Nothing Special   »   [go: up one dir, main page]

JP4386215B2 - EGR gas cooling device - Google Patents

EGR gas cooling device Download PDF

Info

Publication number
JP4386215B2
JP4386215B2 JP03609299A JP3609299A JP4386215B2 JP 4386215 B2 JP4386215 B2 JP 4386215B2 JP 03609299 A JP03609299 A JP 03609299A JP 3609299 A JP3609299 A JP 3609299A JP 4386215 B2 JP4386215 B2 JP 4386215B2
Authority
JP
Japan
Prior art keywords
egr gas
cooling medium
tube
trunk
gas inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03609299A
Other languages
Japanese (ja)
Other versions
JP2000234566A (en
Inventor
一儀 滝川
秀雄 劉
祐治 宮内
忠弘 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Usui Co Ltd
Original Assignee
Usui Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Usui Co Ltd filed Critical Usui Co Ltd
Priority to JP03609299A priority Critical patent/JP4386215B2/en
Publication of JP2000234566A publication Critical patent/JP2000234566A/en
Application granted granted Critical
Publication of JP4386215B2 publication Critical patent/JP4386215B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、エンジンの冷却液、カーエアコン用冷媒または冷却風などによってEGRガスを冷却する装置に関するものである。
【0002】
【従来の技術】
排気ガスの一部を排気系から取出して、再びエンジンの吸気系に戻し、混合気に加える方法は、EGR(Exhaust Gas Recirculation:排気再循環)と称される。EGRはNOx(窒素酸化物)の発生抑制、ポンプ損失の低減、燃焼ガスの温度低下に伴う冷却液への放熱損失の低減、作動ガス量・組成の変化による比熱比の増大と、これに伴うサイクル効率の向上など、多くの効果が得られることから、エンジンの熱効率を改善するには有効な方法とされている。
【0003】
しかるに、EGRガスの温度が高くなりかつEGRガス量が増大すると、その熱作用によりEGRバルブの耐久性が劣化し、早期破損を招く場合があったり、その防止のために水冷構造とする必要があることや吸気温度の上昇に伴い充填効率の低下による燃費の低下などが認識されている。このような事態を避けるため、エンジンの冷却液などによってEGRガスを冷却する装置が用いられている。この装置としては、一般に多管式の熱交換器が利用される。
【0004】
この場合に利用される多管式の熱交換器は、図5、図6にその一例を示すごとく、両端部に冷却媒体流入口11−1および冷却媒体流出口11−2を設けた胴管11内部において、伝熱管群12の両端部が板金製のチューブシート13にろう付けにより固定され、一方、チューブシート13はその外周端部を胴管11の内壁にろう付けにより固着して配列され、前記胴管11の一方の端部にはEGRガスの流入口14a−1が設けられた端部キャップ14aが固着され、また他方の端部にはEGRガスの流出口14b−1が設けられた端部キャップ14bが固着された構成となし、かつ前記端部キャップ14a、14bのガス流入口14a−1および流出口14b−1の外側開口端部に締結用フランジ15a、15bが外嵌固着された構造となっている。
【0005】
【発明が解決しようとする課題】
上記した従来の、EGRガスの冷却に用いられる多管式の熱交換器に場合は、胴管11、チューブシート13および端部キャップ14a、14b相互の固定構造の信頼性確保のため、冷却媒体流入口11−1および冷却媒体流出口11−2は、それぞれチューブシート13から内側に所望の距離離れた位置に設けられるため、特に冷却媒体流入口11−1側にあっては胴管11内に流入した冷却媒体がこの側のチューブシート13側に停滞して図5、図6に示す点線で囲んだ範囲Sが冷却不十分なオーバーヒートエリアとなり、このオーバーヒートエリアの部分はEGRガスの温度が上昇したり、EGRガス量が増加した時には伝熱管外周面温度が上昇して、冷却媒体の沸騰を生じる。冷却媒体が沸騰すると、伝熱管外表面が蒸気に覆われて冷却媒体と接触できなくなり熱交換が行われないことにより、当該エリアではEGRガスは冷却されず、結果的に該冷却装置全体の熱交換性能の低下をきたし、EGRガスの出口温度が下がらないという問題を生じる。
【0006】
本発明は上記した従来の多管式熱交換器の問題を解決するためになされたもので、冷却媒体流入口側にできるオーバーヒートエリアを無くし冷却媒体の沸騰を解消することにより熱交換性能の低下を防止しEGRガスを十分に冷却することができるEGRガス冷却装置を提供しようとするものである。
【0007】
【課題を解決するための手段】
本発明は上記課題を解決するため、第1の実施態様は両端部に冷却媒体流入口および冷却媒体流出口が設けられた胴管の内壁の両端部付近に固定されたチューブシートに伝熱管群が固着配列され、さらに前記胴管の両端部には端部キャップが固着され、また前記端部キャップにはEGRガスの流入口と流出口が設けられ、前記端部キャップのガス流入口および流出口の外側開口端部に締結用フランジが外嵌固着された構造の多管式のEGRガス冷却装置において、EGRガスの流入口側に設ける冷却媒体流入口を複数個としたことを特徴とし、第2の実施態様は前記EGRガスの流入口側に複数個設ける冷却媒体流入口を、胴管内に流入した冷却媒体が該EGRガス流入口側のチューブシートに沿って流れるように胴管の垂直中心線に対し傾斜させて設けることを特徴とし、第3の実施態様は前記EGRガスの流入口側に複数個設ける冷却媒体流入口を、胴管内に流入した冷却媒体が旋回流となって該胴管の軸芯付近へ向かって流れるように設けたことを特徴とし、第4の実施態様はEGRガスの流入口を該胴管の軸心に対し偏心させるとともに、そのEGRガスが多く流れる偏心側に冷却媒体が集中するように冷却媒体流入口を複数個設けることを特徴とするものである。
【0008】
すなわち本発明は、冷却媒体流入口側のチューブシート付近に冷却媒体の流れが停滞してできる冷却不十分なオーバーヒートエリアを無くす手段として、冷却媒体流入口を複数個設ける手段をこうじたもので、これによりチューブシート付近の流速が均一化されて速くなりオーバーヒートエリアがほとんど発生せず、EGRガス流入口側での冷却媒体の沸騰を防止することが可能となる。
【0009】
【発明の実施の形態】
図1は本発明の請求項1に対応するEGRガス冷却装置の一実施例を示したもので、(A)は中央部を省略して示す平面図、(B)は(A)のb−b線上の縦断面図、図2は本発明の請求項2に対応するEGRガス冷却装置の一実施例を示したもので、(A)は中央部を省略して示す平面図、(B)は中央部を省略して示す横断平面図、図3(A)(B)は本発明の請求項3に対応するEGRガス冷却装置を例示した図1(B)相当図、図4は本発明の請求項4に対応するEGRガス冷却装置の一実施例を示す正面図であり、1は胴管、1−1a、1−1b、1−1c、1−1dは冷却媒体流入口、1−2a、1−2b、1−2c、1−2dは冷却媒体流出口、2は伝熱管群、3はチューブシート、4は端部キャップ、4−1はEGRガスの流入口、4−2はEGRガスの流出口、5は締結用フランジである。
【0010】
まず、図1に示す本発明のEGRガス冷却装置は、冷却媒体流入口を2個設けた例であり、胴管1のEGRガス流入口4−1側に2個の冷却媒体流入口1−1aを図示のごとく冷却媒体流出口1−2aと反対側の底面側にそれぞれ胴管1の中心軸線の両側に所望の間隔を隔てて胴管中心に向かって胴管軸芯と直角に設けた例である。なおこの場合、冷却媒体流入口1−1aは2個設けるので通常のものより小径とし、冷却媒体流出口1−2aは2個の冷却媒体流入口1−1aに対応して冷却媒体流入口1−1aの断面積の2倍程度の大きさとする。
【0011】
上記図1に示す構成のEGRガス冷却装置の場合は、EGRガスの流入口側に設ける冷却媒体流入口を複数個設ける方式の一例であり、EGRガス流入口4−1側の下面側に設けた2個の冷却媒体流入口1−1aより胴管1内に流入した冷却媒体は、いずれも胴管1の中心方向に向かって流れるため、この側のチューブシート3近傍の流速が均一化されて速くなり、流れが停滞して生じるオーバーヒートエリアはなくなる。これによりEGRガス入口側で生じる冷却媒体の沸騰がほとんど皆無となる。そして、冷却媒体流入口1−1aより該胴管1内に流入した冷却媒体は、オーバーヒートエリアを発生させずに胴管1内を流れて伝熱管群2内を流れるEGRガスを冷却して冷却媒体流出口1−2aより排出する。
【0012】
図2に示すEGRガス冷却装置は、EGRガスの流入口側に複数個設ける冷却媒体流入口を、胴管内に流入した冷却媒体が該EGRガス流入口側のチューブシートに沿って流れるように胴管の軸芯に対する垂直線に対し傾斜させて設ける方式の一例であり、胴管1のEGRガス流入口4−1側に3個の冷却媒体流入口1−1bをそれぞれ胴管1の軸芯より上側に所望の間隔を隔てて胴管1の軸芯に対する垂直線に対しチューブシート側に向けて傾斜させた構造となしたものである。ここで、3個の冷却媒体流入口1−1のそれぞれの傾斜角度θは特に限定するものではなく、胴管1の外径により異なるが、5°〜30°程度が適当である。なお前記傾斜角度θはそれぞれ異なる角度としてもよいことはいうまでもなEGRガス。またこの場合も、冷却媒体流入口1−1bを3個設けるので通常のものより小径とし、冷却媒体流出口1−2bは3個の冷却媒体流入口1−1bに対応して冷却媒体流入口1−1bの断面積の3倍程度の大きさとする。
【0013】
上記図2に示す構成のEGRガス冷却装置の場合は、EGRガスの流入口側にチューブシート3側に向けて傾斜させて設けた3個の冷却媒体流入口1−1bより胴管1内に流入した冷却媒体は、いずれもチューブシート3の内表面に沿って流れるため、冷却媒体の流れが停滞して生じるオーバーヒートエリアの発生を防ぐことができ、EGRガス入口側で生じる冷却媒体の沸騰を防止できる。冷却媒体流入口1−1bより該胴管1内に流入した冷却媒体は、前記と同様オーバーヒートエリアを発生させずに胴管1内を流れて伝熱管群2内を流れるEGRガスを冷却して冷却媒体流出口1−2bより排出する。
【0014】
図3に示すEGRガス冷却装置は、EGRガスの流入口側に複数個設ける冷却媒体流入口を、胴管内に流入した冷却媒体が旋回流となって該胴管の軸芯付近へ向かって流れるように、該胴管の接線方向または接線方向に近い方向に設ける方式の一例であり、(A)は胴管1のEGRガス流入口4−1側に3個の冷却媒体流入口1−1cをそれぞれ胴管の接線方向に120°間隔に配設した構造となしたものである。また、(B)は胴管1のEGRガス流入口4−1側に3個の冷却媒体流入口1−1cをそれぞれ接線方向に近い方向に120°間隔に配設し、かつ冷却媒体流入口1−1b付近の伝熱管を取り除いたことにより冷却媒体が胴管1の中心付近まで円滑に流入できる構造となしたものである。なおこの場合も、冷却媒体流入口1−1cを3個設けるので通常のものより小径とし、冷却媒体流出口1−2cは3個の冷却媒体流入口1−1cに対応して冷却媒体流入口1−1cの断面積の3倍程度の大きさとする。
【0015】
上記図3(A)(B)に示す構成のEGRガス冷却装置の場合は、EGRガスの流入口側に胴管の接線方向または接線方向に近い方向にそれぞれ120°間隔に配設した冷却媒体流入口1−1cより該胴管1内に流入した冷却媒体は、いずれも旋回流となって該胴管の軸芯付近へ向かって流れるので、冷却媒体の流れが停滞して生じるオーバーヒートエリアを解消でき、EGRガス流入口側で生じる冷却媒体の沸騰を防止できる。そして、冷却媒体流入口1−1cより該胴管1内に流入した冷却媒体は、前記と同様オーバーヒートエリアを発生させずに胴管1内を流れて伝熱管群2内を流れるEGRガスを冷却して冷却媒体流出口1−2cより排出する。
【0016】
図4に示すEGRガス冷却装置は、EGRガスの流入口を該胴管の軸心に対し偏心させるとともに、そのEGRガスが多く流れる偏心側に冷却媒体が集中するように冷却媒体流入口を複数個設ける方式の一例であり、胴管1の軸心Oに対し冷却媒体流出口1−2dと反対側に偏心量lだけEGRガスの流入口4−1の軸芯O′を偏心させ、この偏心側の胴管1の軸芯に対する垂直線上と偏心軸芯O′を通る水平中心線上に合計3個の冷却媒体流入口1−1dを設けた構造となしたものである。なおこの場合も、冷却媒体流入口1−1dを3個設けるので通常のものより小径とし、冷却媒体流出口1−2dは3個の冷却媒体流入口1−1dに対応して冷却媒体流入口1−1dの断面積の3倍程度の大きさとする。
【0017】
上記図4に示す構成のEGRガス冷却装置の場合は、EGRガスの流入口4−1が偏心しているので、胴管1内部の伝熱管群2に流入するEGRガスの流れには必然的に偏流が発生するが、この偏流発生側に設けた3個の冷却媒体流入口1−1dより該胴管1内に流入する冷却媒体がEGRガスが多く流れる偏心側に集中するので、冷却媒体の流れが停滞して生じるオーバーヒートエリアを解消でき、EGRガス流入口側で生じる冷却媒体の沸騰を防止できる。そして、冷却媒体流入口1−1dより該胴管1内に流入した冷却媒体は、前記と同様オーバーヒートエリアを発生させずに胴管1内を流れて伝熱管群2内を流れるEGRガスを冷却して冷却媒体流出口1−2dより排出する。
なお図4においてはEGRガスの流入口4−1を偏心させた例を示したが、該流入口4−1は偏心していなくても流れ込むEGRガスに偏流がある場合にも同様な効果が得られる。
【0018】
本発明における冷却媒体流入口1−1a、1−1b、1−1c、1−1dの設置個数についてはここに例示した2〜3個に限定するものではなく、胴管の断面積やサイズなどに応じて適宜定める。
【0019】
【発明の効果】
以上説明したごとく、本発明のEGRガス冷却装置は、冷却媒体流入口より流入した冷却媒体の高い運動エネルギーにより、冷却媒体流入口側のチューブシート付近に冷却媒体の流れが停滞してできる冷却不十分なオーバーヒートエリアを解消することができる結果、EGRガス流入口側での冷却媒体の沸騰に伴う一時的な熱交換性能の低下を防止でき、EGRガスを十分に冷却できるという優れた効果を奏する。
【図面の簡単な説明】
【図1】本発明の請求項1に対応するEGRガス冷却装置の一実施例を示したもので、(A)は中央部を省略して示す平面図、(B)は(A)のb−b線上の縦断面図である。
【図2】本発明の請求項2に対応するEGRガス冷却装置の一実施例を示したもので、(A)は中央部を省略して示す平面図、(B)は中央部を省略して示す横断平面図である。
【図3】本発明の請求項3に対応するEGRガス冷却装置を例示したもので、(A)は一実施例を示す図1(B)相当図、(B)は他の実施例を示す図1(B)相当図である。
【図4】本発明の請求項4に対応するEGRガス冷却装置の一実施例を示す正面図である。
【図5】本発明の対象とする従来の多管式のEGRガス冷却装置の一例を中央部を省略して示す横断平面図である。
【図6】図5のイ−イ線上の断面図である。
【符号の説明】
1 胴管
1−1a、1−1b、1−1c、1−1d 冷却媒体流入口
1−2a、1−2a、1−2c、1−2d 冷却媒体流出口
2 伝熱管群
3 チューブシート
4 端部キャップ
4−1 EGRガスの流入口
4−2 EGRガスの流出口
5 締結用フランジ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus that cools EGR gas using engine coolant, a car air conditioner refrigerant, cooling air, or the like.
[0002]
[Prior art]
A method in which a part of the exhaust gas is taken out from the exhaust system, returned to the engine intake system, and added to the air-fuel mixture is called EGR (Exhaust Gas Recirculation). EGR suppresses the generation of NOx (nitrogen oxide), reduces pump loss, reduces heat dissipation loss to the coolant due to lowering of combustion gas temperature, and increases specific heat ratio due to changes in working gas amount / composition. Since many effects such as improvement of cycle efficiency can be obtained, it is an effective method for improving the thermal efficiency of the engine.
[0003]
However, when the temperature of the EGR gas is increased and the amount of EGR gas is increased, the durability of the EGR valve is deteriorated due to its thermal action, which may cause premature breakage, and a water cooling structure is necessary to prevent this. It is recognized that there is a decrease in fuel consumption due to a decrease in charging efficiency as the intake air temperature increases. In order to avoid such a situation, an apparatus that cools EGR gas with engine coolant or the like is used. As this apparatus, a multi-tube heat exchanger is generally used.
[0004]
As shown in FIG. 5 and FIG. 6, the multitubular heat exchanger used in this case is a trunk pipe provided with a cooling medium inlet 11-1 and a cooling medium outlet 11-2 at both ends. 11, both end portions of the heat transfer tube group 12 are fixed to the tube sheet 13 made of sheet metal by brazing, while the tube sheet 13 is arranged with its outer peripheral end fixed to the inner wall of the trunk tube 11 by brazing. An end cap 14a provided with an EGR gas inlet 14a-1 is fixed to one end of the trunk tube 11, and an EGR gas outlet 14b-1 is provided at the other end. The end cap 14b is fixed, and the fastening flanges 15a and 15b are externally fixed to the outer opening ends of the gas inlet 14a-1 and the outlet 14b-1 of the end caps 14a and 14b. Structure and You have me.
[0005]
[Problems to be solved by the invention]
In the case of the conventional multi-tube heat exchanger used for cooling the EGR gas, the cooling medium is used to ensure the reliability of the fixing structure between the trunk tube 11, the tube sheet 13, and the end caps 14a and 14b. Since the inflow port 11-1 and the cooling medium outflow port 11-2 are respectively provided at positions away from the tube sheet 13 by a desired distance, particularly in the cooling medium inflow port 11-1 side, The cooling medium flowing into the tube sheet 13 on this side stagnates on the side of the tube sheet 13 and the range S surrounded by the dotted line shown in FIGS. 5 and 6 becomes an overheated area where cooling is insufficient, and the temperature of the EGR gas is in this overheated area When the temperature rises or the amount of EGR gas increases, the outer peripheral surface temperature of the heat transfer tube rises, causing boiling of the cooling medium. When the cooling medium boils, the outer surface of the heat transfer tube is covered with steam and cannot contact the cooling medium and heat exchange is not performed, so that the EGR gas is not cooled in the area, and as a result, the heat of the entire cooling device is heated. The exchange performance is deteriorated, and the EGR gas outlet temperature does not decrease.
[0006]
The present invention was made to solve the above-mentioned problems of the conventional multi-tube heat exchanger, and the heat exchange performance is lowered by eliminating the overheating area formed on the cooling medium inflow side and eliminating the boiling of the cooling medium. It is intended to provide an EGR gas cooling device that can prevent EGR and sufficiently cool the EGR gas.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention provides a heat transfer tube group in a tube sheet fixed in the vicinity of both end portions of the inner wall of a trunk tube provided with a cooling medium inlet and a cooling medium outlet at both ends. Further, end caps are fixed to both ends of the trunk tube, and an EGR gas inlet and outlet are provided on the end cap, and the gas inlet and outlet of the end cap are provided. In the multi-tube EGR gas cooling device having a structure in which a fastening flange is fitted and fixed to the outer opening end of the outlet, the cooling medium inlet provided on the EGR gas inlet side is plural, In the second embodiment, a plurality of cooling medium inlets provided on the EGR gas inlet side are provided so that the cooling medium flowing into the trunk pipe flows vertically along the tube sheet on the EGR gas inlet side. Inclined with respect to the center line In the third embodiment, a plurality of cooling medium inflow ports provided on the EGR gas inflow side are provided, and the cooling medium flowing into the cylinder tube becomes a swirling flow, and the axis of the cylinder tube is provided. characterized by digits set to flow toward the vicinity of the fourth embodiment causes decentering the inlet of the EGR gas to the axis of said cylinder tube, the cooling medium eccentric side flows often the EGR gas A plurality of cooling medium inlets are provided so as to be concentrated.
[0008]
That is, the present invention uses a means for providing a plurality of cooling medium inlets as means for eliminating an insufficiently overcooled area caused by the cooling medium flow stagnating near the tube sheet on the cooling medium inlet side, As a result, the flow velocity in the vicinity of the tube sheet is made uniform and fast, and an overheating area hardly occurs, and boiling of the cooling medium on the EGR gas inlet side can be prevented.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an embodiment of an EGR gas cooling device corresponding to claim 1 of the present invention, in which (A) is a plan view with the central portion omitted, and (B) is a b- FIG. 2 is a longitudinal sectional view taken along line b, FIG. 2 shows an embodiment of an EGR gas cooling device corresponding to claim 2 of the present invention, (A) is a plan view with the central portion omitted, and (B). FIG. 3A and FIG. 3B are diagrams corresponding to FIG. 1B illustrating an EGR gas cooling device corresponding to claim 3 of the present invention, and FIG. 4 is the present invention. 1 is a front view showing an embodiment of an EGR gas cooling device corresponding to claim 4 of the present invention, wherein 1 is a trunk tube, 1-1a, 1-1b, 1-1c, 1-1d are cooling medium inlets, 1- 2a, 1-2b, 1-2c, 1-2d are cooling medium outlets, 2 is a heat transfer tube group, 3 is a tube sheet, 4 is an end cap, 4-1 is EGR gas Inlet, 4-2 outlet of the EGR gas, 5 is a fastening flange.
[0010]
First, the EGR gas cooling device of the present invention shown in FIG. 1 is an example in which two cooling medium inlets are provided, and two cooling medium inlets 1-1 are provided on the EGR gas inlet 4-1 side of the trunk tube 1. As shown in the figure, 1a is provided on the bottom surface side opposite to the cooling medium outlet 1-2a on both sides of the central axis of the trunk tube 1 at a desired interval and perpendicular to the trunk axis toward the trunk tube center. It is an example. In this case, since the two cooling medium inlets 1-1a are provided, the diameter is smaller than that of a normal one, and the cooling medium outlet 1-2a corresponds to the two cooling medium inlets 1-1a. The size is about twice the cross-sectional area of -1a.
[0011]
The EGR gas cooling device having the configuration shown in FIG. 1 is an example of a method of providing a plurality of cooling medium inlets provided on the EGR gas inlet side, and is provided on the lower surface side of the EGR gas inlet 4-1 side. In addition, since the cooling medium flowing into the trunk tube 1 from the two cooling medium inlets 1-1a flows toward the center of the trunk tube 1, the flow velocity in the vicinity of the tube sheet 3 on this side is made uniform. And there is no overheating area caused by stagnant flow. As a result, almost no boiling of the cooling medium occurs on the EGR gas inlet side. Then, the cooling medium flowing into the trunk pipe 1 from the cooling medium inlet 1-1a flows through the trunk pipe 1 without generating an overheat area, and cools the EGR gas flowing in the heat transfer pipe group 2 to cool it. It discharges from the medium outlet 1-2a.
[0012]
The EGR gas cooling device shown in FIG. 2 has a plurality of cooling medium inlets provided on the EGR gas inlet side so that the cooling medium flowing into the trunk pipe flows along the tube sheet on the EGR gas inlet side. This is an example of a system that is inclined with respect to a vertical line with respect to the axis of the tube, and three cooling medium inlets 1-1b are respectively provided on the EGR gas inlet 4-1 side of the barrel tube 1, and the axis of the barrel tube 1 is provided. A structure in which a desired interval is provided on the upper side and inclined toward the tube sheet side with respect to a vertical line with respect to the axis of the trunk tube 1 is formed. Here, the inclination angle θ of each of the three cooling medium inflow ports 1-1 is not particularly limited, and varies depending on the outer diameter of the trunk tube 1, but approximately 5 ° to 30 ° is appropriate. Needless to say, the inclination angle θ may be different from each other. Also in this case, since three cooling medium inlets 1-1b are provided, the diameter is smaller than that of a normal one, and the cooling medium outlet 1-2b corresponds to the three cooling medium inlets 1-1b. The size is about three times the cross-sectional area of 1-1b.
[0013]
In the case of the EGR gas cooling device having the configuration shown in FIG. 2, the cooling medium inlet 1-1b provided at the EGR gas inlet side inclines toward the tube sheet 3 side into the trunk pipe 1. Since all of the inflowing cooling medium flows along the inner surface of the tube sheet 3, it is possible to prevent the occurrence of an overheating area caused by the stagnation of the cooling medium flow, and the boiling of the cooling medium occurring on the EGR gas inlet side can be prevented. Can be prevented. The cooling medium flowing into the trunk tube 1 from the cooling medium inlet 1-1b flows in the trunk tube 1 without generating an overheat area as described above, and cools the EGR gas flowing in the heat transfer tube group 2. It discharges from the cooling medium outlet 1-2b.
[0014]
The EGR gas cooling device shown in FIG. 3 has a plurality of cooling medium inlets provided on the EGR gas inlet side, and the cooling medium that has flowed into the trunk pipe turns into a swirling flow and flows toward the vicinity of the axis of the trunk pipe. As shown in the figure, FIG. 3A is an example of a system provided in the tangential direction of the trunk pipe or in a direction close to the tangential direction, and FIG. 9A shows three cooling medium inlets 1-1c on the EGR gas inlet 4-1 side of the trunk pipe 1. Are arranged at intervals of 120 ° in the tangential direction of the trunk tube. (B) shows three cooling medium inlets 1-1c arranged on the EGR gas inlet 4-1 side of the trunk pipe 1 at intervals of 120 ° in the direction close to the tangential direction, and the cooling medium inlet. By removing the heat transfer tube in the vicinity of 1-1b, the cooling medium can smoothly flow to the vicinity of the center of the trunk tube 1. In this case as well, since three cooling medium inlets 1-1c are provided, the diameter is smaller than that of a normal one, and the cooling medium outlet 1-2c corresponds to the three cooling medium inlets 1-1c. The size is about three times the cross-sectional area of 1-1c.
[0015]
In the case of the EGR gas cooling apparatus having the configuration shown in FIGS. 3A and 3B, the cooling medium disposed at intervals of 120 ° in the tangential direction of the trunk tube or in the direction close to the tangential direction on the EGR gas inlet side. The cooling medium that has flowed into the trunk pipe 1 from the inlet 1-1c flows as a swirling flow toward the vicinity of the axial center of the trunk pipe. This can eliminate the boiling of the cooling medium that occurs on the EGR gas inlet side. Then, the cooling medium that has flowed into the tube 1 from the cooling medium inlet 1-1c flows in the tube 1 without generating an overheat area, and cools the EGR gas flowing in the heat transfer tube group 2 as described above. And discharged from the cooling medium outlet 1-2c.
[0016]
The EGR gas cooling apparatus shown in FIG. 4 has a plurality of cooling medium inlets so that the EGR gas inlet is eccentric with respect to the axial center of the trunk tube, and the cooling medium is concentrated on the eccentric side through which a large amount of EGR gas flows. This is an example of a system in which the EGR gas inlet 4-1 is offset by an eccentric amount l on the side opposite to the cooling medium outlet 1-2d with respect to the axis O of the trunk tube 1, In this structure, a total of three cooling medium inlets 1-1d are provided on a vertical line with respect to the axis of the trunk tube 1 on the eccentric side and on a horizontal center line passing through the eccentric axis O '. In this case as well, since three cooling medium inlets 1-1d are provided, the diameter is smaller than that of the normal one, and the cooling medium outlet 1-2d corresponds to the three cooling medium inlets 1-1d. The size is about three times the cross-sectional area of 1-1d.
[0017]
In the case of the EGR gas cooling device having the configuration shown in FIG. 4, the EGR gas inlet 4-1 is eccentric, and therefore the EGR gas flowing into the heat transfer tube group 2 inside the trunk tube 1 inevitably has a flow. Drift occurs, but the cooling medium flowing into the barrel 1 from the three cooling medium inflow ports 1-1d provided on the drift generation side concentrates on the eccentric side where a lot of EGR gas flows. It is possible to eliminate the overheating area caused by the stagnation of the flow and to prevent the cooling medium from boiling on the EGR gas inlet side. Then, the cooling medium that has flowed into the trunk tube 1 from the cooling medium inlet port 1-1d flows in the trunk tube 1 without generating an overheat area as described above, and cools the EGR gas flowing in the heat transfer tube group 2. And discharged from the cooling medium outlet 1-2d.
FIG. 4 shows an example in which the EGR gas inlet 4-1 is eccentric. However, even if the EGR gas 4-1 is not eccentric, the same effect can be obtained when the EGR gas flowing in is eccentric. can get.
[0018]
The number of installed cooling medium inlets 1-1a, 1-1b, 1-1c, and 1-1d in the present invention is not limited to the two to three exemplified here, and the cross-sectional area and size of the trunk pipe As appropriate, depending on
[0019]
【The invention's effect】
As described above, the EGR gas cooling device of the present invention is not cooled by the flow of the cooling medium stagnating near the tube sheet on the cooling medium inlet side due to the high kinetic energy of the cooling medium flowing in from the cooling medium inlet. As a result of being able to eliminate a sufficient overheating area, it is possible to prevent a temporary decrease in heat exchange performance due to boiling of the cooling medium on the EGR gas inlet side, and to achieve an excellent effect that the EGR gas can be sufficiently cooled. .
[Brief description of the drawings]
FIG. 1 shows an embodiment of an EGR gas cooling device corresponding to claim 1 of the present invention, in which (A) is a plan view with the central portion omitted, and (B) is b in (A). It is a longitudinal cross-sectional view on the -b line.
FIGS. 2A and 2B show an embodiment of an EGR gas cooling apparatus corresponding to claim 2 of the present invention, in which FIG. 2A is a plan view with the central portion omitted, and FIG. FIG.
FIGS. 3A and 3B illustrate an EGR gas cooling device corresponding to claim 3 of the present invention, wherein FIG. 3A is a view corresponding to FIG. 1B showing one embodiment, and FIG. 3B is another embodiment. FIG. 1B is a diagram corresponding to FIG.
FIG. 4 is a front view showing an embodiment of an EGR gas cooling device corresponding to claim 4 of the present invention.
FIG. 5 is a cross-sectional plan view showing an example of a conventional multi-tube EGR gas cooling apparatus that is the subject of the present invention, with the central portion omitted.
6 is a cross-sectional view taken along the line II in FIG.
[Explanation of symbols]
1 Body tube 1-1a, 1-1b, 1-1c, 1-1d Cooling medium inlet 1-2a, 1-2a, 1-2c, 1-2d Cooling medium outlet 2 Heat transfer tube group 3 Tube sheet 4 End Cap 4-1 EGR gas inlet 4-2 EGR gas outlet 5 Fastening flange

Claims (3)

両端部に冷却媒体流入口および冷却媒体流出口が設けられた胴管の内壁の両端部付近に固定されたチューブシートに伝熱管群が固着配列され、さらに前記胴管の両端部には端部キャップが固着され、また前記端部キャップにはEGRガスの流入口と流出口が設けられ、前記端部キャップのガス流入口および流出口の外側開口端部に締結用フランジが外嵌固着された構造の多管式のEGRガス冷却装置において、EGRガスの流入口側に設ける複数個の冷却媒体流入口を、胴管内に流入した冷却媒体が該EGRガス流入口側のチューブシートに沿って流れるように胴管の軸芯に対する垂直線に対し傾斜させて設けることを特徴とするEGRガス冷却装置。 A heat transfer tube group is fixedly arranged on a tube sheet fixed near both ends of the inner wall of the trunk tube provided with a cooling medium inlet and a cooling medium outlet at both ends, and end portions are provided at both ends of the trunk tube. The cap was fixed, and the end cap was provided with an EGR gas inlet and outlet, and a fastening flange was fitted and fixed to the outer opening end of the gas inlet and outlet of the end cap. In the multi-tube EGR gas cooling apparatus having the structure, the cooling medium flowing into the trunk pipe flows along the tube sheet on the EGR gas inlet side through a plurality of cooling medium inlets provided on the EGR gas inlet side. Thus, the EGR gas cooling device is provided so as to be inclined with respect to a vertical line with respect to the axis of the trunk tube. EGRガスの流入口側に複数個設ける冷却媒体流入口を、胴管内に流入した冷却媒体が旋回流となって該胴管の軸芯付近へ向かって流れるように設けることを特徴とする請求項1記載のEGRガス冷却装置。A plurality of cooling medium inlets provided on the EGR gas inlet side are provided so that the cooling medium flowing into the trunk pipe flows in a swirling flow toward the vicinity of the axis of the trunk pipe. 2. The EGR gas cooling device according to 1. 両端部に冷却媒体流入口および冷却媒体流出口が設けられた胴管の内壁の両端部付近に固定されたチューブシートに伝熱管群が固着配列され、さらに前記胴管の両端部には端部キャップが固着され、また前記端部キャップにはEGRガスの流入口と流出口が設けられ、前記端部キャップのガス流入口および流出口の外側開口端部に締結用フランジが外嵌固着された構造の多管式のEGRガス冷却装置において、EGRガスの流入口を該胴管の軸心に対し偏心させるとともに、そのEGRガスが多く流れる偏心位置に冷却媒体が集中するように冷却媒体流入口を複数個設けることを特徴とするEGRガス冷却装置。A heat transfer tube group is fixedly arranged on a tube sheet fixed near both ends of the inner wall of the trunk tube provided with a cooling medium inlet and a cooling medium outlet at both ends, and end portions are provided at both ends of the trunk tube. The cap was fixed, and the end cap was provided with an EGR gas inlet and outlet, and a fastening flange was fitted and fixed to the outer opening end of the gas inlet and outlet of the end cap. In the multi-tube type EGR gas cooling apparatus having the structure, the EGR gas inlet is eccentric with respect to the axial center of the trunk pipe, and the cooling medium inlet is concentrated so that the cooling medium is concentrated at an eccentric position where the EGR gas flows largely. A plurality of EGR gas cooling devices.
JP03609299A 1999-02-15 1999-02-15 EGR gas cooling device Expired - Fee Related JP4386215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03609299A JP4386215B2 (en) 1999-02-15 1999-02-15 EGR gas cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03609299A JP4386215B2 (en) 1999-02-15 1999-02-15 EGR gas cooling device

Publications (2)

Publication Number Publication Date
JP2000234566A JP2000234566A (en) 2000-08-29
JP4386215B2 true JP4386215B2 (en) 2009-12-16

Family

ID=12460121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03609299A Expired - Fee Related JP4386215B2 (en) 1999-02-15 1999-02-15 EGR gas cooling device

Country Status (1)

Country Link
JP (1) JP4386215B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014194296A (en) * 2013-03-28 2014-10-09 Usui Kokusai Sangyo Kaisha Ltd Multi-tube heat exchanger
WO2017122832A1 (en) * 2016-01-12 2017-07-20 株式会社ティラド Exhaust gas heat exchanger having stacked flat tubes

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004077024A (en) * 2002-08-19 2004-03-11 Denso Corp Exhaust heat exchanger device
EP1548267B1 (en) * 2002-10-02 2012-04-25 Hino Motors, Ltd. Egr cooler
US8069905B2 (en) 2003-06-11 2011-12-06 Usui Kokusai Sangyo Kaisha Limited EGR gas cooling device
ES2579171T3 (en) * 2003-11-18 2016-08-05 Taiheiyo Cement Corporation Flue gas treatment procedure through a gas extraction probe
JP2009097840A (en) * 2007-10-19 2009-05-07 T Rad Co Ltd Heat exchanger
JP2010048536A (en) 2008-08-25 2010-03-04 Denso Corp Heat exchanger
DE102009034723A1 (en) * 2009-07-24 2011-01-27 Behr Gmbh & Co. Kg Heat exchanger and charging system
JP5282003B2 (en) * 2009-10-13 2013-09-04 本田技研工業株式会社 Exhaust gas recirculation device
JP5470327B2 (en) * 2011-05-27 2014-04-16 株式会社ユタカ技研 Heat recovery unit
DE102014008774A1 (en) * 2014-06-12 2015-12-17 Mtu Friedrichshafen Gmbh Heat exchanger with housing
JP6606375B2 (en) * 2015-02-09 2019-11-13 現代自動車株式会社 Integrated EGR cooler and integrated EGR cooling system including the same
AU2017376456A1 (en) * 2016-12-13 2019-06-27 The Texas A&M University System Sensible and latent heat exchangers with particular application to vapor-compression desalination
JP2020118085A (en) * 2019-01-23 2020-08-06 いすゞ自動車株式会社 Exhaust gas cooling member

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014194296A (en) * 2013-03-28 2014-10-09 Usui Kokusai Sangyo Kaisha Ltd Multi-tube heat exchanger
WO2017122832A1 (en) * 2016-01-12 2017-07-20 株式会社ティラド Exhaust gas heat exchanger having stacked flat tubes
US10563624B2 (en) 2016-01-12 2020-02-18 T.Rad Co., Ltd. Exhaust gas heat exchanger having stacked flat tubes

Also Published As

Publication number Publication date
JP2000234566A (en) 2000-08-29

Similar Documents

Publication Publication Date Title
JP4386215B2 (en) EGR gas cooling device
EP1548267B1 (en) Egr cooler
US8069905B2 (en) EGR gas cooling device
JP3781386B2 (en) EGR gas cooling device
US9303596B2 (en) EGR cooler and EGR cooler device using the same
JP3991786B2 (en) Exhaust heat exchanger
JP3885904B2 (en) EGR gas cooling device
JP2007064075A (en) Exhaust heat exchanger and exhaust gas recirculation system having the same
JP4247942B2 (en) EGR gas cooling device
JPH1113551A (en) Egr cooler
JP2006118436A (en) Bonnet for egr gas cooling device
WO2016167477A1 (en) Egr cooler
JP4031393B2 (en) EGR cooler
JP4248095B2 (en) EGR cooler
JPH1113549A (en) Egr cooler
JP3982650B2 (en) Multi-tube EGR gas cooling system
JP3948638B2 (en) EGR gas cooling device
JPH1113550A (en) Egr cooler
CN100472166C (en) Waste gas recirculation heat-exchanger
JP2001304049A (en) Multiple pipe type egr gas cooling device
JP3958302B2 (en) Heat exchanger
JPH10185489A (en) Egr gas cooler
CN216157790U (en) EGR cooler and engine with same
JPH1136995A (en) Exhaust gas cooling device
GB2319333A (en) EGR gas cooling apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080417

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080616

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080925

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081003

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20081024

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090924

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees