Nothing Special   »   [go: up one dir, main page]

JP4367409B2 - Feed roller - Google Patents

Feed roller Download PDF

Info

Publication number
JP4367409B2
JP4367409B2 JP2005374747A JP2005374747A JP4367409B2 JP 4367409 B2 JP4367409 B2 JP 4367409B2 JP 2005374747 A JP2005374747 A JP 2005374747A JP 2005374747 A JP2005374747 A JP 2005374747A JP 4367409 B2 JP4367409 B2 JP 4367409B2
Authority
JP
Japan
Prior art keywords
layer
inner layer
hardness
hub
cured body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005374747A
Other languages
Japanese (ja)
Other versions
JP2007176620A (en
Inventor
慶太 白木
浩二 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP2005374747A priority Critical patent/JP4367409B2/en
Publication of JP2007176620A publication Critical patent/JP2007176620A/en
Application granted granted Critical
Publication of JP4367409B2 publication Critical patent/JP4367409B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Delivering By Means Of Belts And Rollers (AREA)

Description

本発明は、複写機,プリンタ,ファクシミリ等の機器において、用紙を搬送するために用いられているピックアップローラ,フィードローラ,リバースローラ,搬送ローラ等の給紙ローラに関するものである。   The present invention relates to a paper feed roller such as a pick-up roller, a feed roller, a reverse roller, and a transport roller that is used for transporting paper in a machine such as a copying machine, a printer, and a facsimile machine.

複写機等に用いられている給紙ローラは、耐摩耗性に優れ、摩擦係数が長期にわたって維持されることが要求される。さらに、用紙を分離する性能(ニップ幅の確保),用紙に対する損傷防止等の観点から、低硬度のものが要求される。   A paper feed roller used in a copying machine or the like is required to have excellent wear resistance and maintain a coefficient of friction over a long period of time. Furthermore, a sheet having a low hardness is required from the viewpoints of performance of separating the sheet (securing the nip width), prevention of damage to the sheet, and the like.

そこで、従来より、給紙ローラとして、ハブ(軸体)の外周面に単層構造または2層構造の弾性層が形成されたものが提案されている。弾性層が単層構造のものとしては、例えば、その弾性層の外周面から少し内側の位置に、回転軸と平行な貫通孔が周方向に全周にわたって所定の間隔で形成されているものが提案されている(特許文献1参照)。また、弾性層が2層構造のものとしては、例えば、内層がウレタンゴム等の発泡硬化体からなり、外層がシリコーンゴム等の非発泡硬化体からなっているものが提案されている(特許文献2参照)。
特開平11−29238号公報 特許第3571983号公報
In view of this, conventionally, a paper feed roller has been proposed in which an elastic layer having a single-layer structure or a two-layer structure is formed on the outer peripheral surface of a hub (shaft body). Examples of the elastic layer having a single-layer structure include, for example, a structure in which through holes parallel to the rotation axis are formed at predetermined intervals in the circumferential direction at a position slightly inward from the outer peripheral surface of the elastic layer. It has been proposed (see Patent Document 1). In addition, as an elastic layer having a two-layer structure, for example, an inner layer made of a foamed cured body such as urethane rubber and an outer layer made of a non-foamed cured body such as silicone rubber has been proposed (Patent Literature). 2).
Japanese Patent Laid-Open No. 11-29238 Japanese Patent No. 3571983

一方、給紙ローラのハブ(軸体)は、トルクリミッタやモータ等に取り付けられ、そのトルクリミッタとの摺動回転による摩擦熱やモータからの熱伝導等により、発熱する場合がある。また、複写機等の機器内部も高温になる場合がある。そして、その熱が弾性層に伝わると、弾性層の硬度が変化したり弾性層自体が改質したりし、用紙搬送性が悪化するおそれがある。   On the other hand, the hub (shaft body) of the paper feed roller is attached to a torque limiter, a motor or the like, and may generate heat due to frictional heat due to sliding rotation with the torque limiter, heat conduction from the motor, or the like. In addition, the inside of a device such as a copying machine may become hot. When the heat is transmitted to the elastic layer, the hardness of the elastic layer may change or the elastic layer itself may be modified, and the paper transportability may deteriorate.

しかしながら、上記特許文献1のものは、弾性層に形成された貫通孔により、弾性層が変形し易く低硬度化されているものの、放熱性については考慮されていず、しかも、その弾性層が単層構造であるため、耐摩耗性および摩擦係数維持性に限界がある。また、上記特許文献2のものも、内層を発泡硬化体とすることにより、弾性層が低硬度化されているものの、放熱性については考慮されていない。   However, in Patent Document 1, although the elastic layer is easily deformed and reduced in hardness by the through holes formed in the elastic layer, heat dissipation is not considered, and the elastic layer is a single layer. Due to the layer structure, there is a limit in wear resistance and friction coefficient maintenance. Moreover, although the thing of the said patent document 2 also makes the elastic layer low hardness by making an inner layer into a foaming hardening body, heat dissipation is not considered.

本発明は、このような事情に鑑みなされたもので、耐摩耗性および摩擦係数維持性を確保しつつ、低硬度化が可能であり、しかも、放熱性に優れた給紙ローラの提供をその目的とする。   The present invention has been made in view of such circumstances, and it is possible to reduce the hardness while ensuring the wear resistance and the friction coefficient maintenance property, and to provide a paper feed roller excellent in heat dissipation. Objective.

上記の目的を達成するため、本発明の給紙ローラは、ハブと、このハブの外周面に形成された弾性層とからなる給紙ローラであって、上記弾性層が内層および外層で構成され、上記内層が熱硬化性ウレタンゴムの非発泡硬化体からなり、上記外層が熱硬化性ウレタンゴムの非発泡硬化体からなり上記内層の非発泡硬化体よりも高硬度に設定され、上記内層に、軸方向に延びる複数の貫通孔が周方向に全周にわたって所定の間隔で形成され、上記貫通孔の内径が上記ハブの外径の38〜16%の範囲内に設定されているとともに、上記貫通孔の内周面とハブの外周面との最短距離が0.5〜3.0mmの範囲内に設定されているという構成をとる。   In order to achieve the above object, a paper feed roller of the present invention is a paper feed roller comprising a hub and an elastic layer formed on the outer peripheral surface of the hub, and the elastic layer is composed of an inner layer and an outer layer. The inner layer is made of a non-foamed cured body of thermosetting urethane rubber, and the outer layer is made of a non-foamed cured body of thermosetting urethane rubber, and has a higher hardness than the non-foamed cured body of the inner layer. A plurality of through holes extending in the axial direction are formed at predetermined intervals over the entire circumference in the circumferential direction, and the inner diameter of the through holes is set within a range of 38 to 16% of the outer diameter of the hub. The shortest distance between the inner peripheral surface of the through hole and the outer peripheral surface of the hub is set in a range of 0.5 to 3.0 mm.

本発明の給紙ローラは、内層および外層をいずれも熱硬化性ウレタンゴムの非発泡硬化体からなるものとし、しかも、外層の非発泡硬化体の方を内層のそれよりも高硬度に設定している。さらに、内層に、特定の貫通孔(内径がハブの外径の38〜16%の範囲内、貫通孔の内周面とハブの外周面との最短距離が0.5〜3.0mmの範囲内)を形成することにより、内層の貫通孔部分を変形し易くし、内層の非発泡硬化体と相俟って、内層の硬度を適正に軟らかくしている。これらのため、上記内層および外層で構成される弾性層の表面の硬さと全体の柔らかさとが相俟って、耐摩耗性および摩擦係数維持性を確保しつつ、弾性層全体を適正な硬度にすることができる。また、内層に形成された上記特定の貫通孔により、内層の非発泡硬化体と相俟って、ハブおよび内層の放熱性を向上させることができる。   In the paper feeding roller of the present invention, the inner layer and the outer layer are both made of a non-foamed cured body of thermosetting urethane rubber, and the non-foamed cured body of the outer layer is set to have a higher hardness than that of the inner layer. ing. Further, the inner layer has a specific through hole (inner diameter is in the range of 38 to 16% of the outer diameter of the hub, and the shortest distance between the inner peripheral surface of the through hole and the outer peripheral surface of the hub is in the range of 0.5 to 3.0 mm. By forming the inner layer, the through-hole portion of the inner layer is easily deformed, and the hardness of the inner layer is appropriately softened in combination with the non-foamed cured body of the inner layer. For these reasons, the hardness of the surface of the elastic layer composed of the inner layer and the outer layer and the overall softness combine to ensure the wear resistance and the friction coefficient maintainability, while maintaining the entire elastic layer to an appropriate hardness. can do. Moreover, the said specific through-hole formed in the inner layer can improve the heat dissipation of a hub and an inner layer together with the non-foaming hardening body of an inner layer.

特に、上記内層の非発泡硬化体のASKER−C硬度が20〜70度の範囲内に設定され、外層の非発泡硬化体のJIS−A硬度が40〜80度の範囲内に設定され、上記貫通孔が形成された内層と上記外層とからなる弾性層の外層側から測定したJIS−A硬度が5〜45度の範囲内に設定されている場合には、給紙ローラとして、耐摩耗性および摩擦係数維持性が好適になるとともに、弾性層全体の硬度も好適になる。   In particular, the ASKER-C hardness of the non-foamed cured body of the inner layer is set in the range of 20 to 70 degrees, the JIS-A hardness of the non-foamed cured body of the outer layer is set in the range of 40 to 80 degrees, When the JIS-A hardness measured from the outer layer side of the elastic layer composed of the inner layer in which the through-hole is formed and the outer layer is set within a range of 5 to 45 degrees, the paper feeding roller is used as an abrasion resistance. In addition, the coefficient of friction maintenance is suitable, and the hardness of the entire elastic layer is also suitable.

つぎに、本発明の実施の形態を図面にもとづいて詳しく説明する。但し、本発明は、これに限定されるわけではない。   Next, embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to this.

図1および図2は、本発明の給紙ローラの一実施の形態を示している。この給紙ローラは、円筒状のハブ1と、このハブ1の外周面に形成された内層2と、この内層2の外周面に形成された外層3とから構成されており、これら内層2および外層3は、熱硬化性ウレタンゴムの非発泡硬化体からなっている。そして、外層3の非発泡硬化体の方が内層2のそれよりも高硬度に設定されている。また、上記内層2には、軸方向に延びる複数(図2では12個)の貫通孔4が周方向に全周にわたって所定の間隔で形成されている。そして、上記貫通孔4の内径Aは、上記ハブ1の外径Bの38〜16%の範囲内に設定され、上記貫通孔4の内周面とハブ1の外周面との最短距離Cは、0.5〜3.0mmの範囲内に設定されている。   1 and 2 show an embodiment of a paper feed roller of the present invention. This paper feed roller is composed of a cylindrical hub 1, an inner layer 2 formed on the outer peripheral surface of the hub 1, and an outer layer 3 formed on the outer peripheral surface of the inner layer 2. The outer layer 3 is made of a non-foamed cured body of thermosetting urethane rubber. The non-foamed cured body of the outer layer 3 is set to have a higher hardness than that of the inner layer 2. The inner layer 2 is formed with a plurality of (12 in FIG. 2) through-holes 4 extending in the axial direction at predetermined intervals along the entire circumference. The inner diameter A of the through hole 4 is set within a range of 38 to 16% of the outer diameter B of the hub 1, and the shortest distance C between the inner peripheral surface of the through hole 4 and the outer peripheral surface of the hub 1 is , 0.5 to 3.0 mm.

上記ハブ1の外径Bは、給紙ローラとして適正なものにする観点から、通常、8〜20mmの範囲内に設定される。また、上記内層2の厚みは、内層2を構成する非発泡硬化体および上記特定の貫通孔4を考慮し、内層2を適正な硬度に設定する観点から、3〜30mmの範囲内に設定される。さらに、上記外層3の厚みも、外層3を構成する非発泡硬化体を考慮し、外層3を適正な硬度に設定する観点から、0.2〜3mmの範囲内に設定される。   The outer diameter B of the hub 1 is normally set within a range of 8 to 20 mm from the viewpoint of making it suitable as a paper feed roller. The thickness of the inner layer 2 is set in the range of 3 to 30 mm from the viewpoint of setting the inner layer 2 to an appropriate hardness in consideration of the non-foamed cured body constituting the inner layer 2 and the specific through-hole 4. The Furthermore, the thickness of the outer layer 3 is also set within a range of 0.2 to 3 mm from the viewpoint of setting the outer layer 3 to an appropriate hardness in consideration of the non-foamed cured body constituting the outer layer 3.

このように、上記熱硬化性ウレタンゴムの非発泡硬化体からなる内層2に、上記特定の貫通孔4を形成することにより、ハブ1および内層2の放熱性が優れたものになるとともに、内層2の硬度を適正にしている。さらに、その内層2の外周面に外層3を形成し、その外層3の非発泡硬化体の硬度を、内層2の非発泡硬化体の硬度よりも高く設定することにより、内層2と外層3とからなる弾性層の表面を硬く、しかも弾性層全体を柔らかくし、耐摩耗性および摩擦係数維持性を確保している。   Thus, by forming the specific through-hole 4 in the inner layer 2 made of the non-foamed cured body of the thermosetting urethane rubber, the heat dissipation of the hub 1 and the inner layer 2 becomes excellent, and the inner layer The hardness of 2 is made appropriate. Furthermore, by forming the outer layer 3 on the outer peripheral surface of the inner layer 2 and setting the hardness of the non-foamed cured body of the outer layer 3 higher than the hardness of the non-foamed cured body of the inner layer 2, the inner layer 2 and the outer layer 3 The surface of the elastic layer is made hard and the entire elastic layer is softened to ensure wear resistance and friction coefficient maintenance.

より詳しく説明すると、上記貫通孔4の内径Aを、上記ハブ1の外径Bの38〜16%の範囲内に設定する理由は、貫通孔4の内径Aがハブ1の外径Bの16%を下回ると、ハブ1の外周面の面積に対して貫通孔4の内周面の面積が小さくなり過ぎるため、内層2の放熱性が低下し、しかも、貫通孔4の内径Aも小さくなり過ぎるため、貫通孔4の変形量が不充分となり、内層2の硬度が充分に低下せず、このため、用紙とのニップ幅が充分に得られなくなり、用紙搬送性が低下するからである。逆に、貫通孔4の内径Aがハブ1の外径Bの38%を上回ると、内層2の放熱性は向上するものの、内層2の硬度が低下し過ぎるため、用紙との当接力が充分に得られず、用紙搬送性が低下するからである。   More specifically, the reason why the inner diameter A of the through hole 4 is set in the range of 38 to 16% of the outer diameter B of the hub 1 is that the inner diameter A of the through hole 4 is 16 of the outer diameter B of the hub 1. %, The area of the inner peripheral surface of the through hole 4 becomes too small with respect to the area of the outer peripheral surface of the hub 1, so that the heat dissipation of the inner layer 2 is lowered and the inner diameter A of the through hole 4 is also reduced. For this reason, the amount of deformation of the through-hole 4 becomes insufficient, and the hardness of the inner layer 2 does not sufficiently decrease, so that a sufficient nip width with the sheet cannot be obtained, and the sheet transportability is decreased. On the contrary, if the inner diameter A of the through hole 4 exceeds 38% of the outer diameter B of the hub 1, the heat dissipation of the inner layer 2 is improved, but the hardness of the inner layer 2 is too low, so that the contact force with the paper is sufficient. This is because the sheet transportability is deteriorated.

また、上記貫通孔4の内周面とハブ1の外周面との最短距離Cを、0.5〜3.0mmの範囲内に設定する理由は、その最短距離Cが0.5mmを下回ると、貫通孔4よりも内側の内層2のゴム厚が薄くなるため、成形性悪化および強度不足となり、ハブ1への圧入が困難になるからであり、逆に、上記最短距離Cが3.0mmを上回ると、貫通孔4の位置がハブ1の外周面から遠くなり過ぎ、ハブ1の放熱性が低下するからである。   The reason for setting the shortest distance C between the inner peripheral surface of the through hole 4 and the outer peripheral surface of the hub 1 within the range of 0.5 to 3.0 mm is that the shortest distance C is less than 0.5 mm. This is because the rubber thickness of the inner layer 2 on the inner side of the through hole 4 becomes thin, so that the moldability is deteriorated and the strength is insufficient, and the press-fitting into the hub 1 becomes difficult. Conversely, the shortest distance C is 3.0 mm. This is because the position of the through hole 4 is too far from the outer peripheral surface of the hub 1 and the heat dissipation of the hub 1 is deteriorated.

さらに、隣り合う貫通孔4の内周面間の最短距離Dは、上記放熱性,内層2の硬度および弾性層全体の硬度を適正にする観点から、1.0〜3.0mmの範囲内に設定されていることが好ましく、より好ましくは1.5〜2.5mmの範囲内である。   Furthermore, the shortest distance D between the inner peripheral surfaces of the adjacent through holes 4 is within a range of 1.0 to 3.0 mm from the viewpoint of making the heat dissipation, the hardness of the inner layer 2 and the hardness of the entire elastic layer appropriate. It is preferably set, and more preferably in the range of 1.5 to 2.5 mm.

なお、上記貫通孔4の内径A,貫通孔4の内周面とハブ1の外周面との最短距離C,および隣り合う貫通孔4の内周面間の最短距離Dは、軸方向に沿った任意の10個所で内層2を厚み方向に切断し、その各断面において測定した値の平均値である。また、貫通孔4の断面形状は、円が好ましいが、楕円,四角形等の多角形でもよく、上記各貫通孔4の内径Aは、各貫通孔4の最大径と最小径との平均をとっている。   The inner diameter A of the through hole 4, the shortest distance C between the inner peripheral surface of the through hole 4 and the outer peripheral surface of the hub 1, and the shortest distance D between the inner peripheral surfaces of adjacent through holes 4 are along the axial direction. The average value of the values measured at the respective cross sections of the inner layer 2 cut in the thickness direction at any 10 locations. The cross-sectional shape of the through hole 4 is preferably a circle, but may be an ellipse, a polygon such as a quadrangle, and the inner diameter A of each through hole 4 is an average of the maximum diameter and the minimum diameter of each through hole 4. ing.

上記内層2および外層3の非発泡硬化体の硬度については、給紙ローラをより適正なものにする観点から、内層2の非発泡硬化体の硬度は、ASKER−C硬度が20〜70度の範囲内に設定されることが好ましく、より好ましくは30〜50度の範囲内である。また、外層3の非発泡硬化体の硬度は、JIS−A硬度が40〜80度の範囲内に設定されることが好ましく、より好ましくは50〜70度の範囲内である。そして、内層2と外層3とからなる弾性層の外層3側から測定した硬度は、JIS−A硬度が5〜45度の範囲内に設定されることが好ましく、より好ましくは10〜30度の範囲内である。   Regarding the hardness of the non-foamed cured body of the inner layer 2 and the outer layer 3, from the viewpoint of making the paper feed roller more appropriate, the hardness of the non-foamed cured body of the inner layer 2 is an ASKER-C hardness of 20 to 70 degrees. It is preferably set within the range, more preferably within the range of 30 to 50 degrees. Further, the hardness of the non-foamed cured body of the outer layer 3 is preferably set in the range of JIS-A hardness of 40 to 80 degrees, more preferably in the range of 50 to 70 degrees. And the hardness measured from the outer layer 3 side of the elastic layer consisting of the inner layer 2 and the outer layer 3 is preferably set within a range of JIS-A hardness of 5 to 45 degrees, more preferably 10 to 30 degrees. Within range.

なお、上記内層2の非発泡硬化体のASKER−C硬度は、芯金の外周面に内層2の非発泡硬化体のみ(貫通孔4が形成されていないもの)からなる試作品を作製し、その試作品の周方向に沿った任意の10個所で測定した値の平均値である。また、外層3の非発泡硬化体のJIS−A硬度は、芯金の外周面に外層3の非発泡硬化体のみからなる試作品を作製し、その試作品の周方向に沿った任意の10個所で測定した値の平均値である。そして、内層2と外層3とからなる弾性層の外層3側から測定した硬度は、作成された本発明の給紙ローラ(内層2に貫通孔4が形成されたもの)の周方向に沿った任意の10個所で測定した値の平均値である。   In addition, the ASKER-C hardness of the non-foamed cured body of the inner layer 2 is a prototype composed of only the non-foamed cured body of the inner layer 2 (one in which the through hole 4 is not formed) on the outer peripheral surface of the core metal, It is the average value of the values measured at any 10 points along the circumferential direction of the prototype. In addition, the JIS-A hardness of the non-foamed cured body of the outer layer 3 is an arbitrary 10 along the circumferential direction of the prototype by producing a prototype consisting of only the non-foamed cured body of the outer layer 3 on the outer peripheral surface of the core metal. It is the average value of the values measured at the location. And the hardness measured from the outer layer 3 side of the elastic layer consisting of the inner layer 2 and the outer layer 3 is along the circumferential direction of the paper feed roller of the present invention (the inner layer 2 is formed with the through hole 4). It is an average value of values measured at arbitrary 10 points.

つぎに、本発明の給紙ローラを構成する上記ハブ1,内層2および外層3の形成材料等について説明する。   Next, materials for forming the hub 1, the inner layer 2 and the outer layer 3 constituting the paper feed roller of the present invention will be described.

上記ハブ1の形成材料としては、例えば、ポリアセタール(POM),アクリロニトリルブタジエンスチレン共重合体(ABS),ポリカーボネート,ナイロン等の合成樹脂、または鉄,ステンレス,アルミニウム等の金属材料があげられる。   Examples of the material for forming the hub 1 include synthetic resins such as polyacetal (POM), acrylonitrile butadiene styrene copolymer (ABS), polycarbonate, and nylon, and metal materials such as iron, stainless steel, and aluminum.

上記内層2の非発泡硬化体は、未架橋の熱硬化性ウレタンゴムを架橋硬化して得られ、その未架橋の熱硬化性ウレタンゴムの形成材料としては、例えば、ポリプロピレングリコール(PPG),ポリイソシアネート,鎖延長剤,可塑剤等の各成分を含有するものがあげられる。そして、架橋硬化して得られる内層2の非発泡硬化体の硬度の調整は、ポリプロピレングリコール(PPG)に対する鎖延長剤および可塑剤の配合割合を調整することにより行われる。例えば、内層2の非発泡硬化体のASKER−C硬度を、上記好ましい範囲(20〜70度の範囲)に設定する場合は、ポリプロピレングリコール(PPG)100重量部に対して、鎖延長剤を4重量部、可塑剤を50〜10重量部の範囲内で配合する。また、内層2の非発泡硬化体のASKER−C硬度を、上記より好ましい範囲(30〜50度の範囲)に設定する場合は、ポリプロピレングリコール(PPG)100重量部に対して、鎖延長剤を4重量部、可塑剤を35〜20重量部の範囲内で配合する。   The non-foamed cured body of the inner layer 2 is obtained by crosslinking and curing an uncrosslinked thermosetting urethane rubber. Examples of a material for forming the uncrosslinked thermosetting urethane rubber include polypropylene glycol (PPG), poly Those containing each component such as isocyanate, chain extender, plasticizer and the like can be mentioned. The hardness of the non-foamed cured body of the inner layer 2 obtained by crosslinking and curing is adjusted by adjusting the blending ratio of the chain extender and the plasticizer with respect to polypropylene glycol (PPG). For example, when the ASKER-C hardness of the non-foamed cured body of the inner layer 2 is set to the above preferable range (range of 20 to 70 degrees), 4 chain extenders are added to 100 parts by weight of polypropylene glycol (PPG). A weight part and a plasticizer are mix | blended within the range of 50-10 weight part. Further, when the ASKER-C hardness of the non-foamed cured body of the inner layer 2 is set to a more preferable range (range of 30 to 50 degrees), a chain extender is added to 100 parts by weight of polypropylene glycol (PPG). 4 parts by weight and a plasticizer are blended in the range of 35 to 20 parts by weight.

上記外層3の非発泡硬化体も、未架橋の熱硬化性ウレタンゴムを架橋硬化して得られ、その未架橋の熱硬化性ウレタンゴムの形成材料としては、例えば、ポリエーテルポリオール,ポリイソシアネート,鎖延長剤,可塑剤等の各成分を含有するものがあげられる。上記ポリエーテルポリオールは、上記内層2形成に用いたポリプロピレングリコール(PPG)にポリテトラメチレンエーテルグリコール(PTMG)を混合したものであり、そのポリテトラメチレンエーテルグリコール(PTMG)を混合することにより、架橋硬化して得られる外層3の非発泡硬化体の硬度を内層2のそれよりも高くすることができる。例えば、外層3の非発泡硬化体のJIS−A硬度を上記好ましい範囲(40〜80度の範囲)に設定する場合は、ポリテトラメチレンエーテルグリコール(PTMG)とポリプロピレングリコール(PPG)とを、PTMG/PPG=99/1〜50/50の重量比で混合する。また、外層3の非発泡硬化体のJIS−A硬度を上記より好ましい範囲(50〜70度の範囲)に設定する場合は、ポリテトラメチレンエーテルグリコール(PTMG)とポリプロピレングリコール(PPG)とを、PTMG/PPG=90/10〜60/40の重量比で混合する。   The non-foamed cured body of the outer layer 3 is also obtained by crosslinking and curing an uncrosslinked thermosetting urethane rubber. Examples of the material for forming the uncrosslinked thermosetting urethane rubber include polyether polyol, polyisocyanate, Examples include those containing each component such as a chain extender and a plasticizer. The polyether polyol is a mixture of polypropylene glycol (PPG) used for forming the inner layer 2 and polytetramethylene ether glycol (PTMG). By mixing the polytetramethylene ether glycol (PTMG), crosslinking is performed. The hardness of the non-foamed cured body of the outer layer 3 obtained by curing can be made higher than that of the inner layer 2. For example, when the JIS-A hardness of the non-foamed cured body of the outer layer 3 is set to the above preferred range (range of 40 to 80 degrees), polytetramethylene ether glycol (PTMG) and polypropylene glycol (PPG) are combined with PTMG. / PPG = mixing at a weight ratio of 99/1 to 50/50. Moreover, when setting the JIS-A hardness of the non-foamed cured body of the outer layer 3 to a more preferable range (range of 50 to 70 degrees), polytetramethylene ether glycol (PTMG) and polypropylene glycol (PPG), Mix in a weight ratio of PTMG / PPG = 90 / 10-60 / 40.

つぎに、上記各形成材料を用いて行われる、本発明の給紙ローラの製法について説明する。   Next, a method for producing the paper feed roller of the present invention, which is performed using each of the above forming materials, will be described.

まず、内層2を成形するための金型を準備する。この金型には、芯金が同軸的にセットされているとともに、その芯金の周りに、上記貫通孔4を形成するための棒状型がセットされている。そして、上記芯金と棒状型とを除く成形空間に、内層2の形成材料である未架橋の熱硬化性ウレタンゴムを充填する。つぎに、それをオーブン等に入れ、所定の条件で加熱する。これにより、上記芯金の外周面に、略円筒状に架橋硬化された熱硬化性ウレタンゴムの非発泡硬化体が形成される。そして、この略円筒状の非発泡硬化体から、上記芯金および棒状型を抜き取るとともにその非発泡硬化体を脱型し、内層2を得る。この工程において、上記棒状型の抜き取り跡が上記貫通孔4となる。なお、この内層2の形成における上記加熱条件は、架橋対象が熱硬化性ウレタンゴムであるため、架橋温度は、120〜130℃の範囲内で可能であり、架橋に要する時間は、20〜40分間程度である。また、上記脱型後、必要に応じて、2次架橋を行ってもよい。この2次架橋は、上記架橋温度よりも低い温度(例えば100〜110℃の範囲)で行われる。   First, a mold for forming the inner layer 2 is prepared. In this mold, a core metal is set coaxially, and a rod-shaped mold for forming the through hole 4 is set around the core metal. Then, an uncrosslinked thermosetting urethane rubber that is a material for forming the inner layer 2 is filled into a molding space excluding the core metal and the rod-shaped mold. Next, it is put in an oven or the like and heated under predetermined conditions. Thereby, the non-foaming hardened | cured material of the thermosetting urethane rubber bridge | crosslinked and hardened in the substantially cylindrical shape is formed in the outer peripheral surface of the said metal core. Then, the core metal and the rod-shaped mold are extracted from the substantially cylindrical non-foamed cured body, and the non-foamed cured body is demolded to obtain the inner layer 2. In this step, the trace of the rod-shaped mold becomes the through hole 4. The heating condition in the formation of the inner layer 2 is that the crosslinking target is a thermosetting urethane rubber, so that the crosslinking temperature can be in the range of 120 to 130 ° C., and the time required for crosslinking is 20 to 40. About a minute. In addition, after the demolding, secondary crosslinking may be performed as necessary. This secondary crosslinking is performed at a temperature lower than the crosslinking temperature (for example, in the range of 100 to 110 ° C.).

ついで、得られた内層2を洗浄した後、その内層2の中空部に芯金を挿入し、それを、外層3を成形するための金型に同軸的にセットする。そして、上記内層2の外周面と金型内周面との間の成形空間に、外層3の形成材料である未架橋の熱硬化性ウレタンゴムを充填する。つぎに、それをオーブン等に入れ、所定の条件で加熱することにより、上記内層2の外周面に、円筒状に架橋硬化された熱硬化性ウレタンゴムの非発泡硬化体(外層3)が形成される。そして、この内層2と外層3とからなる円筒状積層体から上記芯金を抜き取るとともにその円筒状積層体を脱型する。なお、この外層3の形成における上記加熱条件および2次架橋については、上記内層2の形成と同様である。   Next, after washing the obtained inner layer 2, a core metal is inserted into the hollow portion of the inner layer 2, and it is set coaxially in a mold for molding the outer layer 3. The molding space between the outer peripheral surface of the inner layer 2 and the inner peripheral surface of the mold is filled with uncrosslinked thermosetting urethane rubber, which is a material for forming the outer layer 3. Next, by putting it in an oven or the like and heating it under predetermined conditions, a non-foamed cured body (outer layer 3) of a thermosetting urethane rubber cross-linked and cured in a cylindrical shape is formed on the outer peripheral surface of the inner layer 2. Is done. And the said core metal is extracted from the cylindrical laminated body which consists of this inner layer 2 and the outer layer 3, and the cylindrical laminated body is demolded. The heating conditions and secondary cross-linking in the formation of the outer layer 3 are the same as those in the formation of the inner layer 2.

つぎに、上記内層2と外層3とからなる円筒状積層体を所定の長さに切断する。その後、上記円筒状積層体の中空部に、給紙ローラのハブ1を加圧内嵌する。このようにして、上記給紙ローラを得ることができる。なお、上記内層2と外層3の成形順序は、上記の逆でもよい。   Next, the cylindrical laminated body which consists of the said inner layer 2 and the outer layer 3 is cut | disconnected to predetermined length. Thereafter, the hub 1 of the paper feed roller is press-fitted into the hollow portion of the cylindrical laminate. In this way, the paper feed roller can be obtained. The molding order of the inner layer 2 and the outer layer 3 may be reversed.

このような給紙ローラの製法において、内層2の形成および外層3の形成は、いずれも未架橋の熱硬化性ウレタンゴムを架橋硬化することにより行われているため、同様にして行うことができる。しかも、上記未架橋の熱硬化性ウレタンゴムを架橋硬化することによる内層2および外層3の形成はそれぞれ、従来の設備での製造が可能である。これらのことから、本発明の給紙ローラは、コストを抑制して製造することができる。   In such a paper feed roller manufacturing method, the inner layer 2 and the outer layer 3 are both formed by crosslinking and curing uncrosslinked thermosetting urethane rubber, and thus can be performed in the same manner. . Moreover, the formation of the inner layer 2 and the outer layer 3 by crosslinking and curing the uncrosslinked thermosetting urethane rubber can be produced with conventional equipment. For these reasons, the paper feed roller of the present invention can be manufactured with reduced costs.

さらに、内層2も外層3も熱硬化性ウレタンゴムであるため、内層2と外層3とは馴染み性が良く、内層2と外層3との接着は、強固になっている。   Furthermore, since both the inner layer 2 and the outer layer 3 are thermosetting urethane rubbers, the inner layer 2 and the outer layer 3 have good compatibility, and the adhesion between the inner layer 2 and the outer layer 3 is strong.

なお、複写機等の機器において、本発明の給紙ローラが使用されている際に、内層2がハブ1の外周面において周方向に空転しないようにするために、ハブ1の外周面に接着剤やプライマー等を塗布してもよいし、また、ハブ1として、その外周面に条溝が軸方向に沿って形成されたものを用いてもよい。また、用紙の紙送り性を向上させるために、上記給紙ローラの製法において、脱型後、外層3の外周面を研磨して粗面化してもよいし、外層3を成形するための金型として、その型面を放電加工,化学エッチング,ショットブラスト処理等により粗面化したものを用い、その粗面を外層3の外周面に転写させることにより、外層3の外周面をシボ表面に形成してもよい。   It should be noted that when the paper feed roller of the present invention is used in a copying machine or the like, the inner layer 2 is bonded to the outer peripheral surface of the hub 1 so that the inner layer 2 does not idle in the circumferential direction on the outer peripheral surface of the hub 1. An agent, a primer, or the like may be applied, or the hub 1 may have a groove formed on the outer peripheral surface thereof along the axial direction. Further, in order to improve the paper feedability of the paper, in the method of manufacturing the paper feed roller, the outer peripheral surface of the outer layer 3 may be polished and roughened after demolding, or the gold for forming the outer layer 3 may be used. A mold whose surface is roughened by electrical discharge machining, chemical etching, shot blasting or the like is used, and the rough surface is transferred to the outer peripheral surface of the outer layer 3 so that the outer peripheral surface of the outer layer 3 is made into a textured surface. It may be formed.

そして、本発明の給紙ローラは、複写機等のOA機器に用いられるピックアップローラ,フィードローラ,リバースローラ,搬送ローラ等として好適であるが、自動販売機,自動改札機,現金自動引き取り装置,両替機,計数機,キャッシュディスペンサー等の給紙ローラとして使用することも可能である。   The paper feed roller of the present invention is suitable as a pick-up roller, a feed roller, a reverse roller, a transport roller, etc. used in office automation equipment such as a copying machine. It can also be used as a feed roller for a money changer, counter, cash dispenser, or the like.

つぎに、実施例について比較例と併せて説明する。   Next, examples will be described together with comparative examples.

〔内層の形成材料(未架橋の熱硬化性ウレタンゴム)の調製〕
ポリプロピレングリコール(PPG)〔旭硝子社製、PREMINOL S 3005(モノオール含有量:0.8重量%、Mn:5000、官能基数:3、総不飽和度:0.0048meq/g)〕100重量部に対して、可塑剤〔ジブチルカルビトールアジペート(旭電化社製、アデカサイザーRS705)〕20重量部、鎖延長剤〔トリメチロールプロパン(TMP)〕4重量部、触媒(DBU−ギ酸塩)0.01重量部を配合して、減圧下で2分間攪拌混合し、内層の形成材料である未架橋の熱硬化性ウレタンゴムを調製した。
[Preparation of inner layer forming material (uncrosslinked thermosetting urethane rubber)]
100 parts by weight of polypropylene glycol (PPG) [manufactured by Asahi Glass Co., Ltd., PREMINOL S 3005 (monool content: 0.8% by weight, Mn: 5000, number of functional groups: 3, total degree of unsaturation: 0.0048 meq / g)] In contrast, 20 parts by weight of a plasticizer [dibutyl carbitol adipate (Asahi Denka Co., Ltd., Adeka Sizer RS705)], 4 parts by weight of a chain extender [trimethylolpropane (TMP)], 0.01% of a catalyst (DBU-formate) An uncrosslinked thermosetting urethane rubber which is an inner layer forming material was prepared by blending parts by weight and stirring and mixing for 2 minutes under reduced pressure.

〔外層の形成材料(未架橋の熱硬化性ウレタンゴム)の調製〕
ポリテトラメチレンエーテルグリコール(PTMG)90重量部、ポリプロピレングリコール(PPG)〔旭硝子社製、PREMINOL S 3005(モノオール含有量:0.8重量%、Mn:5000、官能基数:3、総不飽和度:0.0048meq/g)〕10重量部を80℃にて1時間真空脱泡、脱水した後、ポリイソシアネート〔トリレンジイソシアネート(TDI)〕14重量部を混合し、窒素雰囲気下で80℃にて3時間反応させ、末端にNCO基を有するウレタンプレポリマー(NCO含有率:3.0重量%、NCOインデックス:105)を調製した。そして、このウレタンプレポリマーを90℃にて30分間真空脱泡した後、鎖延長剤〔1,4−ブタンジオール(1,4−BD)〕1.4重量部、鎖延長剤〔トリメチロールプロパン(TMP)〕1.2重量部、触媒(DBU−ギ酸塩)0.01重量部を配合して、減圧下で2分間攪拌混合し、外層の形成材料である未架橋の熱硬化性ウレタンゴムを調製した。
[Preparation of outer layer forming material (uncrosslinked thermosetting urethane rubber)]
90 parts by weight of polytetramethylene ether glycol (PTMG), polypropylene glycol (PPG) [manufactured by Asahi Glass Co., Ltd., PREMINOL S 3005 (monool content: 0.8% by weight, Mn: 5000, number of functional groups: 3, total degree of unsaturation) : 0.0048 meq / g)] was vacuum degassed and dehydrated at 80 ° C. for 1 hour, and then mixed with 14 parts by weight of polyisocyanate [tolylene diisocyanate (TDI)], and the mixture was heated to 80 ° C. under a nitrogen atmosphere. For 3 hours to prepare a urethane prepolymer having an NCO group at the end (NCO content: 3.0 wt%, NCO index: 105). The urethane prepolymer was vacuum degassed at 90 ° C. for 30 minutes, then 1.4 parts by weight of a chain extender [1,4-butanediol (1,4-BD)] and a chain extender [trimethylolpropane. (TMP)] 1.2 parts by weight and 0.01 part by weight of catalyst (DBU-formate) are mixed under stirring for 2 minutes under reduced pressure to form an uncrosslinked thermosetting urethane rubber as a material for forming the outer layer. Was prepared.

〔給紙ローラの作製〕
上記実施の形態と同様にして、まず、内層成形用金型として、芯金(外径9mm)が同軸的にセットされているとともに、その芯金の周りに12本の棒状型(外径6mm)が等間隔でセットされているものを準備し、その成形空間内に、内層の形成材料である上記未架橋の熱硬化性ウレタンゴムを充填した後、その成形金型をオーブン内に入れ、130℃で30分間架橋した。そして、上記芯金の外周面に架橋硬化された熱硬化性ウレタンゴムの非発泡硬化体(厚み9mm)を得、その非発泡硬化体から上記芯金および棒状型を抜き取るとともにその非発泡硬化体を脱型し、内層を得た。ついで、その内層を洗浄した後、その内層の中空部に芯金(外径9mm)を挿入し、それを、外層成形用金型に同軸的にセットした。つぎに、上記内層外周面と金型内周面との間の成形空間に、外層の形成材料である上記未架橋の熱硬化性ウレタンゴムを充填した後、その成形金型をオーブン内に入れ、130℃で30分間架橋した。そして、上記内層の外周面に架橋硬化された熱硬化性ウレタンゴムの非発泡硬化体(外層:厚み1mm)を得、内層と外層とからなる円筒状積層体を脱型した。つぎに、その円筒状積層体を長さ20mmに切断した後、その中空部に円筒状のポリアセタール(POM)製のハブ(長さ25mm、外径16mm)を加圧内嵌した。このようにして、給紙ローラを得た。
[Production of paper feed roller]
In the same manner as in the above embodiment, first, a core metal (outer diameter 9 mm) is coaxially set as an inner layer molding die, and 12 rod-shaped molds (outer diameter 6 mm) are disposed around the core metal. ) Are set at equal intervals, and the molding space is filled with the above-mentioned uncrosslinked thermosetting urethane rubber, which is the inner layer forming material, and then the molding die is placed in an oven. Crosslinking was performed at 130 ° C. for 30 minutes. Then, a non-foamed cured body (thickness 9 mm) of a thermosetting urethane rubber cross-linked and cured on the outer peripheral surface of the core metal is obtained, and the core metal and the rod-shaped mold are extracted from the non-foamed cured body and the non-foamed cured body. Was demolded to obtain an inner layer. Next, after washing the inner layer, a cored bar (outer diameter 9 mm) was inserted into the hollow part of the inner layer, and it was set coaxially in the outer layer molding die. Next, the molding space between the outer peripheral surface of the inner layer and the inner peripheral surface of the mold is filled with the uncrosslinked thermosetting urethane rubber as the outer layer forming material, and then the molding die is placed in an oven. And crosslinked at 130 ° C. for 30 minutes. And the non-foaming hardening body (outer layer: thickness 1mm) of the thermosetting urethane rubber bridge | crosslinked and hardened on the outer peripheral surface of the said inner layer was obtained, and the cylindrical laminated body which consists of an inner layer and an outer layer was demolded. Next, the cylindrical laminate was cut to a length of 20 mm, and a cylindrical polyacetal (POM) hub (length: 25 mm, outer diameter: 16 mm) was press-fitted into the hollow portion. In this way, a paper feed roller was obtained.

この給紙ローラは、内層の非発泡硬化体のASKER−C硬度が70度、外層の非発泡硬化体のJIS−A硬度が70度、内層と外層とからなる弾性層の外層側から測定したJIS−A硬度(弾性層全体のJIS−A硬度)が5度であった。また、内層に形成された貫通孔は、内径が6mm(上記ハブの外径16mmの38%)、貫通孔の内周面とハブの外周面との最短距離が1.5mmであった。   In this paper feeding roller, the ASKER-C hardness of the inner layer non-foamed cured body is 70 degrees, the JIS-A hardness of the outer layer non-foamed cured body is 70 degrees, and measured from the outer layer side of the elastic layer composed of the inner layer and the outer layer. The JIS-A hardness (JIS-A hardness of the entire elastic layer) was 5 degrees. The through hole formed in the inner layer had an inner diameter of 6 mm (38% of the hub outer diameter of 16 mm), and the shortest distance between the inner peripheral surface of the through hole and the outer peripheral surface of the hub was 1.5 mm.

上記実施例1において、内層を形成する際に、貫通孔形成用の棒状型の外径および配置を変えることにより、内層に形成された貫通孔を、内径4mm(上記ハブの外径16mmの25%)、貫通孔の内周面とハブの外周面との最短距離1.5mmとした(本数は実施例1と同じ)。これにより、内層と外層とからなる弾性層の外層側から測定したJIS−A硬度(弾性層全体のJIS−A硬度)を25度に設定した(内層の非発泡硬化体のASKER−C硬度および外層の非発泡硬化体のJIS−A硬度は実施例1と同じ)。それ以外は、上記実施例1と同様にした。   In the first embodiment, when the inner layer is formed, by changing the outer diameter and arrangement of the rod-shaped die for forming the through hole, the through hole formed in the inner layer has an inner diameter of 4 mm (25 mm of the hub outer diameter of 16 mm). %), The shortest distance between the inner peripheral surface of the through hole and the outer peripheral surface of the hub was 1.5 mm (the number is the same as in Example 1). Thereby, the JIS-A hardness (JIS-A hardness of the entire elastic layer) measured from the outer layer side of the elastic layer composed of the inner layer and the outer layer was set to 25 degrees (ASKER-C hardness of the non-foamed cured body of the inner layer and The JIS-A hardness of the non-foamed cured body of the outer layer is the same as in Example 1). Other than that, it was the same as in Example 1 above.

上記実施例1において、内層を形成する際に、貫通孔形成用の棒状型の外径および配置を変えることにより、内層に形成された貫通孔を、内径2.5mm(上記ハブの外径16mmの16%)、貫通孔の内周面とハブの外周面との最短距離2.25mmとした(本数は実施例1と同じ)。これにより、内層と外層とからなる弾性層の外層側から測定したJIS−A硬度(弾性層全体のJIS−A硬度)を45度に設定した(内層の非発泡硬化体のASKER−C硬度および外層の非発泡硬化体のJIS−A硬度は実施例1と同じ)。それ以外は、上記実施例1と同様にした。   In the first embodiment, when the inner layer is formed, by changing the outer diameter and arrangement of the rod-shaped mold for forming the through hole, the through hole formed in the inner layer has an inner diameter of 2.5 mm (the outer diameter of the hub is 16 mm). 16%), the shortest distance between the inner peripheral surface of the through hole and the outer peripheral surface of the hub was 2.25 mm (the number is the same as in Example 1). Thereby, the JIS-A hardness (JIS-A hardness of the entire elastic layer) measured from the outer layer side of the elastic layer composed of the inner layer and the outer layer was set to 45 degrees (ASKER-C hardness of the non-foamed cured body of the inner layer and The JIS-A hardness of the non-foamed cured body of the outer layer is the same as in Example 1). Other than that, it was the same as in Example 1 above.

上記実施例1において、内層を形成する際に、貫通孔形成用の棒状型の外径および配置を変えることにより、内層に形成された貫通孔を、内径5mm(上記ハブの外径16mmの31%)、貫通孔の内周面とハブの外周面との最短距離0.5mmとした(本数は実施例1と同じ)。これにより、内層と外層とからなる弾性層の外層側から測定したJIS−A硬度(弾性層全体のJIS−A硬度)を10度に設定した(内層の非発泡硬化体のASKER−C硬度および外層の非発泡硬化体のJIS−A硬度は実施例1と同じ)。それ以外は、上記実施例1と同様にした。   In the first embodiment, when the inner layer is formed, the through hole formed in the inner layer has an inner diameter of 5 mm (31 mm with an outer diameter of 16 mm of the hub) by changing the outer diameter and arrangement of the rod-shaped mold for forming the through hole. %), The shortest distance between the inner peripheral surface of the through hole and the outer peripheral surface of the hub was 0.5 mm (the number is the same as in Example 1). Thereby, the JIS-A hardness (JIS-A hardness of the entire elastic layer) measured from the outer layer side of the elastic layer composed of the inner layer and the outer layer was set to 10 degrees (ASKER-C hardness of the non-foamed cured body of the inner layer and The JIS-A hardness of the non-foamed cured body of the outer layer is the same as in Example 1). Other than that, it was the same as in Example 1 above.

上記実施例1において、内層を形成する際に、貫通孔形成用の棒状型の外径および配置を変えることにより、内層に形成された貫通孔を、内径3.5mm(上記ハブの外径16mmの22%)、貫通孔の内周面とハブの外周面との最短距離1.5mmとした(本数は実施例1と同じ)。これにより、内層と外層とからなる弾性層の外層側から測定したJIS−A硬度(弾性層全体のJIS−A硬度)を30度に設定した(内層の非発泡硬化体のASKER−C硬度および外層の非発泡硬化体のJIS−A硬度は実施例1と同じ)。それ以外は、上記実施例1と同様にした。   In the first embodiment, when the inner layer is formed, the through hole formed in the inner layer has an inner diameter of 3.5 mm (the outer diameter of the hub is 16 mm) by changing the outer diameter and arrangement of the rod-shaped mold for forming the through hole. 22%), and the shortest distance between the inner peripheral surface of the through hole and the outer peripheral surface of the hub was 1.5 mm (the number is the same as in Example 1). Thereby, the JIS-A hardness (JIS-A hardness of the entire elastic layer) measured from the outer layer side of the elastic layer composed of the inner layer and the outer layer was set to 30 degrees (ASKER-C hardness of the non-foamed cured body of the inner layer and The JIS-A hardness of the non-foamed cured body of the outer layer is the same as in Example 1). Other than that, it was the same as in Example 1 above.

上記実施例1において、内層を形成する際に、貫通孔形成用の棒状型の外径および配置を変えることにより、内層に形成された貫通孔を、内径2.5mm(上記ハブの外径16mmの16%)、貫通孔の内周面とハブの外周面との最短距離3.0mmとした(本数は実施例1と同じ)。これにより、内層と外層とからなる弾性層の外層側から測定したJIS−A硬度(弾性層全体のJIS−A硬度)を40度に設定した(内層の非発泡硬化体のASKER−C硬度および外層の非発泡硬化体のJIS−A硬度は実施例1と同じ)。それ以外は、上記実施例1と同様にした。   In the first embodiment, when the inner layer is formed, by changing the outer diameter and arrangement of the rod-shaped mold for forming the through hole, the through hole formed in the inner layer has an inner diameter of 2.5 mm (the outer diameter of the hub is 16 mm). 16%), the shortest distance between the inner peripheral surface of the through hole and the outer peripheral surface of the hub was 3.0 mm (the number is the same as in Example 1). Thereby, the JIS-A hardness (JIS-A hardness of the entire elastic layer) measured from the outer layer side of the elastic layer composed of the inner layer and the outer layer was set to 40 degrees (ASKER-C hardness of the non-foamed cured body of the inner layer and The JIS-A hardness of the non-foamed cured body of the outer layer is the same as in Example 1). Other than that, it was the same as in Example 1 above.

上記実施例1において、内層および外層の形成材料として、下記のものを用いることにより、内層の非発泡硬化体のASKER−C硬度を20度、外層の非発泡硬化体のJIS−A硬度を40度に設定した。また、内層に形成された貫通孔を、内径2.5mm(上記ハブの外径16mmの16%)、貫通孔の内周面とハブの外周面との最短距離0.5mmとした(本数は実施例1と同じ)。これにより、内層と外層とからなる弾性層の外層側から測定したJIS−A硬度(弾性層全体のJIS−A硬度)を5度に設定した。それ以外は、上記実施例1と同様にした。   In Example 1 above, the following materials were used as the inner layer and outer layer forming materials, so that the inner layer non-foamed cured body had an ASKER-C hardness of 20 degrees, and the outer layer non-foamed cured body had a JIS-A hardness of 40. Set to degrees. The through hole formed in the inner layer has an inner diameter of 2.5 mm (16% of the hub outer diameter of 16 mm), and a shortest distance of 0.5 mm between the inner peripheral surface of the through hole and the outer peripheral surface of the hub (the number is Same as Example 1). Thereby, the JIS-A hardness (JIS-A hardness of the whole elastic layer) measured from the outer layer side of the elastic layer composed of the inner layer and the outer layer was set to 5 degrees. Other than that, it was the same as in Example 1 above.

〔内層の形成材料(未架橋の熱硬化性ウレタンゴム)の調製〕
上記実施例1において、可塑剤を50重量部に変えて調製した。それ以外は、上記実施例1と同様にした。
[Preparation of inner layer forming material (uncrosslinked thermosetting urethane rubber)]
In Example 1, the plasticizer was changed to 50 parts by weight. Other than that, it was the same as in Example 1 above.

〔外層の形成材料(未架橋の熱硬化性ウレタンゴム)の調製〕
上記実施例1において、ポリテトラメチレンエーテルグリコール(PTMG)を50重量部、ポリプロピレングリコール(PPG)を50重量部に変えるとともに、可塑剤〔ジブチルカルビトールアジペート(旭電化社製、アデカサイザーRS705)〕を50重量部加えて調製した。それ以外は、上記実施例1と同様にした。
[Preparation of outer layer forming material (uncrosslinked thermosetting urethane rubber)]
In Example 1 above, polytetramethylene ether glycol (PTMG) was changed to 50 parts by weight and polypropylene glycol (PPG) to 50 parts by weight, and a plasticizer [dibutyl carbitol adipate (Adeka Sizer RS705, manufactured by Asahi Denka Co., Ltd.)] Was added to prepare 50 parts by weight. Other than that, it was the same as in Example 1 above.

上記実施例1において、内層および外層の形成材料として、下記のものを用いることにより、内層の非発泡硬化体のASKER−C硬度を45度、外層の非発泡硬化体のJIS−A硬度を60度に設定した。また、内層に形成された貫通孔を、内径2.5mm(上記ハブの外径16mmの16%)、貫通孔の内周面とハブの外周面との最短距離0.5mmとした(本数は実施例1と同じ)。これにより、内層と外層とからなる弾性層の外層側から測定したJIS−A硬度(弾性層全体のJIS−A硬度)を25度に設定した。それ以外は、上記実施例1と同様にした。   In Example 1 above, the following materials were used as the inner layer and outer layer forming materials, whereby the inner layer non-foamed cured body had an ASKER-C hardness of 45 degrees, and the outer layer non-foamed cured body had a JIS-A hardness of 60. Set to degrees. The through hole formed in the inner layer has an inner diameter of 2.5 mm (16% of the hub outer diameter of 16 mm), and a shortest distance of 0.5 mm between the inner peripheral surface of the through hole and the outer peripheral surface of the hub (the number is Same as Example 1). Thereby, the JIS-A hardness (JIS-A hardness of the whole elastic layer) measured from the outer layer side of the elastic layer composed of the inner layer and the outer layer was set to 25 degrees. Other than that, it was the same as in Example 1 above.

〔内層の形成材料(未架橋の熱硬化性ウレタンゴム)の調製〕
上記実施例1において、可塑剤を30重量部に変えて調製した。それ以外は、上記実施例1と同様にした。
[Preparation of inner layer forming material (uncrosslinked thermosetting urethane rubber)]
In Example 1, the plasticizer was changed to 30 parts by weight. Other than that, it was the same as in Example 1 above.

〔外層の形成材料(未架橋の熱硬化性ウレタンゴム)の調製〕
上記実施例1において、ポリテトラメチレンエーテルグリコール(PTMG)を70重量部、ポリプロピレングリコール(PPG)を30重量部に変えるとともに、可塑剤〔ジブチルカルビトールアジペート(旭電化社製、アデカサイザーRS705)〕を30重量部加えて調製した。それ以外は、上記実施例1と同様にした。
[Preparation of outer layer forming material (uncrosslinked thermosetting urethane rubber)]
In Example 1 above, polytetramethylene ether glycol (PTMG) was changed to 70 parts by weight and polypropylene glycol (PPG) to 30 parts by weight, and a plasticizer [dibutyl carbitol adipate (Adeka Sizer RS705, manufactured by Asahi Denka Co., Ltd.)] Was added to prepare 30 parts by weight. Other than that, it was the same as in Example 1 above.

上記実施例1において、外層の形成材料として、下記のものを用いることにより、外層の非発泡硬化体のJIS−A硬度を80度に設定した(内層の形成材料および非発泡硬化体については上記実施例1と同様とした)。また、内層に形成された貫通孔を、内径6mm(上記ハブの外径16mmの38%)、貫通孔の内周面とハブの外周面との最短距離0.5mmとした(本数は実施例1と同じ)。これにより、内層と外層とからなる弾性層の外層側から測定したJIS−A硬度(弾性層全体のJIS−A硬度)を45度に設定した。それ以外は、上記実施例1と同様にした。   In Example 1 above, the JIS-A hardness of the non-foamed cured body of the outer layer was set to 80 degrees by using the following as the forming material of the outer layer (for the inner layer forming material and the non-foamed cured body, the above-mentioned The same as in Example 1). The through hole formed in the inner layer has an inner diameter of 6 mm (38% of the outer diameter of the hub of 16 mm), and the shortest distance between the inner peripheral surface of the through hole and the outer peripheral surface of the hub is 0.5 mm Same as 1). Thereby, the JIS-A hardness (JIS-A hardness of the whole elastic layer) measured from the outer layer side of the elastic layer composed of the inner layer and the outer layer was set to 45 degrees. Other than that, it was the same as in Example 1 above.

〔外層の形成材料(未架橋の熱硬化性ウレタンゴム)の調製〕
上記実施例1において、ポリテトラメチレンエーテルグリコール(PTMG)を99重量部、ポリプロピレングリコール(PPG)を1重量部に変えて調製した。それ以外は、上記実施例1と同様にした。
[Preparation of outer layer forming material (uncrosslinked thermosetting urethane rubber)]
In Example 1 above, 99 parts by weight of polytetramethylene ether glycol (PTMG) and 1 part by weight of polypropylene glycol (PPG) were prepared. Other than that, it was the same as in Example 1 above.

〔比較例1〕
上記実施例1において、内層を形成する際に、貫通孔形成用の棒状型の外径および配置を変えることにより、内層に形成された貫通孔を、内径7mm(上記ハブの外径16mmの44%)、貫通孔の内周面とハブの外周面との最短距離0.5mmとした(本数は実施例1と同じ)。内層と外層とからなる弾性層の外層側から測定したJIS−A硬度(弾性層全体のJIS−A硬度)は、内層の形状座屈により測定不能であった(内層の非発泡硬化体のASKER−C硬度および外層の非発泡硬化体のJIS−A硬度は実施例1と同じ)。それ以外は、上記実施例1と同様にした。
[Comparative Example 1]
In the first embodiment, when the inner layer is formed, by changing the outer diameter and arrangement of the rod-shaped mold for forming the through hole, the through hole formed in the inner layer has an inner diameter of 7 mm (44 mm of the hub outer diameter of 16 mm). %), The shortest distance between the inner peripheral surface of the through hole and the outer peripheral surface of the hub was 0.5 mm (the number is the same as in Example 1). The JIS-A hardness (JIS-A hardness of the entire elastic layer) measured from the outer layer side of the elastic layer composed of the inner layer and the outer layer could not be measured due to the shape buckling of the inner layer (ASKER of the non-foamed cured body of the inner layer) -C hardness and JIS-A hardness of the non-foamed cured body of the outer layer are the same as in Example 1). Other than that, it was the same as in Example 1 above.

〔比較例2〕
上記実施例1において、内層を形成する際に、貫通孔形成用の棒状型の外径および配置を変えることにより、内層に形成された貫通孔を、内径1.5mm(上記ハブの外径16mmの9%)、貫通孔の内周面とハブの外周面との最短距離0.5mmとした(本数は実施例1と同じ)。これにより、内層と外層とからなる弾性層の外層側から測定したJIS−A硬度(弾性層全体のJIS−A硬度)を53度に設定した(内層の非発泡硬化体のASKER−C硬度および外層の非発泡硬化体のJIS−A硬度は実施例1と同じ)。それ以外は、上記実施例1と同様にした。
[Comparative Example 2]
In the first embodiment, when the inner layer is formed, by changing the outer diameter and arrangement of the rod-shaped die for forming the through hole, the through hole formed in the inner layer has an inner diameter of 1.5 mm (the outer diameter of the hub is 16 mm). 9%), and the shortest distance between the inner peripheral surface of the through hole and the outer peripheral surface of the hub was 0.5 mm (the number is the same as in Example 1). Thereby, the JIS-A hardness (JIS-A hardness of the entire elastic layer) measured from the outer layer side of the elastic layer composed of the inner layer and the outer layer was set to 53 degrees (ASKER-C hardness of the non-foamed cured body of the inner layer and The JIS-A hardness of the non-foamed cured body of the outer layer is the same as in Example 1). Other than that, it was the same as in Example 1 above.

〔比較例3〕
上記実施例1において、内層を形成する際に、貫通孔形成用の棒状型の外径および配置を変えることにより、内層に形成された貫通孔を、内径6mm(上記ハブの外径16mmの38%)、貫通孔の内周面とハブの外周面との最短距離0.2mmとした(本数は実施例1と同じ)。これにより、内層と外層とからなる弾性層の外層側から測定したJIS−A硬度(弾性層全体のJIS−A硬度)を45度に設定した(内層の非発泡硬化体のASKER−C硬度および外層の非発泡硬化体のJIS−A硬度は実施例1と同じ)。それ以外は、上記実施例1と同様にした。しかし、貫通孔よりも内側の内層部分が破れ、下記の耐摩耗性,摩擦係数維持性,放熱性について評価できなかった。
[Comparative Example 3]
In the first embodiment, when the inner layer is formed, by changing the outer diameter and arrangement of the rod-shaped mold for forming the through hole, the through hole formed in the inner layer has an inner diameter of 6 mm (38 mm of the hub outer diameter of 16 mm). %), And the shortest distance between the inner peripheral surface of the through hole and the outer peripheral surface of the hub was 0.2 mm (the number is the same as in Example 1). Thereby, the JIS-A hardness (JIS-A hardness of the entire elastic layer) measured from the outer layer side of the elastic layer composed of the inner layer and the outer layer was set to 45 degrees (ASKER-C hardness of the non-foamed cured body of the inner layer and The JIS-A hardness of the non-foamed cured body of the outer layer is the same as in Example 1). Other than that, it was the same as in Example 1 above. However, the inner layer portion inside the through hole was torn, and the following wear resistance, friction coefficient maintenance, and heat dissipation could not be evaluated.

〔比較例4〕
上記実施例1において、内層を形成する際に、貫通孔形成用の棒状型の外径および配置を変えることにより、内層に形成された貫通孔を、内径3mm(上記ハブの外径16mmの19%)、貫通孔の内周面とハブの外周面との最短距離4mmとした(本数は実施例1と同じ)。これにより、内層と外層とからなる弾性層の外層側から測定したJIS−A硬度(弾性層全体のJIS−A硬度)を40度に設定した(内層の非発泡硬化体のASKER−C硬度および外層の非発泡硬化体のJIS−A硬度は実施例1と同じ)。それ以外は、上記実施例1と同様にした。
[Comparative Example 4]
In the first embodiment, when the inner layer is formed, by changing the outer diameter and arrangement of the rod-shaped die for forming the through hole, the through hole formed in the inner layer has an inner diameter of 3 mm (19 mm of the hub outer diameter of 16 mm). %), The shortest distance between the inner peripheral surface of the through hole and the outer peripheral surface of the hub was 4 mm (the number is the same as in Example 1). Thereby, the JIS-A hardness (JIS-A hardness of the entire elastic layer) measured from the outer layer side of the elastic layer composed of the inner layer and the outer layer was set to 40 degrees (ASKER-C hardness of the non-foamed cured body of the inner layer and The JIS-A hardness of the non-foamed cured body of the outer layer is the same as in Example 1). Other than that, it was the same as in Example 1 above.

〔比較例5〕
上記実施例1において、内層を形成する際に、貫通孔形成用の棒状型を用いず、内層に貫通孔が形成されていない給紙ローラを作製した。これにより、内層と外層とからなる弾性層の外層側から測定したJIS−A硬度(弾性層全体のJIS−A硬度)を55度に設定した(内層の非発泡硬化体のASKER−C硬度および外層の非発泡硬化体のJIS−A硬度は実施例1と同じ)。それ以外は、上記実施例1と同様にした。
[Comparative Example 5]
In Example 1, when the inner layer was formed, a paper feed roller having no through hole formed in the inner layer was produced without using a rod-shaped die for forming a through hole. Thereby, the JIS-A hardness (JIS-A hardness of the entire elastic layer) measured from the outer layer side of the elastic layer composed of the inner layer and the outer layer was set to 55 degrees (ASKER-C hardness of the non-foamed cured body of the inner layer and The JIS-A hardness of the non-foamed cured body of the outer layer is the same as in Example 1). Other than that, it was the same as in Example 1 above.

〔耐摩耗性〕
このようにして得られた実施例1〜9および比較例1〜5の各給紙ローラを、通紙耐久治具に組み込み、用紙を10万枚通紙させた。そして、各給紙ローラの外径を、上記複写機に組み込む前と用紙10万枚通紙後とで測定し、外層の摩耗量を算出した。その結果、外層の摩耗量が50μmを下回るものは耐摩耗性が極めて優れるとして◎、50μm以上200μm未満のものは耐摩耗性が優れるとして○、200μmを上回るものは耐摩耗性が劣るとして×と評価し、下記の表1,2に併せて表記した。なお、上記外径の測定には、レーザー外径測定器(レーザースキャンマイクロメータ,Mitutoyo社製)を用いた。
(Abrasion resistance)
Each of the paper feed rollers of Examples 1 to 9 and Comparative Examples 1 to 5 thus obtained was incorporated into a paper passing durability jig, and 100,000 sheets were passed. Then, the outer diameter of each paper feed roller was measured before being incorporated into the copying machine and after 100,000 sheets were passed, and the wear amount of the outer layer was calculated. As a result, if the outer layer wear amount is less than 50 μm, the wear resistance is extremely excellent, ◎, 50 μm or more and less than 200 μm is excellent in wear resistance, ○, more than 200 μm is inferior in wear resistance, and × It evaluated and it described together with the following Tables 1 and 2. For measuring the outer diameter, a laser outer diameter measuring device (Laser Scan Micrometer, manufactured by Mitutoyo Corporation) was used.

〔摩擦係数維持性〕
また、各給紙ローラの外周表面の摩擦係数を、上記通紙耐久治具に組み込む前と用紙10万枚通紙後とで測定し、その差を算出した。その結果、摩擦係数の差が0.1以下のものは摩擦係数維持性が優れるとして○、摩擦係数の差が0.1を上回るものは摩擦係数維持性が劣るとして×と評価し、下記の表1,2に併せて表記した。
[Friction coefficient maintenance]
Further, the coefficient of friction of the outer peripheral surface of each paper feed roller was measured before being incorporated into the paper passing durability jig and after 100,000 sheets were passed, and the difference was calculated. As a result, when the difference in friction coefficient is 0.1 or less, it is evaluated that the friction coefficient maintenance property is excellent, and when the friction coefficient difference exceeds 0.1, the friction coefficient maintenance property is inferior. This is also shown in Tables 1 and 2.

〔放熱性〕
上記各給紙ローラを、RT(25±3℃)環境において、トルクリミッタを装着したさばきローラに使用し、連続1万枚通紙した直後の各給紙ローラの表面温度を測定した。その結果、表面温度が50℃を下回るものは放熱性が優れるとして○、表面温度が50℃以上のものは放熱性が劣るとして×と評価し、下記の表1,2に併せて表記した。
[Heat dissipation]
Each of the paper feed rollers was used as a separation roller equipped with a torque limiter in an RT (25 ± 3 ° C.) environment, and the surface temperature of each paper feed roller immediately after the continuous 10,000 sheets were measured. As a result, those having a surface temperature of less than 50 ° C. were evaluated as “good” because the heat dissipation was excellent, and those having a surface temperature of 50 ° C. or higher were evaluated as “poor” because they were inferior in heat dissipation.

Figure 0004367409
Figure 0004367409

Figure 0004367409
Figure 0004367409

上記表1の結果から、実施例1〜9の給紙ローラは、比較例1〜5の給紙ローラと比較して、耐摩耗性および摩擦係数維持性に優れるとともに、放熱性も優れることがわかる。   From the results of Table 1 above, the paper feed rollers of Examples 1 to 9 are excellent in wear resistance and friction coefficient maintenance and heat dissipation as compared with the paper feed rollers in Comparative Examples 1 to 5. Recognize.

本発明の給紙ローラの一実施の形態を模式的に示す斜視図である。1 is a perspective view schematically showing an embodiment of a paper feed roller of the present invention. 上記給紙ローラの軸に直角な断面図である。It is sectional drawing orthogonal to the axis | shaft of the said paper feeding roller.

符号の説明Explanation of symbols

1 ハブ
2 内層
3 外層
4 貫通孔
A 貫通孔の内径
B ハブの外径
C 貫通孔の内周面とハブの外周面との最短距離
DESCRIPTION OF SYMBOLS 1 Hub 2 Inner layer 3 Outer layer 4 Through-hole A Inner diameter of a through-hole B Outer diameter of a hub C The shortest distance between the inner peripheral surface of a through-hole, and the outer peripheral surface of a hub

Claims (2)

ハブと、このハブの外周面に形成された弾性層とからなる給紙ローラであって、上記弾性層が内層および外層で構成され、上記内層が熱硬化性ウレタンゴムの非発泡硬化体からなり、上記外層が熱硬化性ウレタンゴムの非発泡硬化体からなり上記内層の非発泡硬化体よりも高硬度に設定され、上記内層に、軸方向に延びる複数の貫通孔が周方向に全周にわたって所定の間隔で形成され、上記貫通孔の内径が上記ハブの外径の38〜16%の範囲内に設定されているとともに、上記貫通孔の内周面とハブの外周面との最短距離が0.5〜3.0mmの範囲内に設定されていることを特徴とする給紙ローラ。   A paper feed roller comprising a hub and an elastic layer formed on the outer peripheral surface of the hub, wherein the elastic layer is composed of an inner layer and an outer layer, and the inner layer is made of a non-foamed cured body of thermosetting urethane rubber. The outer layer is made of a non-foamed cured body of thermosetting urethane rubber, and has a higher hardness than the non-foamed cured body of the inner layer, and a plurality of through holes extending in the axial direction are formed in the inner layer over the entire circumference. The inner diameter of the through hole is set in a range of 38 to 16% of the outer diameter of the hub, and the shortest distance between the inner peripheral surface of the through hole and the outer peripheral surface of the hub is formed at a predetermined interval. A paper feed roller which is set within a range of 0.5 to 3.0 mm. 上記内層の非発泡硬化体のASKER−C硬度が20〜70度の範囲内に設定され、外層の非発泡硬化体のJIS−A硬度が40〜80度の範囲内に設定され、上記貫通孔が形成された内層と上記外層とからなる弾性層の外層側から測定したJIS−A硬度が5〜45度の範囲内に設定されている請求項1記載の給紙ローラ。   The ASKER-C hardness of the non-foamed cured body of the inner layer is set within a range of 20 to 70 degrees, the JIS-A hardness of the non-foamed cured body of the outer layer is set within a range of 40 to 80 degrees, and the through hole The paper feed roller according to claim 1, wherein the JIS-A hardness measured from the outer layer side of the elastic layer composed of the inner layer formed with the outer layer and the outer layer is set in a range of 5 to 45 degrees.
JP2005374747A 2005-12-27 2005-12-27 Feed roller Expired - Fee Related JP4367409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005374747A JP4367409B2 (en) 2005-12-27 2005-12-27 Feed roller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005374747A JP4367409B2 (en) 2005-12-27 2005-12-27 Feed roller

Publications (2)

Publication Number Publication Date
JP2007176620A JP2007176620A (en) 2007-07-12
JP4367409B2 true JP4367409B2 (en) 2009-11-18

Family

ID=38302180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005374747A Expired - Fee Related JP4367409B2 (en) 2005-12-27 2005-12-27 Feed roller

Country Status (1)

Country Link
JP (1) JP4367409B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009131684A1 (en) * 2008-04-22 2009-10-29 John Dallum Lightweight conveyor roller
JP5449272B2 (en) * 2011-08-12 2014-03-19 住友ゴム工業株式会社 Paper feed roller
JP5860986B1 (en) * 2015-03-18 2016-02-16 株式会社タクミ精工 Paper feed roller
JP2017061358A (en) * 2015-09-24 2017-03-30 ヤマウチ株式会社 Paper feed roller

Also Published As

Publication number Publication date
JP2007176620A (en) 2007-07-12

Similar Documents

Publication Publication Date Title
JP2006160468A (en) Paper feed roller
JP6074572B1 (en) Cleaning blade
JP6110997B1 (en) Urethane composition, polyurethane elastic body, and transmission belt
WO2015093252A1 (en) Cleaning blade
JP4367409B2 (en) Feed roller
EP1547949B1 (en) Feed/transport roller
JP5797439B2 (en) Cleaning blade for image forming apparatus
JP4135660B2 (en) Paper feed roll manufacturing method
US20050154149A1 (en) Polyurethane rolls and methods of manufacturing
JP2008070634A (en) Cleaning blade for electrophotographic apparatus and method for manufacturing the same
JP2004051249A (en) Urethane composition for paper feed roll, and paper feed roll using the urethane composition
JP4330599B2 (en) Cleaning blade for electrophotographic equipment
JP6628063B2 (en) Cleaning blade
JP4570093B2 (en) Paper feeding / conveying separation roll and manufacturing method thereof
JP6105510B2 (en) Paper feed roller and manufacturing method thereof
JP3555707B2 (en) roller
JP6547431B2 (en) Paper feed roller
JP4356801B1 (en) Paper feed roller
JP2006264339A (en) Manufacturing method for low-hardness roll
JP6460358B2 (en) Cleaning blade
JP4194902B2 (en) Toner supply roller
JP2002356531A (en) Polyurethane composition for paper feed roll and paper feed roll using the same
JP5558659B2 (en) Cleaning blade for electrophotographic apparatus and manufacturing method thereof
JP6096406B2 (en) Manufacturing method of image forming apparatus
JP6170828B2 (en) Developing roller having an elastic layer made of polyurethane elastomer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090817

R150 Certificate of patent or registration of utility model

Ref document number: 4367409

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees