JP4356321B2 - Lead acid battery - Google Patents
Lead acid battery Download PDFInfo
- Publication number
- JP4356321B2 JP4356321B2 JP2003003030A JP2003003030A JP4356321B2 JP 4356321 B2 JP4356321 B2 JP 4356321B2 JP 2003003030 A JP2003003030 A JP 2003003030A JP 2003003030 A JP2003003030 A JP 2003003030A JP 4356321 B2 JP4356321 B2 JP 4356321B2
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- electrode plate
- lead
- battery
- positive electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は鉛蓄電池に関するものであり、特に負極活物質中の添加剤に関するものである。
【0002】
【従来の技術】
極板群が電解液に浸漬され、セル内と電池外とが防爆栓等の防爆、防塵手段を介して連通したいわゆる開放型の鉛蓄電池の主な使用用途である自動車用電池は、極低温(−25℃程度)から高温(75℃程度)までの幅広い温度でエンジン始動のための高率放電特性が要求される。
【0003】
このため、鉛蓄電池では負極活物質中にカーボン等の導電補助剤やリグニンスルホン酸塩を主原料としたリグニン化合物を添加している(例えば特許文献1参照)。カーボンは負極活物質の電気抵抗を低減するとともに、リグニン化合物は負極活物質の表面積の増加と充放電サイクルの進行に伴う表面積の減少を抑制する。
【0004】
このようにカーボンやリグニン化合物は負極板の高率放電特性を改善するために添加されるが、カーボン量を増加させた場合、充電中の負極電位が貴に移行する。自動車用鉛蓄電池をはじめとする鉛蓄電池は定電圧充電を行うことが一般に行われており、この負極電位の変化によって、正極電位が貴に移行する。このような正極電位の貴への移行によって、正極格子や正極活物質の劣化が進行し、電池寿命が低下するという課題がある。また、このような課題は特に高温(75℃程度)で使用される自動車用鉛蓄電池において顕著に発生する課題である。
【0005】
さらに、リグニン化合物については負極活物質の表面積を増大させて電池を高率放電したときの放電特性を改善する効果があるものの、負極の充電受入性が低下する。この充電受入性の低下を抑制するために前記したカーボンを負極に添加することが有効であるが、添加するカーボン量によっては前記したような正極板の劣化による電池寿命低下という課題があった。
【0006】
一方、この正極板の劣化モードには大別して正極格子体の伸びによる正極−負極間の短絡と活物質自体の結合性の低下によるものがある。特に正極板を袋状セパレータに収納した電池では、正極格子体の伸びはそのまま袋状セパレータの底部破損を引き起こすので、前記したような正極−負極間の短絡が発生しやすくなる。このような短絡による電池の寿命低下を抑制するために、伸びの殆ど発生しない負極板を袋状セパレータに収納した構成を採用する場合がある。このような鉛蓄電池では正極−負極間の短絡が抑制できるものの、負極への電解液拡散の問題から負極の充電受入性が低下する傾向がある。
【0007】
また、極板群が電解液に浸漬された液式の鉛蓄電池においては充放電を繰返す過程で、電解液中の硫酸濃度が負極板下部において負極板上部よりも高くなる、いわゆる成層化を引き起こす。特に、負極板を袋状セパレータに収納した鉛蓄電池ではこの成層化が解消されづらく、硫酸濃度の高い負極板下部において充電受入性がさらに低下するため、前記したような負極における高率放電特性の低下はさらに深刻なものであった。
【0008】
本発明の発明者らは、負極における充電受入性と高率放電特性の改善効果と、正極において発生する格子と活物質の劣化を抑制する効果とを両立するためには、負極板へのリグニン化合物とカーボンの添加量は袋状セパレータに収納される極板の極性によって大きく変化し、特に袋状セパレータに負極板を収納した鉛蓄電池においては負極へのリグニン化合物とカーボンの添加量の比率をある範囲に規定する必要性を見出した。
【0009】
【特許文献1】
特開平7−201331公報(第2−4頁)
【0010】
【発明が解決しようとする課題】
そして本発明は、特に負極板を袋状セパレータに収納した鉛蓄電池において、低温高率放電特性及び高温中での寿命特性を改善することを目的とするものである。
【0011】
【課題を解決するための手段】
前記した課題を解決するために、本発明の請求項1に係る発明は、負極板と正極板で構成された極板群が電解液に浸漬され、合成樹脂シートで構成された袋状セパレータに前記負極板を収納するとともに、負極活物質中にリグニンおよびカーボンを含有した鉛蓄電池であって、リグニンの含有量をx質量%、カーボンの含有量をy質量%としたときに、yに対するxの比率(x/y)を1.0以下、かつyが0.5以下とした鉛蓄電池を示すものである。
【0012】
さらに、本発明の請求項2に係る発明は、請求項1の鉛蓄電池において、極板群を構成する負極板の枚数を正極板の枚数以下に構成した鉛蓄電池を示すものである。
【0013】
【発明の実施の形態】
本発明の一実施の形態を説明する。
【0014】
本発明の鉛蓄電池1は図1に示したように、0.1〜数10μm径程度の微孔を有し、ポリエチレン樹脂等の合成樹脂シートで構成された袋状セパレータ2に負極板3を収納し、この負極板3と正極板4が組合わされて極板群5を構成している。極板群5は電槽6に収納され、電槽6の開口部は蓋7で閉じられる。蓋7には端子8が形成され、端子8と極板群5とが極柱9で接続されている。なお、自動車用の鉛蓄電池は一般に公称電圧が12Vなので、6個の極板群5が電槽6に収納され、これら極板群5は直列に接続されている。電槽6には極板群5をすべて浸漬する希硫酸電解液(図示せず)が存在する。
【0015】
合成樹脂シートで構成された袋状セパレータ2は負極板3の集電耳3aを導出する開口部を除き、底部および両側部の三方が塞がれた袋状である。図2に示したように、負極板3は従来と同様、負極格子体10とこれに充填された多孔質の金属鉛を主成分とする負極活物質11で構成されている。
【0016】
本発明においては、この負極活物質11にリグニンとカーボンを添加し、リグニン含有量をx(質量%)、カーボン含有量をy(質量%)とした場合、カーボン含有量(y)に対するリグニン含有量(x)の比率(x/y)を1.0以下とし、かつカーボン含有量(y)を0.5質量%以下とする。
【0017】
負極活物質中のリグニン含有量(x)とカーボン含有量(y)とを上記のような範囲とすることによって低温高率放電特性及び高温寿命特性を顕著に改善することができる。なお、カーボン含有量(y)を0.5質量%を越えて多くした場合、酸化による正極板の劣化が進行しやすくなるため、好ましくない。
【0018】
また、リグニン含有量(x)とカーボン含有量(y)の比率が1.0を越えて大きくした場合、リグニン添加による負極活物質の充電受入性の低下が進行しやすくなる。これにより氷点以下の低温域での高率放電時における放電電圧が低下する。
【0019】
また、本発明の構成は極板群を構成する負極板の枚数が正極板の枚数以下である鉛蓄電池に適用することが好ましい。このような極板構成の鉛蓄電池では一極板群内の負極板の見掛け表面積が正極板の見掛け表面積以下となる。このような条件下で、特に低温域で電池を数CA〜数十CAといった大電流で充放電した場合、負極の分極は大きくなり、充放電反応は負極で律速される。
【0020】
本発明では負極の特性を改質するものであることから、本発明の効果をより顕著に得るためには低温域において負極が律速となりやすい、負極板の枚数が正極板の枚数以下の鉛蓄電池に本発明を適用することが好ましい。このような結果として本発明の課題である低温高率放電時の電圧特性は正極での分極よりも負極の分極の程度、すなわち負極の特性に大きく影響されるからである。
【0021】
【実施例】
〈実施例1〉
本発明の効果を実施例にもとづいて説明する。
【0022】
まず、一酸化鉛を75質量%で残部が金属鉛である鉛粉を硫酸と精製水とで混練し、密度4.50g/cm3の正極用活物質ペーストを作成した。鉛−スズ−カルシウム合金シートをエキスパンド展開して得た正極用の格子体にこのペースト充填し、熟成乾燥して未化成状態の正極板を作成した。
【0023】
負極板は、正極板に使用したものと同じ鉛粉にリグニンスルホンナトリウムとカーボン(アセチレンブラック)とを添加量を表1に示したように、様々に変化させて添加した。さらに化成後の負極活物質に対して0.5質量%に相当する硫酸バリウムを鉛粉に添加した。これらの添加材を添加した鉛粉を硫酸と精製水で混練し、密度4.80g/cm3の負極用活物質ぺーストを作成し、正極板と同様のエキスパンド法による格子体に充填し、熟成乾燥を行うことにより、未化成状態の負極板を作成した。
【0024】
上記の負極板の7枚を微孔性ポリエチレン製の袋状セパレータに収納し、上記の正極板の7枚と重ね合わせ、同極性極板の集電耳同士を溶接して極板群を構成した。この極板群をポリプロピレン樹脂製の電槽に収納し、隣接する極板群間を溶接した後、電槽開口部に蓋を接合するとともに、蓋に形成された端子部と極板群とを接続した。その後、電槽内に所定量の希硫酸を注液し、化成充電を行うことによって、JIS−D5301で規定された80D26形の自動車用鉛蓄電池(公称電圧12V、定格容量55Ah)を作成した。表1にこれらの電池の構成を示す。
【0025】
【表1】
【0026】
表1に示したNo.1〜25の電池について−15℃中で300A放電を行ったときの放電持続時間を測定した。なお、放電終止電圧は7.2Vとした。その結果を図3に示す。図3に示した結果から、リグニンの添加量を増加させると放電持続時間の増加が見られる。これは、リグニンの添加により負極活物質が微細化され反応表面積が増加することによると考えられる。また、図1よりリグニンのみを増加させるよりカーボンも同時に増加させた場合に放電時間が更に増加する傾向が見られる。これは、リグニンの増加により反応面積が増加し、放電反応するサイトが増加してはいるが、放電反応により生じる不導体である硫酸鉛も増加するため、活物質自身の導電性も増加させないとその放電能力を完全に発揮できないことを示していると考えられる。
【0027】
ここで、リグニン含有量(x)と、カーボン含有量(y)の比率(x/y)に注目すると、比率(x/y)を低下させてゆくと放電持続時間も増加し、この比率(x/y)が1.0以下の領域でほぼ一定となる。したがって、この比率(x/y)を1.0以下の領域とすることが好ましい。
【0028】
次に表1に示したNo.1〜25の電池について、高温寿命試験を行った。この試験条件を以下に示す。
【0029】
<試験条件>
試験温度:75℃
▲1▼放電:25A×2分
▲2▼充電:14.8V×10分(最大電流値25A)
以上の▲1▼および▲2▼の放電−充電サイクルを480回行った後、同一環境下で582A(CCA電流)で判定放電を行い、5秒目電圧が7.2V以下になった時点を寿命とする。
【0030】
この高温寿命試験結果を図4に示す。図4より、リグニン含有量が少ない場合(0.1〜0.2質量%)とリグニンが多い場合(0.3〜0.4質量%)では、カーボン含有量の変化の寿命サイクル数に及ぼす影響が異なる。カーボン含有量が0.5質量%を越えた0.6質量%ではリグニン含有量にかかわらず、寿命サイクル数が急激に低下する。したがって、カーボン含有量は0.5質量%以下とすることが好ましい。
【0031】
また、カーボン含有量が0.5質量%以下の領域ではカーボン含有量の低下によって寿命サイクル数が低下する傾向がある。この低下傾向はリグニン含有量によって異なる。リグニン含有量(x)とカーボン含有量(y)の比率(x/y)に注目した場合、比率(x/y)が1.0を越えて大きくなると寿命サイクル数は急激に低下する。したがって、高温寿命特性を改善するためにはカーボン含有量(y)を0.5質量%以下、かつリグニン含有量(x)とカーボン含有量(y)の比率(x/y)を1.0以下の領域とすることが必要である。
【0032】
これら電池の劣化原因は、正極格子腐食及び活物質の微細化による放電電圧の低下および、負極活物質の収縮による放電持続時間の減少であり、カーボン含有量を増加させたものの方が、正極格子の腐食量が多くなる傾向が見られた。これは、カーボン添加量の増加に伴い、充電中の負極電位が貴に移行し、これに応じて定電圧充電時の正極電位が貴に移行したことが原因であると考えられる。
【0033】
〈実施例2〉
次に実施例1における電池No.15、電池No.16および電池No.19についてそれぞれ表2に示したように負極板の枚数と袋状セパレータに収納する極板の極性を変化させた電池を作成した。
【0034】
【表2】
【0035】
上記の表2に示した各電池について、実施例1と同条件で高温寿命試験を行った。これらの結果を同じく表2に示した。正極板を袋状セパレータに収納した構成の電池は負極板を袋状セパレータに収納した電池に比較して高温寿命サイクル数が減少する傾向にある。これらの電池では正極格子体の腐食膨張が発生し、正極を収納していた袋状セパレータの底部が破損し、ここで正極と負極が短絡を起こしていた。
【0036】
一方、負極板を袋状セパレータに収納した電池は、上記のような短絡は見られず、劣化原因は正極格子腐食及び活物質の微細化による放電電圧の低下および、負極活物質の収縮であった。また、本発明による寿命改善効果は負極板を袋状セパレータを収納した電池に顕著である。これは正極板を袋状セパレータに収納した電池では正極および負極活物質の劣化よりも前記したような袋状セパレータの破損によって発生する劣化が早い時期に起こるためと推測できる。さらに本発明の効果は極板群を構成する負極板の枚数が正極板の枚数以下の場合により顕著であった。このような電池では負極板の面積が正極板の面積以下となり、放電反応が負極律速になるためと考えられる。
【0037】
また、本発明の課題は極板群が電解液に浸漬され、さらに袋状セパレータに負極板を収納することによって発生する負極板周辺の電解液の成層化によって発生するため、本発明は電解液中にすべての電解液が固定化された構成の電池、例えば制御弁式鉛蓄電池の中でも、実質上、極板群から遊離した電解液が存在しない電池では本発明の効果を顕著に得ることはできない。
【0038】
【発明の効果】
以上、説明してきたように本発明の構成によれば、極板群が電解液中に浸漬され、負極板が微孔性合成樹脂シートの袋状セパレータに収納した鉛蓄電池において、負極添加剤であるリグニンとカーボンの混合比を限定することによって、特に高温中での寿命特性を顕著に改善することから、工業上、極めて有用である。
【図面の簡単な説明】
【図1】本発明の鉛蓄電池を示す図
【図2】負極板を示す図
【図3】本発明の実施例における放電持続時間を示す図
【図4】本発明の実施例における高温寿命試験結果を示す図
【符号の説明】
1 鉛蓄電池
2 袋状セパレータ
3 負極板
3a 集電耳
4 正極板
5 極板群
6 電槽
7 蓋
8 端子
9 極柱
10 負極格子体
11 負極活物質[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lead storage battery, and more particularly to an additive in a negative electrode active material.
[0002]
[Prior art]
Automotive batteries, the main use of so-called open-type lead-acid batteries, in which the electrode plate group is immersed in an electrolyte and the inside of the cell and the outside of the battery communicate with each other via explosion-proof or dust-proof means, are extremely low temperature A high rate discharge characteristic for engine starting is required at a wide temperature range (from about -25 ° C) to a high temperature (about 75 ° C).
[0003]
For this reason, in a lead storage battery, a lignin compound containing a conductive auxiliary agent such as carbon or lignin sulfonate as a main raw material is added to the negative electrode active material (see, for example, Patent Document 1). Carbon reduces the electrical resistance of the negative electrode active material, and the lignin compound suppresses an increase in the surface area of the negative electrode active material and a decrease in the surface area as the charge / discharge cycle progresses.
[0004]
Thus, carbon and lignin compounds are added to improve the high rate discharge characteristics of the negative electrode plate. However, when the amount of carbon is increased, the negative electrode potential during charging shifts preciously. In general, lead-acid batteries such as automobile lead-acid batteries are charged at a constant voltage, and the positive electrode potential shifts preciously due to the change in the negative electrode potential. Due to such a transition of the positive electrode potential to noble, there is a problem that the positive electrode lattice and the positive electrode active material deteriorate, and the battery life is reduced. In addition, such a problem is a problem that occurs particularly prominently in automobile lead-acid batteries that are used at high temperatures (about 75 ° C.).
[0005]
Furthermore, although the lignin compound has an effect of improving the discharge characteristics when the battery is discharged at a high rate by increasing the surface area of the negative electrode active material, the charge acceptability of the negative electrode is lowered. It is effective to add the above-mentioned carbon to the negative electrode in order to suppress this decrease in charge acceptance, but depending on the amount of carbon to be added, there is a problem that the battery life is reduced due to the deterioration of the positive electrode plate as described above.
[0006]
On the other hand, the deterioration mode of the positive electrode plate is roughly classified into a short circuit between the positive electrode and the negative electrode due to the elongation of the positive electrode lattice and a decrease in the bonding property of the active material itself. In particular, in a battery in which a positive electrode plate is housed in a bag-like separator, the elongation of the positive electrode lattice body causes the bottom portion of the bag-like separator to be damaged as it is, so that the above-described short circuit between the positive electrode and the negative electrode is likely to occur. In order to suppress such a decrease in battery life due to a short circuit, a configuration in which a negative electrode plate that hardly generates elongation is accommodated in a bag-like separator may be employed. Although such a lead storage battery can suppress a short circuit between the positive electrode and the negative electrode, the charge acceptability of the negative electrode tends to be reduced due to the problem of electrolyte diffusion to the negative electrode.
[0007]
In addition, in a liquid type lead-acid battery in which the electrode plate group is immersed in an electrolytic solution, the sulfuric acid concentration in the electrolytic solution is higher in the lower part of the negative electrode plate than in the upper part of the negative electrode plate in the process of repeated charge and discharge, so-called stratification is caused. . In particular, in a lead storage battery in which the negative electrode plate is housed in a bag-like separator, this stratification is difficult to be eliminated, and the charge acceptability is further reduced at the lower part of the negative electrode plate having a high sulfuric acid concentration. The decline was even more serious.
[0008]
In order to achieve both the effect of improving the charge acceptability and high rate discharge characteristics in the negative electrode and the effect of suppressing the deterioration of the lattice and the active material generated in the positive electrode, the inventors of the present invention have provided lignin to the negative electrode plate. The amount of compound and carbon added varies greatly depending on the polarity of the electrode plate accommodated in the bag-shaped separator, and the ratio of the amount of lignin compound and carbon added to the negative electrode is particularly large in lead-acid batteries in which the negative electrode plate is accommodated in the bag-shaped separator. We found the need to define a range.
[0009]
[Patent Document 1]
JP-A-7-201331 (page 2-4)
[0010]
[Problems to be solved by the invention]
An object of the present invention is to improve low-temperature, high-rate discharge characteristics and life characteristics at high temperatures, particularly in a lead storage battery in which a negative electrode plate is housed in a bag-shaped separator.
[0011]
[Means for Solving the Problems]
In order to solve the above-described problems, the invention according to
[0012]
Further, the invention according to
[0013]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described.
[0014]
As shown in FIG. 1, the
[0015]
The bag-
[0016]
In the present invention, when lignin and carbon are added to the negative electrode active material 11 and the lignin content is x (mass%) and the carbon content is y (mass%), the lignin content relative to the carbon content (y) is included. The ratio (x / y) of the amount (x) is 1.0 or less, and the carbon content (y) is 0.5 mass% or less.
[0017]
By setting the lignin content (x) and the carbon content (y) in the negative electrode active material in the above ranges, the low-temperature high-rate discharge characteristics and the high-temperature life characteristics can be remarkably improved. In addition, when the carbon content (y) is increased beyond 0.5% by mass, deterioration of the positive electrode plate due to oxidation tends to proceed, which is not preferable.
[0018]
Further, when the ratio of the lignin content (x) to the carbon content (y) exceeds 1.0, the charge acceptability of the negative electrode active material is likely to decrease due to the addition of lignin. Thereby, the discharge voltage at the time of high rate discharge in a low temperature region below the freezing point is lowered.
[0019]
Further, the configuration of the present invention is preferably applied to a lead storage battery in which the number of negative plates constituting the electrode plate group is equal to or less than the number of positive plates. In the lead storage battery having such an electrode plate configuration, the apparent surface area of the negative electrode plate in one electrode plate group is equal to or less than the apparent surface area of the positive electrode plate. Under such conditions, when the battery is charged and discharged with a large current such as several CA to several tens of CA, particularly in a low temperature range, the polarization of the negative electrode increases and the charge and discharge reaction is rate-controlled by the negative electrode.
[0020]
In the present invention, since the characteristics of the negative electrode are modified, in order to obtain the effects of the present invention more significantly, the negative electrode tends to be rate-determined in a low temperature range, and the number of negative electrode plates is less than the number of positive electrode plates. It is preferable to apply the present invention. As a result, the voltage characteristics during low-temperature, high-rate discharge, which is the subject of the present invention, are greatly influenced by the degree of polarization of the negative electrode, that is, the characteristics of the negative electrode, rather than the polarization at the positive electrode.
[0021]
【Example】
<Example 1>
The effects of the present invention will be described based on examples.
[0022]
First, lead powder containing 75% by mass of lead monoxide and the balance being metallic lead was kneaded with sulfuric acid and purified water to prepare a positive electrode active material paste having a density of 4.50 g / cm 3 . This paste was filled in a grid for a positive electrode obtained by expanding a lead-tin-calcium alloy sheet, and aged and dried to prepare an unformed positive plate.
[0023]
For the negative electrode plate, lignin sulfone sodium and carbon (acetylene black) were added to the same lead powder as used for the positive electrode plate in various amounts as shown in Table 1. Furthermore, barium sulfate corresponding to 0.5% by mass with respect to the negative electrode active material after chemical conversion was added to the lead powder. The lead powder to which these additives are added is kneaded with sulfuric acid and purified water to prepare a negative electrode active material paste having a density of 4.80 g / cm 3 , and filled in a lattice body by an expanding method similar to the positive electrode plate, By performing aging drying, an unformed negative electrode plate was prepared.
[0024]
7 sheets of the above negative electrode plates are housed in a microporous polyethylene bag-shaped separator, overlapped with the above 7 positive electrode plates, and current collecting ears of the same polarity electrode plates are welded together to form an electrode plate group did. The electrode plate group is housed in a battery case made of polypropylene resin, and after welding between adjacent electrode plate groups, the lid is joined to the opening of the battery case, and the terminal portion and the electrode plate group formed on the lid are joined together. Connected. Thereafter, a predetermined amount of dilute sulfuric acid was poured into the battery case, and chemical charging was performed to prepare an 80D26 type lead acid battery for automobiles (nominal voltage 12V, rated capacity 55Ah) defined in JIS-D5301. Table 1 shows the configuration of these batteries.
[0025]
[Table 1]
[0026]
No. shown in Table 1. The discharge duration when 300 A discharge was performed at −15 ° C. for 1 to 25 batteries was measured. The final discharge voltage was 7.2V. The result is shown in FIG. From the results shown in FIG. 3, when the amount of lignin added is increased, the discharge duration is increased. This is thought to be due to the addition of lignin that refines the negative electrode active material and increases the reaction surface area. Further, FIG. 1 shows that the discharge time tends to further increase when carbon is increased at the same time than when only lignin is increased. This is because the reaction area increases due to the increase in lignin, and the site where the discharge reaction occurs is increased, but lead sulfate, a nonconductor produced by the discharge reaction, also increases, so the conductivity of the active material itself must be increased. This is considered to indicate that the discharge capacity cannot be fully exhibited.
[0027]
Here, focusing on the ratio (x / y) of the lignin content (x) and the carbon content (y), the discharge duration increases as the ratio (x / y) decreases, and this ratio ( x / y) is almost constant in the region of 1.0 or less. Therefore, the ratio (x / y) is preferably set to a region of 1.0 or less.
[0028]
Next, as shown in Table 1. The high temperature life test was done about the battery of 1-25. The test conditions are shown below.
[0029]
<Test conditions>
Test temperature: 75 ° C
(1) Discharge: 25A x 2 minutes (2) Charge: 14.8V x 10 minutes (maximum current value 25A)
After the above discharge and charge cycles (1) and (2) were performed 480 times, the judgment discharge was performed at 582 A (CCA current) under the same environment, and the time at which the voltage at the 5th second became 7.2 V or less Life is assumed.
[0030]
The results of this high temperature life test are shown in FIG. From FIG. 4, when the lignin content is low (0.1 to 0.2% by mass) and when the lignin is high (0.3 to 0.4% by mass), the change in the carbon content affects the number of life cycles. The impact is different. When the carbon content exceeds 0.6% by mass, the life cycle number rapidly decreases regardless of the lignin content. Therefore, the carbon content is preferably 0.5% by mass or less.
[0031]
Moreover, in the area | region whose carbon content is 0.5 mass% or less, there exists a tendency for the life cycle number to fall by the fall of carbon content. This decreasing tendency varies depending on the lignin content. When attention is paid to the ratio (x / y) of the lignin content (x) to the carbon content (y), the number of life cycles rapidly decreases when the ratio (x / y) exceeds 1.0. Therefore, in order to improve the high temperature life characteristics, the carbon content (y) is 0.5 mass% or less, and the ratio (x / y) of the lignin content (x) to the carbon content (y) is 1.0. The following areas are necessary.
[0032]
The causes of deterioration of these batteries are a decrease in discharge voltage due to positive grid corrosion and refinement of the active material, and a decrease in discharge duration due to shrinkage of the negative electrode active material. There was a tendency for the amount of corrosion to increase. It is considered that this is because the negative electrode potential during charging shifts preciously as the amount of carbon added increases, and the positive electrode potential during constant voltage charging preferentially shifts accordingly.
[0033]
<Example 2>
Next, the battery no. 15, Battery No. 16 and battery no. As shown in Table 2 for each of No. 19, batteries were produced in which the number of negative electrode plates and the polarity of the electrode plates accommodated in the bag-like separator were changed.
[0034]
[Table 2]
[0035]
About each battery shown in said Table 2, the high temperature life test was done on the same conditions as Example 1. FIG. These results are also shown in Table 2. A battery having a configuration in which the positive electrode plate is accommodated in the bag-shaped separator tends to have a lower number of high-temperature life cycles than a battery in which the negative electrode plate is accommodated in the bag-shaped separator. In these batteries, the positive electrode grid body corroded and expanded, and the bottom of the bag-like separator that contained the positive electrode was damaged, causing a short circuit between the positive electrode and the negative electrode.
[0036]
On the other hand, in the battery in which the negative electrode plate is housed in the bag-like separator, the short circuit as described above is not observed, and the cause of deterioration is the decrease in the discharge voltage due to the positive electrode lattice corrosion and the refinement of the active material, and the contraction of the negative electrode active material. It was. Moreover, the lifetime improvement effect by this invention is remarkable for the battery which accommodated the negative electrode plate in the bag-shaped separator. This can be presumed that in a battery in which the positive electrode plate is housed in a bag-shaped separator, the deterioration caused by the breakage of the bag-shaped separator described above occurs earlier than the deterioration of the positive electrode and the negative electrode active material. Furthermore, the effect of the present invention is more remarkable when the number of negative electrode plates constituting the electrode plate group is equal to or less than the number of positive electrode plates. In such a battery, it is considered that the area of the negative electrode plate is equal to or less than the area of the positive electrode plate, and the discharge reaction is rate-determining the negative electrode.
[0037]
Further, since the problem of the present invention is caused by the stratification of the electrolyte solution around the negative electrode plate generated by immersing the electrode plate group in the electrolyte solution and further housing the negative electrode plate in the bag-like separator, the present invention provides the electrolyte solution Among the batteries having a configuration in which all the electrolyte solution is fixed, for example, a control valve type lead-acid battery, a battery in which the electrolyte solution substantially free from the electrode plate group does not substantially exist can obtain the effect of the present invention remarkably. Can not.
[0038]
【The invention's effect】
As described above, according to the configuration of the present invention, in the lead storage battery in which the electrode plate group is immersed in the electrolytic solution and the negative electrode plate is housed in the bag-shaped separator of the microporous synthetic resin sheet, the negative electrode additive is used. By limiting the mixing ratio of a certain lignin and carbon, the life characteristics at a particularly high temperature are remarkably improved, which is extremely useful industrially.
[Brief description of the drawings]
FIG. 1 is a diagram showing a lead-acid battery according to the present invention. FIG. 2 is a diagram showing a negative electrode plate. FIG. 3 is a diagram showing discharge duration in an embodiment of the present invention. Figure showing the results 【Explanation of symbols】
DESCRIPTION OF
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003003030A JP4356321B2 (en) | 2003-01-09 | 2003-01-09 | Lead acid battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003003030A JP4356321B2 (en) | 2003-01-09 | 2003-01-09 | Lead acid battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004220792A JP2004220792A (en) | 2004-08-05 |
JP4356321B2 true JP4356321B2 (en) | 2009-11-04 |
Family
ID=32894413
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003003030A Expired - Fee Related JP4356321B2 (en) | 2003-01-09 | 2003-01-09 | Lead acid battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4356321B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110635136A (en) * | 2019-09-21 | 2019-12-31 | 泉州市凯鹰电源电器有限公司 | Carbon gelatinized lignin for lead storage battery and preparation method thereof |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5066825B2 (en) * | 2006-03-31 | 2012-11-07 | 新神戸電機株式会社 | Lead acid battery |
WO2011056537A2 (en) * | 2009-10-26 | 2011-05-12 | Axion Power International, Inc. | Energy storage device with limited lignin in negative electrode |
JP5674246B2 (en) * | 2011-07-19 | 2015-02-25 | 株式会社Gsユアサ | Lead acid battery and negative electrode plate thereof |
JP2016152192A (en) * | 2015-02-19 | 2016-08-22 | パナソニックIpマネジメント株式会社 | Lead-acid battery |
JP6688491B2 (en) * | 2019-05-30 | 2020-04-28 | 株式会社Gsユアサ | Lead acid battery |
-
2003
- 2003-01-09 JP JP2003003030A patent/JP4356321B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110635136A (en) * | 2019-09-21 | 2019-12-31 | 泉州市凯鹰电源电器有限公司 | Carbon gelatinized lignin for lead storage battery and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2004220792A (en) | 2004-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH09306497A (en) | Negative electrode plate for lead-acid battery | |
JP2003123760A (en) | Negative electrode for lead-acid battery | |
JP5168893B2 (en) | Lead acid battery | |
JP4356321B2 (en) | Lead acid battery | |
JP4647722B1 (en) | Lead acid battery | |
JP2006114417A (en) | Lead-acid storage battery | |
JP4507483B2 (en) | Control valve type lead acid battery | |
JPH10188963A (en) | Sealed lead-acid battery | |
JP4896392B2 (en) | Lead acid battery | |
JP4904658B2 (en) | Method for producing lead-acid battery | |
JP2004327299A (en) | Sealed lead-acid storage battery | |
JP3764978B2 (en) | Manufacturing method of lead acid battery | |
JP2006114416A (en) | Lead-acid battery | |
JPH0869811A (en) | Lead-acid battery | |
JP2005294142A (en) | Lead storage battery | |
JP6734456B1 (en) | Lead acid battery | |
JP2019207786A (en) | Lead acid battery | |
JP2011159551A (en) | Lead-acid storage battery | |
JP4411860B2 (en) | Storage battery | |
JP4742424B2 (en) | Control valve type lead acid battery | |
JPH08115718A (en) | Manufacture of lead-acid battery | |
JP2006066252A (en) | Lead-acid storage battery | |
JP2009266788A (en) | Lead storage battery | |
JP5375049B2 (en) | Lead acid battery | |
JPH0745301A (en) | Sealed lead-acid battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051102 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20051213 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090626 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090714 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090727 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120814 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4356321 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120814 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130814 Year of fee payment: 4 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |