Nothing Special   »   [go: up one dir, main page]

JP4380834B2 - Gas heat pump air conditioner - Google Patents

Gas heat pump air conditioner Download PDF

Info

Publication number
JP4380834B2
JP4380834B2 JP09094499A JP9094499A JP4380834B2 JP 4380834 B2 JP4380834 B2 JP 4380834B2 JP 09094499 A JP09094499 A JP 09094499A JP 9094499 A JP9094499 A JP 9094499A JP 4380834 B2 JP4380834 B2 JP 4380834B2
Authority
JP
Japan
Prior art keywords
refrigerant
cooling water
compressor
heat exchanger
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09094499A
Other languages
Japanese (ja)
Other versions
JP2000283594A (en
Inventor
正樹 高松
裕次 白鳥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP09094499A priority Critical patent/JP4380834B2/en
Publication of JP2000283594A publication Critical patent/JP2000283594A/en
Application granted granted Critical
Publication of JP4380834B2 publication Critical patent/JP4380834B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2327/00Refrigeration system using an engine for driving a compressor
    • F25B2327/001Refrigeration system using an engine for driving a compressor of the internal combustion type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、暖房効率を高めたガスヒートポンプエアコン(GHPエアコン)に関する。
【0002】
【従来の技術】
従来、暖房効率等を向上させるために種々の構成が提案され、GHPエアコンもその一つである。
【0003】
しかし、今日の地球温暖化防止、省エネルギー推進の要望に対応して、かかるGHPエアコンにおいてもさらなる暖房効率等の向上が模索されている。
【0004】
【発明が解決しようとする課題】
しかしながら、GHPエアコンは内熱機関を利用しており、この内熱機関だけで大幅な暖房効率を改善することが困難な状況である。
【0005】
即ち、暖房運転時に外気とエンジンの廃熱(冷却水)とを熱源としてこれらから熱回収を行うGHPエアコンでは、空気用の蒸発器と冷却水用の蒸発器とを直列接続して暖房効率の改善を図っているが、廃熱の回収量を多くすると蒸発温度が外気温度より高くなり、外気から熱回収ができなくなる等の理由から熱効率の改善には限界があった。
【0006】
そこで、本発明は、暖房効率をより改善したガスヒートポンプエアコンを提供することを目的とする。
【0007】
【課題を解決するための手段】
上記課題を解決するため、請求項1にかかる発明は、ガスを燃料とするエンジンで駆動される圧縮手段と、冷媒と室外空気とを熱交換させる室外熱交換器と、冷媒と室内空気とを熱交換させる室内熱交換器と、冷媒を減圧又は絞る減圧手段と、冷媒の循環路を切替える冷媒循環路切替手段とを有して冷暖房を行うガスヒートポンプエアコンにおいて、冷媒が前記エンジンを冷却する冷却水と熱交換する冷却水熱交換器を有し、かつ、前記圧縮手段が第1圧縮機と第2圧縮機とから形成され且つ前記エンジンとは直列につながれて、前記減圧手段が第1減圧器と第2減圧器とから形成されて、冷房運転時は前記第1圧縮機と第2圧縮機とが並列運転を行い、暖房運転時は前記第1圧縮機と第2圧縮機とが直列並列運転を行い前記第2圧縮機が第1圧縮機の後段側になるように前記冷媒循環路切替手段が冷媒の循環路を切替えると共に、この暖房運転時は前記減圧手段に流入した冷媒が前記第1減圧器と第2減圧器とに分流して、前記第1減圧器に流入した冷媒は前記室外熱交換器で熱交換した後前記圧縮手段に戻り、前記第2減圧器に流入した冷媒は前記冷却水熱交換器で冷却水と熱交換した後前記第2圧縮機に供給されるようにしたことを特徴とする。
【0008】
請求項2にかかる発明は、循環路切替手段が、第1圧縮機及び第2圧縮機に対応して設けられていることを特徴とする。
【0009】
請求項3にかかる発明は、エンジンから流出する冷却水の温度が所定温度より低くなるのを防止すべく、分流して第2減圧器を流動する冷媒量を調節する冷媒量調節手段を設けたことを特徴とする。
【0010】
請求項4にかかる発明は、冷却水熱交換器から流出した冷却水を冷却する冷却水放熱器を備えると共に、エンジンから流出する冷却水の温度が所定温度より低くなるのを防止すべく、冷却水熱交換器から流出した冷却水をエンジンの供給側に直接バイパスさせる冷却水分流器を設けたことを特徴とする。
【0011】
請求項5にかかる発明は、暖房運転時にあって暖房負荷が小さいときには、冷却水熱交換器で冷媒と冷却水との熱交換を行わないようにしたことを特徴とする。
【0012】
【発明の実施の形態】
本発明の実施の形態を図を参照して説明する。図1は本発明にかかるGHPエアコンの回路図である。
【0013】
当該GHPエアコンは、冷媒を圧縮する第1及び第2圧縮機11(11a,11b)、冷媒と外気とを熱交換させる室外熱交換器12、冷媒を減圧又は絞る第1及び第2減圧器13(13a,13b)、冷媒と室内空気とを熱交換させる室内熱交換器14、気液混合冷媒を貯留して液冷媒を回路に戻す受液器15、気液混合冷媒を貯留してガス冷媒を回路に戻す気液分離器16、第1及び第2圧縮機11に対応して設けられて冷凍サイクル又はヒートポンプサイクルを形成するように冷媒の循環路を切換える第1及び第2四方弁17(17a,17b)等を有している。
【0014】
そして、第1及び第2圧縮機が圧縮手段を構成し、第1及び第2減圧器が減圧手段を構成し、第1及び第2四方弁が冷媒循環路切替手段を構成している。
【0015】
さらに、当該GHPエアコンは、ガスを燃料として第1及び第2圧縮機11を駆動するエンジン31、このエンジン31の排気ガスと冷却水とを熱交換させる排ガス熱交換器32、冷却水と冷媒とを熱交換させる冷却水熱交換器33、冷却水を循環させるポンプ34、冷却水と外気とを熱交換させる冷却水放熱器35、冷却水の温度調整を行う第1三方弁36等を有している。
【0016】
このような構成で、冷房運転を行うときは、冷媒が実線矢印の方向に循環するように第1四方弁17及び第2四方弁17を切換えて冷凍サイクルを形成する。このとき、第2減圧器13は完全に絞られた状態(冷媒が流動しない状態)となる。
【0017】
これにより、第1圧縮機11a及び第2圧縮機11bは並列運転するようになり、これらの圧縮機11から吐出された高温高圧の冷媒は、配管合流点P1で合流して室外熱交換器12に供給されて外気と熱交換する。
【0018】
この室外熱交換器12で冷媒は凝縮し、第1減圧器13aで減圧又は絞られて受液器15に貯留され、そのうち液冷媒のみが室内熱交換器14に供給されて蒸発する。室内熱交換器14で冷媒が蒸発する際の蒸発熱は室内空気から与えられ、これにより室内空気が冷却されて室内が冷房される。
【0019】
その後、冷媒は第1四方弁17bを介して気液分離器16に供給され、ここでガス冷媒が抽出されて第1及び第2圧縮機11に戻り冷凍サイクルを一巡する。
【0020】
一方、暖房運転時には、第2減圧器13も作用させると共に、エンジン31が駆動されて冷却水が循環するようになる。そして、冷媒が点線方向に循環するように四方弁17が切換えられてヒートポンプサイクルが形成され、またポンプ34が動作して一点鎖線の方向に流動する。
【0021】
これにより第1圧縮機11aと第2圧縮機11bとは直列接続状態となり、第1圧縮機11aで圧縮された冷媒は第1四方弁17aを介して第2圧縮機11bに供給され、当該第2圧縮機11bで圧縮されて第2四方弁17bを介して室内熱交換器14に供給される。
【0022】
室内熱交換器14に供給された冷媒は、室内空気と熱交換して凝縮し、受液器15に貯留された後、液冷媒が回路に戻される。
【0023】
その後、冷媒は分岐点P3で分流し、一部の冷媒は第1減圧器13aで減圧又は絞られて室外熱交換器12に供給され、当該室外熱交換器12で外気と熱交換して蒸発し、第1及び第2四方弁17を介して配管合流点P2で合流して気液分離器16に供給されて、ここでガス冷媒のみが抽出されて圧縮機11に戻る。
【0024】
一方、分岐点P3で分岐した他方の冷媒は第2減圧器13bに供給され、ここで減圧又は絞られて冷却水熱交換器33に供給されて、冷却水と熱交換して圧縮機11に戻る。
【0025】
このとき、冷却水はポンプ34で圧送されて排ガス熱交換器32に供給されて、ここでエンジン31の排ガスと熱交換し、その後エンジン31に供給されて当該エンジン31を冷却する。
【0026】
そして、冷却水は、冷却水熱交換器33で冷媒と熱交換して第1三方弁36を介してポンプ34に戻る。
【0027】
なお、冷却水は冷却水熱交換器33で冷媒と熱交換することにより熱を失い温度が下がるが、十分に温度が下がらない場合には、冷却水を冷却水放熱器35に供給して当該冷却水放熱器35で外気と熱交換させて冷却するようになっている。
【0028】
従って、冷媒には室外熱交換器12を介して外気から熱回収が行われると共に、冷却水熱交換器33を介して冷却水からも熱回収が行われるので暖房効率を向上させることが可能になる。
【0029】
また、暖房運転時には第1及び第2圧縮機11が二段圧縮機を構成するので、各圧縮機11の圧縮比を小さくすることができて圧縮効率を向上させることが可能になる。
【0030】
ところで、エンジン31から流出する冷却水の温度が過冷却にならないように所定温度(例えば70度)に設定することが好ましい。このため、エンジン31から流出する冷却水の温度を検出し、これに基づき第2減圧器13bに分流する冷媒量を調節する冷媒量調節手段を設けることが好ましい。
【0031】
しかし、このように分岐する冷媒量を調整すると冷媒が冷却水から回収する熱量も変動し、それに伴い暖房効率も変化してしまう。
【0032】
そこで、図2に示すように、ポンプ34の供給側とエンジン31の出口側との間に第2三方弁(冷却水温度調節手段)37を設けて、冷却水が排ガス等から十分に熱回収できるようにする事が可能である。
【0033】
無論、暖房負荷が小さいときには、冷却水熱交換器33で冷媒と冷却水との熱交換を行わないようにしてもよい。
【0034】
次に、上記構成による暖房効率の向上について説明する。図3は、上記構成におけるモリエル線図を示した図であり、図4は従来構成の場合におけるモリエル線図を示した図である。
【0035】
図4における暖房能力δは、δ=(h12−h13)×循環冷媒量で表せる。従って、図3においてh4−h5=h12−h13が成立し、かつ、循環冷媒量が等しければ従来と同じ暖房能力を有することになる。
【0036】
なお、循環冷媒量を同じにするためには、例えば第1圧縮機と第2圧縮機との排除容積を同じにし(従来構成の1/2)、第2圧縮機におけるサクションの冷媒比容積を従来の1/2に等しくなるように中間圧を制御すればよい。
【0037】
また、h12−h13=(h2−h1)+(h4−h3)とすると、循環冷媒量は低圧側が1/2となり、圧縮機の駆動力を25%節約することができるようになる。
【0038】
【発明の効果】
以上説明したように請求項1にかかる発明によれば、ガスを燃料とするエンジンで駆動される圧縮手段と、冷媒と室外空気とを熱交換させる室外熱交換器と、冷媒と室内空気とを熱交換させる室内熱交換器と、冷媒を減圧又は絞る減圧手段と、冷媒の循環路を切替える冷媒循環路切替手段とを有して冷暖房を行うガスヒートポンプエアコンにおいて、冷媒が前記エンジンを冷却する冷却水と熱交換する冷却水熱交換器を有し、かつ、前記圧縮手段が第1圧縮機と第2圧縮機とから形成され且つ前記エンジンとは直列につながれて、前記減圧手段が第1減圧器と第2減圧器とから形成されて、冷房運転時は前記第1圧縮機と第2圧縮機とが並列運転を行い、暖房運転時は前記第1圧縮機と第2圧縮機とが直列並列運転を行い前記第2圧縮機が第1圧縮機の後段側になるように前記冷媒循環路切替手段が冷媒の循環路を切替えると共に、この暖房運転時は前記減圧手段に流入した冷媒が前記第1減圧器と第2減圧器とに分流して、前記第1減圧器に流入した冷媒は前記室外熱交換器で熱交換した後前記圧縮手段に戻り、前記第2減圧器に流入した冷媒は前記冷却水熱交換器で冷却水と熱交換した後前記第2圧縮機に供給されるようにしたので、暖房効率をより改善することが可能になる。
【0039】
請求項2にかかる発明によれば、循環路切替手段が、第1圧縮機及び第2圧縮機に対応して設けられたので、少なくとも暖房運転時にはこれらを直列接続して、その中間圧部に冷却水から熱回収した冷媒を供給することができるようになり暖房効率をより改善することが可能になる。
【0040】
請求項3にかかる発明によれば、第2減圧器を流動する冷媒量を調節する冷媒量調節手段を設けたので、エンジンから流出する冷却水の温度が所定温度より低くなるのを防止することができるようになって、暖房効率をより改善することが可能になる。
【0041】
請求項4にかかる発明によれば、冷却水熱交換器から流出した冷却水をエンジンの供給側に直接バイパスさせる冷却水分流器を設けたので、エンジンから流出する冷却水の温度が所定温度より低くなるのを防止することができるようになって、暖房効率をより改善することが可能になる。
【0042】
請求項5にかかる発明によれば、暖房運転時にあって暖房負荷が小さいときには、冷却水熱交換器で冷媒と冷却水との熱交換を行わないようにしたので、圧縮機の容量を従来の半分で運転することができるようになる。
【図面の簡単な説明】
【図1】本発明の実施の形態の説明に適用されるガスヒートポンプエアコンの回路図である。
【図2】他の実施の形態の説明に適用される回路図である。
【図3】本発明にかかるガスヒートポンプエアコンのモリエル線図である。
【図4】従来の構成におけるガスヒートポンプエアコンのモリエル線図である。
【符号の説明】
11a(11) 第1圧縮機
11b(11) 第2圧縮機
12 室外熱交換器
13a(13) 第1減圧器
13b(13) 第2減圧器
14 室内熱交換器
17a(17) 第1四方弁
17b(17) 第2四方弁
31 エンジン
32 排ガス熱交換器
33 冷却水熱交換器
34 ポンプ
35 冷却水放熱器
35 冷却水熱交換器
36 第1三方弁
37 第2三方弁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas heat pump air conditioner (GHP air conditioner) with improved heating efficiency.
[0002]
[Prior art]
Conventionally, various configurations have been proposed to improve heating efficiency and the like, and a GHP air conditioner is one of them.
[0003]
However, in response to today's demands for prevention of global warming and promotion of energy saving, further improvements in heating efficiency and the like are being sought for such GHP air conditioners.
[0004]
[Problems to be solved by the invention]
However, the GHP air conditioner uses an internal heat engine, and it is difficult to improve the heating efficiency significantly only by this internal heat engine.
[0005]
That is, in a GHP air conditioner that recovers heat from outside air and engine waste heat (cooling water) as heat sources during heating operation, an air evaporator and a cooling water evaporator are connected in series to improve the heating efficiency. Improvements have been made, but there was a limit to improving thermal efficiency because the evaporation temperature becomes higher than the outside air temperature if the amount of waste heat recovered is increased, and heat recovery from outside air becomes impossible.
[0006]
Then, an object of this invention is to provide the gas heat pump air conditioner which improved the heating efficiency more.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the invention according to claim 1 includes a compression means driven by an engine using gas as fuel, an outdoor heat exchanger for exchanging heat between refrigerant and outdoor air, and refrigerant and indoor air. In a gas heat pump air conditioner having an indoor heat exchanger for exchanging heat, a pressure reducing means for reducing or reducing the refrigerant, and a refrigerant circulation path switching means for switching a refrigerant circulation path, for cooling and heating, the refrigerant cools the engine A cooling water heat exchanger that exchanges heat with water, the compression means is formed of a first compressor and a second compressor, and the engine is connected in series; The first compressor and the second compressor are operated in parallel during the cooling operation, and the first compressor and the second compressor are connected in series during the heating operation. The second compressor performs parallel operation and the second compressor The refrigerant circulation path switching means switches the refrigerant circulation path so as to be on the rear stage side of the compressor, and during this heating operation, the refrigerant flowing into the decompression means is divided into the first decompressor and the second decompressor. The refrigerant flowing into the first pressure reducer exchanges heat with the outdoor heat exchanger and then returns to the compressing means, and the refrigerant flowing into the second pressure reducer heats with the cooling water with the cooling water heat exchanger. After the replacement, the second compressor is supplied.
[0008]
The invention according to claim 2 is characterized in that the circulation path switching means is provided corresponding to the first compressor and the second compressor.
[0009]
The invention according to claim 3 is provided with a refrigerant amount adjusting means for adjusting the amount of refrigerant flowing through the second pressure reducer in order to prevent the temperature of the cooling water flowing out from the engine from becoming lower than a predetermined temperature. It is characterized by that.
[0010]
The invention according to claim 4 includes a cooling water radiator that cools the cooling water flowing out from the cooling water heat exchanger, and in order to prevent the temperature of the cooling water flowing out from the engine from becoming lower than a predetermined temperature. The present invention is characterized in that a cooling water flow device that directly bypasses the cooling water flowing out from the water heat exchanger to the supply side of the engine is provided.
[0011]
The invention according to claim 5 is characterized in that when the heating load is small during the heating operation, the cooling water heat exchanger does not perform heat exchange between the refrigerant and the cooling water.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a circuit diagram of a GHP air conditioner according to the present invention.
[0013]
The GHP air conditioner includes first and second compressors 11 (11a and 11b) that compress refrigerant, an outdoor heat exchanger 12 that exchanges heat between the refrigerant and outside air, and first and second decompressors 13 that depressurize or throttle the refrigerant. (13a, 13b), an indoor heat exchanger 14 for exchanging heat between the refrigerant and room air, a receiver 15 for storing the gas-liquid mixed refrigerant and returning the liquid refrigerant to the circuit, and a gas refrigerant for storing the gas-liquid mixed refrigerant The first and second four-way valves 17 (which are provided corresponding to the gas-liquid separator 16 and the first and second compressors 11 for switching the refrigerant circulation path to form a refrigeration cycle or a heat pump cycle). 17a, 17b) and the like.
[0014]
The first and second compressors constitute compression means, the first and second decompressors constitute decompression means, and the first and second four-way valves constitute refrigerant circulation path switching means.
[0015]
Further, the GHP air conditioner includes an engine 31 that drives the first and second compressors 11 using gas as fuel, an exhaust gas heat exchanger 32 that exchanges heat between the exhaust gas of the engine 31 and cooling water, and cooling water and refrigerant. A cooling water heat exchanger 33 for exchanging heat, a pump 34 for circulating the cooling water, a cooling water radiator 35 for exchanging heat between the cooling water and the outside air, a first three-way valve 36 for adjusting the temperature of the cooling water, etc. ing.
[0016]
With this configuration, when performing the cooling operation, the first four-way valve 17 and the second four-way valve 17 are switched so that the refrigerant circulates in the direction of the solid arrow, thereby forming a refrigeration cycle. At this time, the second pressure reducer 13 is in a completely throttled state (a state in which the refrigerant does not flow).
[0017]
As a result, the first compressor 11a and the second compressor 11b are operated in parallel, and the high-temperature and high-pressure refrigerant discharged from these compressors 11 merges at the pipe junction P1 and the outdoor heat exchanger 12 To exchange heat with the outside air.
[0018]
The refrigerant is condensed in the outdoor heat exchanger 12, is depressurized or throttled by the first decompressor 13a and stored in the liquid receiver 15, and only the liquid refrigerant is supplied to the indoor heat exchanger 14 and evaporated. The heat of evaporation when the refrigerant evaporates in the indoor heat exchanger 14 is given from the indoor air, whereby the indoor air is cooled and the room is cooled.
[0019]
Thereafter, the refrigerant is supplied to the gas-liquid separator 16 via the first four-way valve 17b, where the gas refrigerant is extracted and returned to the first and second compressors 11 to complete the refrigeration cycle.
[0020]
On the other hand, during the heating operation, the second pressure reducer 13 is also operated, and the engine 31 is driven to circulate the cooling water. Then, the four-way valve 17 is switched so that the refrigerant circulates in the dotted line direction, a heat pump cycle is formed, and the pump 34 operates to flow in the direction of the one-dot chain line.
[0021]
As a result, the first compressor 11a and the second compressor 11b are connected in series, and the refrigerant compressed by the first compressor 11a is supplied to the second compressor 11b via the first four-way valve 17a, Compressed by the two compressors 11b and supplied to the indoor heat exchanger 14 via the second four-way valve 17b.
[0022]
The refrigerant supplied to the indoor heat exchanger 14 is condensed by exchanging heat with room air and stored in the liquid receiver 15, and then the liquid refrigerant is returned to the circuit.
[0023]
Thereafter, the refrigerant is diverted at the branch point P3, and a part of the refrigerant is decompressed or throttled by the first decompressor 13a and supplied to the outdoor heat exchanger 12, and is evaporated by exchanging heat with the outside air in the outdoor heat exchanger 12. Then, it joins at the pipe joining point P <b> 2 via the first and second four-way valves 17 and is supplied to the gas-liquid separator 16, where only the gas refrigerant is extracted and returns to the compressor 11.
[0024]
On the other hand, the other refrigerant branched at the branch point P3 is supplied to the second pressure reducer 13b, where the pressure is reduced or reduced, and the refrigerant is supplied to the cooling water heat exchanger 33 to exchange heat with the cooling water. Return.
[0025]
At this time, the cooling water is pumped by the pump 34 and supplied to the exhaust gas heat exchanger 32, where it exchanges heat with the exhaust gas of the engine 31, and then supplied to the engine 31 to cool the engine 31.
[0026]
The cooling water exchanges heat with the refrigerant in the cooling water heat exchanger 33 and returns to the pump 34 via the first three-way valve 36.
[0027]
The cooling water loses heat by exchanging heat with the refrigerant in the cooling water heat exchanger 33 and the temperature decreases. However, if the temperature does not decrease sufficiently, the cooling water is supplied to the cooling water radiator 35 to A cooling water radiator 35 is used for cooling by exchanging heat with the outside air.
[0028]
Accordingly, the heat is recovered from the outside air through the outdoor heat exchanger 12 and the heat is also recovered from the cooling water through the cooling water heat exchanger 33, so that the heating efficiency can be improved. Become.
[0029]
Moreover, since the 1st and 2nd compressor 11 comprises a two-stage compressor at the time of heating operation, the compression ratio of each compressor 11 can be made small and it becomes possible to improve compression efficiency.
[0030]
By the way, it is preferable that the temperature of the cooling water flowing out from the engine 31 is set to a predetermined temperature (for example, 70 degrees) so as not to be overcooled. For this reason, it is preferable to provide a refrigerant amount adjusting means for detecting the temperature of the cooling water flowing out from the engine 31 and adjusting the refrigerant amount to be diverted to the second decompressor 13b based on the detected temperature.
[0031]
However, when the amount of refrigerant branched in this way is adjusted, the amount of heat that the refrigerant recovers from the cooling water also fluctuates, and the heating efficiency changes accordingly.
[0032]
Therefore, as shown in FIG. 2, a second three-way valve (cooling water temperature adjusting means) 37 is provided between the supply side of the pump 34 and the outlet side of the engine 31 so that the cooling water sufficiently recovers heat from the exhaust gas or the like. It is possible to make it possible.
[0033]
Of course, when the heating load is small, the cooling water heat exchanger 33 may not perform heat exchange between the refrigerant and the cooling water.
[0034]
Next, the improvement of the heating efficiency by the said structure is demonstrated. FIG. 3 is a diagram showing a Mollier diagram in the above configuration, and FIG. 4 is a diagram showing a Mollier diagram in the case of the conventional configuration.
[0035]
The heating capacity δ in FIG. 4 can be expressed by δ = (h12−h13) × circulating refrigerant amount. Therefore, if h4-h5 = h12-h13 is established in FIG. 3 and the amount of circulating refrigerant is equal, the same heating capacity as in the prior art is obtained.
[0036]
In order to make the circulating refrigerant amount the same, for example, the excluded volumes of the first compressor and the second compressor are made the same (1/2 of the conventional configuration), and the refrigerant specific volume of the suction in the second compressor is set to be the same. What is necessary is just to control an intermediate pressure so that it may become equal to 1/2 of the past.
[0037]
If h12−h13 = (h2−h1) + (h4−h3), the circulating refrigerant amount is halved on the low pressure side, and the driving force of the compressor can be saved by 25%.
[0038]
【The invention's effect】
As described above, according to the first aspect of the present invention, the compression means driven by the engine using gas as fuel, the outdoor heat exchanger for exchanging heat between the refrigerant and the outdoor air, and the refrigerant and the indoor air are provided. In a gas heat pump air conditioner having an indoor heat exchanger for exchanging heat, a pressure reducing means for reducing or reducing the refrigerant, and a refrigerant circulation path switching means for switching a refrigerant circulation path, for cooling and heating, the refrigerant cools the engine A cooling water heat exchanger that exchanges heat with water, the compression means is formed of a first compressor and a second compressor, and the engine is connected in series; The first compressor and the second compressor are operated in parallel during the cooling operation, and the first compressor and the second compressor are connected in series during the heating operation. The second compressor performs parallel operation and the second compressor The refrigerant circulation path switching means switches the refrigerant circulation path so as to be on the rear stage side of the compressor, and during this heating operation, the refrigerant flowing into the decompression means is divided into the first decompressor and the second decompressor. The refrigerant flowing into the first pressure reducer exchanges heat with the outdoor heat exchanger and then returns to the compressing means, and the refrigerant flowing into the second pressure reducer heats with the cooling water with the cooling water heat exchanger. Since the second compressor is supplied after the replacement, the heating efficiency can be further improved.
[0039]
According to the invention of claim 2, since the circulation path switching means is provided corresponding to the first compressor and the second compressor, they are connected in series at least during the heating operation, and the intermediate pressure portion is connected to the intermediate pressure portion. It becomes possible to supply the refrigerant heat-recovered from the cooling water, and the heating efficiency can be further improved.
[0040]
According to the invention of claim 3, since the refrigerant amount adjusting means for adjusting the refrigerant amount flowing in the second pressure reducer is provided, the temperature of the cooling water flowing out from the engine is prevented from becoming lower than a predetermined temperature. It becomes possible to improve the heating efficiency.
[0041]
According to the fourth aspect of the present invention, since the cooling water flow device for bypassing the cooling water flowing out from the cooling water heat exchanger directly to the supply side of the engine is provided, the temperature of the cooling water flowing out from the engine is higher than a predetermined temperature. It becomes possible to prevent lowering, and it becomes possible to further improve the heating efficiency.
[0042]
According to the fifth aspect of the present invention, when the heating load is small during heating operation, the cooling water heat exchanger does not perform heat exchange between the refrigerant and the cooling water. You will be able to drive in half.
[Brief description of the drawings]
FIG. 1 is a circuit diagram of a gas heat pump air conditioner applied to the description of an embodiment of the present invention.
FIG. 2 is a circuit diagram applied to the description of another embodiment.
FIG. 3 is a Mollier diagram of a gas heat pump air conditioner according to the present invention.
FIG. 4 is a Mollier diagram of a gas heat pump air conditioner in a conventional configuration.
[Explanation of symbols]
11a (11) 1st compressor 11b (11) 2nd compressor 12 Outdoor heat exchanger 13a (13) 1st decompressor 13b (13) 2nd decompressor 14 Indoor heat exchanger 17a (17) 1st four-way valve 17b (17) Second four-way valve 31 Engine 32 Exhaust gas heat exchanger 33 Cooling water heat exchanger 34 Pump 35 Cooling water radiator 35 Cooling water heat exchanger 36 First three-way valve 37 Second three-way valve

Claims (5)

ガスを燃料とするエンジンで駆動される圧縮手段と、冷媒と室外空気とを熱交換させる室外熱交換器と、冷媒と室内空気とを熱交換させる室内熱交換器と、冷媒を減圧又は絞る減圧手段と、冷媒の循環路を切替える冷媒循環路切替手段とを有して冷暖房を行うガスヒートポンプエアコンにおいて、冷媒が前記エンジンを冷却する冷却水と熱交換する冷却水熱交換器を有し、かつ、前記圧縮手段が第1圧縮機と第2圧縮機とから形成され且つ前記エンジンとは直列につながれて、前記減圧手段が第1減圧器と第2減圧器とから形成されて、冷房運転時は前記第1圧縮機と第2圧縮機とが並列運転を行い、暖房運転時は前記第1圧縮機と第2圧縮機とが直列並列運転を行い前記第2圧縮機が第1圧縮機の後段側になるように前記冷媒循環路切替手段が冷媒の循環路を切替えると共に、この暖房運転時は前記減圧手段に流入した冷媒が前記第1減圧器と第2減圧器とに分流して、前記第1減圧器に流入した冷媒は前記室外熱交換器で熱交換した後前記圧縮手段に戻り、前記第2減圧器に流入した冷媒は前記冷却水熱交換器で冷却水と熱交換した後前記第2圧縮機に供給されるようにしたことを特徴とするガスヒートポンプエアコン。Compression means driven by a gas fueled engine, an outdoor heat exchanger for exchanging heat between the refrigerant and the outdoor air, an indoor heat exchanger for exchanging heat between the refrigerant and the indoor air, and a depressurization for reducing or reducing the refrigerant And a gas heat pump air conditioner that performs cooling and heating with a refrigerant circulation path switching means for switching a refrigerant circulation path, and the refrigerant has a cooling water heat exchanger that exchanges heat with cooling water that cools the engine, and The compression means is formed of a first compressor and a second compressor and is connected in series with the engine, and the pressure reducing means is formed of a first pressure reducer and a second pressure reducer, and during cooling operation. The first compressor and the second compressor perform parallel operation, and during the heating operation, the first compressor and the second compressor perform serial parallel operation, and the second compressor is connected to the first compressor. The refrigerant circulation path switching means is located on the rear side. There switches the circulation path of the refrigerant, when the heating operation is branched into the refrigerant having flowed therein and the first pressure reducing device and the second pressure reducer to the pressure reducing means, the refrigerant having flowed into the first pressure reducer is the outdoor After exchanging heat with the heat exchanger, the refrigerant returned to the compression means, and the refrigerant flowing into the second decompressor was supplied to the second compressor after exchanging heat with the cooling water with the cooling water heat exchanger. A gas heat pump air conditioner. 前記循環路切替手段が、前記第1圧縮機及び第2圧縮機に対応して設けられていることを特徴とする請求項1記載のガスヒートポンプエアコン。 The gas heat pump air conditioner according to claim 1, wherein the circulation path switching means is provided corresponding to the first compressor and the second compressor. 前記エンジンから流出する冷却水の温度が、所定温度より低くなるのを防止すべく、分流して前記第2減圧器を流動する冷媒量を調節する冷媒量調節手段を設けたことを特徴とする請求項1又は2記載のガスヒートポンプエアコン。 In order to prevent the temperature of the cooling water flowing out of the engine from becoming lower than a predetermined temperature, there is provided a refrigerant amount adjusting means for adjusting the amount of refrigerant flowing in the second pressure reducer by diversion. The gas heat pump air conditioner according to claim 1 or 2. 前記冷却水熱交換器から流出した冷却水を冷却する冷却水放熱器を備えると共に、前記エンジンから流出する冷却水の温度が、所定温度より低くなるのを防止すべく、前記冷却水熱交換器に流入した冷却水を前記エンジンの供給側に直接バイパスさせる冷却水分流器を設けたことを特徴とする請求項1又は2記載のガスヒートポンプエアコン。 The cooling water heat exchanger includes a cooling water radiator for cooling the cooling water flowing out from the cooling water heat exchanger, and the cooling water heat exchanger is configured to prevent the temperature of the cooling water flowing out from the engine from becoming lower than a predetermined temperature. A gas heat pump air conditioner according to claim 1 or 2, further comprising a cooling water flow device for bypassing the cooling water flowing into the engine directly to the supply side of the engine. 暖房運転時にあって暖房負荷が小さいときには、前記冷却水熱交換器で冷媒と冷却水との熱交換を行わないようにしたことを特徴とする請求項1乃至4いずれか1項記載のガスヒートポンプエアコン。 5. The gas heat pump according to claim 1, wherein the cooling water heat exchanger does not perform heat exchange between the refrigerant and the cooling water when the heating load is small during heating operation. 6. Air conditioner.
JP09094499A 1999-03-31 1999-03-31 Gas heat pump air conditioner Expired - Fee Related JP4380834B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09094499A JP4380834B2 (en) 1999-03-31 1999-03-31 Gas heat pump air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09094499A JP4380834B2 (en) 1999-03-31 1999-03-31 Gas heat pump air conditioner

Publications (2)

Publication Number Publication Date
JP2000283594A JP2000283594A (en) 2000-10-13
JP4380834B2 true JP4380834B2 (en) 2009-12-09

Family

ID=14012581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09094499A Expired - Fee Related JP4380834B2 (en) 1999-03-31 1999-03-31 Gas heat pump air conditioner

Country Status (1)

Country Link
JP (1) JP4380834B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4073165B2 (en) * 2001-01-22 2008-04-09 三洋電機株式会社 Engine cooling device and refrigeration device
JP4097405B2 (en) * 2001-01-30 2008-06-11 三洋電機株式会社 Engine cooling method and apparatus and refrigeration apparatus
JP2004020153A (en) * 2002-06-20 2004-01-22 Yanmar Co Ltd Engine heat pump
JP4045914B2 (en) * 2002-09-30 2008-02-13 アイシン精機株式会社 Waste heat recovery heat pump
JP4661289B2 (en) * 2005-03-23 2011-03-30 アイシン精機株式会社 Engine driven air conditioner
JP6895653B2 (en) * 2016-10-31 2021-06-30 パナソニックIpマネジメント株式会社 Air conditioner
JP6917583B2 (en) * 2017-04-05 2021-08-11 パナソニックIpマネジメント株式会社 Air conditioner
JP7097762B2 (en) * 2018-06-28 2022-07-08 三菱重工サーマルシステムズ株式会社 Heat pump, heat pump control method
JP2023093146A (en) * 2021-12-22 2023-07-04 パナソニックIpマネジメント株式会社 air conditioner

Also Published As

Publication number Publication date
JP2000283594A (en) 2000-10-13

Similar Documents

Publication Publication Date Title
US7185506B2 (en) Reversible vapor compression system
CN103597296A (en) Freezing cycle
JP4774171B2 (en) Air conditioner
CN101878401B (en) Freezing apparatus
JP4214021B2 (en) Engine heat pump
JP4380834B2 (en) Gas heat pump air conditioner
JP2003056931A (en) Air conditioner
CN100470165C (en) Engine heat pump
JP4570292B2 (en) Air conditioner
JP4407000B2 (en) Refrigeration system using CO2 refrigerant
JP2001227837A (en) Regenerative refrigerating cycle and method for operating heat regenerative refrigeration cycle
WO2018097124A1 (en) Air conditioning device
JP2001296068A (en) Regenerative refrigerating device
JP2001056156A (en) Air conditioning apparatus
JP2010112582A (en) Refrigerating device
JP4273588B2 (en) Air conditioner refrigerant circuit
JP2003004332A (en) Multiple gas heat pump type air conditioner
JP2007232280A (en) Refrigeration unit
JP2004347272A (en) Refrigerating plant
JP3871207B2 (en) Refrigeration system combining absorption and compression
JP2782547B2 (en) Engine driven heat pump heating system
JP2001066007A (en) Air conditioner
JPH062965A (en) Two-stage compression refrigerating cycle apparatus
JP2006234321A (en) Outdoor unit and air conditioner
KR100626756B1 (en) Heat pump air-conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090123

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090225

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090303

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090915

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees