JP4375957B2 - Thermosetting resin composition - Google Patents
Thermosetting resin composition Download PDFInfo
- Publication number
- JP4375957B2 JP4375957B2 JP2002337597A JP2002337597A JP4375957B2 JP 4375957 B2 JP4375957 B2 JP 4375957B2 JP 2002337597 A JP2002337597 A JP 2002337597A JP 2002337597 A JP2002337597 A JP 2002337597A JP 4375957 B2 JP4375957 B2 JP 4375957B2
- Authority
- JP
- Japan
- Prior art keywords
- acid anhydride
- thermosetting resin
- resin composition
- film
- compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Polyethers (AREA)
- Non-Metallic Protective Coatings For Printed Circuits (AREA)
- Production Of Multi-Layered Print Wiring Board (AREA)
- Manufacturing Of Printed Circuit Boards (AREA)
- Manufacturing Of Printed Wiring (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、熱硬化性樹脂組成物に関し、さらに詳しくは、プリント配線板の製造時に使用されるソルダーレジスト、エッチングレジスト、ビルドアップ基板用層間絶縁材、メッキレジストなどとして有用な熱硬化性樹脂組成物に関する。
【0002】
【従来の技術】
最近、新しい有機反応の創造や、その高分子合成への応用の観点から、4員環エーテルであるオキセタン環の開環付加反応を利用した有機反応が研究されており、例えばオキセタン化合物と活性エステルとの付加反応(非特許文献1参照)や、ビスオキセタンとジカルボン酸との重付加反応による側鎖に一級の水酸基を有するポリエステルの合成(非特許文献2参照)が研究、報告されている。さらに最近では、ビスオキセタン類とビスフェノール類との重付加反応(非特許文献3参照)や、ビスオキセタン類と酸無水物との重付加反応(特許文献1参照)が報告されている。また、オキセタン化合物は、熱硬化性化合物として一般に用いられているエポキシ化合物に比べて保存安定性に優れるという利点がある。
【0003】
このようなオキセタン化合物の硬化反応の触媒としては、従来、テトラフェニルホスホニウムブロミド(TPPB)や第四アンモニウム塩等の第四オニウム塩が用いられている。しかしながら、前記のような反応系において、TPPBや第四級アンモニウム塩等を硬化触媒として重付加反応させた場合、反応速度が遅いため、長時間高温で反応させなければ充分に硬化しないという問題があった。
また、多官能オキセタン化合物と酸無水物との硬化反応においては、従来、低分子量の酸無水物が用いられているため、得られる硬化物の基材に対する密着性や耐熱性が悪いという問題もあった。
【0004】
【非特許文献1】
T. Nishikubo and S. Kazuya, Chem. Lett., 697 (1992)
【非特許文献2】
T. Nishikubo, A. Kameyama, A. Suzuki, Reactive & Functional Polymers, 37, 19 (1998)
【非特許文献3】
T. Nishikubo, A. Kameyama, M. Ito, T. Nakajima, H. Miyazaki, Journal of Polymer Chemistry, Vol. 37, pp. 2781-2790 (1998)
【特許文献1】
特開平11−60702号公報(特許請求の範囲)
【0005】
【発明が解決しようとする課題】
本発明は、前記したような従来技術の問題を解決すべくなされたものであり、比較的短時間の加熱処理により速やかに硬化し、保存安定性に優れ、かつ各種基材に対する密着性や耐熱性に優れると共に、強度と柔軟性を併せ持ち、電気絶縁性、耐めっき性、耐薬品性等の諸特性にも優れた硬化物が得られる熱硬化性樹脂組成物を提供することを目的としている。
【0006】
【課題を解決するための手段】
前記目的を達成するために、本発明によれば、(A)酸無水物基を有する重合性不飽和化合物を樹脂の必須の構成成分とする重合体であって、1分子中に3個以上の酸無水物基を有する重量平均分子量1,000〜20,000の酸無水物基含有樹脂、(B)1分子中に2個以上のオキセタニル基を有する多官能オキセタン化合物、及び(C)少なくとも1種の脂肪族もしくは芳香族有機酸金属塩を含む硬化触媒を含有することを特徴とする熱硬化性樹脂組成物が提供される(但し、下記一般式で表わされる構造単位を有するジシクロペンタジエン系化合物を含有する組成物は、除く。)。
(式中、jは3、kは4または5の整数を表わす。)
【0007】
【発明の実施の形態】
本発明の熱硬化性樹脂組成物は、酸無水物と多官能オキセタン化合物の硬化反応系において、触媒として少なくとも1種の脂肪族もしくは芳香族有機酸金属塩を含む硬化触媒(C)を用いている点、及び酸無水物として、酸無水物基を有する重合性不飽和化合物を樹脂の必須の構成成分とする重合体であって、重量平均分子量1,000〜20,000の比較的高分子量の酸無水物基含有樹脂(A)を用いている点に特徴を有する。
すなわち、本発明の熱硬化性樹脂組成物は、酸無水物基含有樹脂(A)と多官能オキセタン化合物(B)の硬化反応において、硬化触媒(C)として少なくとも1種の脂肪族もしくは芳香族有機酸金属塩を用いているため、比較的短時間の加熱処理により速やかに硬化する。また、多官能オキセタン化合物(B)のオキセタン環と酸無水物基含有樹脂(A)の酸無水物基の重付加反応により熱安定性に優れるエステル結合が形成すると共に、酸無水物として、酸無水物基を有する重合性不飽和化合物を樹脂の必須の構成成分とする重合体であって、重量平均分子量1,000〜20,000の比較的高分子量の酸無水物基含有樹脂を用いていることとも相俟って、強度と柔軟性を併せ持ち、耐熱性、電気絶縁性、耐めっき性、耐薬品性等に優れた硬化物が得られる。
【0008】
以下、本発明の熱硬化性樹脂組成物の各成分について詳細に説明する。
まず、酸無水物基含有樹脂(A)は、酸無水物基を有する重合性不飽和化合物(a)を樹脂の必須の構成成分とし、必要に応じて他の重合性不飽和化合物を組み合わせ、アゾビスイソブチロニトリル、過酸化水素等の公知、慣用の重合開始剤を用いて共重合させて得られる樹脂である。
【0009】
酸無水物基を有する重合性不飽和化合物(a)としては、1分子中に酸無水物基と重合性不飽和基を併せ持つ化合物であればよく、特定の化合物に限定されるものではないが、例えば、無水マレイン酸、無水ナジック酸、無水テトラヒドロフタル酸の他、ジペンタエリスリトールペンタ(メタ)アクリレート等の多官能(メタ)アクリレート系化合物の二塩基酸無水物付加物や、フタル酸2−メタクリロイルオキシエチル、ヘキサヒドロフタル酸2−メタクリロイルオキシエチル、コハク酸2−メタクリロイルオキシエチル等の酸無水物が挙げられ、単独で又は任意に2種以上を組み合わせて使用できる。
【0010】
これらの酸無水物基を有する重合性不飽和化合物(a)と共重合させる他の重合性不飽和化合物としては、スチレン、α−メチルスチレン、p−ヒドロキシスチレン等のスチレン系化合物、メチル(メタ)アクリレート、エチル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、i−ブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、ベンジル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2−メトキシエチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート等の(メタ)アクリル酸エステル類、イソボルニル(メタ)アクリレートなどが挙げられ、単独で又は任意に2種以上を組み合わせて使用できる。
【0011】
得られる酸無水物基含有樹脂(A)の分子量は、重量平均分子量で1,000〜20,000、好ましくは5,000〜10,000である。酸無水物基含有樹脂(A)の重量平均分子量が1,000より低いと、基材との密着性や皮膜形成性に劣り、また得られる硬化物は耐熱性、強度、柔軟性に劣ったものとなり、一方、20,000より高い重量平均分子量では、硬化反応が進行し難くなり、また皮膜形成性にも劣ったものとなり易いので好ましくない。
【0012】
前記多官能オキセタン化合物(B)は、1分子中に2個以上のオキセタニル基を有するものであれば全て使用でき、特定の化合物に限定されるものではない。
1分子中に2つのオキセタニル基を有する化合物の代表例としては、下記一般式(1)で示されるビスオキセタン類が挙げられる。
【化2】
上記一般式(1)において、R1は水素原子又は炭素数1〜6のアルキル基を表わし、R2は、炭素数1〜12の線状又は分岐状飽和炭化水素類、炭素数1〜12の線状又は分岐状不飽和炭化水素類、下記式(A)、(B)、(C)、(D)及び(E)で示される芳香族炭化水素類、式(F)及び(G)で示されるカルボニル基を含む直鎖状又は環状のアルキレン類、式(H)及び(I)で示されるカルボニル基を含む芳香族炭化水素類から選択される2つの原子価を持った基である。
【0013】
【化3】
式中、R3は、水素原子、炭素数1〜12のアルキル基、アリール基、又はアラルキル基を表わし、R4は、−O−、−S−、−CH2−、−NH−、−SO2−、−CH(CH3)−、−C(CH3)2−、又は−C(CF3)2−を表わし、R5は、水素原子又は炭素数1〜6のアルキル基を表わす。
【0014】
【化4】
式中、mは1〜12の整数を表わす。
【0015】
【化5】
【0016】
1分子中に3つ以上のオキセタニル基を有する化合物の代表例としては、下記一般式(2)で示されるような化合物の他、オキセタンとノボラック樹脂、ポリ(p−ヒドロキシスチレン)、カルド型オキセタン樹脂、カリックスアレーン類、カリックスレゾルシンアレーン、又はシルセスキオキサン等のシリコーン樹脂類などの水酸基を有する樹脂とのエーテル化物などが挙げられる。その他、オキセタン環を有する不飽和モノマーとアルキル(メタ)アクリレートとの共重合体等も挙げられる。
【化6】
上記一般式(2)において、R1は前記と同じ意味であり、R6は、前記エーテル化物の水酸基含有樹脂残基、下記式(J)、(K)及び(L)で示されるような炭素数1〜12の分岐状アルキレン基、式(M)、(N)及び(P)で示される芳香族炭化水素類である。また、xは残基R6に結合している官能基の数を表わし、3以上の整数、好ましくは3〜5000の整数である。
【0017】
【化7】
【0018】
【化8】
式中、R7は、水素原子、炭素数1〜6のアルキル基、又はアリール基を表わす。
【0019】
前記したような多官能オキセタン化合物(B)は、単独で又は2種以上を組み合わせて用いることができる。
また、多官能オキセタン化合物(B)は、前記酸無水物基含有樹脂(A)の酸無水物1当量に対して、オキセタン1当量の割合となるように配合することが好ましい。
【0020】
硬化触媒(C)としては、オクチル酸、ステアリン酸、オレイン酸、ラウリン酸、ナフテン酸などの脂肪族もしくは芳香族有機酸の銅、鉛、錫、マンガン、ニッケル、鉄、クロム、亜鉛、コバルト、リチウム、ナトリウム、カリウムなどとの金属塩などが挙げられ、単独で又は任意に2種以上を組み合わせて使用できる。
また、本発明の熱硬化性樹脂組成物は、必要に応じて硬化反応を向上させるために上記金属塩と組み合わせて他の硬化促進剤を配合できる。硬化促進剤としては、例えば、三級アミン類、三級アミン塩類、四級オニウム塩類、三級ホスフィン類、イミダゾール類、ホスホニウムイリド、クラウンエーテル錯体、ジシアンジアミドなどが挙げられ、これらを単独で又は2種類以上を組み合わせて併用することができる。
【0021】
硬化触媒(C)の添加量(硬化促進剤を併用する場合にはそれらの合計量)については特に制限されるものではないが、前記酸無水物基含有樹脂(A)100質量部に対して、0.01〜25質量部の範囲が好ましく、0.1〜15質量部の範囲がさらに好ましい。硬化触媒の添加量が0.01質量部未満であると、未硬化部位の増大や硬化に長時間を要し、一方、25質量部を超えると、経時安定性や塗膜の特性低下を招く恐れがある。
【0022】
本発明の熱硬化性樹脂組成物は、本発明の効果を損なわない量的割合で、例えば多官能オキセタン化合物(B)の50質量%以下の割合で、1分子中に2つ以上のエポキシ基を有する多官能エポキシ化合物を配合することができる。
多官能エポキシ化合物としては、ビスフェノールA型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ジシクロペンタジエン変性型エポキシ樹脂、カルド型エポキシ樹脂、カリックスアレーン型エポキシ樹脂、フェノール類とフェノール性水酸基を有する芳香族アルデヒドとの縮合物のエポキシ樹脂、脂環式エポキシ樹脂、さらには臭素化もしくはリン変性した上記エポキシ樹脂や、トリグリシジルイソシアヌレート等の常温で固体のエポキシ樹脂を微紛化したものなどが挙げられる。さらに、場合によっては反応性希釈剤として、単官能エポキシ樹脂を含有していてもよい。
【0023】
さらに、本発明の熱硬化性樹脂組成物は、必要に応じてゴム成分を配合することができる。このようなゴム成分としては、ポリブタジエンゴム、ポリイソプロピレンゴム、ウレタン変性ポリブタジエンゴム、エポキシ変性ポリブタジエンゴム、アクリロニトリル変性ポリブタジエンゴム、カルボキシル基変性ポリブタジエンゴム、及びそれらの架橋ゴム粒子等が挙げられ、単独で又は2種以上を組み合わせて用いることができる。これらのゴム成分は、得られる硬化皮膜の柔軟性を向上させたり、酸化剤による表面粗化処理を可能とし、銅箔等との密着強度を向上させるために添加される。
【0024】
また必要に応じて、フェノキシ樹脂等、造膜効果を有する樹脂類などを配合することができる。これらフェノキシ樹脂は、公知慣用のもの及び2価フェノールと2価エポキシ化合物から公知の方法にて得られるものを用いてもよい。これらフェノキシ樹脂は、組成物の増膜性や得られる硬化物の柔軟性、強靭性を向上させるために、高分子量のものを用いるのが好ましい。このようなフェノキシ樹脂としては、YP−50(東都化成社製)、YX−8100(ジャパンエポキシレジン社製)、UCAR PKHC(ユニオンカーバイド社製)等が挙げられる。これらは単独で又は2種以上を組み合わせて用いることができる。
【0025】
上記ゴム成分やフェノキシ樹脂の添加量については特に制限されるものではないが、熱硬化性樹脂組成物固形分全体量を100質量部としたとき、0.1〜100質量部の範囲であることが好ましい。100質量部を超えると、熱硬化性樹脂組成物の耐熱性や耐薬品性が劣化する恐れがあるためである。従って、表面粗化性や上記特性とのバランスを考慮すると、1〜50質量部であるのが好ましく、1〜30質量部の範囲であるのがさらに好ましい。
【0026】
本発明の熱硬化性樹脂組成物は、組成物の粘度を調整し、印刷等をし易くするために、さらに希釈剤として公知慣用の有機溶剤を配合することができる。このような有機溶剤の種類は特に制限されるものではないが、例えばN,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン等のアミド類、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、イソホロン等のケトン類、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等のエステル類、メチルセロソルブ、ブチルセロソルブ、メチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル等のグリコールエーテル類、トルエン、キシレン、テトラメチルベンゼン等の芳香族炭化水素類、リモネン等のテルペン類、γ−ブチロラクトン等のラクトン類等が挙げられ、これらを単独で又は2種類以上を組み合わせて用いることができる。有機溶剤の配合量は、使用する塗布方法等に応じて適宜の量に設定できるが、酸無水物基含有樹脂(A)100質量部に対して100〜300質量部が適当である。
【0027】
さらに本発明の熱硬化性樹脂組成物には、上記成分の他に、公知慣用の添加剤を配合することができる。例えば、硫酸バリウム、チタン酸バリウム、酸化ケイ素紛、シリカ、タルク、クレー等の無機充填剤、アスベスト、オルベン、ベントン等の増粘剤、シリコーン系、フッ素系、高分子系の消泡剤及び/又はレベリング剤、イミダゾール系、トリアゾール系、チアゾール系、シランカップリング剤等の密着性付与剤のような添加剤を使用できる。
また必要に応じて、フタロシアニンブルー、フタロシアニングリーン、酸化チタン、カーボンブラックなどの着色顔料を配合することができる。さらに、場合によっては難燃剤の如き添加助剤の配合も有用である。
【0028】
以上のような各成分を含有する本発明の熱硬化性樹脂組成物の使用形態としては、ワニス(液状樹脂組成物)、ドライフィルム、樹脂付き銅箔(RCC)等が挙げられる。例えば、ワニスの使用形態であれば、希釈剤等の添加により粘度を調整した後、スクリーン印刷法、カーテンコート法、ロールコート法、デイップコート法、スピンコート法、スプレーコート法、バーコート法、インクジェット法等の適宣の塗布方法によりプリント配線板等の基材上に塗布し、例えば約60〜120℃の温度で仮乾燥することで組成物中に含まれる有機溶剤を除去し、塗膜を形成する。その後、約100℃〜200℃にて熱硬化反応を進行させる。この時、気泡の除去や硬化を充分に行なう目的で、2段階にて硬化させても問題はない。また、場合によっては不活性ガス雰囲気下での硬化を行なっても何ら問題はない。
【0029】
また、ドライフィルムの使用形態については、前述したような本発明の熱硬化性樹脂組成物を必要に応じて塗布方法に適した粘度に調整し、適当な支持体、例えば可撓性のベースフィルム上に塗布した後乾燥し、例えば約60〜100℃の温度で組成物中に含まれる有機溶剤を揮発乾燥させることにより、タックフリーの乾燥皮膜とする。このようにしてベースフィルム上に形成された乾燥皮膜は、未使用時、この上にカバーフィルムを積層して保存することが好ましい。
【0030】
ここで、ベースフィルムとしては、例えばポリエチレンテレフタレート(PET)、ポリエチレン(PE)、ポリプロピレン、ポリカーボネート、ポリエーテルスルフォン、ポリ塩化ビニル等からなる厚さ15〜125μmの合成樹脂フィルムが使用できる。このベースフィルム上への塗膜の形成では、アプリケーター、バーコーター、ロールコーター、カーテンコーター、スピンコーター、スプレーコーター、スクリーンコーター等を用いた塗布方法が採用され、乾燥後の膜厚で10〜150μmの塗膜が形成される。
このようにして、ドライフィルム化された熱硬化性樹脂組成物は、回路形成された配線基板に加圧、加熱下条件でラミネートし、又はプレスにより積層することができる。
【0031】
【実施例】
以下に実施例及び比較例を示して本発明についてより具体的に説明するが、以下の実施例は本発明の例示のためのものであり、本発明を限定するものではない。なお、以下において「部」とあるのは、特に断りのない限り全て「質量部」を示すものとする。
【0032】
下記実施例1〜5及び比較例1、2で用いた原材料を表1に示す。
【表1】
【0033】
実施例1〜5及び比較例1、2
表2に示す配合割合で各成分を配合し、ロールミルを用いて混練し、熱硬化性樹脂組成物を調製した。
【表2】
【0034】
性能評価:
(1)熱硬化性
前記実施例1〜5及び比較例1、2の各熱硬化性樹脂組成物を、それぞれ銅張り積層板に50μmの膜厚になるようにアプリケーターで塗布し、80℃にて20分間乾燥した後、表3に示す条件にて熱硬化反応を行ない、硬化皮膜を作製した。得られた硬化皮膜の表面を、アセトンを染み込ませた脱脂綿にて50回擦り、表面の曇りの状態を目視し、以下の判定基準で評価した。
○:全く変化のないもの
△:表面に曇りが生じたもの
×:皮膜が完全に溶解し、下地まで達したもの
【0035】
(2)硬化皮膜の変色
前記実施例1〜5及び比較例1、2の各熱硬化性樹脂組成物を、それぞれ銅張り積層板に50μmの膜厚になるようにアプリケーターで塗布し、80℃にて20分間乾燥した後、180℃にて60分間熱硬化反応を行ない、硬化皮膜を作製した。この硬化皮膜の変色の程度を目視により評価した。
【0036】
(3)はんだ耐熱性
前記実施例1〜5及び比較例1、2の各熱硬化性樹脂組成物を、それぞれ銅張り積層板に50μmの膜厚になるようにパターン印刷を行ない、80℃にて20分間乾燥した後、180℃にて60分間熱硬化反応を行ない、硬化皮膜を形成した評価基板を作製した。
評価は、ロジン系フラックスを塗布した評価基板を、予め260℃に設定したはんだ槽に60秒間浸漬し、イソプロピルアルコールでフラックスを洗浄した後、テープピーリングを行ない目視による膨れ、剥がれ、変色について評価した。
◎:全く変化が認められないもの
○:僅かに変化したもの
△:皮膜の膨れ、剥がれが20%以下のもの
×:皮膜の膨れ、剥がれが20%以上のもの
【0037】
(4)密着性
前記(4)はんだ耐熱性の試験と同条件にて評価基板を作製し、JIS D0202の試験法に従ってそれぞれの基板にゴバン目状にクロスカットを入れ、次いでテープによるピーリング試験後の剥がれの状態を以下の基準にて目視判定した。
◎:100/100で全く変化が認められないもの
○:100/100で線の際が僅かに剥がれたもの
△:50/100〜90/100
×:0/100〜50/100
【0038】
(5)皮膜形成性
前記実施例1〜5及び比較例1、2の各熱硬化性樹脂組成物を、それぞれ厚さ18μmの銅箔上に50μmの膜厚になるようにアプリケーターで塗布し、80℃にて20分間乾燥した後、180℃にて60分間熱硬化反応を行ない、硬化皮膜を作製した。その後銅箔ごと90°に折り曲げ、皮膜表面のクラックの観察を行なった。
○:クラックが全く入らなかったもの
△:折れ目のスジ及び僅かな割れが生じたもの
×:全面にクラックが生じてしまい、剥がれてしまったもの。
【0039】
(6)皮膜の強靭性(破断強度、弾性率、伸び)
前記実施例1〜6及び比較例1、2の各熱硬化性樹脂組成物を、それぞれ厚さ18μmの銅箔上に50μmの膜厚になるようにアプリケーターで塗布し、80℃にて20分間乾燥した後、180℃にて60分間熱硬化反応を行ない、硬化皮膜を作製した。その後銅箔のみエッチングを行ない硬化皮膜を1cm×7cmの短冊を作製し、引張試験機(島津(株)製、オートグラフAGS N−10)にて試験を行ない、皮膜の破断強度、弾性率、伸びの評価を行なった。
【0040】
得られた結果を下記表3及び表4に示す。
【表3】
表3に示される結果から明らかなように、硬化触媒として脂肪族もしくは芳香族有機酸金属塩(オクチル酸スズ、オクチル酸亜鉛、ナフテン酸亜鉛)を用いた実施例1〜5では比較的低温で速やかに硬化反応が進行したが、TPPBを用いた比較例1では170℃以上の高温が必要であり、しかも60分以上の加熱時間が必要であった。一方、比較例2では、硬化触媒として脂肪族有機酸金属塩(オクチル酸スズ)を用いているが、酸無水物として低分子量化合物を用いているため、硬化性は比較例1よりもよいが、実施例1〜5よりも劣っていた。
【0041】
【表4】
表4に示される結果から明らかなように、硬化触媒として脂肪族もしくは芳香族有機酸金属塩(オクチル酸スズ、オクチル酸亜鉛、ナフテン酸亜鉛)を用い、かつ酸無水物として高分子量の酸無水物基含有樹脂を用いた実施例1〜5では、保存安定性、はんだ耐熱性、密着性、皮膜形成性に優れ、強度と柔軟性を併せ持つ硬化皮膜が得られたが、高分子量の酸無水物基含有樹脂を用いても硬化触媒としてTPPBを用いた比較例1では硬化皮膜の変色が著しく、またはんだ耐熱性や密着性も充分ではなかった。一方、硬化触媒として脂肪族有機酸金属塩(オクチル酸スズ)を用いた比較例2では、保存安定性は良好であるが、酸無水物として低分子量化合物を用いているため、はんだ耐熱性や密着性が悪く、また強度と柔軟性にも劣っていた。
【0042】
【発明の効果】
以上のように、本発明の熱硬化性樹脂組成物は、酸無水物基含有樹脂と多官能オキセタン化合物の硬化反応において、硬化触媒として少なくとも1種の脂肪族もしくは芳香族有機酸金属塩を用いているため、比較的短時間の加熱処理により速やかに硬化し、また変色なく保存安定性にも優れている。また、多官能オキセタン化合物と硬化反応する酸無水物として、比較的高分子量の酸無水物基含有樹脂を用いているため、各種基材に対する密着性に優れると共に、強度と柔軟性を併せ持ち、耐熱性、電気絶縁性、耐めっき性、耐薬品性等に優れた硬化物が得られる。
従って、本発明の熱硬化性樹脂組成物は、種々の技術分野において有用であり、特にプリント配線板の製造時に使用されるソルダーレジスト、エッチングレジスト、ビルドアップ基板用層間絶縁材、メッキレジストなどとして有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thermosetting resin composition, and more particularly, a thermosetting resin composition useful as a solder resist, an etching resist, an interlayer insulating material for build-up substrates, a plating resist, and the like used when manufacturing a printed wiring board. Related to things.
[0002]
[Prior art]
Recently, from the viewpoint of the creation of new organic reactions and their application to polymer synthesis, organic reactions using ring-opening addition reactions of oxetane rings, which are 4-membered ethers, have been studied. For example, oxetane compounds and active esters Studies have been made and reported on the synthesis of polyesters having a primary hydroxyl group in the side chain (see Non-Patent Document 2) by the addition reaction (see Non-Patent Document 1) and polyaddition reaction of bisoxetane and dicarboxylic acid. More recently, polyaddition reactions between bisoxetanes and bisphenols (see Non-patent Document 3) and polyaddition reactions between bisoxetanes and acid anhydrides (see Patent Document 1) have been reported. Moreover, the oxetane compound has an advantage that it is excellent in storage stability as compared with an epoxy compound generally used as a thermosetting compound.
[0003]
Conventionally, a quaternary salt such as tetraphenylphosphonium bromide (TPPB) or a quaternary ammonium salt has been used as a catalyst for the curing reaction of such an oxetane compound. However, in the reaction system as described above, when TPPB, quaternary ammonium salt or the like is used as a curing catalyst for polyaddition reaction, the reaction rate is slow. there were.
In addition, in the curing reaction between a polyfunctional oxetane compound and an acid anhydride, conventionally, a low molecular weight acid anhydride has been used. Therefore, there is a problem that adhesion and heat resistance of the resulting cured product to a substrate are poor. there were.
[0004]
[Non-Patent Document 1]
T. Nishikubo and S. Kazuya, Chem. Lett., 697 (1992)
[Non-Patent Document 2]
T. Nishikubo, A. Kameyama, A. Suzuki, Reactive & Functional Polymers, 37, 19 (1998)
[Non-Patent Document 3]
T. Nishikubo, A. Kameyama, M. Ito, T. Nakajima, H. Miyazaki, Journal of Polymer Chemistry, Vol. 37, pp. 2781-2790 (1998)
[Patent Document 1]
Japanese Patent Laid-Open No. 11-60702 (Claims)
[0005]
[Problems to be solved by the invention]
The present invention has been made to solve the above-described problems of the prior art, is quickly cured by a heat treatment in a relatively short time, has excellent storage stability, and has excellent adhesion and heat resistance to various substrates. It is an object of the present invention to provide a thermosetting resin composition capable of obtaining a cured product having excellent strength, flexibility, and excellent properties such as electrical insulation, plating resistance, and chemical resistance. .
[0006]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, (A) a polymer comprising a polymerizable unsaturated compound having an acid anhydride group as an essential constituent component of a resin, comprising 3 or more per molecule acid anhydride group-containing resins having a weight average molecular weight from 1,000 to 20,000 having an acid anhydride group, (B) a polyfunctional oxetane compound having two or more oxetanyl groups in one molecule, and (C) A thermosetting resin composition comprising a curing catalyst containing at least one aliphatic or aromatic organic acid metal salt is provided (provided that a dicyclohexane having a structural unit represented by the following general formula: Excluding compositions containing pentadiene compounds) .
(Wherein j represents 3 and k represents an integer of 4 or 5)
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The thermosetting resin composition of the present invention uses a curing catalyst (C) containing at least one aliphatic or aromatic organic acid metal salt as a catalyst in a curing reaction system of an acid anhydride and a polyfunctional oxetane compound. And a polymer having an acid anhydride group-containing polymerizable unsaturated compound as an essential component of the resin as the acid anhydride, and having a relatively high molecular weight of 1,000 to 20,000 in weight average molecular weight This is characterized in that the acid anhydride group-containing resin (A ) is used.
That is, the thermosetting resin composition of the present invention comprises at least one aliphatic or aromatic as the curing catalyst (C) in the curing reaction of the acid anhydride group-containing resin (A) and the polyfunctional oxetane compound (B). Since an organic acid metal salt is used, it is quickly cured by a relatively short heat treatment. In addition, an ester bond having excellent thermal stability is formed by polyaddition reaction of the oxetane ring of the polyfunctional oxetane compound (B) and the acid anhydride group of the acid anhydride group-containing resin (A), and an acid anhydride is used as the acid anhydride. A polymer comprising a polymerizable unsaturated compound having an anhydride group as an essential component of the resin, and a relatively high molecular weight acid anhydride group-containing resin having a weight average molecular weight of 1,000 to 20,000 Combined with this, a cured product having both strength and flexibility and excellent heat resistance, electrical insulation, plating resistance, chemical resistance, and the like can be obtained.
[0008]
Hereinafter, each component of the thermosetting resin composition of this invention is demonstrated in detail.
First, the acid anhydride group-containing resin (A) has a polymerizable unsaturated compound (a) having an acid anhydride group as an essential component of the resin, and if necessary, combines other polymerizable unsaturated compounds, It is a resin obtained by copolymerization using a known and conventional polymerization initiator such as azobisisobutyronitrile and hydrogen peroxide.
[0009]
The polymerizable unsaturated compound (a) having an acid anhydride group may be a compound having both an acid anhydride group and a polymerizable unsaturated group in one molecule, and is not limited to a specific compound. For example, in addition to maleic anhydride, nadic anhydride, tetrahydrophthalic anhydride, dibasic acid anhydride adducts of polyfunctional (meth) acrylate compounds such as dipentaerythritol penta (meth) acrylate, phthalic acid 2- methacryloyloxyethyl hexahydrophthalic acid 2-methacryloyloxyethyl acid anhydride such as succinic acid 2-methacryloyloxyethyl may be mentioned, you can use alone or optionally in combination of two or more.
[0010]
Other polymerizable unsaturated compounds copolymerized with the polymerizable unsaturated compound (a) having these acid anhydride groups include styrene compounds such as styrene, α-methylstyrene and p-hydroxystyrene, methyl (meta ) Acrylate, ethyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate, t-butyl (meth) acrylate, benzyl (meth) acrylate, cyclohexyl (meth) acrylate , 2-methoxyethyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, (meth) acrylates such as butoxyethyl (meth) acrylate, isobornyl (meth) acrylate, and the like. Can be used in combination with more than species
[0011]
The molecular weight of the resulting acid anhydride group-containing resin (A) is 1,000 to 20,000, preferably 5,000 to 10,000 in terms of weight average molecular weight. When the weight average molecular weight of the acid anhydride group-containing resin (A) is lower than 1,000, the adhesion to the substrate and the film-forming property are inferior, and the resulting cured product is inferior in heat resistance, strength, and flexibility. On the other hand, a weight average molecular weight higher than 20,000 is not preferable because the curing reaction hardly proceeds and the film-forming property tends to be inferior.
[0012]
Any polyfunctional oxetane compound (B) may be used as long as it has two or more oxetanyl groups in one molecule, and is not limited to a specific compound.
Representative examples of compounds having two oxetanyl groups in one molecule include bisoxetanes represented by the following general formula (1).
[Chemical formula 2]
In the above general formula (1), R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, R 2 represents a linear or branched saturated hydrocarbon having 1 to 12 carbon atoms, or 1 to 12 carbon atoms. Linear or branched unsaturated hydrocarbons, aromatic hydrocarbons represented by the following formulas (A), (B), (C), (D) and (E), formulas (F) and (G) A group having two valences selected from a linear or cyclic alkylene group containing a carbonyl group represented by formula (A) and an aromatic hydrocarbon containing a carbonyl group represented by formulas (H) and (I). .
[0013]
[Chemical 3]
In the formula, R 3 represents a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, an aryl group, or an aralkyl group, and R 4 represents —O—, —S—, —CH 2 —, —NH—, — SO 2 —, —CH (CH 3 ) —, —C (CH 3 ) 2 —, or —C (CF 3 ) 2 — is represented, and R 5 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. .
[0014]
[Formula 4]
In the formula, m represents an integer of 1 to 12.
[0015]
[Chemical formula 5]
[0016]
Representative examples of compounds having three or more oxetanyl groups in one molecule include compounds represented by the following general formula (2), oxetane and novolak resin, poly (p-hydroxystyrene), cardo type oxetane. Examples thereof include ethers with resins having a hydroxyl group such as resins, calixarenes, calixresorcinarene, or silicone resins such as silsesquioxane. In addition, a copolymer of an unsaturated monomer having an oxetane ring and an alkyl (meth) acrylate is also included.
[Chemical 6]
In the general formula (2), R 1 has the same meaning as described above, and R 6 represents a hydroxyl group-containing resin residue of the etherified product, as shown by the following formulas (J), (K), and (L). A branched alkylene group having 1 to 12 carbon atoms and aromatic hydrocarbons represented by formulas (M), (N) and (P). X represents the number of functional groups bonded to the residue R 6 , and is an integer of 3 or more, preferably an integer of 3 to 5000.
[0017]
[Chemical 7]
[0018]
[Chemical 8]
In the formula, R 7 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an aryl group.
[0019]
The polyfunctional oxetane compound (B) as described above can be used alone or in combination of two or more.
Moreover, it is preferable to mix | blend a polyfunctional oxetane compound (B) so that it may become a ratio of oxetane 1 equivalent with respect to 1 equivalent of acid anhydrides of the said acid anhydride group containing resin (A).
[0020]
As the curing catalyst (C), copper, lead, tin, manganese, nickel, iron, chromium, zinc, cobalt of aliphatic or aromatic organic acids such as octyl acid, stearic acid, oleic acid, lauric acid, naphthenic acid, Examples thereof include metal salts with lithium, sodium, potassium, etc., and these can be used alone or in combination of two or more.
Moreover, the thermosetting resin composition of this invention can mix | blend another hardening accelerator in combination with the said metal salt, in order to improve hardening reaction as needed. Examples of the curing accelerator include tertiary amines, tertiary amine salts, quaternary onium salts, tertiary phosphines, imidazoles, phosphonium ylides, crown ether complexes, dicyandiamide, and the like. More than one type can be used in combination.
[0021]
Although it does not restrict | limit in particular about the addition amount (when using together a hardening accelerator, the amount of them) of a curing catalyst (C), It is with respect to 100 mass parts of said acid anhydride group containing resin (A). The range of 0.01 to 25 parts by mass is preferable, and the range of 0.1 to 15 parts by mass is more preferable. If the addition amount of the curing catalyst is less than 0.01 parts by mass, it takes a long time to increase or cure the uncured part. There is a fear.
[0022]
The thermosetting resin composition of the present invention is a quantitative ratio that does not impair the effects of the present invention, for example, a ratio of 50% by mass or less of the polyfunctional oxetane compound (B), and two or more epoxy groups in one molecule. The polyfunctional epoxy compound which has can be mix | blended.
Polyfunctional epoxy compounds include bisphenol A type epoxy resin, bisphenol S type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, naphthalene type epoxy resin, biphenyl type epoxy resin, dicyclopentadiene Modified epoxy resin, cardo type epoxy resin, calixarene type epoxy resin, epoxy resin of condensate of phenols and aromatic aldehyde having phenolic hydroxyl group, alicyclic epoxy resin, and brominated or phosphorus modified above Examples thereof include an epoxy resin and a triglycidyl isocyanurate or the like obtained by pulverizing a solid epoxy resin at room temperature. Further, in some cases, a monofunctional epoxy resin may be contained as a reactive diluent.
[0023]
Furthermore, the thermosetting resin composition of this invention can mix | blend a rubber component as needed. Examples of such rubber components include polybutadiene rubber, polyisopropylene rubber, urethane-modified polybutadiene rubber, epoxy-modified polybutadiene rubber, acrylonitrile-modified polybutadiene rubber, carboxyl group-modified polybutadiene rubber, and their crosslinked rubber particles. Alternatively, two or more kinds can be used in combination. These rubber components are added to improve the flexibility of the resulting cured film, enable surface roughening treatment with an oxidizing agent, and improve the adhesion strength with copper foil or the like.
[0024]
If necessary, resins having a film-forming effect such as phenoxy resin can be blended. As these phenoxy resins, known ones and those obtained from a divalent phenol and a divalent epoxy compound by a known method may be used. These phenoxy resins preferably have a high molecular weight in order to improve the film thickness of the composition and the flexibility and toughness of the resulting cured product. Examples of such phenoxy resins include YP-50 (manufactured by Toto Kasei), YX-8100 (manufactured by Japan Epoxy Resin), UCAR PKHC (manufactured by Union Carbide), and the like. These can be used alone or in combination of two or more.
[0025]
The addition amount of the rubber component and the phenoxy resin is not particularly limited, but when the total solid content of the thermosetting resin composition is 100 parts by mass, it is in the range of 0.1 to 100 parts by mass. Is preferred. This is because if it exceeds 100 parts by mass, the heat resistance and chemical resistance of the thermosetting resin composition may be deteriorated. Therefore, in consideration of the surface roughness and the balance with the above characteristics, the amount is preferably 1 to 50 parts by mass, and more preferably 1 to 30 parts by mass.
[0026]
The thermosetting resin composition of the present invention can be blended with a known and commonly used organic solvent as a diluent in order to adjust the viscosity of the composition and facilitate printing. The type of such an organic solvent is not particularly limited. For example, amides such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, methyl ethyl ketone, cyclohexanone, cyclopenta Non, isophorone and other ketones, ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, dipropylene glycol monomethyl ether acetate, carbitol acetate and other esters, methyl cellosolve, butyl cellosolve, methyl carbitol, butyl carbitol , Glycol ethers such as propylene glycol monomethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, toluene, xylene, Aromatic hydrocarbons such as tetramethyl benzene, terpenes such as limonene, lactones such as γ- butyrolactone and the like, may be used in combination alone or two or more kinds. Although the compounding quantity of an organic solvent can be set to an appropriate quantity according to the coating method etc. to be used, 100-300 mass parts is suitable with respect to 100 mass parts of acid anhydride group containing resin (A).
[0027]
Furthermore, the thermosetting resin composition of the present invention may contain known and conventional additives in addition to the above components. For example, barium sulfate, barium titanate, silicon oxide powder, silica, talc, clay and other inorganic fillers, thickeners such as asbestos, olben, benton, etc., silicone-based, fluorine-based, polymer-based antifoaming agents and / or Alternatively, additives such as leveling agents, imidazole-based, triazole-based, thiazole-based, and adhesion-imparting agents such as silane coupling agents can be used.
If necessary, coloring pigments such as phthalocyanine blue, phthalocyanine green, titanium oxide, and carbon black can be blended. Further, in some cases, it is also useful to add an auxiliary additive such as a flame retardant.
[0028]
Examples of usage forms of the thermosetting resin composition of the present invention containing the above components include varnish (liquid resin composition), dry film, resin-coated copper foil (RCC), and the like. For example, if the use form of varnish, after adjusting the viscosity by adding a diluent, etc., screen printing method, curtain coating method, roll coating method, dip coating method, spin coating method, spray coating method, bar coating method, It is applied onto a substrate such as a printed wiring board by an appropriate application method such as an ink jet method, and the organic solvent contained in the composition is removed by temporary drying at a temperature of about 60 to 120 ° C., for example. Form. Thereafter, the thermosetting reaction is allowed to proceed at about 100 ° C. to 200 ° C. At this time, there is no problem even if curing is performed in two stages for the purpose of sufficiently removing bubbles and curing. In some cases, there is no problem even if curing is performed in an inert gas atmosphere.
[0029]
Further, regarding the usage form of the dry film, the thermosetting resin composition of the present invention as described above is adjusted to a viscosity suitable for the coating method as necessary, and an appropriate support, for example, a flexible base film is used. After coating on the substrate and drying, for example, an organic solvent contained in the composition is evaporated and dried at a temperature of about 60 to 100 ° C. to obtain a tack-free dry film. The dry film thus formed on the base film is preferably stored by laminating a cover film thereon when not in use.
[0030]
Here, as the base film, for example, a synthetic resin film having a thickness of 15 to 125 μm made of polyethylene terephthalate (PET), polyethylene (PE), polypropylene, polycarbonate, polyether sulfone, polyvinyl chloride, or the like can be used. In the formation of the coating film on the base film, an application method using an applicator, a bar coater, a roll coater, a curtain coater, a spin coater, a spray coater, a screen coater, etc. is adopted, and the film thickness after drying is 10 to 150 μm. The coating film is formed.
Thus, the thermosetting resin composition formed into a dry film can be laminated on a circuit board on which a circuit is formed under conditions of pressure and heating, or can be laminated by pressing.
[0031]
【Example】
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the following examples are for illustration of the present invention and do not limit the present invention. In the following description, “part” means “part by mass” unless otherwise specified.
[0032]
The raw materials used in the following Examples 1 to 5 and Comparative Examples 1 and 2 are shown in Table 1.
[Table 1]
[0033]
Examples 1 to 5 and Comparative Examples 1 and 2
Each component was mix | blended with the compounding ratio shown in Table 2, and it knead | mixed using the roll mill, and prepared the thermosetting resin composition.
[Table 2]
[0034]
Performance evaluation:
(1) Thermosetting The thermosetting resin compositions of Examples 1 to 5 and Comparative Examples 1 and 2 were each applied to a copper-clad laminate with an applicator so as to have a film thickness of 50 μm, and then heated to 80 ° C. After drying for 20 minutes, a thermosetting reaction was performed under the conditions shown in Table 3 to prepare a cured film. The surface of the obtained cured film was rubbed 50 times with absorbent cotton soaked with acetone, and the cloudiness of the surface was visually observed and evaluated according to the following criteria.
○: No change at all Δ: Surface is cloudy ×: Film is completely dissolved and reaches the ground [0035]
(2) Discoloration of cured film Each of the thermosetting resin compositions of Examples 1 to 5 and Comparative Examples 1 and 2 was applied to a copper-clad laminate with an applicator so as to have a film thickness of 50 μm, and 80 ° C. After drying for 20 minutes, a thermosetting reaction was performed at 180 ° C. for 60 minutes to prepare a cured film. The degree of discoloration of the cured film was visually evaluated.
[0036]
(3) Solder heat resistance Each of the thermosetting resin compositions of Examples 1 to 5 and Comparative Examples 1 and 2 was subjected to pattern printing on a copper-clad laminate so as to have a film thickness of 50 μm, and the temperature was increased to 80 ° C. After drying for 20 minutes, a thermosetting reaction was performed at 180 ° C. for 60 minutes to prepare an evaluation substrate on which a cured film was formed.
Evaluation was carried out by immersing an evaluation substrate coated with a rosin-based flux in a solder bath set at 260 ° C. for 60 seconds, cleaning the flux with isopropyl alcohol, and then performing tape peeling to evaluate swelling, peeling, and discoloration by visual inspection. .
◎: No change at all ○: Slightly changed Δ: Swelling and peeling of the film are 20% or less ×: Swelling and peeling of the film are 20% or more
(4) Adhesiveness Evaluation substrates were prepared under the same conditions as in (4) Solder heat resistance test, and each substrate was cross-cut into a gob-like shape according to the test method of JIS D0202, and then after a peeling test with tape The state of peeling was visually determined according to the following criteria.
◎: No change at 100/100 at all ○: 100/100 line slightly peeled Δ: 50/100 to 90/100
X: 0/100 to 50/100
[0038]
(5) Film-forming property Each thermosetting resin composition of Examples 1 to 5 and Comparative Examples 1 and 2 was applied with an applicator to a thickness of 50 μm on a copper foil having a thickness of 18 μm, After drying at 80 ° C. for 20 minutes, a thermosetting reaction was performed at 180 ° C. for 60 minutes to prepare a cured film. Thereafter, the copper foil was bent at 90 °, and cracks on the film surface were observed.
○: No cracks were observed Δ: Streaks of creases and slight cracks were generated ×: Cracks were generated on the entire surface and peeled off.
[0039]
(6) Toughness of film (breaking strength, elastic modulus, elongation)
Each of the thermosetting resin compositions of Examples 1 to 6 and Comparative Examples 1 and 2 was applied on an 18 μm thick copper foil with an applicator so as to have a film thickness of 50 μm, and at 80 ° C. for 20 minutes. After drying, a thermosetting reaction was performed at 180 ° C. for 60 minutes to produce a cured film. Thereafter, only the copper foil is etched to prepare a 1 cm × 7 cm strip of the cured film, which is tested with a tensile tester (manufactured by Shimadzu Corp., Autograph AGS N-10). Evaluation of elongation was performed.
[0040]
The obtained results are shown in Tables 3 and 4 below.
[Table 3]
As is apparent from the results shown in Table 3, Examples 1 to 5 using aliphatic or aromatic organic acid metal salts (tin octylate, zinc octylate, zinc naphthenate) as a curing catalyst at a relatively low temperature. Although the curing reaction proceeded promptly, in Comparative Example 1 using TPPB, a high temperature of 170 ° C. or higher was required, and a heating time of 60 minutes or longer was required. On the other hand, in Comparative Example 2, an aliphatic organic acid metal salt (tin octylate) is used as a curing catalyst, but since a low molecular weight compound is used as an acid anhydride, curability is better than Comparative Example 1. It was inferior to Examples 1-5.
[0041]
[Table 4]
As is apparent from the results shown in Table 4, aliphatic or aromatic organic acid metal salts (tin octylate, zinc octylate, zinc naphthenate) are used as curing catalysts, and high molecular weight acid anhydrides as acid anhydrides. In Examples 1 to 5 using the physical group-containing resin, a cured film having excellent storage stability, solder heat resistance, adhesion, and film forming property and having both strength and flexibility was obtained. Even when the physical group-containing resin was used, in Comparative Example 1 using TPPB as the curing catalyst, the discoloration of the cured film was remarkable, or the heat resistance and adhesion were not sufficient. On the other hand, in Comparative Example 2 using an aliphatic organic acid metal salt (tin octylate) as a curing catalyst, the storage stability is good, but since a low molecular weight compound is used as an acid anhydride, solder heat resistance and The adhesion was poor, and the strength and flexibility were inferior.
[0042]
【The invention's effect】
As described above, the thermosetting resin composition of the present invention uses at least one aliphatic or aromatic organic acid metal salt as a curing catalyst in the curing reaction of an acid anhydride group-containing resin and a polyfunctional oxetane compound. Therefore, it cures quickly by heat treatment for a relatively short time, and has excellent storage stability without discoloration. In addition, as the acid anhydride that undergoes a curing reaction with the polyfunctional oxetane compound, a relatively high molecular weight acid anhydride group-containing resin is used, so that it has excellent adhesion to various substrates, has both strength and flexibility, and is heat resistant. Cured products having excellent properties, electrical insulation, plating resistance, chemical resistance, and the like.
Therefore, the thermosetting resin composition of the present invention is useful in various technical fields, particularly as a solder resist, an etching resist, an interlayer insulating material for build-up substrates, a plating resist, etc. used in the production of a printed wiring board. Useful.
Claims (1)
(式中、jは3、kは4または5の整数を表わす。) (A) A polymer having a polymerizable unsaturated compound having an acid anhydride group as an essential component of the resin, and having a weight average molecular weight of 1,000 to 3 having 3 or more acid anhydride groups in one molecule 20,000 acid anhydride group-containing resins, (B) a polyfunctional oxetane compound having two or more oxetanyl groups in one molecule, and (C) at least one aliphatic or aromatic organic acid metal salt A thermosetting resin composition containing a curing catalyst (excluding a composition containing a dicyclopentadiene compound having a structural unit represented by the following general formula) .
(Wherein j represents 3 and k represents an integer of 4 or 5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002337597A JP4375957B2 (en) | 2002-11-21 | 2002-11-21 | Thermosetting resin composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002337597A JP4375957B2 (en) | 2002-11-21 | 2002-11-21 | Thermosetting resin composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004168921A JP2004168921A (en) | 2004-06-17 |
JP4375957B2 true JP4375957B2 (en) | 2009-12-02 |
Family
ID=32701061
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002337597A Expired - Lifetime JP4375957B2 (en) | 2002-11-21 | 2002-11-21 | Thermosetting resin composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4375957B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4961665B2 (en) * | 2004-11-16 | 2012-06-27 | 日立化成工業株式会社 | Insulator ink, printed wiring board and multilayer printed wiring board |
JP5392373B2 (en) * | 2005-12-28 | 2014-01-22 | 住友ベークライト株式会社 | WIRING BOARD AND INSULATION RESIN COMPOSITION FOR SOLDER RESIST USED FOR THE WIRING BOARD |
WO2008068996A1 (en) | 2006-11-29 | 2008-06-12 | Toyoboseki Kabushiki Kaisha | Oxetane-containing resin, and adhesive agent and resist agent each using the same |
JP2009176889A (en) * | 2008-01-23 | 2009-08-06 | Hitachi Chem Co Ltd | Insulating resin composition for multilayer printed wiring board, insulating film with support, multilayer printed wiring board, and manufacturing method therefor |
JP6302164B2 (en) * | 2012-03-29 | 2018-03-28 | 積水化学工業株式会社 | Manufacturing method of laminated structure |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61203120A (en) * | 1985-03-05 | 1986-09-09 | Idemitsu Petrochem Co Ltd | Curing agent for epoxy resin |
JPS6386717A (en) * | 1986-09-30 | 1988-04-18 | Idemitsu Petrochem Co Ltd | Curing agent for epoxy resin |
JP2001114868A (en) * | 1999-10-14 | 2001-04-24 | Tonen Chem Corp | Epoxy resin composition and insulating and sealing material using the same |
JP4221850B2 (en) * | 1999-11-10 | 2009-02-12 | Jsr株式会社 | Thermosetting resin composition and cured product thereof |
WO2002064662A1 (en) * | 2001-02-15 | 2002-08-22 | Kanagawa University | Unsaturated polyester compound, resin curable with actinic energy ray, processes for producing these, and curable composition |
JP4335466B2 (en) * | 2001-02-15 | 2009-09-30 | 学校法人神奈川大学 | Active energy ray-curable resin, method for producing the same, and active energy ray-curable resin composition |
JP4684435B2 (en) * | 2001-02-15 | 2011-05-18 | 学校法人神奈川大学 | Unsaturated polyester compound, method for producing the same, and curable composition |
JP4385537B2 (en) * | 2001-03-21 | 2009-12-16 | 宇部興産株式会社 | Thermosetting composition |
JP3895220B2 (en) * | 2002-06-25 | 2007-03-22 | 太陽インキ製造株式会社 | Thermosetting resin composition and printed wiring board produced using the same |
-
2002
- 2002-11-21 JP JP2002337597A patent/JP4375957B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2004168921A (en) | 2004-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI687479B (en) | Photosensitive resin composition | |
TWI731158B (en) | Resin composition | |
JP2020023714A (en) | Resin material and multilayer printed board | |
JP5684804B2 (en) | Hardener composition for epoxy resin | |
JP6268310B2 (en) | Insulating thermosetting resin composition, dry film, cured product, and printed wiring board | |
JP5238342B2 (en) | Thermosetting resin composition for hole filling of printed wiring board and printed wiring board using the same | |
JP2008163330A (en) | Polyamide resin-containing varnish | |
JP2010001403A (en) | Thermosetting resin composition | |
KR102399159B1 (en) | Resin composition, thermosetting film using same, cured resin material, laminated board, printed wiring board and semiconductor device | |
WO2017170521A1 (en) | Resin composition and multilayer substrate | |
JP4871646B2 (en) | Thermosetting solder resist composition for flexible substrate, flexible substrate and method for producing flexible substrate | |
TWI535775B (en) | Alkali developing type resin and photosensitive resin composition using the same | |
JP2008094927A (en) | Novel thermosetting resin composition | |
JP7565982B2 (en) | Resin materials and multilayer printed wiring boards | |
JP4221850B2 (en) | Thermosetting resin composition and cured product thereof | |
JP4150839B2 (en) | Thermosetting resin composition and cured product thereof | |
JP5164092B2 (en) | Thermosetting composition and cured product thereof | |
JP4375957B2 (en) | Thermosetting resin composition | |
JP2024155999A (en) | Resin materials and multilayer printed wiring boards | |
JP2013036042A (en) | Thermosetting resin composition for interlayer insulating material of multilayer printed wiring board | |
JP3895220B2 (en) | Thermosetting resin composition and printed wiring board produced using the same | |
JP6608908B2 (en) | Resin material and multilayer printed wiring board | |
TW200404864A (en) | Epoxy resin composition | |
KR20220061086A (en) | Curable resin composition, dry film and cured product thereof, and electronic component including cured product | |
JP4189699B2 (en) | Additive adhesive for printed wiring board and printed wiring board using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051011 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060607 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060620 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060811 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061003 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061204 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070123 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070323 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20070508 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20070608 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090908 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4375957 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120918 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120918 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130918 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130918 Year of fee payment: 4 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130918 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |