銅箔とラミネートする(ラミネート2層CCL(疑似2層タイプ))等によって行なわれることが知られている。   The two-layer type and the pseudo two-layer type can be manufactured by directly plating copper on a polyimide film without using an adhesive (plating two-layer CCL), applying polyamic acid to a copper foil, drying and imidizing. A polyimide layer is formed without using a polyimide film (cast two-layer CCL), or a polyimide film having a thermocompression-bonding polyimide layer formed on the surface is laminated with a copper foil (laminate two-layer CCL (pseudo two-layer type)) It is known that it is performed by such as.

ラミネート2層CCLのラミネート製造方法は、これまでいくつかの方法が提案されている。例えば、加熱加圧成形装置として真空プレス機等を用いてポリイミドフィルムと金属箔との間にポリイミド接着剤をサンドイッチ状に接合する方法がある(例えば、特許文献1参照)が、この方法では長尺品を得ることが不可能であり、ポリイミドフィルムの種類によっては、接着力が低く目標性能が得られないという問題がある。一方、熱ロールラミネート装置を用いて連続的に加熱加圧成形を行う方法も提案されている(例えば、特許文献2参照)。しかし、この方法においては200℃以上での加熱加圧成形時に生じるシワ等の外観不良を防止するため、加圧面と積層材料の間に保護材料を介して加圧加熱成形を行うことが示されており、保護材料としては75μm以上の厚みを有するポリイミドフィルムが好適であると示されている。しかし、厚みの大きい保護材料を使用すると高温加熱ロールと積層材料の熱伝導の妨げとなり、加熱加圧成形温度を未使用時に比べて高くしなければならない。高い温度での加熱加圧成形は、低い温度での成形に比べ寸法変化率が大きくなってしまう。また、生産速度をあげることの障害ともなり生産性向上および生産コストの低下が困難である。また、保護材料を使用しないとより低温でかつ安価に製造できるが、シワや銅箔の焼け等の外観不良が発生する。
米国特許第4543295号明細書 特開平13−129918号公報(第3、4頁、18段落)
There have been proposed several methods for producing a laminate of two-layer CCL. For example, there is a method in which a polyimide adhesive is joined in a sandwich between a polyimide film and a metal foil using a vacuum press machine or the like as a heat and pressure molding apparatus (see, for example, Patent Document 1). It is impossible to obtain a scale, and depending on the type of polyimide film, there is a problem that the target performance cannot be obtained because of low adhesive strength. On the other hand, a method of continuously performing heat and pressure molding using a hot roll laminator has also been proposed (see, for example, Patent Document 2). However, in this method, in order to prevent appearance defects such as wrinkles that occur at the time of heat and pressure molding at 200 ° C. or higher, it is shown that pressure heat molding is performed via a protective material between the pressure surface and the laminated material. As a protective material, it is indicated that a polyimide film having a thickness of 75 μm or more is suitable. However, when a protective material having a large thickness is used, heat conduction between the high-temperature heating roll and the laminated material is hindered, and the heating and pressing temperature must be higher than when not used. The hot press molding at a high temperature has a larger dimensional change rate than the molding at a low temperature. Further, it becomes an obstacle to increasing the production speed, and it is difficult to improve productivity and reduce production cost. In addition, if a protective material is not used, it can be manufactured at a lower temperature and at a lower cost, but appearance defects such as wrinkles and copper foil burning occur.
U.S. Pat. No. 4,543,295 JP-A-13-129918 (3rd, 4th page, 18th paragraph)

よって、本発明の目的はより安価で寸法変化率および外観品質に優れたフレキシブル金属積層板の製造方法を提供することである。   Therefore, the objective of this invention is providing the manufacturing method of the flexible metal laminated board which was cheaper and excellent in the dimensional change rate and the external appearance quality.

すなわち本発明は、金属箔を含む2種以上の積層材料を加圧加熱成形装置により貼り合わせてなる積層板の製造方法であって、前記装置の加圧面と積層材料との間に50μm以下の厚みのアラミドフィルムを介し加圧加熱成形を行うことを特徴とするフレキシブル金属積層板の製造方法である。 That is, the present invention is a method for producing a laminated plate in which two or more kinds of laminated materials including a metal foil are bonded together by a pressure heating molding device, and is 50 μm or less between the pressing surface of the device and the laminated material. It is a method for producing a flexible metal laminate, characterized by performing pressure heating molding through an aramid film having a thickness.

本発明によるフレキシブル金属積層板の製造方法を用いることによって、シワ等の外観不良になりやすい高温でのラミネートの場合においても、外観良好でかつ低温での加熱加圧成形が可能となるため、寸法変化率に優れた積層板を安価に得ることができる。従って本発明は、特に電子電気機器用のフレキシブル金属積層板として好適な材料を提供するものである。   By using the method for producing a flexible metal laminate according to the present invention, even in the case of laminating at a high temperature, which tends to cause appearance defects such as wrinkles, the appearance is good and heat pressing can be performed at a low temperature. A laminate having an excellent rate of change can be obtained at low cost. Therefore, the present invention provides a material suitable as a flexible metal laminate for electronic and electrical equipment.

以下、本発明の詳細について説明する。
本発明の製造方法で得られる積層板の用途は特に限定されるものではないが、主として電子電気機器用のフレキシブル積層板として用いられるものである。
Details of the present invention will be described below.
Although the use of the laminated board obtained by the manufacturing method of this invention is not specifically limited, It is mainly used as a flexible laminated board for electronic electric devices.

本発明に用いられる積層材料としては特に限定されないが、2種以上の積層材料、より好ましくは熱圧着性を有する積層材料、および熱圧着性を有さない積層材料が好適に用いられる。   Although it does not specifically limit as a laminated material used for this invention, Two or more types of laminated materials, More preferably, the laminated material which has thermocompression bonding property, and the laminated material which does not have thermocompression bonding property are used suitably.

熱圧着性を有する積層材料としては、熱可塑性ポリイミドフィルム、熱可塑性ポリエーテルフィルム、熱可塑性ポリアミドイミドフィルム、熱可塑性ポリエステルイミドフィルムまたは耐熱性フィルムから選ばれるフィルム上の、片面又は両面に熱圧着性樹脂が予め形成されたものが挙げられる。   Laminate material with thermocompression bonding is thermocompression bonding on one or both sides on a film selected from thermoplastic polyimide film, thermoplastic polyether film, thermoplastic polyamideimide film, thermoplastic polyesterimide film or heat resistant film. The resin is formed in advance.

ここで、耐熱性フィルムとは、200℃以上のガラス転移温度または分解温度を有するフィルムであり、芳香族ポリイミドフィルム、アラミドフィルム、液晶ポリマフィルム等が好ましい。またフィルムの厚みは5〜200μmが好ましい。さらに、耐熱性フィルムの表面には、加水分解、コロナ放電、低温プラズマ、物理的粗面化、易接着コーティング処理等の表面処理を施すことができる。熱圧着性樹脂とは、溶剤可溶型ポリイミド系組成物、シリコーンジアミン含有ポリイミド系組成物、熱可塑性ポリイミド系組成物等のポリイミド系接着剤組成物や、ポリアミドイミド系組成物、エポキシ系組成物あるいはそれらを混合させたハイブリッド系組成物などが例示できる。さらに、各種特性の向上のために熱圧着性樹脂には種々の添加剤が配合されていても構わない。   Here, the heat resistant film is a film having a glass transition temperature or decomposition temperature of 200 ° C. or higher, and is preferably an aromatic polyimide film, an aramid film, a liquid crystal polymer film, or the like. The thickness of the film is preferably 5 to 200 μm. Furthermore, the surface of the heat resistant film can be subjected to surface treatment such as hydrolysis, corona discharge, low temperature plasma, physical roughening, and easy adhesion coating treatment. The thermocompression bonding resin is a polyimide-based adhesive composition such as a solvent-soluble polyimide composition, a silicone diamine-containing polyimide composition, a thermoplastic polyimide composition, a polyamideimide composition, or an epoxy composition. Or the hybrid type composition which mixed them can be illustrated. Furthermore, various additives may be blended in the thermocompression bonding resin in order to improve various properties.

ここで、電子回路材料で用いられる熱圧着性を有する積層材料としては、高い耐熱性を有することが必要であり、耐熱性フィルムとしてポリイミドフィルムを、熱圧着性樹脂として熱可塑性ポリイミドを用い、それらを積層した多層ポリイミドフィルムがよく用いられる。この多層ポリイミドフィルムの製造方法は特に限定されないが、数種類の層を一括に製膜する多層押出し製膜法や耐熱フィルム上に他の層を順次形成するコーティング法が挙げられる。また、コーティング方式としては、グラビアコータ、コンマコータ、リバースコータ、バーコータ、スリットダイコータなど塗布材料の物性に合わせた様々な方法を用いることができる。   Here, as a laminated material having thermocompression bonding used in electronic circuit materials, it is necessary to have high heat resistance, a polyimide film is used as a heat resistant film, and a thermoplastic polyimide is used as a thermocompression bonding resin. A multilayer polyimide film laminated with is often used. Although the manufacturing method of this multilayer polyimide film is not specifically limited, The multilayer extrusion film-forming method which forms several types of layers into a lump and the coating method which forms another layer sequentially on a heat-resistant film are mentioned. As a coating method, various methods such as a gravure coater, a comma coater, a reverse coater, a bar coater, and a slit die coater can be used according to the physical properties of the coating material.

熱圧着性を有さない積層材料としては、上記記載の耐熱性フィルム、金属箔等が挙げられるが、フレキシブル積層板用としては銅箔が好ましい。銅箔とは、一般的に圧延銅箔、電解銅箔、特殊電解銅箔及び粗面のプロファイルが小さい種類の銅箔等を用いることができ、その厚みは5〜70μmのものを使用することができる。また、銅箔表面は酸化を防止するために酸化防止層を有することが一般的である。   Examples of the laminated material that does not have thermocompression bonding include the heat-resistant film and the metal foil described above, and copper foil is preferable for the flexible laminated board. In general, rolled copper foil, electrolytic copper foil, special electrolytic copper foil, copper foil of a type with a small rough surface profile, and the like having a thickness of 5 to 70 μm can be used as the copper foil. Can do. Moreover, it is common that the copper foil surface has an antioxidant layer in order to prevent oxidation.

本発明で用いる加圧加熱成形装置は、積層材料を加熱して圧力を加えてラミネートする装置であれば特に限定されず、例えば、単動プレス装置、多段プレス装置、真空プレス装置、多段真空プレス装置、オートクレーブ装置、熱ロールラミネート機、ダブルベルトプレス機等が挙げられ、これらのうち熱ロールラミネート機が好ましく用いられ得る。加熱方法について、所定の温度で加熱することができるものであれば特に限定されず、熱媒循環方式、熱風加熱方式、誘電加熱方式等が挙げられる。加熱温度は200℃以上が好ましいが、電子部品実装のために、積層板が雰囲気温度240℃の半田リフロー炉を通過する用途に供される場合には、熱圧着性を有する積層材料として、それに応じたTg、つまり240℃以上のTgを有することが必要である。従って、加熱温度としてはそのTg以上が好ましく、この場合、240℃以上が好ましい。加圧方式についても所定の圧力を加えることができるものであれば特に限定されず、油圧方式、空気圧方式、ギャップ間圧力方式等が挙げられ、圧力は特に限定されない。また、連続的な加熱加圧成形を可能とする装置として、巻き出し軸、巻き取り軸、張力制御装置、ライン調整装置(EPC)など、さらには電子回路材料としての品質を維持する為のクリーン化設備として、粘着ロール、静電気除去装置、クリーンブースなど必要に応じて用いることができる。   The pressurizing and forming apparatus used in the present invention is not particularly limited as long as it is an apparatus that heats a laminated material and applies pressure to laminate. For example, a single-action press apparatus, a multistage press apparatus, a vacuum press apparatus, a multistage vacuum press An apparatus, an autoclave apparatus, a hot roll laminating machine, a double belt press machine, etc. are mentioned, Among these, a hot roll laminating machine can be preferably used. The heating method is not particularly limited as long as it can be heated at a predetermined temperature, and examples thereof include a heat medium circulation method, a hot air heating method, and a dielectric heating method. The heating temperature is preferably 200 ° C. or higher. However, when the laminated board is used for the purpose of passing through a solder reflow furnace having an atmospheric temperature of 240 ° C. for mounting electronic components, It is necessary to have a corresponding Tg, that is, a Tg of 240 ° C or higher. Accordingly, the heating temperature is preferably Tg or higher, and in this case, 240 ° C. or higher is preferable. The pressurization method is not particularly limited as long as a predetermined pressure can be applied, and includes a hydraulic method, a pneumatic method, a gap pressure method, and the like, and the pressure is not particularly limited. In addition, as a device that enables continuous heat and pressure molding, unwinding shaft, winding shaft, tension control device, line adjustment device (EPC), etc., as well as clean to maintain the quality as electronic circuit materials As the equipment, an adhesive roll, a static eliminator, a clean booth, etc. can be used as necessary.

本発明で用いる保護材料の厚みは50μm以下が好ましい。厚みが50μmより厚いと、成形温度がより高温とならざるを得ず、CCLの寸法変化率が大きくなってしまう。CCLの寸法変化率は、各積層材料の線膨張係数と加熱成形温度により決定され、寸法変化率を小さくするためには、各積層材料の線膨張係数差を小さくすることが必要である。各積層材料の線膨張係数が各々等しい材料であれば、寸法変化率はゼロに近い値となることは良く知られている。しかし、実際には線膨張係数の等しい材料を積層することばかりではなく、異なる材料を積層することが多い。その場合は、できる限り各材料間の熱膨張による寸法変化の差を小さくするために、より低温で加工することが好まれる。本発明は、50μm以下の保護材料を用いることにより、加熱加圧装置の加熱部材と被積層体の熱伝導効率を高め、より低温での加熱加圧成形が可能となり、良好な寸法変化率のCCLを得ることができる。ここで、より好ましくは25μm以下である。さらに好ましくは15μm以下である。また保護材料の厚みが大きくなると、保護材料の価格が高くなり製品コストが上がってしまう。   The thickness of the protective material used in the present invention is preferably 50 μm or less. If the thickness is greater than 50 μm, the molding temperature must be higher, and the dimensional change rate of the CCL becomes large. The dimensional change rate of CCL is determined by the linear expansion coefficient of each laminated material and the heating molding temperature. In order to reduce the dimensional change rate, it is necessary to reduce the difference in linear expansion coefficient of each laminated material. It is well known that the dimensional change rate is a value close to zero if the respective materials have the same linear expansion coefficient. However, actually, not only materials with the same linear expansion coefficient are laminated, but also different materials are often laminated. In that case, it is preferable to process at a lower temperature in order to reduce the difference in dimensional change due to thermal expansion between the materials as much as possible. In the present invention, by using a protective material of 50 μm or less, the heat conduction efficiency of the heating member and the laminated body of the heating and pressing apparatus can be increased, and the heating and pressing can be performed at a lower temperature, and the dimensional change rate can be improved. CCL can be obtained. Here, it is more preferably 25 μm or less. More preferably, it is 15 μm or less. Further, when the thickness of the protective material is increased, the price of the protective material is increased and the product cost is increased.

本発明で用いる保護材料は加工時の温度に耐えることも必要であり、例えば200℃以上で加工する場合は、それ以上の耐熱性を有するアラミドフィルム、ポリイミドフィルム、金属箔等が有効である。さらに金属箔の酸化防止効果、搬送性の点で、アラミドフィルムが特に好ましい。   The protective material used in the present invention is required to withstand the processing temperature. For example, when processing at 200 ° C. or higher, an aramid film, polyimide film, metal foil or the like having higher heat resistance is effective. Furthermore, an aramid film is particularly preferable from the viewpoint of the antioxidant effect and transportability of the metal foil.

上記のような薄い保護材料を用いると酸素透過率が大きくなることがあり、銅箔の酸化を引き起こす可能性がある。この場合、保護材料の酸素透過率は10ml/m2/atm/24hr以下であることが好ましい。10ml/m2/atm/24hrより大きい場合、防酸化処理を施していないか処理の弱い金属箔を用いることが困難となり、ラミネート後、製品が室温まで冷却される間に酸素の透過が起こり、金属箔の酸化の原因となり、保護材料としての役目を果たさなくなってしまう。より好ましくは5ml/m2/atm/24hr以下である。 When a thin protective material as described above is used, the oxygen transmission rate may be increased, which may cause oxidation of the copper foil. In this case, the oxygen permeability of the protective material is preferably 10 ml / m 2 / atm / 24 hr or less. If it is larger than 10 ml / m 2 / atm / 24 hr, it becomes difficult to use a metal foil that is not subjected to oxidation prevention treatment or is weakly treated, and oxygen permeation occurs while the product is cooled to room temperature after lamination, It will cause oxidation of the metal foil and will no longer serve as a protective material. More preferably, it is 5 ml / m 2 / atm / 24 hr or less.

保護材料の弾性率は8〜20GPaが好ましい。8GPaより小さい場合、フィルムにこしが無く、ハンドリング性が悪化してしまい、さらには製品の寸法変化率が大きくなってしまう。また、20GPaより大きい場合、加圧部材の傷や加圧部材に付着している塵などが製品に転写してしまい、保護材料のクッションとして役目を果たさなくなってしまう。より好ましくは10〜15GPaである。   The elastic modulus of the protective material is preferably 8 to 20 GPa. If it is less than 8 GPa, the film will not be distorted, handling properties will deteriorate, and the dimensional change rate of the product will increase. On the other hand, when the pressure is higher than 20 GPa, scratches on the pressure member, dust adhering to the pressure member, and the like are transferred to the product, so that it does not serve as a cushion for the protective material. More preferably, it is 10-15 GPa.

保護材料の線膨張係数は20ppm/℃以下が好ましい。なお、本発明における線膨張係数は、50〜200℃における温度で確認することが好ましい。20ppm/℃より大きいと加熱加圧時の熱により膨張し、製品のシワの原因となってしまう。より好ましくは10ppm/℃以下である。ただし、保護材料は上記条件を満足し、製品外観にシワ、打痕などが見られず、室温で製品から剥離することができ、リサイクル可能であれば、それ以外は特に限定されるものではない。   The linear expansion coefficient of the protective material is preferably 20 ppm / ° C. or less. In addition, it is preferable to confirm the linear expansion coefficient in this invention at the temperature in 50-200 degreeC. If it is greater than 20 ppm / ° C., it will expand due to heat during heating and pressurization, causing wrinkles in the product. More preferably, it is 10 ppm / ° C. or less. However, the protective material is not particularly limited as long as it satisfies the above conditions, the product appearance is free of wrinkles and dents, can be peeled off from the product at room temperature, and can be recycled. .

また、保護材料は剥離性、密着性、走行性などの調整の為、様々な表面処理を施すことも限定されるものではない。例えば、加水分解、コロナ放電、低温プラズマ、物理的粗面化、易接着コーティング処理、離型剤コーティング処理等が挙げられる。ここで、CCL製造コストを考慮すると、保護材料としてはより安価で、より多くの回数リサイクル可能であることが好ましい。保護材料コストとしては、材質や収率などに影響するが、一般的にはより薄いフィルムの方がm2あたりの原料が少なくて済むので、安価に製造できる。つまり、より薄いフィルムを有効にリサイクルすることが重要である。 Further, the protective material is not limited to various surface treatments for adjustment of peelability, adhesion, running property, and the like. Examples thereof include hydrolysis, corona discharge, low temperature plasma, physical roughening, easy adhesion coating treatment, release agent coating treatment, and the like. Here, considering the CCL manufacturing cost, it is preferable that the protective material is cheaper and can be recycled more times. Although the cost of the protective material affects the material and the yield, in general, a thinner film requires less raw material per m 2 and can be manufactured at a low cost. In other words, it is important to effectively recycle thinner films.

以下に実施例を挙げて本発明をより詳細に説明するが、本発明はこれらの実施例に限定されるものではない。実施例の説明に入る前に各物性値の評価方法及び積層板の加熱加圧成形方法について述べる。   EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. Prior to the description of the examples, a method for evaluating physical properties and a method for heating and pressing a laminated plate will be described.

保護材料各物性値の測定方法
A.厚み
室温の厚みを示し、ニコン(株)製接触式デジタルマイクロメータMFC−101を用いて測定したものである。
B.酸素透過率
ASTM D1434に準拠し、20℃、相対湿度65%の条件下で測定したものである。
C.弾性率
室温の弾性率を示し、ASTM D−882に準じて測定したものである。
D.線膨張係数
理学電機(株)製TMA8140により窒素下で10℃/minの昇温速度で50〜200℃の値を測定したものである。
Method for measuring physical properties of protective materials Thickness Indicates the thickness at room temperature and is measured using a contact type digital micrometer MFC-101 manufactured by Nikon Corporation.
B. Oxygen permeability Based on ASTM D1434, measured under conditions of 20 ° C. and 65% relative humidity.
C. Elastic modulus Shows the elastic modulus at room temperature and is measured according to ASTM D-882.
D. Linear expansion coefficient The value of 50-200 degreeC was measured with the temperature increase rate of 10 degree-C / min under nitrogen by TMA8140 by Rigaku Corporation.

CCLの作成方法および特性評価方法
A.CCLの作成方法
ここでは,熱ロールラミネート装置を用いた、両面CCLの作成方法を説明する。
図1のように25μmの熱可塑性ポリイミドフィルム(宇部興産(株)製ユーピレックス25VT)の両側に12μmの電解銅箔(NA−VLP、三井金属(株)製)を配置し、さらにその両側に保護材料を配置し、熱ロールラミネート装置を用い両面CCLを作成した。ここで、保護材料及び加熱加圧条件は実施例および比較例に示す通りである。また図1に示した矢印は、保護材やフィルム、銅箔の進行方向を表している。
B.寸法変化率評価方法
JIS C6481に基づいて、積層板に4つの穴を開け、それぞれの距離を測定(測定値1)する。次にエッチングを行い、銅箔を両面とも除去した後に、20℃/60%RHの恒温恒湿器に24時間放置し、エッチング前と同様に、4つの穴のそれぞれの距離を測定(測定値2)して次式により寸法変化率を求めた。
CCL creation method and characteristic evaluation method CCL Creation Method Here, a method for creating a double-sided CCL using a hot roll laminator will be described.
As shown in FIG. 1, 12 μm electrolytic copper foil (NA-VLP, Mitsui Kinzoku Co., Ltd.) is placed on both sides of a 25 μm thermoplastic polyimide film (UPILEX 25VT manufactured by Ube Industries, Ltd.) and further protected on both sides. The material was placed and a double-sided CCL was created using a hot roll laminator. Here, the protective material and the heating and pressing conditions are as shown in Examples and Comparative Examples. Moreover, the arrow shown in FIG. 1 represents the advancing direction of a protective material, a film, and copper foil.
B. Dimensional change rate evaluation method Based on JIS C6481, four holes are made in a laminated board, and each distance is measured (measurement value 1). Next, after etching and removing both sides of the copper foil, it was left in a constant temperature and humidity chamber of 20 ° C./60% RH for 24 hours, and the distance of each of the four holes was measured (measured value) as before the etching. 2) Then, the dimensional change rate was obtained by the following equation.

寸法変化率[%]=[(測定値2−測定値1)/測定値1]×100
C.接着力評価方法
エッチングにより2mm幅の銅箔パターンを作成し、テンシロン(オリエンテック(株)製、UTM−11−5HR型)を用いて2mm幅の銅箔を90度方向に引き剥がした場合の強度を測定する(引張速度:50mm/分)。
Dimensional change rate [%] = [(measured value 2−measured value 1) / measured value 1] × 100
C. Adhesive strength evaluation method When a copper foil pattern having a width of 2 mm is created by etching and the copper foil having a width of 2 mm is peeled off in a 90-degree direction using Tensilon (Orientec Co., Ltd., UTM-11-5HR type). The strength is measured (tensile speed: 50 mm / min).

実施例1〜4、比較例1〜5
上記CCLの作成方法において、それぞれ表1中の実施例、比較例に示す保護材料、加熱加圧成形条件を用いた。その結果、ラミネートによるシワ、高温による銅箔焼けなどの外観上の欠点が無く、寸法変化率も±0.05以内である優れたCCLを得ることが出来た。さらに、巻き取り後の保護材料の外観は、使用前と同等であり、リサイクル可能であった。
Examples 1-4, Comparative Examples 1-5
In the CCL preparation methods, the protective materials and heating and pressing conditions shown in Examples and Comparative Examples in Table 1 were used. As a result, it was possible to obtain an excellent CCL having no defects in appearance such as wrinkles due to laminating and burning of copper foil due to high temperature and a dimensional change rate within ± 0.05. Furthermore, the appearance of the protective material after winding was the same as that before use and was recyclable.

比較例10
上記CCLの作成方法において、それぞれ表2中の比較例10に示す保護材料、加熱加圧成形条件を用いた。その結果、ラミネートによるシワ、高温による銅箔焼けなどの外観上の欠点が発生したり、寸法変化率も大きなCCLとなってしまった。
Comparative Examples 6 to 10
In the CCL preparation method, the protective materials and heating and pressing conditions shown in Comparative Examples 6 to 10 in Table 2 were used. As a result, defects such as wrinkles due to lamination and copper foil burning due to high temperatures occurred, and the dimensional change rate became CCL.

Figure 0004389627
Figure 0004389627

Figure 0004389627
Figure 0004389627

2層CCLを製造するラミネート装置を示した図。The figure which showed the laminating apparatus which manufactures 2 layer CCL.

符号の説明Explanation of symbols

1 銅箔巻出
2 熱可塑性ポリイミドフィルム巻出
3 保護材料巻出
4 保護材料巻取
5 製品巻取
6 ラミネートロール
7 保護材料剥離ロール
1 Copper foil unwinding 2 Thermoplastic polyimide film unwinding 3 Protective material unwinding 4 Protective material winding 5 Product winding 6 Laminating roll 7 Protective material peeling roll

Claims (5)

金属箔を含む2種以上の積層材料を加圧加熱成形装置により貼り合わせてなる積層板の製造方法であって、前記装置の加圧面と積層材料との間に50μm以下の厚みのアラミドフィルムを介し加圧加熱成形を行うことを特徴とするフレキシブル金属積層板の製造方法。 A method for producing a laminated board in which two or more kinds of laminated materials including a metal foil are bonded together by a pressure heating molding device, wherein an aramid film having a thickness of 50 μm or less is provided between the pressing surface of the device and the laminated material. A method for producing a flexible metal laminate, characterized by performing pressure heating molding. 前記装置の加圧面と金属箔との間に50μm以下の厚みのアラミドフィルムを介する請求項1記載のフレキシブル金属積層板の製造方法。The method for producing a flexible metal laminate according to claim 1, wherein an aramid film having a thickness of 50 µm or less is interposed between the pressing surface of the apparatus and the metal foil. 前記アラミドフィルムの酸素透過率が10ml/mThe oxygen permeability of the aramid film is 10 ml / m 2 /atm/24hr以下である請求項1記載のフレキシブル金属積層板の製造方法。The method for producing a flexible metal laminate according to claim 1, which is not more than / atm / 24 hr. 前記アラミドフィルムの弾性率が8〜20GPaである請求項1記載のフレキシブル金属積層板の製造方法。The method for producing a flexible metal laminate according to claim 1, wherein the aramid film has an elastic modulus of 8 to 20 GPa. 前記アラミドフィルムの線膨張係数が20ppm/℃以下である請求項1記載のフレキシブル金属積層板の製造方法。The method for producing a flexible metal laminate according to claim 1, wherein the aramid film has a linear expansion coefficient of 20 ppm / ° C. or less.
JP2004098775A 2004-03-30 2004-03-30 Method for producing flexible metal laminate Expired - Fee Related JP4389627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004098775A JP4389627B2 (en) 2004-03-30 2004-03-30 Method for producing flexible metal laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004098775A JP4389627B2 (en) 2004-03-30 2004-03-30 Method for producing flexible metal laminate

Publications (2)

Publication Number Publication Date
JP2005280153A JP2005280153A (en) 2005-10-13
JP4389627B2 true JP4389627B2 (en) 2009-12-24

Family

ID=35179044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004098775A Expired - Fee Related JP4389627B2 (en) 2004-03-30 2004-03-30 Method for producing flexible metal laminate

Country Status (1)

Country Link
JP (1) JP4389627B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4943450B2 (en) * 2006-11-29 2012-05-30 Jx日鉱日石金属株式会社 2-layer copper-clad laminate
JP5174637B2 (en) * 2008-11-28 2013-04-03 パナソニック株式会社 Method for producing single-sided metal foil-clad flexible laminate and laminate construction
JP4422790B1 (en) * 2009-09-17 2010-02-24 宇部興産株式会社 Method for producing flexible metal laminate
CN111712047B (en) * 2020-06-29 2022-07-19 深圳市烯牛实业有限公司 Laminating device, flexible circuit board laminating machine and laminating method

Also Published As

Publication number Publication date
JP2005280153A (en) 2005-10-13

Similar Documents

Publication Publication Date Title
TWI411538B (en) Soft laminate board manufacturing method
JP2001244630A (en) Multilayer wiring circuit board and method of manufacturing the same
KR100620474B1 (en) Process for producing heat-resistant flexible laminate and heat-resistant flexible laminate produced thereby
JP4500773B2 (en) Method for producing flexible laminate
JP4389627B2 (en) Method for producing flexible metal laminate
JP2003311882A (en) Manufacturing method for heat-resistant flexible laminated sheet
JP5217321B2 (en) Method for producing flexible metal laminate
JP2007109694A (en) Process for producing one-side flexible metal laminated plate
JP4706283B2 (en) Method for producing heat-resistant flexible metal laminate
JP2002326308A (en) Heat-resistant flexible laminated sheet and method for manufacturing the same
JP2007223052A (en) Method for manufacturing heat-resistant flexible metal laminate
JP2008074037A (en) Manufacturing process of heat-resistant flexible metal laminate
JP4305799B2 (en) Laminate production method
JP2002052614A (en) Method for manufacturing laminated sheet
JP2009071021A (en) Method for manufacturing multilayer printed circuit board
JP2007223053A (en) Method for manufacturing heat-resistant flexible metal laminate
JP6123463B2 (en) Method for producing metal laminate
JP2002361744A (en) Method for manufacturing heat-resistant flexible laminated sheet
JP2005044880A (en) Flexible metal lamination and its manufacturing method
JP2003001753A (en) Method for manufacturing heat-resistant flexible laminated sheet
JP2005186570A (en) Method for producing flexible laminate
JP2009269267A (en) Method of manufacturing metal laminated sheet
JP2002096392A (en) Method for manufacturing laminate
JP2003001750A (en) Method for manufacturing heat-resistant flexible laminated sheet
JP2002192615A (en) Laminated sheet manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090928

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131016

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees