JP4367733B2 - Steam turbine equipment - Google Patents
Steam turbine equipment Download PDFInfo
- Publication number
- JP4367733B2 JP4367733B2 JP25614499A JP25614499A JP4367733B2 JP 4367733 B2 JP4367733 B2 JP 4367733B2 JP 25614499 A JP25614499 A JP 25614499A JP 25614499 A JP25614499 A JP 25614499A JP 4367733 B2 JP4367733 B2 JP 4367733B2
- Authority
- JP
- Japan
- Prior art keywords
- blade
- steam
- pressure
- blades
- rotational force
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2200/00—Mathematical features
- F05B2200/20—Special functions
- F05B2200/26—Special functions trigonometric
- F05B2200/261—Sine
Landscapes
- Turbine Rotor Nozzle Sealing (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Description
【産業上の利用分野】
【0001】
本発明は物体(蒸気)の有する導入打撃推力を回転力に転換するタービン装置に関するものである。
【従来技術】
【0002】
古来水の重力を利用した水車による産業利用、又は最先端では高温蒸気圧力をタービンを介して軸の回転力に転換し発電機を回す等、重力或いは圧力を軸回転力に転換して産業活動に活用する技術の進歩は著しい。その中で蒸気圧を活用する施設は大型化が極まり、ローカル的小型施設で利用するタービン機器が少ないと云う話が聞かれ、特に小型産廃物焼却炉の熱を活用する蒸気タービンの提供を望む声が多い。
【発明が解決しようとする課題】
【0003】
前項に鑑み本発明者はローカル的小型施設においても普遍的に利用できる蒸気タービン装置を提供しようとするものである。即ち
▲1▼ローカル技術でも製造できる
▲2▼且つ高い効率を得られる器機が求められ、
▲3▼更に高温に対応できる軸受の保護対策のクリアが必要となる。
▲4▼特に大型化の一端として復水機が必須とされるがそれを解消されないか!
等々に対処する目標をたてた。
【課題を解決するための手段】
【0004】
本発明者はかつて、回転ブロワーによる切断稲ワラの搬送作業現場において、十字型羽根翼の入射点にワラが付着する困難に苦しめられて、その入射点における抵抗を0とする羽根を考えつき試作し、新しい搬送装置(特許2711402号)として活用しており、その羽形のもつ特徴に魅せられて各種の活用の方途をさぐっている。その一つが本願の出発点となった。
【0005】
本発明を構成する手段を順を追って説明する。
(1)基本となる回転羽根の羽根翼羽形の基礎となる合成・正弦曲線図を、表図1に示しその根拠を以下に説明する。
基調となる合成正弦曲線の一般式は、
y=Asin(BX)……………▲1▼で示される。
本例の場合曲線の変曲点0を原点として
変曲点0より左側(CBO)は……………X≧Oで
基本振幅をaをして…………………………▲1▼の式は
(範囲は −πa≦X≦O)
又、変曲点0より右側(OAD)は………O≦Xで
基本振幅を2aとして………………………▲1▼式は
(範囲は O≦X≦πa)
でそれぞれ示される。
具体的な数字を代入した図2の実線は、
a=1.25とすると
によるものである。
【0006】
上述の根拠に基づく羽形と、一次元形状の有効な巾をもつ羽根翼の表図1に示したA点位置の接点を、所要の直径を有する回転軸外周接線に重ねて基部とし、偏心に複数を配置し、両側を円板で囲ってバケット状とするものである。
尚、本羽形は先に出願した特許願昭63−334710(特許第2711402号)の基礎を遵用したが、活用事案によって振幅と範囲の組合せ方並びに枚数は充分比較検討を要することは当然である。
本願で用いる合成・正弦曲線図は実施例で示す。
【0007】
(2)前項の回転軸の所要の直径についてである。複数の羽根翼の基部の配置が偏心となり、その基部取付位置が回転軸外周上に充分な隙間を有する必要上の所要直径であり、中空で前記間隙間位置に穿孔して回転に伴って生ずる負圧による空気の吸入流動をはかる構造上の必要性をかなえる所要直径である。通常ブロワーに於ける吸入口の直径を想定し、大きくなればフランジ構造となる。
【0008】
中空の回転軸の羽根基部取付の間隙間位置に空気の吸入流動出来る取付羽根と平行的斜めに穿孔する。回転羽根はケーシングの中にあるので蒸気の導入と排出部分以外の円周や中心部では物体の遠心流動慣性に因る大きな負圧が生じ、一体的構造の回転軸中空を相当量の外気が流動し軸の高温化を抑え、軸受部を保護しながら積極的なマフラー機能に進展して回転力転換の効率を高める。
表図1の羽根翼の受動運動の模式を表図2に示す。
【0009】
(3)前項(2)の構造の回転軸に(1)の羽根体円板を、羽根翼の外周端面を有意に差異をもたせて複数を併列して組合せることによって、蒸気容量に対応する巾を拡げると共に、個々のバケットの蒸気受入れ容積が大きい羽根体円板特徴を生かしつつ蒸気圧推力がバランス良く常時羽根体の回転に働きかける様にするものである。
【作用】
【0010】
本発明の基本となる回転羽根車の羽根翼形状は物体の遠心流動慣性と羽根の回転を抵抗なく同調させるので蒸気圧推力を無駄なく軸の回転力に転換することが出来る。
その構造的特徴は、その羽形が回転軸外周上の基部から羽根外周端まで切れ間がないことで成り立っていることであり、羽根車の回転に伴なう遠心力慣性により羽根翼の表裏を流れる物体の流動にロスを生じることがなく機能が比飛躍的に向上する機構である。
【0011】
本願装置のケーシングは蒸気の受け入れ部と吐出部が開口されているが蒸気が流入や排出している部分以外では羽根の外周部法線と中心部において羽根車の回転に伴なう遠心流動慣性に因る相当の負圧が生じる。羽根の回転自体にとっては抵抗となるものだが、本願で加えられた回転軸の工夫によってそれぞれのバケット状室に空気が導入されることはその負圧抵抗の解消にもつながり、又蒸気の吐出切れもよくなる。回転する羽根翼の表裏における蒸気と空気の物体流動慣性が羽根自体の回転にともなって起こる遠心力と一体となって機能するのである。
本願の羽形特徴を別の表現で云えば、入射点から外周端まで切れ間がないことが、諸々の機能発現のもととなる。
【0012】
次に、物体(蒸気)の流動圧力と軸回転力転換との関係を検討する。基礎となる羽形の表図2における曲線図B部分が蒸気を受けとめる皿であり、それを回転軸に伝える腕部分は回転軸に対して偏心に取付けられているので、打撃推力を回転力への転換は極めて自然で無駄がない。B部分に当たる物体(蒸気)の推力Mは皿のP点に打撃推力Gとなって働くが、回転につれてP点が移動するにあわせた物体の流動に何の抵抗もなく、排出されるまでG力が働く。裏側で生じる負圧も回転と物体(蒸気+空気)の遠心流動慣性とが一体となる。高速で流動する蒸気の排出もスムーズで何等の抵抗も残さない。
と同時に回転軸の中空部を流動する外気空気は回転軸の高温化を防ぐことによって結果的に軸受部の保護となるから特別な高度の冷却装置を必要としないので、装置の低廉化につながる。
【0013】
更に中空の回転軸を通る外気流動は、回転前方の羽根翼にそった外気流動となり、蒸気吐出口に外気を間断なく送ることとなり、羽根翼の高温化も中和しながら排出蒸気を冷却する。その冷却作用は蒸気体の収縮を伴い、吐出口における負圧を生ずることになるので、蒸気体の排出を助けるマフラー効果となり羽根車の回転力転換を飛躍的に向上させながら復水機の併設を不要とする等、コストの低減をもたらす。
【実施例】
【0014】
以下図面を参照して本発明にかかる一実施例を説明する。
図1−は蒸気タービン装置の羽根部の横断図で、
図2−はタービン装置の全体鳥瞰図である。
各図において、1−はタービン装置ケーシング、2−は羽根翼、3−は羽根側板(円板)、4−は回転軸、5−は回転軸穿孔部で空気流動通路、1−2はケーシングの蒸気導入口、1−3はケーシングの蒸気排出口、6−は導入蒸気、7−は排出蒸気、8−は架台、9と10−は軸受で、11−は伝導スプロケットである。
【0015】
尚、本願の羽形は、振幅の異なる合成、正弦曲線を表現した表図1の基本に由り、振幅と範囲を有意に設定して合成して表図3に示したがそれの振幅4の▲5▼のA−O−B−Cを使用し受動回転と云う本願の利用形に対応した。
【0016】
本願タービンの羽形特定の経緯は次の通りである。
▲1▼ 図中、Aの振幅は回転軸同心円半径に近いことが望ましい。
A点は羽根翼基部(入射点)となる切点となり、回転軸フランジ外周の接線と重なる関係にあり、A−Oの範囲は短くして、O−Cは出来るだけ大きくしたい。
▲2▼ 羽形の深さを支配するO−Cの振幅は大きく、範囲もそのバランスで維持する。
▲3▼ 基本曲線図は表図3に依存し、上記▲1▼と▲2▼に基づきA−OとO−Cはそれぞれの羽根翼の長さ−範囲に合わせて伸縮し調整する。
【0017】
以上の構成による動作を順を追って説明する。
高圧蒸気6がタービン装置に導入されると、圧力Gとなって表図2の羽根翼P点に働き、P点は慣性に従って回転し、回転軸4に回転力を伝達する。圧力Gは回転につれて移動するP点に連動して圧力を与えつづける。物体Mの流動慣性と羽根翼の連動とは一体化してその流れに無理も無駄もなく圧力Gがスムーズに回転力に転換される。ケーシング内での高速回転は羽根翼裏側で当然負圧を生ずるが、回転軸を中空とし、穿孔して5の空気吸入流動口を設けたことにより、負圧を解消しながら物体の慣性流動化をスムーズにする働きとなり、蒸気が排出口に遠心力によって放出されることを助けるので、回転抵抗となるものが生じない。
この様に回転する羽根翼の表裏における蒸気と空気の流動は表図2に示している如く、羽根体の回転運動と物体の遠心流動慣性が一体となり圧力Gを回転力に転換する効率を極度に高めることとなるのである。更にその中空の回転軸を流動する外気が回転軸の高温化を防いで、軸受の保護となり、同時に吐出蒸気を直接冷却して容積を収縮することとなり、蒸気タービンが復水機の併設を必須とする要件を省略できる補完機構となる。
【発明の効果】
【0018】
前項の実施例の動作説明に述べた如く、蒸気の圧力を回転力に転換する効率は、回転抵抗となる要因が見られないことから極めて高い。そして羽根翼裏面に生ずる負圧を軽減するに役立つ、中空の回転軸を流動する吸入空気は、急速な外気の導入となって回転軸の高温化を防ぎ、結果として軸受を保護するから、高温の蒸気タービンの宿命である軸受の冷却装置を必要としない。と同時にマフラー機能が働くので、冷気、冷水供給の工夫を加えて復水機なしで運転できる途を拓きえる機構の有利性は決して小さくない。
【0019】
そのことは羽根車の製造法の簡便さと高い効率と相まって施設の大小を問わず普遍的利用の範囲を拡げることとなる。現代の社会環境の中で熱に転換出来る資源は膨大であり、その熱を回転力に転換する接点となる蒸気タービンの高い効率化と施設費の低廉化を図る本発明の成果は、資源の活用に貢献する分野を大幅に拡大出来る。
又、水車としての利用でも、水の重力を回転力に転換する機能は変わらないのであらゆる規模の水力利用にも貢献し得る。
【図面の簡単な説明】
【0020】
【図1】−は蒸気タービン装置の羽根部の横断図、
【図2】−は蒸気タービン装置の全体図である。
【符号の説明】
【0021】
各図の於いて、1…タービン装置ケーシング、2…羽根翼、3…は羽根側板(円板)、4…は回転軸、5…回転軸の穿孔部で空気流動通路、1−2…ケーシングの蒸気導入口、1−3…ケーシングの蒸気排出口、6…導入蒸気、7…は排出蒸気、8…架台、9及10…軸受、11…伝導スプロケット[Industrial application fields]
[0001]
The present invention relates to a turbine device that converts an introduction impact thrust of an object (steam) into a rotational force.
[Prior art]
[0002]
Industrial use by turbines using gravity of ancient water, or industrial activities by converting gravity or pressure to shaft rotation force, such as turning high-temperature steam pressure to shaft rotation force through turbine and turning generator at the most advanced Advances in technology used for Among them, facilities that use steam pressure are extremely large, and it is heard that there are few turbine equipment used in small local facilities, and in particular, we want to provide steam turbines that utilize the heat of small industrial waste incinerators. There is a lot of voice.
[Problems to be solved by the invention]
[0003]
In view of the preceding paragraph, the present inventor intends to provide a steam turbine apparatus that can be used universally even in a small local facility. In other words, (1) There is a demand for equipment that can be manufactured with local technology.
(3) Clearance of bearing protection measures that can cope with higher temperatures is required.
(4) A condenser is essential as part of the increase in size.
I set a goal to deal with them and so on.
[Means for Solving the Problems]
[0004]
The present inventor once thought and prototyped a blade whose resistance at the entrance point is 0, suffering from the difficulty of attaching the straw to the entrance point of the cross-shaped blade wing at the work site for transporting the cut rice straw by the rotary blower. It is used as a new transport device (Japanese Patent No. 2711402) and is attracted by the characteristics of its wing shape to explore various ways to use it. One of them was the starting point for this application.
[0005]
The means constituting the present invention will be described step by step.
(1) A composite / sine curve diagram that is the basis of the blade shape of a rotating blade that is the basis is shown in Table 1 and the basis for this will be described below.
The general formula for the synthetic sine curve is
y = Asin (BX)... (1)
In the case of this example, the inflection point 0 of the curve is the origin and the left side (CBO) of the inflection point 0 is …………… X ≧ O and the basic amplitude is set to a ………………………… ▲ The formula of 1 ▼ is
(Range is -πa ≦ X ≦ O)
The right side of the inflection point 0 (OAD) is ......... O≤X and the basic amplitude is 2a .........
(Range is O ≦ X ≦ πa)
Respectively.
The solid line in Fig. 2 with specific numbers assigned is
If a = 1.25
Is due to.
[0006]
Table of wings based on the above-mentioned grounds and effective blades having a one-dimensional shape The point A contact point shown in FIG. A plurality of them are arranged, and both sides are surrounded by discs to form a bucket shape.
Although this feather was based on the basis of the previously filed Japanese Patent Application No. 63-334710 (Japanese Patent No. 2711402), it should be understood that the combination of amplitude and range and the number of sheets need to be sufficiently compared depending on the utilization case. It is.
The composite sine curve diagram used in the present application is shown in the examples.
[0007]
(2) The required diameter of the rotating shaft in the previous section. The arrangement of the bases of a plurality of blade blades is eccentric, and the base mounting position is a necessary diameter required to have a sufficient gap on the outer periphery of the rotating shaft. This is the required diameter to meet the structural need to measure the suction flow of air by negative pressure. Normally, the diameter of the suction port in the blower is assumed.
[0008]
During the attachment of the blade base of the hollow rotating shaft, holes are drilled obliquely in parallel with the attachment blades capable of sucking and flowing air. Since the rotating blades are inside the casing, a large negative pressure is generated at the circumference and center other than the steam introduction and discharge parts due to the centrifugal flow inertia of the object. It will flow and suppress the high temperature of the shaft, and it will advance to an aggressive muffler function while protecting the bearing part, and increase the efficiency of torque conversion.
Table 2 shows a schematic diagram of the passive motion of the blade blades in Table 1.
[0009]
(3) Corresponding to steam capacity by combining the blade body disk of (1) with the rotating shaft of the structure of (2) in the preceding paragraph and combining a plurality of blade blades with the outer peripheral end faces arranged in parallel. In addition to widening the width, the steam pressure thrust always works on the rotation of the blade body in a well-balanced manner while taking advantage of the blade disk feature of each bucket having a large steam receiving volume.
[Action]
[0010]
The shape of the impeller blade of the rotary impeller, which is the basis of the present invention, synchronizes the centrifugal flow inertia of the object and the rotation of the blade without resistance, so that the vapor pressure thrust can be converted into the shaft rotational force without waste.
Its structural feature is that the wing shape has no gap from the base on the outer periphery of the rotating shaft to the outer peripheral edge of the blade, and the centrifugal force inertia caused by the rotation of the impeller makes the front and back of the blade blade This is a mechanism in which the function is dramatically improved without causing any loss in the flow of the flowing object.
[0011]
The casing of the device of the present application has a steam receiving portion and a discharge portion opened, but the centrifugal flow inertia accompanying the rotation of the impeller at the outer peripheral normal and the central portion of the blade except for the portion where the steam flows in and out. Considerable negative pressure due to Although it is a resistance to the rotation of the blade itself, the introduction of air into each bucket-like chamber by the device of the rotating shaft added in the present application also leads to the elimination of the negative pressure resistance, and the steam is completely discharged. Also gets better. The body flow inertia of steam and air on the front and back of the rotating blade blade functions together with the centrifugal force generated by the rotation of the blade itself.
In other words, the wing-shaped feature of the present application has no gap from the incident point to the outer peripheral edge, which is the basis for various functions.
[0012]
Next, the relationship between the flow pressure of the object (steam) and the conversion of the shaft rotational force is examined. Curved portion B in Fig. 2 of the base wing shape is a dish that receives steam, and the arm portion that transmits it to the rotating shaft is mounted eccentrically with respect to the rotating shaft. The transition is very natural and wasteful. The thrust M of the object (steam) that hits the B portion works as a striking thrust G at the point P of the dish, but there is no resistance to the flow of the object as the point P moves as it rotates, and until it is discharged Power works. As for the negative pressure generated on the back side, the rotation and the centrifugal flow inertia of the object (steam + air) are integrated. The discharge of steam flowing at high speed is smooth and does not leave any resistance.
At the same time, the outside air flowing through the hollow portion of the rotating shaft prevents the temperature of the rotating shaft from becoming high, resulting in protection of the bearing portion, so that no special high-level cooling device is required, leading to a reduction in the cost of the device. .
[0013]
Furthermore, the outside air flow through the hollow rotating shaft becomes the outside air flow along the blade blades in front of the rotation, and the outside air is sent to the steam discharge port without interruption, and the exhaust steam is cooled while neutralizing the high temperature of the blade blades. . The cooling action is accompanied by the contraction of the steam body and creates a negative pressure at the discharge port, so it becomes a muffler effect that helps the steam body to be discharged, and a condensing machine is installed while dramatically improving the rotational force conversion of the impeller. The cost is reduced, for example, by eliminating the need for
【Example】
[0014]
An embodiment according to the present invention will be described below with reference to the drawings.
FIG. 1 is a cross-sectional view of a blade portion of a steam turbine device.
FIG. 2 is an overall bird's-eye view of the turbine apparatus.
In each figure, 1 is a turbine apparatus casing, 2 is a blade blade, 3 is a blade side plate (disc), 4 is a rotating shaft, 5 is a rotating shaft perforated portion, and an air flow path is 1-2. The steam inlet of the casing 1-3, the steam outlet of the casing, the inlet steam 6-, the outlet steam 7-, the outlet steam 8-, the gantry 9, the bearing 10-, and the conductive sprocket 11-.
[0015]
Note that the wings of the present application are shown in Table 3 in which the amplitude and the range are set significantly based on the composition of the different amplitudes and the basics of FIG. 1 representing the sine curve. (5) A-O-B-C was used to correspond to the application form of the present application called passive rotation.
[0016]
The process of specifying the blade shape of the turbine of the present application is as follows.
(1) In the figure, the amplitude of A is preferably close to the concentric radius of the rotation axis.
Point A is a cut point that becomes the blade blade base (incident point) and overlaps with the tangent to the outer periphery of the rotary shaft flange. The range of A-O should be shortened and OC should be as large as possible.
(2) The amplitude of OC which controls the depth of the wing shape is large, and the range is also maintained in the balance.
(3) The basic curve diagram depends on Table 3. Based on the above (1) and (2), A-O and O-C are expanded and adjusted in accordance with the length-range of each blade blade.
[0017]
The operation of the above configuration will be described step by step.
When the high-pressure steam 6 is introduced into the turbine device, the pressure G is applied to the blade blade P point in FIG. 2, and the P point rotates according to inertia and transmits the rotational force to the rotating shaft 4. The pressure G continues to be applied in conjunction with the point P that moves as it rotates. The flow inertia of the object M and the interlocking of the blade blades are integrated, and the pressure G is smoothly converted to a rotational force without excessive or wasteful flow. High-speed rotation in the casing naturally generates negative pressure on the back side of the blade, but the rotating shaft is hollow, and by drilling and providing 5 air suction flow ports, inertial fluidization of the object is achieved while eliminating negative pressure Since it helps the steam to be released into the outlet by centrifugal force, there is no rotation resistance.
As shown in Table 2, the flow of steam and air on the front and back of the blade blades rotating in this way is extremely effective in converting the pressure G into a rotational force by integrating the rotary motion of the blade body and the centrifugal flow inertia of the object. It will increase to. Furthermore, the outside air that flows through the hollow rotating shaft prevents the rotating shaft from becoming hot and protects the bearing. At the same time, the discharged steam is directly cooled to shrink the volume, and the steam turbine must be equipped with a condenser. It becomes a complementation mechanism that can omit the requirement.
【The invention's effect】
[0018]
As described in the explanation of the operation of the previous embodiment, the efficiency of converting the steam pressure into the rotational force is extremely high because no factor causing rotational resistance is found. And the intake air that flows through the hollow rotating shaft, which helps to reduce the negative pressure generated on the back of the blade blade, introduces rapid outside air to prevent the rotating shaft from becoming hot and consequently protects the bearing. You don't need a bearing cooling system, which is the fate of the steam turbine. At the same time, the muffler function works, so the merit of the mechanism that can open the way without using a condenser by adding cool air and cold water supply is not small.
[0019]
This, combined with the simplicity and high efficiency of the impeller manufacturing method, expands the range of universal use regardless of the size of the facility. The resources that can be converted into heat in the modern social environment are enormous, and the achievement of the present invention, which aims to increase the efficiency of steam turbines, which are the contact points that convert the heat into rotational force, and reduce the cost of facilities, The fields that contribute to utilization can be greatly expanded.
Further, even when used as a water wheel, the function of converting the gravity of water into rotational force does not change, so that it can contribute to the use of hydropower of any scale.
[Brief description of the drawings]
[0020]
FIG. 1 is a cross-sectional view of a blade portion of a steam turbine device,
FIG. 2 is an overall view of a steam turbine apparatus.
[Explanation of symbols]
[0021]
In each figure, 1 ... turbine device casing, 2 ... blade blades, 3 ... blade side plates (discs), 4 ... rotary shaft, 5 ... air flow passage in the perforated portion of the rotational shaft, 1-2 ... casing Steam inlet of 1-3, steam outlet of casing, 6 ... introduced steam, 7 ... exhaust steam, 8 ... mount, 9 and 10 ... bearings, 11 ... conducting sprocket
Claims (1)
更に回転軸フランジは中空の回転軸を通して外気の流通が共通しているので、羽根翼取り付け位置に近いフランジ壁には羽根翼と平行的斜めに搾孔され、回転に伴う空気の吸入が容易で負圧に引かれて外気が流通する機構と成っている。
前記の機構構成のもとで強圧蒸気が導入されると、羽根車の羽根翼は蒸気の導入受けから排出されるまでその受動点(G)を移動させながら圧力を受け止めトルクの大きい回転力に転換すると共に、併せてその回転に伴う流動慣性によって羽根翼裏面に生ずる負圧に引かれる外気吸入が機能して回転軸軸受けを冷やしながら、吐出して蒸気を冷却し容積を収縮することによってマフラー機構に進相する二重の構成機構を有する構造であることを特徴とする 蒸気タービン装置。A rotating impeller integrated with a rotating shaft that is built in a casing having an opening and a receiving portion for receiving steam and supported by bearings at both ends is rotated in response to an introduction impact thrust by strong pressure steam from the outside, In the device for converting the steam pressure into the rotational force of the shaft, the rotary impeller is a sine of a selected amplitude and range on a rotary shaft flange of a hollow structure with a set diameter common to the hollow rotary shaft and ventilation. A blade shape based on a composite sine curve formed by combining curves and a plurality of blade blades with an effective width of a one-dimensional shape. Overlapping the outer circumference tangent and mounting it eccentrically, and by surrounding the blade blades with discs, each blade blade becomes packet-like, and the impellers are arranged on the finished circle. Evenly distributed Combination as to to ensure the necessary width achieving homogenization of the rotational force.
Furthermore, since the rotary shaft flange shares the flow of outside air through the hollow rotary shaft, the flange wall near the blade blade mounting position is squeezed obliquely in parallel with the blade blade, making it easy to inhale air during rotation. It is a mechanism that allows external air to circulate under negative pressure.
When high-pressure steam is introduced under the above-described mechanism configuration, the impeller blades receive pressure and move to a rotational force with a large torque while moving the passive point (G) until the impeller blades are discharged from the introduction receiver of the steam. Along with the conversion, the muffler is also cooled by discharging and cooling the steam and shrinking the volume while cooling the rotating shaft bearing while the outside air suction that is drawn by the negative pressure generated on the back of the blade blade due to the flow inertia accompanying the rotation functions A steam turbine apparatus having a structure having a double constituent mechanism that advances into the mechanism.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25614499A JP4367733B2 (en) | 1999-08-07 | 1999-08-07 | Steam turbine equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25614499A JP4367733B2 (en) | 1999-08-07 | 1999-08-07 | Steam turbine equipment |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2001050001A JP2001050001A (en) | 2001-02-23 |
JP2001050001A5 JP2001050001A5 (en) | 2006-10-19 |
JP4367733B2 true JP4367733B2 (en) | 2009-11-18 |
Family
ID=17288523
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25614499A Expired - Lifetime JP4367733B2 (en) | 1999-08-07 | 1999-08-07 | Steam turbine equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4367733B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010196568A (en) * | 2009-02-25 | 2010-09-09 | Ts Heatronics Co Ltd | Power generation device using impeller |
AU2010354672B2 (en) * | 2010-05-31 | 2014-04-10 | Kabushiki Kaisha Toshiba | Power recovery device of liquid treatment apparatus |
JP5711098B2 (en) * | 2011-11-07 | 2015-04-30 | 日本電信電話株式会社 | Image encoding method, image decoding method, image encoding device, image decoding device, and programs thereof |
CN103306737A (en) * | 2013-06-21 | 2013-09-18 | 孔祥真 | Centrifugal steam turbine |
US20240116623A1 (en) * | 2022-05-05 | 2024-04-11 | Ramon David Bermudez Onopa | Novel wing apparatus |
-
1999
- 1999-08-07 JP JP25614499A patent/JP4367733B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2001050001A (en) | 2001-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI326332B (en) | Mini-fan | |
US3999377A (en) | Tesla-type turbine with alternating spaces on the rotor of cooling air and combustion gases | |
JPS5575587A (en) | Energy accumulated rotary motion apparatus | |
JP4367733B2 (en) | Steam turbine equipment | |
TW201031819A (en) | Wind driven generator | |
CN108566001B (en) | What a kind of windy road interweaved is forced into-pull-out type steam turbine generator ventilation cooling system | |
US20190058367A1 (en) | Rotor and electrical machine | |
CA2469440A1 (en) | Ceiling fan motors | |
CN209654278U (en) | Axial flow blower is used in a kind of cutting of building materials | |
JP2001050001A5 (en) | ||
CN107246288B (en) | A kind of turbine, condenser and the three-in-one energy utilization device of water circulating pump | |
CN107218234B (en) | Low-noise high-efficiency fan applied to permanent magnet motor | |
JPH09195702A (en) | Gas turbine, cooling device for gas turbine moving blade, and cooling method for gas turbine moving blade | |
JP3004474B2 (en) | Axial rotating machine | |
CN212272379U (en) | Novel radiator | |
CN208719005U (en) | The compressor impeller of internal set heat radiation fin heat dissipation | |
CN209354364U (en) | A kind of superposing type blade wheel structure | |
CN209483637U (en) | With front shroud blade and notch without spiral case centrifugal fan | |
CN209309010U (en) | Impeller and gas pump | |
RU2346213C2 (en) | Power-generating plant centrifugal wheel | |
JP2008232128A5 (en) | ||
CN110829709A (en) | Multistage drainage motor rotating shaft structure with flow guide fan cover | |
US3874190A (en) | Sealed single rotor turbine | |
CN221482449U (en) | High-temperature-resistant superconducting bearing | |
WO2024139470A1 (en) | Power device having dual air-cooling heat dissipation channels, and aircraft comprising same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060804 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060804 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090122 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090203 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090401 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090401 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090707 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090729 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4367733 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120808 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120808 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120808 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120808 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120808 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120904 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130904 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |