Nothing Special   »   [go: up one dir, main page]

JP4367547B2 - 火花点火式内燃機関 - Google Patents

火花点火式内燃機関 Download PDF

Info

Publication number
JP4367547B2
JP4367547B2 JP2007288541A JP2007288541A JP4367547B2 JP 4367547 B2 JP4367547 B2 JP 4367547B2 JP 2007288541 A JP2007288541 A JP 2007288541A JP 2007288541 A JP2007288541 A JP 2007288541A JP 4367547 B2 JP4367547 B2 JP 4367547B2
Authority
JP
Japan
Prior art keywords
compression ratio
mechanical compression
ratio
air
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007288541A
Other languages
English (en)
Other versions
JP2009114949A (ja
Inventor
大輔 秋久
大作 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2007288541A priority Critical patent/JP4367547B2/ja
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to PCT/JP2008/070531 priority patent/WO2009060976A1/ja
Priority to US12/672,186 priority patent/US8276554B2/en
Priority to BRPI0816100A priority patent/BRPI0816100B1/pt
Priority to RU2010107213/06A priority patent/RU2434154C1/ru
Priority to CN2008801062084A priority patent/CN101802371B/zh
Priority to DE112008003249T priority patent/DE112008003249B4/de
Publication of JP2009114949A publication Critical patent/JP2009114949A/ja
Application granted granted Critical
Publication of JP4367547B2 publication Critical patent/JP4367547B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D15/00Varying compression ratio
    • F02D15/04Varying compression ratio by alteration of volume of compression space without changing piston stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/04Engines with variable distances between pistons at top dead-centre positions and cylinder heads
    • F02B75/041Engines with variable distances between pistons at top dead-centre positions and cylinder heads by means of cylinder or cylinderhead positioning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0223Variable control of the intake valves only
    • F02D13/0234Variable control of the intake valves only changing the valve timing only
    • F02D13/0238Variable control of the intake valves only changing the valve timing only by shifting the phase, i.e. the opening periods of the valves are constant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0269Controlling the valves to perform a Miller-Atkinson cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/002Controlling intake air by simultaneous control of throttle and variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • F02D41/1475Regulating the air fuel ratio at a value other than stoichiometry
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は火花点火式内燃機関に関する。
機械圧縮比を変更可能な可変圧縮比機構と吸気弁の閉弁時期を制御可能な可変バルブタイミング機構とを具備し、機関中負荷運転時および機関高負荷運転時には過給機による過給作用を行い、かつ機関高負荷運転から中負荷運転に移る際には実圧縮比を一定に保持した状態で機関負荷が低くなるにつれて機械圧縮比を増大すると共に吸気弁の閉弁時期を遅くするようにした火花点火式内燃機関が公知である(例えば特許文献1を参照)。
特開2004−218522号公報
ところで後で詳細に説明するようにこのような内燃機関では熱効率の高くなる空燃比が機械圧縮比に応じて異なることが判明し、従って熱効率を高めるには機械圧縮比に応じて空燃比を適切に選択する必要がある。しかしながら上述の特許文献1はこのようなことについて何ら言及していない。
従って本発明によれば、機械圧縮比を変更可能な可変圧縮比機構と、吸気弁の閉弁時期を制御可能な可変バルブタイミング機構とを具備しており、機関低負荷運転側では機関高負荷運転時に比べて機械圧縮比が高くされると共に機関高負荷運転側では機械圧縮比は機関負荷が高くなるにつれて徐々に減少せしめられ、第1の空燃比による燃焼と第1の空燃比よりも大きな第2の空燃比による燃焼とが選択的に行われ、機関高負荷運転側では第1の空燃比による燃焼が行われ、機関低負荷運転側では機械圧縮比が予め定められた基準値よりも低いときには第2の空燃比による燃焼が行われる共に機械圧縮比が予め定められた基準値よりも高いときには第1の空燃比による燃焼が行われる。
熱効率を向上するために機関高負荷運転側では熱効率の高い第1の空燃比が用いられ、機関低負荷運転側では熱効率の高い第2の空燃比の使用が許可される。
図1に火花点火式内燃機関の側面断面図を示す。
図1を参照すると、1はクランクケース、2はシリンダブロック、3はシリンダヘッド、4はピストン、5は燃焼室、6は燃焼室5の頂面中央部に配置された点火栓、7は吸気弁、8は吸気ポート、9は排気弁、10は排気ポートを夫々示す。吸気ポート8は吸気枝管11を介してサージタンク12に連結され、各吸気枝管11には夫々対応する吸気ポート8内に向けて燃料を噴射するための燃料噴射弁13が配置される。なお、燃料噴射弁13は各吸気枝管11に取付ける代りに各燃焼室5内に配置してもよい。
サージタンク12は吸気ダクト14を介してエアクリーナ15に連結され、吸気ダクト14内にはアクチュエータ16によって駆動されるスロットル弁17と例えば熱線を用いた吸入空気量検出器18とが配置される。一方、排気ポート10は排気マニホルド19を介して例えば三元触媒を内蔵した触媒コンバータ20に連結され、排気マニホルド19内には空燃比センサ21が配置される。
一方、図1に示される実施例ではクランクケース1とシリンダブロック2との連結部にクランクケース1とシリンダブロック2のシリンダ軸線方向の相対位置を変化させることによりピストン4が圧縮上死点に位置するときの燃焼室5の容積を変更可能な可変圧縮比機構Aが設けられており、更に実際の圧縮作用の開始時期を変更可能な実圧縮作用開始時期変更機構Bが設けられている。なお、図1に示される実施例ではこの実圧縮作用開始時期変更機構Bは吸気弁7の閉弁時期を制御可能な可変バルブタイミング機構からなる。
電子制御ユニット30はデジタルコンピュータからなり、双方向性バス31によって互いに接続されたROM(リードオンリメモリ)32、RAM(ランダムアクセスメモリ)33、CPU(マイクロプロセッサ)34、入力ポート35および出力ポート36を具備する。吸入空気量検出器18の出力信号および空燃比センサ21の出力信号は夫々対応するAD変換器37を介して入力ポート35に入力される。また、アクセルペダル40にはアクセルペダル40の踏込み量Lに比例した出力電圧を発生する負荷センサ41が接続され、負荷センサ41の出力電圧は対応するAD変換器37を介して入力ポート35に入力される。更に入力ポート35にはクランクシャフトが例えば30°回転する毎に出力パルスを発生するクランク角センサ42が接続される。一方、出力ポート36は対応する駆動回路38を介して点火栓6、燃料噴射弁13、スロットル弁駆動用アクチュエータ16、可変圧縮比機構Aおよび可変バルブタイミング機構Bに接続される。
図2は図1に示す可変圧縮比機構Aの分解斜視図を示しており、図3は図解的に表した内燃機関の側面断面図を示している。図2を参照すると、シリンダブロック2の両側壁の下方には互いに間隔を隔てた複数個の突出部50が形成されており、各突出部50内には夫々断面円形のカム挿入孔51が形成されている。一方、クランクケース1の上壁面上には互いに間隔を隔てて夫々対応する突出部50の間に嵌合せしめられる複数個の突出部52が形成されており、これらの各突出部52内にも夫々断面円形のカム挿入孔53が形成されている。
図2に示されるように一対のカムシャフト54,55が設けられており、各カムシャフト54,55上には一つおきに各カム挿入孔51内に回転可能に挿入される円形カム56が固定されている。これらの円形カム56は各カムシャフト54,55の回転軸線と共軸をなす。一方、各円形カム56間には図3においてハッチングで示すように各カムシャフト54,55の回転軸線に対して偏心配置された偏心軸57が延びており、この偏心軸57上に別の円形カム58が偏心して回転可能に取付けられている。図2に示されるようにこれら円形カム58は各円形カム56間に配置されており、これら円形カム58は対応する各カム挿入孔53内に回転可能に挿入されている。
図3(A)に示すような状態から各カムシャフト54,55上に固定された円形カム56を図3(A)において実線の矢印で示される如く互いに反対方向に回転させると偏心軸57が下方中央に向けて移動するために円形カム58がカム挿入孔53内において図3(A)の破線の矢印に示すように円形カム56とは反対方向に回転し、図3(B)に示されるように偏心軸57が下方中央まで移動すると円形カム58の中心が偏心軸57の下方へ移動する。
図3(A)と図3(B)とを比較するとわかるようにクランクケース1とシリンダブロック2の相対位置は円形カム56の中心と円形カム58の中心との距離によって定まり、円形カム56の中心と円形カム58の中心との距離が大きくなるほどシリンダブロック2はクランクケース1から離れる。シリンダブロック2がクランクケース1から離れるとピストン4が圧縮上死点に位置するときの燃焼室5の容積は増大し、従って各カムシャフト54,55を回転させることによってピストン4が圧縮上死点に位置するときの燃焼室5の容積を変更することができる。
図2に示されるように各カムシャフト54,55を夫々反対方向に回転させるために駆動モータ59の回転軸には夫々螺旋方向が逆向きの一対のウォームギア61,62が取付けられており、これらウォームギア61,62と噛合する歯車63,64が夫々各カムシャフト54,55の端部に固定されている。この実施例では駆動モータ59を駆動することによってピストン4が圧縮上死点に位置するときの燃焼室5の容積を広い範囲に亘って変更することができる。なお、図1から図3に示される可変圧縮比機構Aは一例を示すものであっていかなる形式の可変圧縮比機構でも用いることができる。
一方、図4は図1において吸気弁7を駆動するためのカムシャフト70の端部に取付けられた可変バルブタイミング機構Bを示している。図4を参照すると、この可変バルブタイミング機構Bは機関のクランク軸によりタイミングベルトを介して矢印方向に回転せしめられるタイミングプーリ71と、タイミングプーリ71と一緒に回転する円筒状ハウジング72と、吸気弁駆動用カムシャフト70と一緒に回転しかつ円筒状ハウジング72に対して相対回転可能な回転軸73と、円筒状ハウジング72の内周面から回転軸73の外周面まで延びる複数個の仕切壁74と、各仕切壁74の間で回転軸73の外周面から円筒状ハウジング72の内周面まで延びるベーン75とを具備しており、各ベーン75の両側には夫々進角用油圧室76と遅角用油圧室77とが形成されている。
各油圧室76,77への作動油の供給制御は作動油供給制御弁78によって行われる。この作動油供給制御弁78は各油圧室76,77に夫々連結された油圧ポート79,80と、油圧ポンプ81から吐出された作動油の供給ポート82と、一対のドレインポート83,84と、各ポート79,80,82,83,84間の連通遮断制御を行うスプール弁85とを具備している。
吸気弁駆動用カムシャフト70のカムの位相を進角すべきときは図4においてスプール弁85が右方に移動せしめられ、供給ポート82から供給された作動油が油圧ポート79を介して進角用油圧室76に供給されると共に遅角用油圧室77内の作動油がドレインポート84から排出される。このとき回転軸73は円筒状ハウジング72に対して矢印方向に相対回転せしめられる。
これに対し、吸気弁駆動用カムシャフト70のカムの位相を遅角すべきときは図4においてスプール弁85が左方に移動せしめられ、供給ポート82から供給された作動油が油圧ポート80を介して遅角用油圧室77に供給されると共に進角用油圧室76内の作動油がドレインポート83から排出される。このとき回転軸73は円筒状ハウジング72に対して矢印と反対方向に相対回転せしめられる。
回転軸73が円筒状ハウジング72に対して相対回転せしめられているときにスプール弁85が図4に示される中立位置に戻されると回転軸73の相対回転動作は停止せしめられ、回転軸73はそのときの相対回転位置に保持される。従って可変バルブタイミング機構Bによって吸気弁駆動用カムシャフト70のカムの位相を所望の量だけ進角させることができ、遅角させることができることになる。
図5において実線は可変バルブタイミング機構Bによって吸気弁駆動用カムシャフト70のカムの位相が最も進角されているときを示しており、破線は吸気弁駆動用カムシャフト70のカムの位相が最も遅角されているときを示している。従って吸気弁7の開弁期間は図5において実線で示す範囲と破線で示す範囲との間で任意に設定することができ、従って吸気弁7の閉弁時期も図5において矢印Cで示す範囲内の任意のクランク角に設定することができる。
図1および図4に示される可変バルブタイミング機構Bは一例を示すものであって、例えば吸気弁の開弁時期を一定に維持したまま吸気弁の閉弁時期のみを変えることのできる可変バルブタイミング機構等、種々の形式の可変バルブタイミング機構を用いることができる。
次に図6を参照しつつ本願において使用されている用語の意味について説明する。なお、図6の(A),(B),(C)には説明のために燃焼室容積が50mlでピストンの行程容積が500mlであるエンジンが示されており、これら図6の(A),(B),(C)において燃焼室容積とはピストンが圧縮上死点に位置するときの燃焼室の容積を表している。
図6(A)は機械圧縮比について説明している。機械圧縮比は圧縮行程時のピストンの行程容積と燃焼室容積のみから機械的に定まる値であってこの機械圧縮比は(燃焼室容積+行程容積)/燃焼室容積で表される。図6(A)に示される例ではこの機械圧縮比は(50ml+500ml)/50ml=11となる。
図6(B)は実圧縮比について説明している。この実圧縮比は実際に圧縮作用が開始されたときからピストンが上死点に達するまでの実際のピストン行程容積と燃焼室容積から定まる値であってこの実圧縮比は(燃焼室容積+実際の行程容積)/燃焼室容積で表される。即ち、図6(B)に示されるように圧縮行程においてピストンが上昇を開始しても吸気弁が開弁している間は圧縮作用は行われず、吸気弁が閉弁したときから実際の圧縮作用が開始される。従って実圧縮比は実際の行程容積を用いて上記の如く表される。図6(B)に示される例では実圧縮比は(50ml+450ml)/50ml=10となる。
図6(C)は膨張比について説明している。膨張比は膨張行程時のピストンの行程容積と燃焼室容積から定まる値であってこの膨張比は(燃焼室容積+行程容積)/燃焼室容積で表される。図6(C)に示される例ではこの膨張比は(50ml+500ml)/50ml=11となる。
次に図7および図8を参照しつつ本発明において最も基本となっている特徴について説明する。なお、図7は理論熱効率と膨張比との関係を示しており、図8は本発明において負荷に応じ使い分けられている通常のサイクルと超高膨張比サイクルとの比較を示している。
図8(A)は吸気弁が下死点近傍で閉弁し、ほぼ吸気下死点付近からピストンによる圧縮作用が開始される場合の通常のサイクルを示している。この図8(A)に示す例でも図6の(A),(B),(C)に示す例と同様に燃焼室容積が50mlとされ、ピストンの行程容積が500mlとされている。図8(A)からわかるように通常のサイクルでは機械圧縮比は(50ml+500ml)/50ml=11であり、実圧縮比もほぼ11であり、膨張比も(50ml+500ml)/50ml=11となる。即ち、通常の内燃機関では機械圧縮比と実圧縮比と膨張比とがほぼ等しくなる。
図7における実線は実圧縮比と膨張比とがほぼ等しい場合の、即ち通常のサイクルにおける理論熱効率の変化を示している。この場合には膨張比が大きくなるほど、即ち実圧縮比が高くなるほど理論熱効率が高くなることがわかる。従って通常のサイクルにおいて理論熱効率を高めるには実圧縮比を高くすればよいことになる。しかしながら機関高負荷運転時におけるノッキングの発生の制約により実圧縮比は最大でも12程度までしか高くすることができず、斯くして通常のサイクルにおいては理論熱効率を十分に高くすることはできない。
一方、このような状況下で本発明者は機械圧縮比と実圧縮比とを厳密に区分して理論熱効率を高めることについて検討し、その結果理論熱効率は膨張比が支配し、理論熱効率に対して実圧縮比はほとんど影響を与えないことを見い出したのである。即ち、実圧縮比を高くすると爆発力は高まるが圧縮するために大きなエネルギーが必要となり、斯くして実圧縮比を高めても理論熱効率はほとんど高くならない。
これに対し、膨張比を大きくすると膨張行程時にピストンに対し押下げ力が作用する期間が長くなり、斯くしてピストンがクランクシャフトに回転力を与えている期間が長くなる。従って膨張比は大きくすれば大きくするほど理論熱効率が高くなる。図7の破線は実圧縮比を10に固定した状態で膨張比を高くしていった場合の理論熱効率を示している。このように実圧縮比を低い値に維持した状態で膨張比を高くしたときの理論熱効率の上昇量と、図7の実線で示す如く実圧縮比も膨張比と共に増大せしめられる場合の理論熱効率の上昇量とは大きな差がないことがわかる。
このように実圧縮比が低い値に維持されているとノッキングが発生することがなく、従って実圧縮比を低い値に維持した状態で膨張比を高くするとノッキングの発生を阻止しつつ理論熱効率を大巾に高めることができる。図8(B)は可変圧縮比機構Aおよび可変バルブタイミング機構Bを用いて、実圧縮比を低い値に維持しつつ膨張比を高めるようにした場合の一例を示している。
図8(B)を参照すると、この例では可変圧縮比機構Aにより燃焼室容積が50mlから20mlまで減少せしめられる。一方、可変バルブタイミング機構Bによって実際のピストン行程容積が500mlから200mlになるまで吸気弁の閉弁時期が遅らされる。その結果、この例では実圧縮比は(20ml+200ml)/20ml=11となり、膨張比は(20ml+500ml)/20ml=26となる。図8(A)に示される通常のサイクルでは前述したように実圧縮比がほぼ11で膨張比が11であり、この場合に比べると図8(B)に示される場合には膨張比のみが26まで高められていることがわかる。これが超高膨張比サイクルと称される所以である。
一般的に言って内燃機関では機関負荷が低いほど熱効率が悪くなり、従って機関運転時における熱効率を向上させるためには、即ち燃費を向上させるには機関負荷が低いときの熱効率を向上させることが必要となる。一方、図8(B)に示される超高膨張比サイクルでは圧縮行程時の実際のピストン行程容積が小さくされるために燃焼室5内に吸入しうる吸入空気量は少なくなり、従ってこの超高膨張比サイクルは機関負荷が比較的低いときにしか採用できないことになる。従って本発明では機関負荷が比較的低いときには図8(B)に示す超高膨張比サイクルとし、機関高負荷運転時には図8(A)に示す通常のサイクルとするようにしている。
次に図9を参照しつつ代表的な運転制御全般について説明する。
図9には或る機関回転数における機関負荷に応じた機械圧縮比、膨張比、吸気弁7の閉弁時期、実圧縮比、吸入空気量、スロットル弁17の開度およびポンピング損失の各変化が示されている。なお、図9は、触媒コンバータ20内の三元触媒によって排気ガス中の未燃HC,COおよびNOxを同時に低減しうるように燃焼室5内における平均空燃比が空燃比センサ21の出力信号に基いて理論空燃比にフィードバック制御されている場合を示している。
さて、前述したように機関高負荷運転時には図8(A)に示される通常のサイクルが実行される。従って図9に示されるようにこのときには機械圧縮比は低くされるために膨張比は低く、図9において実線で示されるように吸気弁7の閉弁時期は図5において実線で示される如く早められている。また、このときには吸入空気量は多く、このときスロットル弁17の開度は全開又はほぼ全開に保持されているのでポンピング損失は零となっている。
一方、図9において実線で示されるように機関負荷が低くなるとそれに伴って吸入空気量を減少すべく吸気弁7の閉弁時期が遅くされる。またこのときには実圧縮比がほぼ一定に保持されるように図9に示される如く機関負荷が低くなるにつれて機械圧縮比が増大され、従って機関負荷が低くなるにつれて膨張比も増大される。なお、このときにもスロットル弁17は全開又はほぼ全開状態に保持されており、従って燃焼室5内に供給される吸入空気量はスロットル弁17によらずに吸気弁7の閉弁時期を変えることによって制御されている。このときにもポンピング損失は零となる。
このように機関高負荷運転状態から機関負荷が低くなるときには実圧縮比がほぼ一定のもとで吸入空気量が減少するにつれて機械圧縮比が増大せしめられる。即ち、吸入空気量の減少に比例してピストン4が圧縮上死点に達したときの燃焼室5の容積が減少せしめられる。従ってピストン4が圧縮上死点に達したときの燃焼室5の容積は吸入空気量に比例して変化していることになる。なお、このとき図9に示される例では燃焼室5内の空燃比は理論空燃比となっているのでピストン4が圧縮上死点に達したときの燃焼室5の容積は燃料量に比例して変化していることになる。
機関負荷が更に低くなると機械圧縮比は更に増大せしめられ、機関負荷がやや低負荷寄りの中負荷L1まで低下すると機械圧縮比は燃焼室5の構造上限界となる最大機械圧縮比に達する。機械圧縮比が最大機械圧縮比に達すると、機械圧縮比が最大機械圧縮比に達したときの機関負荷L1よりも負荷の低い領域では機械圧縮比が最大機械圧縮比に保持される。従って低負荷側の機関中負荷運転時および機関低負荷運転時には即ち、機関低負荷運転側では機械圧縮比は最大となり、膨張比も最大となる。別の言い方をすると機関低負荷運転側では最大の膨張比が得られるように機械圧縮比が最大にされる。
一方、図9に示される実施例では機関負荷がL1より低くなっても図9において実線で示されるように吸気弁7の閉弁時期は機関負荷が低くなるにつれて遅らされ、機関負荷がL2まで低下すると吸気弁7の閉弁時期が燃焼室5内に供給される吸入空気量を制御しうる限界閉弁時期となる。吸気弁7の閉弁時期が限界閉弁時期に達すると吸気弁7の閉弁時期が限界閉弁時期に達したときの機関負荷L2よりも負荷の低い領域では吸気弁7の閉弁時期が限界閉弁時期に保持される。
吸気弁7の閉弁時期が限界閉弁時期に保持されるともはや吸気弁7の閉弁時期の変化によっては吸入空気量を制御することができない。図9に示される実施例ではこのとき、即ち吸気弁7の閉弁時期が限界閉弁時期に達したときの機関負荷L2よりも負荷の低い領域ではスロットル弁17によって燃焼室5内に供給される吸入空気量が制御される。ただし、スロットル弁17による吸入空気量の制御が行われると図9に示されるようにポンピング損失が増大する。
一方、図9に示されるように機関負荷がL1より高い機関高負荷運転側では実圧縮比は同一の機関回転数に対してはほぼ同一の実圧縮比に維持される。これに対し、機関負荷がL2よりも低いとき、即ち機械圧縮比が最大機械圧縮比に保持されているときには実圧縮比は吸気弁7の閉弁時期によって決まり、機関負荷がL1とL2の間におけるように吸気弁7の閉弁時期が遅らされると実圧縮比は低下し、機関負荷がL2よりも低い運転領域におけるように吸気弁7の閉弁時期が限界閉弁時期に保持されると実圧縮比は一定に維持される。
次に図10および図11を参照しつつ理論熱効率および正味熱効率について説明する。図10において実線Aは機械圧縮比を限りなく大きくした場合を示している。機械圧縮比Aを大きくしていくと、即ち膨張比を大きくしていくと膨張行程の末端における、即ち排気弁9が開弁したときの燃焼室5内の圧力が徐々に低下し、終いには大気圧となる。このときが図10においてBで示されている。
一方、図10において実線Cは機械圧縮比Aを限りなく大きくしたときの理論熱効率の変化を示している。図10に示されるように理論熱効率Cは機械圧縮比Aが増大するにつれて、即ち膨張比が増大するにつれて大きくなるがこの理論空燃比CはB点を越えると低下しはじめる。即ち、機械圧縮比AがB点を越えると膨張行程の末端における燃焼室5内の圧力が大気圧以上となり、その結果理論熱効率Cが低下することになる。
従って高い熱効率を得るには機械圧縮比AがB点を大きく越えないことが必要であり、通常最大機械圧縮比はB点を越えない値とされる。因みに図10に示される例では最大機械圧縮比が破線Dで示される値とされている。
一方、図10において破線Eは機械圧縮比Aが最大機械圧縮比Dになったときに吸気弁7の閉弁時期を変化させることによって吸入空気量を制御した場合の実圧縮比の変化を示しており、破線は機械圧縮比Aが最大機械圧縮比Dになったときにスロットル弁17によって吸入空気量を制御した場合の実圧縮比の変化を示している。
また、図10において破線Gは機械圧縮比Aが最大機械圧縮比Dになったときに吸気弁7の閉弁時期を変化させることによって吸入空気量を制御した場合の理論熱効率の変化を示しており、破線Hは機械圧縮比Aが最大機械圧縮比Dになったときにスロットル弁17によって吸入空気量を制御した場合の理論熱効率の変化を示している。
吸気弁7の閉弁時期を変化させることによって吸入空気量を制御した場合には機関負荷が低下するほど実圧縮比Eが低下するので機関負荷が低下するほど理論熱効率Gが低下する。これに対し、スロットル弁17により吸入空気量を制御した場合には機関負荷にかかわらず実圧縮比Fが一定に維持されるので機関負荷にかかわらずに理論熱効率Hは一定に維持される。
図11には図10に示される理論熱効率に加えてポンピング損失と正味熱効率が示されている。機械圧縮比が最大機械圧縮比Dに維持されているときにはスロットル弁17により吸入空気量を制御したときの理論熱効率Hは理論熱効率Gよりも高くなる。しかしながらスロットル弁17に吸入空気量を制御すると図11においてIで示されるようにポンピング損失が発生する。
このポンピング損失を考慮すると図11に示されるように吸気弁7の閉弁時期を変化させることにより吸入空気量を制御した場合の正味熱効率Jはスロットル弁17により吸入空気量を制御したときの正味熱効率Kよりも高くなる。図9に示される例では機械圧縮比が最大機械圧縮比Dに維持されているときに機関負荷が低くなると吸入空気量の制御が吸気弁7の閉弁時期による制御からスロットル弁17による制御に切換わるので正味熱効率は実線Lで示されるように変化することになる。
図12は、第1の空燃比による燃焼と、第1の空燃比よりも大きな第2の空燃比による燃焼とが行われた場合の機械圧縮比、吸気弁7の閉弁時期、実圧縮比、理論熱効率および正味熱効率の変化を示している。なお、第1の空燃比は例えば理論空燃比であって図12において破線で示されており、第2の空燃比は例えばリーン空燃比であって図12において実線で示されている。
図9に示す例は理論空燃比による燃焼が行われた場合を示しており、従って図11において破線で示される機械圧縮比、吸気弁7の閉弁時期および実圧縮比の変化は図9において実線で示される機械圧縮比、吸気弁7の閉弁時期および実圧縮比の変化と同じである。なお、理論空燃比による燃焼が行われたときの理論熱効率および正味熱効率が図12において破線に示されるように変化することは図10および図11に基き既に行った説明から容易に理解できると思われる。
さて、図12において横軸の負荷は燃料噴射量を表している。ここで同一負荷のもとで、即ち燃料噴射量が同一のもとで空燃比を理論空燃比にする場合とリーン空燃比にする場合とを考えてみると、リーン空燃比にする場合には理論空燃比にする場合に比べて吸入空気量を多くしなければならないことになる。従って図12に示されるように同一負荷のもとではリーン空燃比のときの吸気弁7の閉弁時期は実線に示されるように吸入空気量を増大すべく破線で示される理論空燃比の場合に比べて早められることになる。
吸気弁7の閉弁時期が早められると実圧縮比が増大する。従ってこのとき図12に示されるように機関高負荷運転側では実圧縮比を理論空燃比のときと同一に保持すべくリーン空燃比時には実線で示されるように機械圧縮比が理論空燃比の場合に比べて低下せしめられる。機械圧縮比が低下せしめられると膨張比が低下するために図12において実線で示されるように理論熱効率および正味熱効率が低下することになる。即ち、機関高負荷運転側では理論空燃比のときにはリーン空燃比のときに比べて正味熱効率が高くなる。
一方、前述したように機械圧縮比が最大機械圧縮比に維持されているときには吸気弁7の閉弁時期が遅らされるほど実圧縮比が低下する。一方、機械圧縮比が最大機械圧縮比よりも低いときには理論空燃比であってもリーン空燃比であっても機械圧縮比は実圧縮比が一定値となるように変化するので図12に示されるようにリーン空燃比のときの機械圧縮比の変化パターンは理論空燃比のときの機械圧縮比の変化パターンに比べて左側にずれた形となる。
従って図12に示されるように機械圧縮比が最大機械圧縮比となる機関低負荷運転側では膨張比が同一のもとでリーン空燃比のときの実圧縮比が理論空燃比のときの実圧縮比に比べて高くなる。従って機関低負荷運転側ではリーン空燃比のときが理論空燃比のときに比べて理論熱効率および正味熱効率が高くなる。従って正味熱効率から考えると、機関高負荷運転側ではリーン空燃比、即ち第2の空燃比による燃焼を禁止するのが好ましく、第2の燃焼を行い得るのは機関低負荷運転側だけとなる。
そこで本発明では第1の空燃比による燃焼と第1の空燃比よりも大きな第2の空燃比による燃焼とが選択的に行われ、機関高負荷運転側では第2の空燃比による燃焼が禁止され、機械圧縮比が最大機械圧縮比になったときに第2の空燃比による燃焼を許可するようにしている。
ところで、本発明による第1実施例では機械圧縮比が最大機械圧縮比になったときには第2の空燃比による燃焼を行うようにしている。もう少し具体的に言うとこの第1実施例では第2の空燃比のときに機械圧縮比が最大となる負荷領域において第2の空燃比による燃焼を行うようにしている。図13はこの第1実施例を実行するための運転制御ルーチンを示している。
図13を参照するとまず初めにステップ100において機械圧縮比が第2の空燃比、即ちリーン空燃比のもとで最大機械圧縮比となる負荷領域であるか否かが判別される。機械圧縮比が最大圧縮比となる負荷領域でないときにはステップ101に進んで第1の空燃比、例えば理論空燃比のもとで燃焼が行われる。
即ち、ステップ101では目標実圧縮比PCが算出される。次いでステップ102では図14(A)に示すマップから吸気弁7の閉弁時期ICが算出される。即ち、空燃比が理論空燃比のときに要求吸入空気量を燃焼室5内に供給するのに必要な吸気弁7の閉弁時期ICが機関負荷Lおよび機関回転数Nの関数として図14(A)に示すようなマップの形で予めROM32内に記憶されており、このマップから吸気弁7の閉弁時期ICが算出される。
次いでステップ103では機械圧縮比CRが算出される。次いでステップ104ではスロットル弁17の開度が算出される。空燃比が理論空燃比のときのスロットル弁17の開度θは機関負荷Lおよび機関回転数Nの関数として図14(B)に示すようなマップの形で予めROM32内に記憶されている。次いでステップ109では機械圧縮比が機械圧縮比CRとなるように可変圧縮比機構Aが制御され、吸気弁7の閉弁時期が閉弁時期ICとなるように可変バルブタイミング機構Bが制御され、スロットル弁17の開度が開度θとなるようにスロットル弁17が制御される。
これに対し、ステップ100において機械圧縮比が第2の空燃比、即ちリーン空燃比のもとで最大圧縮比となる負荷領域であると判別されたときにはステップ105に進んでリーン空燃比のもとで燃焼が行われる。即ち、ステップ105では目標実圧縮比PC′が算出される。次いでステップ106では図15(A)に示すマップから吸気弁7の閉弁時期IC′が算出される。即ち、空燃比がリーン空燃比のときに要求吸入空気量を燃焼室5内に供給するのに必要な吸気弁7の閉弁時期IC′が機関負荷Lおよび機関回転数Nの関数として図15(A)に示すようなマップの形で予めROM32内に記憶されており、このマップから吸気弁7の閉弁時期IC′が算出される。
次いでステップ107では機械圧縮比CR′が算出される。次いでステップ108ではスロットル弁17の開度が算出される。空燃比がリーン空燃比のときのスロットル弁17の開度θ′は機関負荷Lおよび機関回転数Nの関数として図15(B)に示すようなマップの形で予めROM32内に記憶されている。次いでステップ109では機械圧縮比が機械圧縮比CR′となるように可変圧縮比機構Aが制御され、吸気弁7の閉弁時期が閉弁時期IC′となるように可変バルブタイミング機構Bが制御され、スロットル弁17の開度が開度θ′となるようにスロットル弁17が制御される。
さて、機関回転数が高くなると燃焼室5内に発生する乱れが強くなり、その結果機械圧縮比を高くしてもノッキングが発生しずらくなる。従って本発明による実施例では機関回転数が高くなるほど最大機械圧縮比が高くされる。図12は機関回転数が比較的低いときの機械圧縮比等の変化を示している。これに対し、図16は機関高回転時における機械圧縮比、理論熱効率および正味熱効率の変化を示している。なお、図16においても図12と同様に破線は第1の空燃比、例えば理論空燃比のときを示しており、実線は第2の空燃比、即ちリーン空燃比のときを示している。
図16からわかるように最大機械圧縮比が高くなると理論熱効率のピークが低負荷側となり、理論空燃比のときに理論熱効率がピークとなる負荷とリーン空燃比のときに理論熱効率がピークとなる負荷との差が小さくなる。その結果、図16に示されるようにリーン空燃比のときの方が理論空燃比のときに比べて正味熱効率が高くなる領域が極く低負荷の領域だけとなる。このように極く限られた狹い領域だけで正味熱効率が高くなるような場合にはリーン空燃比に切換えても制御が複雑になるだけであまり意味がなくなる。
即ち、リーン空燃比に切換えて意味のあるのは最大機械圧縮比が或る程度小さくなってリーン空燃比に切換えると正味熱効率が高くなる負荷領域が或る程度広くなったときである。そこで本発明による第2実施例では最大機械圧縮比が予め定められた基準値CR0(図16)よりも低いときには機械圧縮比が最大機械圧縮比になったときに第2の空燃比、即ちリーン空燃比による燃焼を行い、最大機械圧縮比が予め定められた基準値CR0よりも高いときには機械圧縮比が最大機械圧縮比になったときに第1の空燃比、例えば理論空燃比による燃焼を行うようにしている。
図17はこの第2実施例を実行するための運転制御ルーチンを示している。
図17を参照するとまず初めにステップ200において機械圧縮比が第2の空燃比、即ちリーン空燃比のもとで最大機械圧縮比となる負荷領域であるか否かが判別される。機械圧縮比が最大圧縮比となる負荷領域でないときにはステップ201に進んで第1の空燃比、例えば理論空燃比のもとで燃焼が行われる。
即ち、ステップ201では目標実圧縮比PCが算出される。次いでステップ202では図14(A)に示すマップから吸気弁7の閉弁時期ICが算出される。次いでステップ203では機械圧縮比CRが算出される。次いでステップ204では図14(B)に示すマップからスロットル弁17の開度θが算出される。次いでステップ210では機械圧縮比が機械圧縮比CRとなるように可変圧縮比機構Aが制御され、吸気弁7の閉弁時期が閉弁時期ICとなるように可変バルブタイミング機構Bが制御され、スロットル弁17の開度が開度θとなるようにスロットル弁17が制御される。
これに対し、ステップ200において機械圧縮比が第2の空燃比、即ちリーン空燃比のもとで最大圧縮比となる負荷領域であると判別されたときにはステップ205に進んで最大機械圧縮比CRmaxが基準値CR0よりも低いか否かが判別される。このときCRmax≧CR0であると判別されたときにはステップ201に進んで理論空燃比による燃焼が行われる。これに対し、CRmax<CR0であると判別されたときにはステップ206に進んでリーン空燃比のもとで燃焼が行われる。
即ち、ステップ206では目標実圧縮比PC′が算出される。次いでステップ207では図15(A)に示すマップから吸気弁7の閉弁時期IC′が算出される。次いでステップ208では機械圧縮比CR′が算出される。次いでステップ209では図15(B)に示すマップからスロットル弁17の開度θ′が算出される。次いでステップ210では機械圧縮比が機械圧縮比CR′となるように可変圧縮比機構Aが制御され、吸気弁7の閉弁時期が閉弁時期IC′となるように可変バルブタイミング機構Bが制御され、スロットル弁17の開度が開度θ′となるようにスロットル弁17が制御される。
ところで前述したように図8(B)に示す超高膨張比サイクルでは膨張比が26とされる。この膨張比は高いほど好ましいが20以上であればかなり高い理論熱効率を得ることができる。従って本発明では膨張比が20以上となるように可変圧縮比機構Aが形成されている。
一方、図9において破線で示すように機関負荷が低くなるにつれて吸気弁7の閉弁時期を早めることによってもスロットル弁17によらずに吸入空気量を制御することができる。従って、図9において実線で示される場合と破線で示される場合とをいずれも包含しうるように表現すると、本発明による実施例では吸気弁7の閉弁時期は、機関負荷が低くなるにつれて、燃焼室内に供給される吸入空気量を制御しうる限界閉弁時期L2まで吸気下死点BDCから離れる方向に移動せしめられることになる。
火花点火式内燃機関の全体図である。 可変圧縮比機構の分解斜視図である。 図解的に表した内燃機関の側面断面図である。 可変バルブタイミング機構を示す図である。 吸気弁および排気弁のリフト量を示す図である。 機械圧縮比、実圧縮比および膨張比を説明するための図である。 理論熱効率と膨張比との関係を示す図である。 通常のサイクルおよび超高膨張比サイクルを説明するための図である。 機関負荷に応じた機械圧縮比等の変化を示す図である。 理論熱効率を説明するための図である。 正味熱効率を説明するための図である。 空燃比の差による正味熱効率の差を説明するための図である。 運転制御を行うためのフローチャートである。 吸気弁の閉弁時期等のマップを示す図である。 吸気弁の閉弁時期等のマップを示す図である。 最大機械圧縮比の差による正味熱効率の差を説明するための図である。 運転制御を行うためのフローチャートである。
符号の説明
1 クランクケース
2 シリンダブロック
3 シリンダヘッド
4 ピストン
5 燃焼室
7 吸気弁
70 吸気弁駆動用カムシャフト
A 可変圧縮比機構
B 可変バルブタイミング機構

Claims (5)

  1. 機械圧縮比を変更可能な可変圧縮比機構と、吸気弁の閉弁時期を制御可能な可変バルブタイミング機構とを具備しており、機関低負荷運転側では機関高負荷運転時に比べて機械圧縮比が高くされると共に機関高負荷運転側では機械圧縮比は期間負荷が高くなるにつれて徐々に減少せしめられ、第1の空燃比による燃焼と第1の空燃比よりも大きな第2の空燃比による燃焼とが選択的に行われ、機関高負荷運転側では第1の空燃比による燃焼が行われ、機関低負荷運転側では機械圧縮比が予め定められた基準値よりも低いときには第2の空燃比による燃焼が行われると共に機械圧縮比が予め定められた基準値よりも高いときには第1の空燃比による燃焼が行なわれる火花点火式内燃機関。
  2. 機械圧縮比は機関低負荷運転側では最大機械圧縮比となり、最大機械圧縮比が予め定められた基準値よりも低いときには機械圧縮比が最大機械圧縮比になったときに第2の空燃比による燃焼が行われ、最大機械圧縮比が予め定められた基準値よりも高いときには機械圧縮比が最大機械圧縮比になったときに第1の空燃比による燃焼が行われる請求項1に記載の火花点火式内燃機関。
  3. 機械圧縮比は機関負荷が低くなるにつれて最大機械圧縮比まで増大せしめられ、機械圧縮比が最大機械圧縮比となる機関負荷よりも負荷の低い機関低負荷運転側では機械圧縮比が最大機械圧縮比に維持され、機械圧縮比が最大機械圧縮比となる機関負荷よりも負荷の高い機関高負荷運転側では機関負荷が高くなるにつれて機械圧縮比が徐々に減少せしめられる請求項1に記載の火花点火式内燃機関。
  4. 最大機械圧縮比のときに得られる膨張比が20以上である請求項3に記載の火花点火式内燃機関。
  5. 上記第1の空燃比が理論空燃比であり、上記第2の空燃比がリーン空燃比である請求項1に記載の火花点火式内燃機関。
JP2007288541A 2007-11-06 2007-11-06 火花点火式内燃機関 Expired - Fee Related JP4367547B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2007288541A JP4367547B2 (ja) 2007-11-06 2007-11-06 火花点火式内燃機関
US12/672,186 US8276554B2 (en) 2007-11-06 2008-11-05 Spark ignition type internal combustion engine
BRPI0816100A BRPI0816100B1 (pt) 2007-11-06 2008-11-05 motor de combustão interna do tipo de ignição por centelha
RU2010107213/06A RU2434154C1 (ru) 2007-11-06 2008-11-05 Двигатель внутреннего сгорания с искровым зажиганием
PCT/JP2008/070531 WO2009060976A1 (ja) 2007-11-06 2008-11-05 火花点火式内燃機関
CN2008801062084A CN101802371B (zh) 2007-11-06 2008-11-05 火花点火式内燃机
DE112008003249T DE112008003249B4 (de) 2007-11-06 2008-11-05 Fremdgezündete Brennkraftmaschine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007288541A JP4367547B2 (ja) 2007-11-06 2007-11-06 火花点火式内燃機関

Publications (2)

Publication Number Publication Date
JP2009114949A JP2009114949A (ja) 2009-05-28
JP4367547B2 true JP4367547B2 (ja) 2009-11-18

Family

ID=40625858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007288541A Expired - Fee Related JP4367547B2 (ja) 2007-11-06 2007-11-06 火花点火式内燃機関

Country Status (7)

Country Link
US (1) US8276554B2 (ja)
JP (1) JP4367547B2 (ja)
CN (1) CN101802371B (ja)
BR (1) BRPI0816100B1 (ja)
DE (1) DE112008003249B4 (ja)
RU (1) RU2434154C1 (ja)
WO (1) WO2009060976A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5942805B2 (ja) * 2012-11-16 2016-06-29 トヨタ自動車株式会社 火花点火式内燃機関
US9194344B1 (en) * 2014-05-28 2015-11-24 Electro-Motive Diesel, Inc. Dual fuel engine having selective compression reduction
CN106285985A (zh) * 2016-09-30 2017-01-04 广州汽车集团股份有限公司 汽油发动机过量空气系数燃烧控制方法及燃烧控制系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4345307B2 (ja) 2003-01-15 2009-10-14 トヨタ自動車株式会社 可変圧縮比機構を備えた内燃機関の制御装置
JP4661461B2 (ja) * 2005-09-05 2011-03-30 トヨタ自動車株式会社 可変圧縮比機構を備えた内燃機関
JP2007239550A (ja) * 2006-03-07 2007-09-20 Nissan Motor Co Ltd 圧縮比可変エンジン

Also Published As

Publication number Publication date
CN101802371A (zh) 2010-08-11
BRPI0816100A2 (pt) 2015-08-25
JP2009114949A (ja) 2009-05-28
US8276554B2 (en) 2012-10-02
BRPI0816100B1 (pt) 2019-12-17
US20100282215A1 (en) 2010-11-11
RU2010107213A (ru) 2011-09-10
DE112008003249T5 (de) 2010-09-16
DE112008003249B4 (de) 2012-03-01
RU2434154C1 (ru) 2011-11-20
CN101802371B (zh) 2013-03-13
WO2009060976A1 (ja) 2009-05-14

Similar Documents

Publication Publication Date Title
JP4305477B2 (ja) 火花点火式内燃機関
JP4450024B2 (ja) 火花点火式内燃機関
JP4259545B2 (ja) 火花点火式内燃機関
JP2007303423A (ja) 火花点火式内燃機関
JP4470937B2 (ja) 火花点火式内燃機関
JP4483915B2 (ja) 火花点火式内燃機関のアイドリング制御装置
JP4428442B2 (ja) 火花点火式内燃機関
JP4450025B2 (ja) 火花点火式内燃機関
JP4367549B2 (ja) 火花点火式内燃機関
JP4367550B2 (ja) 火花点火式内燃機関
JP4367548B2 (ja) 火花点火式内燃機関
JP4367551B2 (ja) 火花点火式内燃機関
JP4450026B2 (ja) 火花点火式内燃機関
JP4849188B2 (ja) 火花点火式内燃機関
JP4835457B2 (ja) 内燃機関
JP2009008016A (ja) 火花点火式内燃機関
JP4367547B2 (ja) 火花点火式内燃機関
JP4930337B2 (ja) 火花点火式内燃機関
JP5088448B1 (ja) 火花点火内燃機関
JP5196033B2 (ja) 火花点火式内燃機関
JP4911144B2 (ja) 火花点火式内燃機関
JP4420105B2 (ja) 火花点火式内燃機関
JP5321422B2 (ja) 火花点火式内燃機関
JP5429136B2 (ja) 火花点火内燃機関
JP2011117418A (ja) 火花点火式内燃機関

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090817

R151 Written notification of patent or utility model registration

Ref document number: 4367547

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees