Nothing Special   »   [go: up one dir, main page]

JP4374892B2 - Variable capacitance circuit - Google Patents

Variable capacitance circuit Download PDF

Info

Publication number
JP4374892B2
JP4374892B2 JP2003115599A JP2003115599A JP4374892B2 JP 4374892 B2 JP4374892 B2 JP 4374892B2 JP 2003115599 A JP2003115599 A JP 2003115599A JP 2003115599 A JP2003115599 A JP 2003115599A JP 4374892 B2 JP4374892 B2 JP 4374892B2
Authority
JP
Japan
Prior art keywords
voltage
control voltage
capacitance
mos
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003115599A
Other languages
Japanese (ja)
Other versions
JP2004327470A (en
Inventor
匡亨 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Miyazaki Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Epson Corp filed Critical Miyazaki Epson Corp
Priority to JP2003115599A priority Critical patent/JP4374892B2/en
Publication of JP2004327470A publication Critical patent/JP2004327470A/en
Application granted granted Critical
Publication of JP4374892B2 publication Critical patent/JP4374892B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize a MOS capacitance circuit having a high variable sensitivity and a wide variable range of capacitance by applying a control voltage and an output voltage, obtained by amplifying the control voltage through an inversion amplifier, directly or through an input resistance to one and the other terminals of a MOS capacitive element, respectively. <P>SOLUTION: A control voltage and an output voltage, obtained by amplifying the control voltage through an inversion amplifier, are applied directly or through an input resistance to one and the other terminals of the MOS capacitive element, respectively. <P>COPYRIGHT: (C)2005,JPO&amp;NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、可変容量回路、特に圧電発振器等における周波数温度補償、周波数電圧制御、又は中心周波数調整等に利用される可変容量回路に関するものである。
【0002】
【従来の技術】
従来より水晶発振器等の発振回路内では周波数調整手段として可変容量素子が用いられており、該可変容量素子としてはバイポーラタイプのバリキャップダイオードが最も一般的に採用されている。一方、水晶発振器等では小型化と低価格化の要求に応えるべく発振回路のIC化が進んでいる。この発振回路のIC化に際しては、MOSプロセスが一般的に採用されているのに対し、バリキャップダイオードはバイポーラタイプである為1チップIC化する上で2つの異なるプロセスが必要となり、製造工程の複雑化に伴い高価格にならざるを得ないという状況にある。
【0003】
そこでバリキャップダイオードに代わる可変容量素子として現在注目を集めているのがMOS容量素子である。このMOS容量素子は、発振増幅回路として一般的に使用されているC−MOSタイプのインバーター増幅器等と同一の工程により製造が可能となる。更に、MOS容量素子は少ない電圧変化でも大きな容量変化が得られるという特徴を有しており、回路の低電圧化が進み可変容量素子に印加できる電圧も小さくせざるを得ない状況の下、例えば電圧制御型水晶発振器に使用するにあたっても、実用上充分に大きな周波数可変感度が期待できる。
【0004】
図7は、MOS容量素子の容量特性の一例を示すものであり、−1V〜+0.5Vの間で約30pF/V程度の高い可変感度を呈することが分かる。またこの例では、制御電圧の増加に応じて容量値も増加する傾向を示しているが、容量特性はMOS容量素子のN型・P型の違いや印加電圧の向きによって極性が変る為、制御電圧の増加に応じて容量値が減少する可変容量素子も実現可能である。
【0005】
MOS容量素子の使用形態例としては特開平11−17114号に開示されたように、MOS容量素子の一方の端子に入力抵抗を介して制御電圧を接続し、他方の端子には入力抵抗を介して基準電圧を接続するのが一般的である。図8 に従来のMOS容量素子の使用例を示す。このとき基準電圧を制御電圧の可変幅の中心付近に設定し、制御電圧を基準電圧に対して負電圧から正電圧になる様に掃引するとMOS容量素子の両端に前記図7の様な容量変化が現れるのである。
【0006】
しかしこのMOS容量素子を発振回路内で使用する場合、すなわち図9の回路図に示す様に交流成分が制御電圧に重畳された状態で使用する場合は、制御圧に重畳される交流成分によってMOS容量素子の可変感度の急峻さが失われることになる。
【0007】
図10でそのメカニズムを説明する。同図(A)はMOS容量特性を示す図で、横軸が制御直流電圧で縦軸が容量値である。ここでは簡単の為容量特性は完全なステップ特性とし実線101に示す。またMOS容量素子の両端に印可する電圧は基準電圧と制御電圧との差になるので、ここでは基準電圧を0Vとし制御電圧のみ変化するものとする。
同図(B)は交流電圧が重畳された制御電圧(以下、交流重畳制御電圧という)の変化を示すものである。同図(B)では3つの異なる制御電圧(直流分)に対して同じ交流成分を一周期分だけ重畳したときの交流重畳制御電圧を重ね書きしている。
【0008】
今、制御電圧(直流分)を図10(A)に示すステップ特性101上にある点102から点103、そして点104へと電圧が減少する方向へと移行させると、交流重畳制御電圧もまた、中心値105の波形106から中心値107の波形108、そして中心値109の波形110へと移行する。
制御電圧が点102の時は交流重畳制御電圧は106の波形の様に縦軸より右側の領域である正電圧のみで動作する為、その容量値は常時変化せず点102の値のままである。
【0009】
ところが制御電圧を点103に移行させると、交流重畳制御電圧108は負電圧にまたがる時間領域が存在し、斜線部111の領域の時間分だけ容量値が0になる。よってそのときの平均容量値は点103の容量値より下がり点112に移ることになる。
【0010】
更に制御電圧を0Vの点104まで移行させると交流重畳制御電圧は110へ移るが、負電圧にまたがる時間領域の斜線部113は正電圧にまたがる時間領域と同一面積になる為、平均容量値は変化しない。また更に制御電圧を点114迄移行させると、点103の場合と同様に交流重畳制御電圧が正電圧にまたがる時間領域分だけ容量値が高くなり、平均容量値は点115へ移行することになる。
【0011】
この現象は容量特性が完全なステップ特性でなくとも同様となり、容量特性の急峻さを失わせる傾向にある。
【0012】
また、重畳された交流電圧の出力レベルが高くなるにつれて、より急峻さを失ってしまう傾向にある。それは上述の様に、交流重畳電圧106の交流成分の振幅が大きくなると、負電圧にまたがる時間領域が存在してしまうことを考えれば容易に理解できよう。その影響を図11に示す。これは図9の回路構成における交流成分の振幅レベルを、0.2Vp−pから2.0Vp−pまで0.4Vステップで増加させた時のシミュレーション結果である。
【0013】
【本発明が解決しようとする課題】
上述の様に、この構成のままのMOS容量回路を水晶発振器等の発振ループ内に挿入すると、その交流分の影響で可変感度が劣化することが分かる。また、容量特性が大きく急峻さを失い平滑化されてしまうと、ある一定の制御電圧の可変範囲においては可変容量範囲も狭くなる。これは回路の低電圧化が進み充分な制御電圧の可変範囲が確保できなくなりつつある状況の下では、充分な周波数制御が困難となる虞が生じる。
【0015】
請求項1に記載の発明は、極性を揃えて複数並列に接続したMOS容量素子からなる並列回路において、該並列回路の一端に制御電圧を、他端に該制御電圧を反転アンプにより反転増幅した出力電圧を、夫々直接又は入力抵抗を介して印加したことを特徴としている。
【0016】
請求項2に記載の発明は、MOS容量素子と直流阻止用の固定コンデンサを直列に接続した直列回路をMOS容量素子の極性を揃えて複数並列に備えた並列回路において、該並列回路を構成する各MOS容量素子の一端に制御電圧を、他端に該制御電圧を反転アンプにより反転増幅した出力電圧を、夫々直接又は入力抵抗を介して印加したことを特徴としている。
【0019】
【本発明の実施の形態】
図1は本発明第一の実施例を示す回路図である。これは反転アンプをOPアンプで構成した簡単な例であり、MOS容量素子の一方の端子には入力抵抗1を介して制御電圧を接続すると伴に、その制御電圧を反転アンプにより反転増幅した電圧を他方の端子に入力抵抗2を介して接続したものである。ここで交流阻止用の入力抵抗1、2は、制御電圧及び反転アンプの出力インピーダンスが実用上充分に高く交流成分の影響が無い場合は省略してもよく、またMOS容量素子の極性は逆であっても構わない。
【0020】
またここで、OPアンプは片電源で使用しており、正電源側はVcc、負電源側はGNDに接続していて、バイアスとして非反転入力端子にはVbを印加している。またOPアンプの出力端子3と反転入力端子とは抵抗R2を介して負帰還接続されており、反転入力端子には抵抗R1を介して制御電圧が接続されている。OPアンプの動作については既に周知であるので説明は省略するが、この反転アンプの回路の動作としては、入力端子4に印加された制御電圧と非反転入力端子に印加されたバイアスVbとの電位差を反転して出力端子3に出力するものである。またその利得は−(R1/R2)倍となり容易に調整が可能となっている。
【0021】
以下、図2を参照しながらこの回路のMOS容量素子の両端に加えることが出来る電圧の可変範囲と、制御電圧に対する容量の可変感度について説明する。
図2中の横軸は変位時間を表し、縦軸が電圧を表す。ここでは制御電圧可変範囲を図中矢印21で示すGND〜Vccとし、図中の直線22のように変化するものとする。また、反転アンプの出力が可能な電圧範囲である出力電圧能動範囲は、図中の矢印23で示す負電圧側の飽和電圧Vs1から正電圧側の飽和電圧Vs2までの範囲となる。
【0022】
今、反転アンプの利得を−1倍とすると、制御電圧22が時間と共に増加するのに伴い反転アンプの出力24が減少していくのがわかる。つまりMOS容量素子に加わる電圧の方向はVbの点で逆転することになり、制御電圧22がVbよりも低くなった状態では、即ち図2の縦軸より左側の領域では図中矢印25に示すように反転アンプの出力24側から制御電圧22側に向かって電圧が印可され、制御電圧22がVbよりも高くなった状態では、即ち図2の縦軸より右側の領域では図中矢印26に示すように制御電圧22側から反転アンプの出力24側に向かって電圧が印加されることになる。
従来は基準電圧をVbで固定していたので、MOS容量素子の一端には制御電圧22が印可され、他端には基準電圧Vbが常に印可される(図中矢印25a、26a)に過ぎない。
即ち、本実施形態例の場合は従来に比べて約2倍の電圧がMOS容量素子の両端に印加可能となるのである。
【0023】
また出力電圧能動範囲においては、反転アンプの利得が−1倍の場合でも、MOS容量素子の両端の電圧変位速度は、従来の様に制御電圧のみ可変した場合の2倍に相当し、すなわち可変感度も2倍に相当する。
更にまた、利得を−2倍としたときの反転アンプの出力は、制御電圧22がGNDからVccへ増加するのに伴って、正電圧側の飽和電圧Vs2をたどり、図中の直線27で示すように点Aより負電圧側の飽和電圧Vs1に達する点Bまでは制御電圧22の2倍の変位速度で減少し、負電圧側の飽和電圧Vs1をたどることになる。よって出力電圧能動範囲(点Aから点Bまで)においてMOS容量素子の両端の電圧の変位速度は3倍、すなわち可変感度が3倍となる。
【0024】
同様に、反転アンプの利得を−3倍としたときの反転アンプの出力電圧は図中の直線28、−4倍の場合は直線29、更に利得が−5倍の場合は直線30に示すように順次急峻になる為、夫々出力電圧能動範囲においては(|利得|+1)倍の高可変感度が実現することになる。
【0025】
これは出力電圧能動範囲に限った効果ではあるが、MOS容量素子は両端の電圧が0V近傍、ここでは反転アンプのバイアスVb近傍において急峻な容量特性を示せば良いので、なんら問題は生じない。
【0026】
したがって、反転アンプの利得を調整することで、重畳された交流電圧の影響で失われた容量特性の急峻さを取り戻すことが出来るが、その効果を図3に示す。これは、従来のMOS容量の一方の端子の基準電圧を固定した場合の容量特性と、反転アンプを使用した場合で利得を−1倍から−5倍迄変化させた場合の容量特性を示し、利得の絶対値の増加に伴い可変感度が増加しているのがわかる。
【0027】
本発明に係る可変容量回路の第2の実施例を図4に示す。これは極性を揃えて3つ並列に接続したMOS容量素子からなる並列回路の一方の接続端子に入力抵抗41を介して制御電圧を接続し、他方の端子には入力抵抗42を介して該制御電圧を反転アンプにより反転増幅した出力電圧を接続した構成である。ここで交流阻止用の入力抵抗41、42は、制御電圧の電圧源及び反転アンプの出力インピーダンスが実用上充分に高く交流成分の影響が無い場合は省略してもよく、またMOS容量素子の極性は当然全て逆であっても構わない。
【0028】
これは複数のMOS容量素子の並列合成容量を制御することにより、より広範囲な可変幅を実現する。例えば15pF〜60pF迄変化する容量特性を持つMOS容量素子を図4の様に3つ並列接続した場合ならば45pF〜180pFと広可変範囲なMOS容量回路となる。また異なる容量特性を持つMOS容量素子を組み合わせることにより所望の容量特性を得ることも可能としている。
またここでMOS容量素子は3つで説明したが、当然その数に制限はない。
【0029】
本発明に係る可変容量回路の第3の実施例を図5に示す。これはMOS容量素子51と直流阻止用の固定コンデンサ52を直列に接続した直列回路と、MOS容量素子53と固定コンデンサ54の直列回路と、MOS容量素子55と固定コンデンサ56の直列回路とをMOS容量素子の極性を揃えて並列接続した並列回路において、この並列回路の夫々のMOS容量素子の共通端、即ちこの並列回路の接続点Aに入力抵抗57を介して制御電圧を接続し、この制御電圧を夫々の反転アンプにより反転増幅した出力電圧を入力抵抗58、59、60を介して、夫々のMOS容量素子と固定コンデンサの接続中点に接続したものである。
【0030】
ここで直流阻止用の固定コンデンサ52、54、56は、この並列回路の接続点Bを介して夫々の反転アンプからの出力電圧が互いに干渉するのを避ける為のものであり、いずれか一つのみを省略することは可能である。
またここで交流阻止用の入力抵抗57、58、59、60は、制御電圧の電圧源及び夫々の反転アンプの出力インピーダンスが実用上充分に高く交流成分の影響が無い場合は省略してもよく、またMOS容量素子の極性は当然全て逆であっても構わない。
【0031】
これは第2の実施例と同様に、複数のMOS容量素子の並列合成容量を制御することにより、より広範囲な可変幅を実現し、また異なる容量特性を持つMOS容量素子を組み合わせることによって所望の容量特性を得ることも可能としている。それに加え夫々異なる利得の反転アンプを利用するか、又は夫々の反転アンプの利得を調整することによっても可変感度が調整でき、更に所望の容量特性に調整できるという構成である。
またここでMOS容量素子は3つで説明したが、当然その数に制限はない。
【0032】
本発明に係る可変容量回路の第4の実施例を図6に示す。これはMOS容量素子61と62の対抗電極側同士を接続し、MOS容量素子62と63のゲート電極側同士を接続し、直列に3つMOS容量素子を接続した直列回路において、MOS容量素子のゲート電極側接続点A1、A2には入力抵抗64、66を介して制御電圧を接続し、MOS容量素子の対抗電極側の接続点B1、B2には入力抵抗65、67を介して、制御電圧を反転アンプにより反転した出力電圧を接続している。
【0033】
ここでゲート電極側に接続した入力抵抗64、66、また対抗電極側に接続した入力抵抗は65、67は、制御電圧の電圧源及び反転アンプの出力インピーダンスが実用上充分に高く交流成分の影響が無い場合は、夫々の電極側において一つのみ省略は可能である。またMOS容量素子の極性は当然全て逆であっても構わない。
【0034】
これは複数のMOS容量素子の直列合成容量を制御することにより、低容量値からの容量可変範囲を実現する。例えば15pF〜60pF迄変化する容量特性を持つMOS容量素子を図6の様に3つ直列接続した場合ならば5pF〜20pF迄となる。また異なる容量特性を持つMOS容量素子を組み合わせることにより所望の容量特性を得ることも可能としている。
またここでMOS容量素子は3つで説明したが、当然その数に制限はない。
【0035】
本発明に係る可変容量回路の上記各実施例で説明した図1、図4、図5、図6において、各回路図に含まれる反転アンプとして利得の調整が可能な手段、例えば図1の帰還用抵抗R2として、可変抵抗素子を採用することによって、各可変感度を任意の値に設定できる。
【0036】
【発明の効果】
以上説明したように、MOS容量素子を発振回路の周波数調整用可変容量素子として使用する場合、重畳された交流電圧の影響で可変感度特性が劣化する虞があった。しかし今回提案した回路方式を用いることで、低電圧でもより大きな可変感度を実現し、可変感度の劣化を改善することが可能となった。
また従来の容量特性を得るために、必要な制御電圧が約半分以下(|利得|=1で約半分、それ以上では半分以下)で済むことにもなり、回路の低電圧化が進む中でその効果は大きい。
尚、MOS容量素子を固定容量とした飽和領域(MOS容量特性のうち、電圧に対して容量が変化しない領域で、高電圧側又は低電圧側)でデジタル的に使用する際も、本回路構成を用いることで飽和領域を広く設定でき、また制御電圧を小さく設計することが可能となる。
【図面の簡単な説明】
【図1】 本発明の第1の実施例を示す回路図
【図2】 反転アンプの効果原理の説明図
【図3】 反転アンプの効果グラフ
【図4】 本発明の第2の実施例を示す回路図
【図5】 本発明の第3の実施例を示す回路図
【図6】 本発明の第4の実施例を示す回路図
【図7】 MOS容量素子の特性の一例
【図8】 従来のMOS容量素子の使用例
【図9】 MOS容量素子の測定回路図
【図10】 交流重畳電圧の影響説明図
【図11】 交流重畳電圧の振幅の影響のグラフ
【符号の説明】
R1、R2、1、2、41、42、57、58、59、60、64、65、66、67 抵抗、52、54、56 コンデンサ、51、53、55、61、62、63 MOS容量素子
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a variable capacitance circuit, and more particularly to a variable capacitance circuit used for frequency temperature compensation, frequency voltage control, or center frequency adjustment in a piezoelectric oscillator or the like.
[0002]
[Prior art]
Conventionally, a variable capacitance element is used as a frequency adjusting means in an oscillation circuit such as a crystal oscillator, and a bipolar type varicap diode is most commonly used as the variable capacitance element. On the other hand, with respect to crystal oscillators and the like, ICs of oscillation circuits are being advanced in order to meet demands for miniaturization and cost reduction. In order to make this oscillation circuit into an IC, a MOS process is generally adopted. On the other hand, since a varicap diode is a bipolar type, two different processes are required for making a one-chip IC. It is in a situation where it becomes inevitably expensive as complexity increases.
[0003]
In view of this, MOS capacitors are currently attracting attention as variable capacitors that replace varicap diodes. This MOS capacitance element can be manufactured by the same process as a C-MOS type inverter amplifier or the like generally used as an oscillation amplifier circuit. Furthermore, the MOS capacitor element has a feature that a large capacitance change can be obtained even with a small voltage change. Under the circumstances where the voltage applied to the variable capacitor element is inevitably reduced as the voltage of the circuit progresses, for example, When used in a voltage controlled crystal oscillator, a sufficiently large frequency variable sensitivity can be expected in practical use.
[0004]
FIG. 7 shows an example of the capacitance characteristic of the MOS capacitance element, and it can be seen that a high variable sensitivity of about 30 pF / V is exhibited between −1V and + 0.5V. Also, in this example, the capacitance value tends to increase as the control voltage increases. However, the polarity of the capacitance characteristics changes depending on the difference between the N-type and P-type MOS capacitance elements and the direction of the applied voltage. It is also possible to realize a variable capacitance element whose capacitance value decreases as the voltage increases.
[0005]
As an example of use of the MOS capacitor element, as disclosed in JP-A-11-17114, a control voltage is connected to one terminal of the MOS capacitor element via an input resistor, and an input resistor is connected to the other terminal. In general, a reference voltage is connected. FIG. 8 shows an example of use of a conventional MOS capacitor element. At this time, when the reference voltage is set near the center of the variable width of the control voltage and the control voltage is swept from the negative voltage to the positive voltage with respect to the reference voltage, the capacitance changes as shown in FIG. Appears.
[0006]
However, when this MOS capacitor element is used in an oscillation circuit, that is, when the AC component is superimposed on the control voltage as shown in the circuit diagram of FIG. The steepness of variable sensitivity of the capacitive element is lost.
[0007]
The mechanism will be described with reference to FIG. FIG. 4A shows the MOS capacitance characteristics, where the horizontal axis is the control DC voltage and the vertical axis is the capacitance value. Here, for the sake of simplicity, the capacitance characteristic is a complete step characteristic and is shown by a solid line 101. Since the voltage applied to both ends of the MOS capacitor element is the difference between the reference voltage and the control voltage, it is assumed here that the reference voltage is 0 V and only the control voltage changes.
FIG. 5B shows a change in a control voltage (hereinafter referred to as an AC superimposed control voltage) on which an AC voltage is superimposed. In FIG. 5B, the AC superposition control voltage when the same AC component is superposed for one period is overwritten on three different control voltages (DC components).
[0008]
Now, when the control voltage (DC component) is shifted from the point 102 on the step characteristic 101 shown in FIG. 10A to the point 103 and then to the point 104 in the direction in which the voltage decreases, the AC superposition control voltage also changes. The waveform 106 having the center value 105 shifts to the waveform 108 having the center value 107 and the waveform 110 having the center value 109.
When the control voltage is at point 102, the AC superposition control voltage operates only with a positive voltage in the region to the right of the vertical axis as in the waveform of 106, so that its capacitance value does not change constantly and remains at the value at point 102. is there.
[0009]
However, when the control voltage is shifted to the point 103, the AC superposition control voltage 108 has a time region spanning the negative voltage, and the capacitance value becomes 0 for the time of the shaded area 111 region. Therefore, the average capacitance value at that time moves to the lower point 112 than the capacitance value at the point 103.
[0010]
Further, when the control voltage is shifted to the point 104 of 0V, the AC superposition control voltage is shifted to 110, but the shaded portion 113 in the time region spanning the negative voltage has the same area as the time region spanning the positive voltage, so the average capacitance value is It does not change. Further, when the control voltage is further shifted to the point 114, the capacity value is increased by the time region in which the AC superposition control voltage spans the positive voltage as in the case of the point 103, and the average capacity value is shifted to the point 115. .
[0011]
This phenomenon is the same even if the capacity characteristic is not a perfect step characteristic, and the steepness of the capacity characteristic tends to be lost.
[0012]
In addition, as the output level of the superimposed AC voltage increases, the steepness tends to be lost. As described above, it can be easily understood in view of the fact that there is a time region spanning a negative voltage when the amplitude of the AC component of the AC superimposed voltage 106 increases. The effect is shown in FIG. This is a simulation result when the amplitude level of the AC component in the circuit configuration of FIG. 9 is increased in steps of 0.4 V from 0.2 Vp-p to 2.0 Vp-p.
[0013]
[Problems to be solved by the present invention]
As described above, when a MOS capacitor circuit having this configuration is inserted into an oscillation loop such as a crystal oscillator, it can be seen that the variable sensitivity deteriorates due to the influence of the AC component. Further, if the capacitance characteristic is large and loses its steepness and is smoothed, the variable capacitance range becomes narrow in a certain variable range of the control voltage. In this situation, there is a possibility that sufficient frequency control may be difficult under a situation where the circuit voltage is lowered and a sufficient variable range of the control voltage cannot be secured.
[0015]
According to the first aspect of the present invention, in a parallel circuit composed of a plurality of MOS capacitors connected in parallel with the same polarity, a control voltage is inverted and amplified by an inverting amplifier at one end of the parallel circuit and the control voltage at the other end. The output voltage is applied directly or via an input resistor, respectively.
[0016]
According to a second aspect of the present invention, there is provided a parallel circuit in which a series circuit in which a MOS capacitor element and a DC blocking fixed capacitor are connected in series is provided in parallel with a plurality of MOS capacitor elements having the same polarity. A control voltage is applied to one end of each MOS capacitance element, and an output voltage obtained by inverting and amplifying the control voltage with an inverting amplifier is applied to the other end, either directly or via an input resistor.
[0019]
[Embodiments of the Invention]
FIG. 1 is a circuit diagram showing a first embodiment of the present invention. This is a simple example in which an inverting amplifier is composed of an OP amplifier. A control voltage is connected to one terminal of a MOS capacitor via an input resistor 1 and the control voltage is inverted and amplified by the inverting amplifier. Is connected to the other terminal via the input resistor 2. The AC blocking input resistors 1 and 2 may be omitted when the control voltage and the output impedance of the inverting amplifier are sufficiently high in practical use and are not affected by the AC component, and the polarity of the MOS capacitor element is reversed. It does not matter.
[0020]
Here, the OP amplifier is used with a single power supply, the positive power supply side is connected to Vcc, the negative power supply side is connected to GND, and Vb is applied to the non-inverting input terminal as a bias. The output terminal 3 and the inverting input terminal of the OP amplifier are negative-feedback connected via a resistor R2, and a control voltage is connected to the inverting input terminal via a resistor R1. The operation of the OP amplifier is already well known and will not be described. However, the operation of the circuit of this inverting amplifier is the difference in potential between the control voltage applied to the input terminal 4 and the bias Vb applied to the non-inverting input terminal. Is output to the output terminal 3. The gain is-(R1 / R2) times and can be easily adjusted.
[0021]
Hereinafter, the variable range of the voltage that can be applied to both ends of the MOS capacitor element of this circuit and the variable sensitivity of the capacitor with respect to the control voltage will be described with reference to FIG.
The horizontal axis in FIG. 2 represents the displacement time, and the vertical axis represents the voltage. Here, the control voltage variable range is set to GND to Vcc indicated by an arrow 21 in the figure, and changes as shown by a straight line 22 in the figure. Further, the output voltage active range that is a voltage range in which the output of the inverting amplifier is possible is a range from the saturation voltage Vs1 on the negative voltage side to the saturation voltage Vs2 on the positive voltage side indicated by an arrow 23 in the drawing.
[0022]
Now, when the gain of the inverting amplifier is set to −1, it can be seen that the output 24 of the inverting amplifier decreases as the control voltage 22 increases with time. That is, the direction of the voltage applied to the MOS capacitance element is reversed at the point of Vb, and when the control voltage 22 is lower than Vb, that is, in the region on the left side of the vertical axis in FIG. Thus, in the state where the voltage is applied from the output 24 side of the inverting amplifier toward the control voltage 22 side and the control voltage 22 is higher than Vb, that is, in the region on the right side of the vertical axis in FIG. As shown, a voltage is applied from the control voltage 22 side toward the output 24 side of the inverting amplifier.
Conventionally, since the reference voltage is fixed at Vb, the control voltage 22 is applied to one end of the MOS capacitor and the reference voltage Vb is always applied to the other end (arrows 25a and 26a in the figure). .
In other words, in the case of this embodiment, a voltage about twice that of the conventional case can be applied across the MOS capacitor element.
[0023]
In the output voltage active range, even when the gain of the inverting amplifier is −1, the voltage displacement speed at both ends of the MOS capacitor element corresponds to twice that when only the control voltage is varied as in the prior art, that is, variable. Sensitivity is also equivalent to twice.
Further, the output of the inverting amplifier when the gain is -2 times follows the saturation voltage Vs2 on the positive voltage side as the control voltage 22 increases from GND to Vcc, and is indicated by a straight line 27 in the figure. Thus, from point A to point B that reaches saturation voltage Vs1 on the negative voltage side, it decreases at a displacement rate twice that of control voltage 22 and follows saturation voltage Vs1 on the negative voltage side. Therefore, in the output voltage active range (from point A to point B), the displacement speed of the voltage across the MOS capacitor element is tripled, that is, the variable sensitivity is tripled.
[0024]
Similarly, the output voltage of the inverting amplifier when the gain of the inverting amplifier is −3 times is shown by a straight line 28 in the figure, a straight line 29 when the gain is −4 times, and a straight line 30 when the gain is −5 times. Therefore, a high variable sensitivity of (| gain | +1) times is realized in each output voltage active range.
[0025]
This is an effect limited to the active range of the output voltage. However, since the MOS capacitor element only needs to exhibit a steep capacitance characteristic in the vicinity of 0 V, in this case, in the vicinity of the bias Vb of the inverting amplifier, no problem occurs.
[0026]
Therefore, by adjusting the gain of the inverting amplifier, the steepness of the capacitance characteristic lost due to the superimposed AC voltage can be recovered, and the effect is shown in FIG. This shows a capacitance characteristic when the reference voltage of one terminal of the conventional MOS capacitor is fixed, and a capacitance characteristic when the gain is changed from -1 to -5 times when an inverting amplifier is used. It can be seen that the variable sensitivity increases as the absolute value of the gain increases.
[0027]
FIG. 4 shows a second embodiment of the variable capacitance circuit according to the present invention. This is because a control voltage is connected to one connection terminal of a parallel circuit composed of three MOS capacitors connected in parallel with the same polarity via an input resistor 41, and the control voltage is connected to the other terminal via an input resistor 42. In this configuration, an output voltage obtained by inverting and amplifying the voltage with an inverting amplifier is connected. The AC blocking input resistors 41 and 42 may be omitted if the voltage source of the control voltage and the output impedance of the inverting amplifier are practically high and are not affected by the AC component, and the polarity of the MOS capacitor element. Of course, all may be reversed.
[0028]
This realizes a wider variable range by controlling the parallel combined capacitance of a plurality of MOS capacitance elements. For example, when three MOS capacitance elements having capacitance characteristics varying from 15 pF to 60 pF are connected in parallel as shown in FIG. 4, a MOS capacitance circuit having a wide variable range of 45 pF to 180 pF is obtained. It is also possible to obtain desired capacitance characteristics by combining MOS capacitance elements having different capacitance characteristics.
Although the description has been given here with three MOS capacitance elements, there is no limitation on the number of the MOS capacitance elements.
[0029]
FIG. 5 shows a third embodiment of the variable capacitance circuit according to the present invention. This is because a MOS capacitor element 51 and a DC capacitor fixed capacitor 52 connected in series, a MOS capacitor element 53 and a fixed capacitor 54 series circuit, and a MOS capacitor element 55 and a fixed capacitor 56 series circuit are connected to the MOS. In a parallel circuit in which the polarities of the capacitive elements are aligned and connected in parallel, a control voltage is connected to a common end of each MOS capacitive element of the parallel circuit, that is, a connection point A of the parallel circuit via an input resistor 57, and this control is performed. An output voltage obtained by inverting and amplifying the voltage by each inverting amplifier is connected to a connection midpoint between each MOS capacitor element and a fixed capacitor via input resistors 58, 59 and 60.
[0030]
Here, the DC blocking fixed capacitors 52, 54 and 56 are for preventing the output voltages from the respective inverting amplifiers from interfering with each other via the connection point B of the parallel circuit. It is possible to omit only.
Here, the AC blocking input resistors 57, 58, 59, 60 may be omitted if the voltage source of the control voltage and the output impedance of each inverting amplifier are practically high and are not affected by the AC component. Of course, all the polarities of the MOS capacitor elements may be reversed.
[0031]
Similar to the second embodiment, a wide range of variable width is realized by controlling the parallel combined capacitance of a plurality of MOS capacitance elements, and a desired capacitance can be obtained by combining MOS capacitance elements having different capacitance characteristics. Capacitance characteristics can also be obtained. In addition, the variable sensitivity can be adjusted by using inverting amplifiers having different gains or by adjusting the gains of the respective inverting amplifiers, and can be further adjusted to a desired capacitance characteristic.
Although the description has been given here with three MOS capacitance elements, there is no limitation on the number of the MOS capacitance elements.
[0032]
FIG. 6 shows a fourth embodiment of the variable capacitance circuit according to the present invention. This is because in a series circuit in which the MOS capacitor elements 61 and 62 are connected to each other, the MOS capacitor elements 62 and 63 are connected to each other, and three MOS capacitor elements are connected in series. A control voltage is connected to the gate electrode side connection points A1 and A2 via input resistors 64 and 66, and a control voltage is connected to the connection points B1 and B2 on the counter electrode side of the MOS capacitance element via input resistors 65 and 67. Is connected to the output voltage inverted by an inverting amplifier.
[0033]
Here, the input resistors 64 and 66 connected to the gate electrode side and the input resistors 65 and 67 connected to the counter electrode side are practically sufficiently high in the output voltage of the control voltage source and the inverting amplifier, and are influenced by the AC component. If there is no, only one can be omitted on each electrode side. Naturally, the polarities of the MOS capacitor elements may be reversed.
[0034]
This realizes a variable capacitance range from a low capacitance value by controlling the series combined capacitance of a plurality of MOS capacitance elements. For example, if three MOS capacitance elements having capacitance characteristics varying from 15 pF to 60 pF are connected in series as shown in FIG. 6, the capacitance is from 5 pF to 20 pF. It is also possible to obtain desired capacitance characteristics by combining MOS capacitance elements having different capacitance characteristics.
Although the description has been given here with three MOS capacitance elements, there is no limitation on the number of the MOS capacitance elements.
[0035]
1, FIG. 4, FIG. 5 and FIG. 6 described in the above embodiments of the variable capacitance circuit according to the present invention, means for adjusting the gain as an inverting amplifier included in each circuit diagram, for example, the feedback of FIG. By adopting a variable resistance element as the resistance R2, each variable sensitivity can be set to an arbitrary value.
[0036]
【The invention's effect】
As described above, when the MOS capacitor is used as a variable capacitor for adjusting the frequency of the oscillation circuit, there is a possibility that the variable sensitivity characteristic is deteriorated due to the influence of the superimposed AC voltage. However, by using the circuit method proposed this time, it became possible to realize a larger variable sensitivity even at a low voltage and to improve the deterioration of the variable sensitivity.
In addition, in order to obtain the conventional capacity characteristics, the required control voltage is about half or less (| gain | = 1, about half, and more than that is half or less). The effect is great.
This circuit configuration is also used when digitally used in a saturation region where the MOS capacitor element is a fixed capacitor (in the MOS capacitance characteristics, the capacitance does not change with respect to the voltage, on the high voltage side or on the low voltage side). By using this, the saturation region can be set widely, and the control voltage can be designed small.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing a first embodiment of the present invention. FIG. 2 is an explanatory diagram of an effect principle of an inverting amplifier. FIG. 3 is an effect graph of an inverting amplifier. FIG. 5 is a circuit diagram showing a third embodiment of the present invention. FIG. 6 is a circuit diagram showing a fourth embodiment of the present invention. FIG. 7 is an example of characteristics of a MOS capacitor. Example of use of conventional MOS capacitor element [FIG. 9] Measurement circuit diagram of MOS capacitor element [FIG. 10] Explanation of influence of AC superimposed voltage [FIG. 11] Graph of influence of amplitude of AC superimposed voltage [Explanation of symbols]
R1, R2, 1, 2, 41, 42, 57, 58, 59, 60, 64, 65, 66, 67 Resistor, 52, 54, 56 Capacitor, 51, 53, 55, 61, 62, 63 MOS capacitance element

Claims (2)

極性を揃えて複数並列に接続したMOS容量素子からなる並列回路において、該並列回路の一端に制御電圧を、他端に該制御電圧を反転アンプにより反転増幅した出力電圧を、夫々直接又は入力抵抗を介して印加したことを特徴とした可変容量回路。In a parallel circuit composed of a plurality of MOS capacitors connected in parallel with the same polarity, a control voltage is applied to one end of the parallel circuit, and an output voltage obtained by inverting and amplifying the control voltage with an inverting amplifier is applied directly or to an input resistor, respectively. A variable capacitance circuit characterized by being applied via MOS容量素子と直流阻止用の固定コンデンサを直列に接続した直列回路をMOS容量素子の極性を揃えて複数並列に備えた並列回路において、該並列回路を構成する各MOS容量素子の一端に制御電圧を、他端に該制御電圧を反転アンプにより反転増幅した出力電圧を、夫々直接又は入力抵抗を介して印加したことを特徴とした可変容量回路。In a parallel circuit comprising a plurality of series circuits in which a MOS capacitor element and a fixed capacitor for DC blocking are connected in series with the polarity of the MOS capacitor element aligned, a control voltage is applied to one end of each MOS capacitor element constituting the parallel circuit. A variable capacitance circuit characterized in that an output voltage obtained by inverting and amplifying the control voltage by an inverting amplifier is applied to the other end directly or via an input resistor.
JP2003115599A 2003-04-21 2003-04-21 Variable capacitance circuit Expired - Fee Related JP4374892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003115599A JP4374892B2 (en) 2003-04-21 2003-04-21 Variable capacitance circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003115599A JP4374892B2 (en) 2003-04-21 2003-04-21 Variable capacitance circuit

Publications (2)

Publication Number Publication Date
JP2004327470A JP2004327470A (en) 2004-11-18
JP4374892B2 true JP4374892B2 (en) 2009-12-02

Family

ID=33496107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003115599A Expired - Fee Related JP4374892B2 (en) 2003-04-21 2003-04-21 Variable capacitance circuit

Country Status (1)

Country Link
JP (1) JP4374892B2 (en)

Also Published As

Publication number Publication date
JP2004327470A (en) 2004-11-18

Similar Documents

Publication Publication Date Title
JP4671305B2 (en) Physical quantity sensor
JP5280449B2 (en) Reference frequency generation circuit, semiconductor integrated circuit, electronic equipment
JP4681007B2 (en) Voltage controlled oscillator
Kar et al. Tunable square-wave generator for integrated sensor applications
KR100657839B1 (en) Delay Cells Insensitive to Supply Voltage Noise
US7167050B2 (en) Operational amplifier having large output current with low supply voltage
JP2003204247A (en) Variable resistance circuit and application circuit thereof
JP4374892B2 (en) Variable capacitance circuit
JP2001196899A (en) High frequency variable attenuation circuit
JP3308393B2 (en) Voltage controlled oscillator
US7268636B2 (en) Voltage controlled oscillator
JPH1051238A (en) Voltage control oscillator
JP2009075060A (en) Physical quantity sensor
JP2009075060A6 (en) Physical quantity sensor
EP1173923B1 (en) Differential pair provided with degeneration means for degenerating a transconductance of the differential pair
US7928810B2 (en) Oscillator arrangement and method for operating an oscillating crystal
CN115459727A (en) Pseudo resistance circuit, RC filter circuit, current mirror circuit and chip
JPH09321555A (en) Differential amplifier for semiconductor integrated circuit
JP2006060797A (en) Voltage controlled oscillator
JP4428124B2 (en) Temperature compensated oscillator
JP2006033092A (en) Piezoelectric oscillator
JP2013090188A (en) Crystal oscillator circuit
KR20040039895A (en) Sine buffer circuit of temperature compensated crystal oscillator
JP4123512B2 (en) Amplifier and signal generator using the same
JP3266883B2 (en) Piezoelectric oscillator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060404

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060404

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090831

R150 Certificate of patent or registration of utility model

Ref document number: 4374892

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130918

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees