Nothing Special   »   [go: up one dir, main page]

JP4236021B2 - Electronic component having humidity detection function and manufacturing method thereof - Google Patents

Electronic component having humidity detection function and manufacturing method thereof Download PDF

Info

Publication number
JP4236021B2
JP4236021B2 JP2000083800A JP2000083800A JP4236021B2 JP 4236021 B2 JP4236021 B2 JP 4236021B2 JP 2000083800 A JP2000083800 A JP 2000083800A JP 2000083800 A JP2000083800 A JP 2000083800A JP 4236021 B2 JP4236021 B2 JP 4236021B2
Authority
JP
Japan
Prior art keywords
electrode conductor
conductive paste
photosensitive conductive
conductor portion
main surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000083800A
Other languages
Japanese (ja)
Other versions
JP2001272366A (en
Inventor
真史 後藤
兼司 相澤
敦子 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2000083800A priority Critical patent/JP4236021B2/en
Publication of JP2001272366A publication Critical patent/JP2001272366A/en
Application granted granted Critical
Publication of JP4236021B2 publication Critical patent/JP4236021B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、湿度センサ、湿度センサを含む複合部品等の湿度検出機能を持つ電子部品及びその製造方法に係り、特に、感光性導電材料を用いて素子主面上に電極導体を高精度で形成した湿度検出機能を持つ電子部品及びその製造方法に関する。
【0002】
【従来の技術】
絶縁基板面の一対の微小電極ギャップ上に解離型イオンを含む感湿膜を設けた高分子型の湿度センサは、測定範囲が広く、比較的安価に生産できる為、近年では、非常に使用範囲が拡大している。こうした中、高分子型の湿度センサが比較的苦手にしている低湿度側の湿度測定や、製品の湿度に関わる精度、ばらつきに対する要求も非常に厳しくなってきている。
【0003】
また、湿度センサが組み込まれる製品の小型化に伴い、湿度センサ本体の大きさも小型化が要求されており、その結果、湿度センサにおける導体パターンは、微細化と高精度化の両立が要求されている。例えば、最近では小型の携帯型温湿度測定器や、低温低湿度管理用の保管庫に使用される湿度センサ、更には、食品分野、医療分野等の湿度センサとして、さらなる小型化、高精度化が求められてきている。特に、電極部分はμm単位の高精度な微細パターンを高歩留で精度良く安定生産することが望まれており、それと同時に、感湿膜としての高分子膜中に存在する遊離イオン(例えばハロゲンイオン)に対する影響の少ない高信頼性に富んだ電極構造が要求されている。
【0004】
電極のパターン精度に関していえば、現在市販されている湿度センサのパターンピッチは、250μm〜1000μmといったようなサイズであるが、将来の小型化、高精度化には対応できなくなることが予想され、いずれは、30μm〜50μmといった要求や、それ以下のものが求められて来る。
【0005】
また、湿度センサの取り付け部である実装パターン、実装部分の電極等は、小型化によって、より高強度で、しかも高信頼性なものが求められており、更には、最近の鉛フリー化により、はんだ付け温度が高温化の傾向に有り、それに絶えられるような高耐熱の電極も求められている。
【0006】
絶縁基板面の電極導体の形成方法としては、真空蒸着等は導体膜厚が薄く、生産性も悪いので導電ペーストを用いたスクリーン印刷方式(厚膜印刷方式)が一般的であり、スクリーンとスキージを用いて銀ペーストや金ペーストさらには、酸化ルテニウムペーストをセラミック上に印刷して導体パターンを形成し、その後、乾燥工程を経て、450℃〜1000℃程度の温度で導体パターンを焼成して電極導体を形成している。
【0007】
図11はスクリーン印刷方式を用いた湿度センサの製造過程を示す。まず、図11(A)のアルミナ等の絶縁基板1上に同図(B)のように端子接続用電極導体部2を銀、銀パラジウム合金等の導電ペーストで印刷する。次に図11(C)のように微小ギャップで対向した一対の櫛形電極導体部3を酸化ルテニウムの導電ペーストで印刷し、これらの導電ペーストを所定温度で焼成して絶縁基板1上に焼き付ける。その後、図11(D)のようにハロゲンイオン等の遊離イオンを含む高分子膜である感湿膜4を一対の櫛形電極導体部3上に設け、さらに同図(E)のようにリード端子5を前記端子接続用電極導体部2にはんだ付けする。
【0008】
実際の量産工程では、図12のように集合基板10上において多数の区画に対して図11(A)乃至(D)までの過程を実行して湿度センサを同時に作製する。その際、導体パターンの位置ずれ等を考慮して隣接素子間に斜線部Sのようにスペースを設けることが行われている。なお、櫛形電極導体部3は図12の拡大断面のように両側面が垂直にならずだれてしまう。
【0009】
【発明が解決しようとする課題】
ところで、上記のスクリーン印刷方式によると、▲1▼スクリーンの位置精度、▲2▼治具の位置精度、▲3▼ペーストの滲み出し、▲4▼印刷のかすれ、▲5▼スクリーンの劣化、▲6▼スキージの劣化等、微細な導体パターンを高精度で安定に形成するためには、数々の寸法ばらつき要因が有り、この影響で、最終的な湿度特性が個々の製品でばらついてしまい、公差の大きな製品となってしまっていた。
【0010】
特に、印刷で導体パターンを形成する場合には、繰り返し印刷する為に発生するスクリーンの伸びによる導体パターン精度の悪化や、導体パターンと導体パターン間のギャップの寸法精度の悪化、さらには、導体パターン自体の直線性の劣化が、製品特性のばらつきに大きく影響を与えてしまっていた。
【0011】
従来は、この影響を防ぐ為、導体パターンの周りには、印刷精度の悪化を考慮したスペースを確保したり、電極形状の劣化や、悪さを予め考慮して、電極間のギャップを大きく取ったりしていた。例えば、図11の従来製法では、はんだ付け用の端子接続用電極導体部2を銀等で形成しておき、その上に酸化ルテニウムの櫛形電極導体部3を形成するが、繰り返しの印刷によってスクリーンが伸びてしまい、櫛形電極部3の位置がずれてしまうことから、特に集合基板上で多数個の製品を一度に印刷する場合には、図12の斜線部Sように導体パターンの周りにスペースを設けている。
【0012】
また、導体パターンの直線性が悪く、櫛形電極導体部3の断面形状も図12中の拡大断面のようなだれた形状の為、その周囲に形成する感湿膜の形状がばらついたり、感湿膜の高分子材料中のハロゲンイオン等の解離イオンの移動距離がばらついて特性の精度に影響を与えていた。これを回避する意味で、電極間のギャップを大きくとると、今度は、低湿度側でイオンが移動しきれなくなり、その結果、電気抵抗値が大きくなり(例えば100MΩ以上)、測定ができなくなってしまっていた。
【0013】
これに対して、配線基板やプラズマディスプレイの分野では、最近は上記スクリーン印刷の微細化には限界があることから、感光性導電ペースト(感光性を有する導電ペースト)を用いることも検討されており、特にスクリーン印刷によるとメッシュ跡がピンホール欠陥を生じる欠点に対して、感光性導電ペーストの流動性を高める等の工夫(特開平10−112216号公報)も図られてはいるが、湿度センサの場合には、ハロゲンイオンに対して充分な耐食性を確保しなければならないことや、はんだ付け部分にははんだが着きやすい導体パターンを形成しなければならないこと、光に対して垂直な部分(特に、アスペクト比が大きなスルーホール)の露光、他の部品と混載するようなモジュール製品上のパターン部分の膜厚確保等、現在市販されている非感光性導電ペースト(感光性を有しない導電ペースト)に匹敵する膜厚、コストの安いもの等が得られていない等の未だ解決するには至っていない項目が多々存在する。
【0014】
なお、抵抗体に感光性のルテニウムペーストを用いた構成が特開平8−186005号公報にある。
【0015】
本発明の第1の目的は、従来の問題点であった導体パターン印刷精度を高めるだけでなく、湿度検出機能を持つ電子部品の使用場所に合った所定の膜厚で、導体パターン及び電極導体を形成したり、更には、アスペクト比の高い部分にも電極導体を形成可能な湿度検出機能を持つ電子部品及びその製造方法を提供するにある。
【0016】
本発明の第2の目的は、導体パターンの位置精度、ライン幅の精度、パターン形状を安定させて高精度化を図ることで、最終的な製品特性のばらつきを大幅低減し、従来に比べ製品特性ばらつきを非常に小さくし且つ信頼性に優れた製品を実現可能な湿度検出機能を持つ電子部品及びその製造方法を提供するにある。
【0017】
本発明の第3の目的は、感光性導電ペーストと非感光性導電ペーストとを適宜使い分けし、例えば湿度検出のための電極導体部に感光性導電ペーストを用い、はんだ付けの必要な電極導体部には非感光性導電ペーストを用いたりすることで、従来は為し得なかった、パターン精度の良い導体パターン、電極導体部を備え、かつはんだ付け等にも耐え得る膜厚の電極導体部を形成可能な湿度検出機能を持つ電子部品及びその製造方法を提供するにある。
【0018】
本発明のその他の目的や新規な特徴は後述の実施の形態において明らかにする。
【0019】
【課題を解決するための手段】
上記目的を達成するために、本願請求項1の発明は、絶縁基板上にギャップを介して対向するように一対の電極導体を形成し、該ギャップに感湿膜を設けた湿度検出機能を持つ電子部品において、
前記感湿膜が解離型イオンを含む高分子膜で構成され、
前記電極導体が多層構造であり、最下層が感光性導電材料を用いて構成され、少なくとも電極導体上層部が前記感湿膜に対する耐食性を有することを特徴としている。
【0023】
本願請求項の発明は、請求項において、前記一対の電極導体間のギャップが20〜100μmであり、当該ギャップ構成部分における各電極導体の膜厚が3〜20μmであることを特徴としている。
【0024】
本願請求項の発明は、請求項1又は2において、前記電極導体の少なくとも一部がルテニウム、ルテニウム化合物、金、又は金化合物で構成されていることを特徴としている。
【0025】
本願請求項の発明は、請求項1,2又は3において、前記電極導体が、前記絶縁基板の主面に感光性導電ペーストを露光、現像して形成した導体パターンを有する電極導体部と、非感光性導電ペーストにより形成した電極導体部とを有し、かつ、両方の電極導体部の少なくとも一部が互いに重なって電気的に導通した電極導体を構成していることを特徴としている。
本願請求項5の発明は、請求項4において、前記非感光性導電ペーストにより形成した電極導体部は、前記電極導体の少なくとも一部として前記絶縁基板の端面で端面電極を形成していることを特徴としている。
【0026】
本願請求項の発明は、素子の主面と該主面に接する他面とに跨って電極導体を形成した湿度検出機能を持つ電子部品において、
該主面に感光性導電ペーストを露光、現像して形成した導体パターンを有する電極導体部と、該他面に非感光性導電ペーストにより形成した電極導体部とを有し、かつ、前記主面と前記他面が接する部分の近傍で両方の電極導体部の少なくとも一部が重なって電気的に導通した電極導体を構成していることを特徴としている。
【0027】
本願請求項の発明は、請求項において、前記非感光性導電ペーストにより形成した電極導体部は、前記電極導体の少なくとも一部として前記素子の端面で端面電極を形成していることを特徴としている。
【0028】
本願請求項の発明は、請求項6又は7において、前記素子が、前記主面と前記他面が接する部分に、該主面と該他面をつなぐ接続面を有しており、しかも、前記感光性導電ペーストを露光、現像して形成した導体パターンが前記主面から前記接続面に延びて電極導体部を形成していることを特徴としている。
【0029】
本願請求項の発明は、素子の主面に電極導体及び感湿膜を形成した湿度検出機能を持つ電子部品の製造方法において、
該主面に感光性導電ペーストを露光、現像した導体パターンでギャップを介して対向するように一対の電極導体部を形成するステップと、
非感光性導電ペーストにより電極導体部を形成するステップと、
前記感湿膜を設けるステップとを備え、
両方の電極導体部の少なくとも一部が重なるように当該両方の電極導体部を前記素子の表面に配置するとともに、
少なくとも前記感湿膜で覆われる前記電極導体部の上層に前記感湿膜に対する耐食性を有する金属メッキ膜を形成し、その後前記ギャップに感湿膜を設けることを特徴としている。
【0030】
本願請求項10の発明は、素子の主面と該主面に接する他面とに跨って電極導体を形成した湿度検出機能を持つ電子部品の製造方法において、
前記他面に非感光性導電ペーストにより電極導体部を形成するステップと、
前記主面に感光性導電ペーストを露光、現像して導体パターンからなる電極導体部を形成するステップとを備え、
両方の電極導体部の少なくとも一部が重なるように当該両方の電極導体部を前記主面及び他面に配置したことを特徴としている。
【0031】
本願請求項11の発明は、請求項10において、前記素子は、前記主面と前記他面が接する部分に、該主面と該他面をつなぐ接続面を有し、前記他面に形成する非感光性導電ペーストによる電極導体部を前記接続面に延在させるとともに、前記主面に形成する感光性導電ペーストによる電極導体部も前記接続面に延在させることを特徴としている。
【0032】
本願請求項12の発明は、請求項10において、前記主面に形成する感光性導電ペーストによる電極導体部は、前記他面に形成した非感光性導電ペーストによる電極導体部の表面に重なり、前記感光性導電ペーストを露光、現像して導体パターンが形成されて前記主面と前記他面とに跨る電極導体を形成することを特徴としている。
【0033】
本願請求項13の発明は、請求項10,11又は12において、前記感光性導電ペーストを露光、現像した導体パターンでギャップを介して対向するように一対の電極導体部を形成し、少なくとも感湿膜で覆われる前記電極導体部の上層に金属メッキ膜を形成し、その後前記ギャップに感湿膜を設けることを特徴としている。
【0034】
本願請求項14の発明は、請求項9,10,11,12又は13において、前記感光性導電ペーストを露光、現像して形成した導体パターンからなる電極導体部は、少なくともその一部が、前記非感光性導電ペーストにより形成した電極導体部に重なって焼成されていることを特徴としている。
【0035】
【発明の実施の形態】
以下、本発明に係る湿度検出機能を持つ電子部品及びその製造方法の実施の形態を図面に従って説明する。
【0036】
図1乃至図3で本発明に係る湿度検出機能を持つ電子部品及びその製造方法の第1の実施の形態を説明する。ここでは、湿度検出機能を持つ電子部品としての湿度センサを作製する場合に、感湿膜で覆われる一対の櫛形電極導体部を感光性導電材料を用いて構成している。
【0037】
図1において、非感光性導電ペースト塗布工程#1では、図1(A)のようにアルミナ等の絶縁基板20の主面上に非感光性導電ペーストをスクリーン印刷機等でパターン印刷してはんだ付け用電極導体部21(本例ではリード端子接続用電極導体部となる)を形成し、乾燥工程#2にて80℃で10分間乾燥させる。はんだ付け用電極導体部21の位置精度はとくに問題とならないので、一般的なスクリーン印刷方式でよい。
【0038】
次いで、感光性導電ペースト塗布工程#3において、図1(B)のように非感光性導電ペーストの電極導体部21の上に少なくとも一部が重なるように感光性導電ペースト22を絶縁基板20の主面の所定範囲(大部分乃至全面)に塗布し、乾燥工程#4にて80℃で20分乾燥させる。
【0039】
露光、現像工程#5(フォトリソグラフィ工程)にて、感光性導電ペースト22に対して所定パターンで露光用光源により200〜3000mJ/cmの露光を行い、その後現像処理によって感光性導電ペーストの不要部分を除去する。現像は、炭酸ナトリウム、炭酸カリウム、水酸化カルシウム、水酸化ナトリウム等のアルカリ溶液で、20℃〜50℃でスプレー又は浸漬により行う。具体的には、通常のコンベア、スプレータイプの現像機で30℃の0.4%NaCOをスプレー圧10〜20psiで吹き付けること等で実行できる。このような現像処理にて、図1(C)のように感光性導電ペースト22を櫛形にパターニングした櫛形電極導体部23を形成する。この櫛形電極導体部23は微小ギャップで対向するように一対形成されていて、感湿膜で覆われるべき湿度検出用電極導体部である。
【0040】
図2(A)のように、一対の櫛形電極導体部23はパターンの滲みや幅のばらつきが少ないのは勿論のこと、その断面形状側面も垂直になって、形状が安定している。なお、図2(B)は従来の非感光性導電ペーストでパターン形成した櫛形電極導体部の断面形状であり、側面が垂直にならずにだれて形状が安定しない。
【0041】
なお、前記露光に関しては、例えば、可視光線、近紫外線、紫外線、電子線、X線、レーザー光等があげられるが、これらの中で紫外線が好ましくその光源としては例えば低圧水銀灯、高圧水銀灯,超高圧水銀灯、ハロゲンランプ殺菌灯等が使用できる。これらの中でも超高圧水銀灯が特に好ましい。また、現像工程は非感光性導電ペーストには影響を及ぼさないものを選定している。
【0042】
ペースト塗布後の基板20を乾燥させるために、80℃で5分の乾燥を行い、水分の除去を行った後、焼成工程#6にて非感光性導電ペーストによるはんだ付け用電極導体部21及び感光性導電ペーストによる櫛形電極導体部23を1時間本焼成(但し、ピーク時は温度850℃で10分間)を行い、同時焼成することで電極導体部21及び電極導体部23が相互に重なって電気的に導通した電極導体が絶縁基板20上に得られる。ここでは、図3(A)のように、はんだ付け用電極導体部21の上に櫛形電極導体部23の一部が重なった接続状態で焼成される。なお、同時焼成が、工程数を少なくする上で有利であるが、勿論別々に導体部を焼成してもよい。
【0043】
絶縁基板20上の電極導体部21,23の焼成が終了したら、図1(D)のように感湿膜塗布工程#7で一対の櫛形電極導体部23を覆うように感湿膜25を塗布し、常温乃至120℃程度の温度で乾燥させる。ここでは、図2(A)のように一対の櫛形電極導体部23間の微小ギャップG間に感湿膜25が入り込み、かつ好ましくは電極導体部23の上面をも覆うように感湿膜25を被着形成する。感湿膜25はハロゲンイオン等の解離型イオンを含んだ高分子膜で構成されている。
【0044】
図2(A)で説明したように、一対の櫛形電極導体部23はパターンの滲みや幅のばらつきが少なく、かつ断面形状側面も垂直になって、形状が安定しているから、感湿膜25の付き方のばらつきも小さくでき、湿度検出特性の安定化を図ることができる。なお、図2(B)は従来の非感光性導電ペーストでパターン形成した櫛形電極導体部の断面形状であり、側面が垂直にならずにだれて形状が安定せず、この結果、感湿膜の付き方にもばらつきが発生して、特性が安定しない。
【0045】
感湿膜25の成膜後、リード端子構造の湿度センサとする場合には、リード端子26を図1(E)のようにはんだ付け用電極導体部21にはんだ付けして製品とする。
【0046】
なお、前記櫛形パターンの電極導体部23に用いる感光性導電ペーストの導電材にはルテニウム、ルテニウム化合物(例えば酸化ルテニウム等)を好適に用いることができ、その他ガラスフリットと感光性樹脂(モノマー、オリゴマーもしくはポリマー)、光重合開始剤、増感剤の他、場合によっては、熱重合禁止剤、酸化防止剤、増粘剤を必要に応じて添加するとよい。
【0047】
湿度検出用の電極部分には精密で微細なパターンを形成できる感光性導電ペーストを用いることで、前記一対の櫛形電極導体部23間のギャップGは20〜100μm程度にすることが可能であり、また当該ギャップ構成部分における各電極導体部の膜厚は3〜20μmであることが望ましい。ギャップが20μm未満では短絡の危険性があり、100μmを超える間隔は作製容易となるが感光性導電ペーストの露光、現像といったフォトリソグラフィ工程を採用する利点が少なくなる。また、櫛形電極導体部23のギャップ構成部分における膜厚が3μm未満ではピンホールの発生や櫛形パターン切れの危険性がでてくるし、20μmを超える膜厚は感光性導電ペーストの露光、現像工程では形成が面倒になる。また、湿度センサとしての用途を考えても20μmを超える膜厚を要求される必然性がない。
【0048】
なお、感光性導電ペーストの塗布工程は、非感光性導電ペーストの塗布の場合と同様に、スクリーン印刷等で行うことができる。
【0049】
前記はんだ付け用電極導体部21は、非感光性導電ペーストを用いている為、通常のチップ部品のようなはんだ付け性、はんだ耐熱性の要求される電極部分として、充分なはんだ濡れ性、電極厚みを持たせることが可能で、高信頼性の電極導体部とすることができる。この結果、鉛フリー化された、高温はんだを用いてはんだ付けを行っても、電極食われによる断線を生ずることはない。
【0050】
このように、第1の実施の形態によれば、非感光性導電ペーストによる電極導体部の長所と、感光性導電ペーストによる電極導体部の長所とを組み合わせることで、従来の問題点であったパターン精度を高めるだけでなく、使用場所に適した所定の膜厚、パターンを持つ電極導体を形成した湿度検出機能を持つ電子部品を作製可能となる。具体的な効果を以下に列挙する。
【0051】
(1) 感光性導電ペーストを用いた製法では、導電ペーストを精度良くパターン印刷する必要はなく、パターン形成面全面に塗布すればよい。また、パターン形成時にも、感光性導電ペーストは、マスクを用いて露光するため、従来のように印刷マスク(スクリーン)に大きな圧力を加える必要が無く、従って、スクリーンの劣化に伴うパターン精度の悪化を気にする必要もない。
【0052】
(2) また、露光、現像工程を行うことから、パターン自身の寸法精度も高く、ペーストの滲みだしに伴う、パターンのゆがみが無く、パターン幅のばらつきも殆ど無い。従って、湿度センサの場合、湿度検出用電極導体部である一対の櫛形電極導体部23のパターンの間隔、つまりギャップGをより狭くすることで、低湿度側でも高分子材料中のハロゲンイオン等の解離イオンを充分電気抵抗として検出でき高感度にすることができる。また、従来の大きさの1/5以下で櫛形電極を形成できることから、製品自身も小型化が可能である。
【0053】
(3) 感光性導電ペーストで形成する櫛形電極導体部23のパターンの滲みや幅のばらつきはもちろんのこと、その断面形状側面も垂直になって、形状が安定したことから、感湿膜25の付き方のばらつきも小さくできる。従って、ばらつきの少ない製品とすることが可能になる。なお、従来のスクリーン印刷でのパターン形成では側面が垂直にならずにだれて形状が安定せず、この結果、感湿膜の付き方にもばらつきが発生する。
【0054】
(4) さらに、導電材料として金(Au)と比較して比較的安価なルテニウム、ルテニウム化合物を用いた感光性導電ペーストで櫛形電極導体部23を形成すれば、解離イオンとしてハロゲンイオンを含む感湿膜25に耐食性を有するから、耐食性を確保するためにメッキ等の処理は不要で、製造工程の簡素化が可能である。また、感光性導電ペーストとして酸化ルテニウムペーストを用いる場合、ペーストが黒色の為、他の金属粒子に比べ光の散乱が無く、金属に比べれば光透過性が高いので、より高精度なパターン形成が可能である。
【0055】
(5) 耐食性確保のためのメッキ処理を不要とすることで、メッキによるコストアップは勿論のこと、微細パターンの場合に問題となるメッキ伸びと呼ばれる現象(微細パターンや狭ピッチパターンの場合に隣同士がメッキの横方向の成長によってショートしてしまう現象)でショート不良が発生する問題を解消できる。
【0056】
(6) はんだ付け用電極導体部21には、非感光性導電ペーストを用いている為に、導電性の良好な材料を用いて十分な膜厚で形成でき、鉛フリー化された、高温はんだを用いてはんだ付けを行っても、電極食われによる断線を生ずることはない。
【0057】
(7) また、感光性導電ペーストによる櫛形電極導体部23に直接はんだ付けする必要がなくなり、感光性導電ペーストを必要以上に厚膜に付ける必要が無く、よりパターン精度を向上させることができる。
【0058】
なお、上記第1の実施の形態では、図3(A)のように、非感光性導電ペーストによるはんだ付け用電極導体部21を絶縁基板20上に塗布後、感光性導電ペーストによる櫛形電極導体部23をパターン形成したが、図3(B)のように感光性導電ペーストによる櫛形電極導体部23をパターン形成後に非感光性導電ペーストによるはんだ付け用電極導体部21を所定パターンで塗布するようにしても差し支えない。この場合は、先にパターニングしてから非感光性ペーストを塗布できるので、非感光性導電ペーストを現像液(NaCO溶液等)に浸さなくて良くなる。
【0059】
図4は本発明の第2の実施の形態であって、湿度検出機能を持つ電子部品としての湿度センサを作製する場合に、絶縁基板20の主面と側面とに跨ってはんだ付け用端子電極導体部31を形成している。
【0060】
図4において、非感光性導電ペースト塗布工程#11において、図4(A)のようにアルミナ等の絶縁基板20の主面上及び端面(側面)に非感光性導電ペーストをスクリーン印刷機等でパターン印刷してはんだ付け用端子電極導体部31を形成し、乾燥工程#12にて80℃で10分間乾燥させる。なお、端子電極導体部31は基板裏面にも跨るように設けてもよい。
【0061】
次いで、感光性導電ペースト塗布工程#13において、図4(B)のように非感光性導電ペーストの電極導体部21の上に少なくとも一部が重なるように感光性導電ペースト22を絶縁基板20の主面の所定範囲(大部分乃至全面)に塗布し、乾燥工程#14にて80℃で20分乾燥させる。
【0062】
露光、現像工程#15(フォトリソグラフィ工程)にて、感光性導電ペースト22に対して所定パターンで露光用光源により所定の露光を行い、その後現像処理によって感光性導電ペーストの不要部分を除去する。このような現像処理にて、図4(C)のように感光性導電ペースト22を櫛形にパターニングした櫛形電極導体部23を形成する。この櫛形電極導体部23は微小ギャップで対向するように基板主面上に一対形成されていて、感湿膜で覆われるべき湿度検出用電極導体部である。
【0063】
ペースト塗布後の基板20を乾燥させるために、80℃で5分の乾燥を行い、水分の除去を行った後、焼成工程#16にて非感光性導電ペーストによる端子電極導体部31及び感光性導電ペーストによる櫛形電極導体部23を1時間本焼成(但し、ピーク時は温度850℃で10分間)を行い、同時焼成することで電極導体部31及び電極導体部23が相互に重なって電気的に導通した電極導体が絶縁基板20上に得られる。
【0064】
絶縁基板20上の電極導体部31,23の焼成が終了したら、感湿膜塗布工程#17で一対の櫛形電極導体部23を覆うように感湿膜25を塗布し、常温乃至120℃程度の温度で乾燥させる。
【0065】
この第2の実施の形態によれば、絶縁基板20の主面及び側面にわたりはんだ付け用端子電極導体部31を形成したので、通常のチップ部品のようなはんだ付け性、はんだ耐熱性が必要な端子電極導体部31となる部分には、非感光性導電ペーストにより充分なはんだ濡れ性、電極厚み、はんだ食われの問題のない高信頼性の電極導体部を構成でき、且つ、湿度検出用の電極導体部23には精密で微細なパターンを形成できる。
【0066】
なお、湿度検出用の電極導体部23の作製条件等は前述した第1の実施の形態と同様であり、その他の作用効果も第1の実施の形態と同様である。
【0067】
この第2の実施の形態においても、感光性導電ペーストによる櫛形電極導体部23をパターン形成後に非感光性導電ペーストによるはんだ付け用端子電極導体部31を所定パターンで塗布するようにしても差し支えない。
【0068】
図5は本発明の第3の実施の形態であって、湿度検出機能を持つ電子部品としての湿度センサを作製する場合に、絶縁基板20の両方の端部全体(主面、裏面、側面を含む5面)にわたってそれぞれはんだ付け用端子電極導体部32を形成している。湿度検出用の櫛形電極導体部23の引出方向は端子電極導体部32の配置にあわせて第2の実施の形態とは変えてある。その他の構成は前述の第2の実施の形態と同様であり、同一又は相当部分に同一符号を付して説明を省略する。
【0069】
この第3の実施の形態では、絶縁基板20の両端部にはんだ付け用端子電極導体部32が形成されているため、通常のチップ部品と同様の取り扱いができる利点がある。その他の作用効果は第1の実施の形態と同様である。
【0070】
図6は本発明の第4の実施の形態であって、湿度検出機能を持つ電子部品としての湿度センサを作製する場合に、絶縁基板20の両端部に内周に電極導体部を設けたスルーホールを2分割した形状のはんだ付け用端子電極導体部33を形成している。湿度検出用の櫛形電極導体部23の形状、引出位置は端子電極導体部33の配置にあわせて第2、第3の実施の形態とは変えてある。この第4の実施の形態の構成は、量産に適した構造である。その他の構成、作用効果は前述の第3の実施の形態と同様である。
【0071】
図7は本発明の第5の実施の形態であって、湿度検出機能を持つ電子部品にアスペクト比の高いスルーホールを設けた場合の例であり、絶縁基板(あるいは湿度センサを内蔵した素子)のスルーホール内面に形成された非感光性導電ペーストによる電極導体部と素子主面に感光性導電ペーストで形成された電極導体部とが相互に接続して構成された例を示す。
【0072】
この場合、非感光性導電ペースト塗布工程#21において、図7(A)のように湿度センサの絶縁基板20(あるいは素子)のスルーホール41内周部に非感光性導電ペーストで電極導体部42を形成し、乾燥工程#22にて乾燥させる。
【0073】
次いで、感光性導電ペースト塗布工程#23において、図7(B)のように感光性導電ペースト43を絶縁基板20の主面(ここでは上面)に塗布し、乾燥工程#24にて乾燥させる。このときスルーホール内面の非感光性導電ペースト上端部と感光性導電ペーストとは互いに接するかあるいは部分的に重なり合う(重力で感光性導電ペーストがスルーホール内側に多少入り込む)。
【0074】
露光、現像工程#25にて感光性導電ペースト43を所定パターンで露光し、その後現像処理によって感光性導電ペーストの不要部分を除去し、図7(C)のように感光性導電ペースト43をパターニングした電極導体部44を形成する。
【0075】
その後、焼成工程#26にて非感光性導電ペーストによる電極導体部42及び感光性導電ペーストによる電極導体部44を同時焼成して電極導体部42及び電極導体部44が相互に接してもしくは重なって電気的に導通した電極導体が絶縁基板20上に得られる。
【0076】
なお、乾燥、露光、現像等の条件は第1の実施の形態と同様でよい。また、前記感光性導電ペースト43の露光、現像で湿度検出用の櫛形電極導体部を第1の実施の形態と同様に形成した後、感湿膜を設けるようにしてもよい。あるいは、絶縁基板20の別の領域又は別の面に感光性導電ペーストによる櫛形電極導体部をパターン形成後、感湿膜を設けるようにしてもよい。
【0077】
この図7の第5の実施の形態では、露光の困難なスルーホール内面に非感光性導電ペーストを設けておくことで、アスペクト比の高いスルーホール部分にも電極導体部42を形成でき、主面側の感光性導電ペーストによる電極導体部44と電気的に導通した電極導体を備えた湿度検出機能を持つ電子部品が得られる。このとき、スルーホール端面からある程度の深さ方向に露光のための紫外線が透過するため、感光性導電ペーストもスルーホール入り口部分までは硬化し、スルーホール内部が十分な膜厚の電極導体部で覆われるだけでなく、スルーホールのエッジ部の膜厚もある程度稼ぐことが出来、接続信頼性も向上する(エッジ部には両方のペーストを存在させることができる。)。
【0078】
また、スルーホール部分には、非感光性導電ペーストを用いている為、スルーホール部分が未硬化になることがなく、電極導体部42の膜厚も十分確保できる。例えば、図7の工程で得られた内面に電極導体部を有するスルーホールを2分割して図6の第4の実施の形態に示すはんだ付け用端子電極導体部33を構成したような場合、鉛フリー化された、高温はんだを用いてはんだ付けを行っても、電極食われによる断線を生ずることがない。
【0079】
なお、図7の第5の実施の形態のように非感光性導電ペーストを下にして、感光性導電ペーストをその上に重ねるのは勿論のこと、逆に感光性導電ペーストを下にしても良い。この場合は、先にパターニングしてから非感光性ペーストを塗布できるので、非感光性導電ペーストを現像液(NaCO溶液等)に浸さなくて良くなる。
【0080】
図8は本発明の第6の実施の形態であって、湿度検出機能を持つ電子部品にアスペクト比の高いスルーホールを設けた場合の例であり、絶縁基板(あるいは湿度センサを内蔵する素子)のスルーホール内面に形成された非感光性導電ペーストによる電極導体部と素子主面に感光性導電ペーストで形成された電極導体部とが相互に重なり合って接続して構成された例を示す。
【0081】
この場合、図8(A),(B)のように絶縁基板20(あるいは素子)に形成したスルーホール41の素子主面(上面)側端部にテーパー状接続面41aを形成している。この接続面41aの主面に対する角度は好ましくは45°乃至60°程度であるが、テーパーがついていればよい。そして、テーパー状接続面41aを含むスルーホール41内面に非感光性導電ペーストを塗布、乾燥させて電極導体部42とし、次いで、感光性導電ペースト43を素子主面及びテーパー状接続面41aに塗布し、乾燥させる。このとき図8(A),(B)のようにスルーホール端部のテーパー状接続面41aの非感光性導電ペーストと感光性導電ペーストとは互いに重なり合う。その後、感光性導電ペースト43を所定パターンで露光し、現像処理によって感光性導電ペーストの不要部分を除去し、感光性導電ペースト43をパターニングした電極導体部44を形成する。そして、非感光性導電ペーストによる電極導体部42及び感光性導電ペーストによる電極導体部44を同時焼成して(又は別々に焼成して)電極導体部42及び電極導体部44が相互に重なって電気的に導通した電極導体が絶縁基板20上に得られる。なお、乾燥、露光、現像等の条件は第1の実施の形態と同様でよい。
【0082】
この第6の実施の形態においては、露光の困難なスルーホール41内面の端部にテーパー状接続面41aを形成しておくことで、非感光性導電ペーストと感光性導電ペーストとの重なり部分が十分広くなり、エッジ切れ等の不具合が無くなる。露光に用いる紫外線は直進性が高いが、このように45°乃至60°程度のテーパーをスルーホール端部に付けることで、感光性導電ペーストもテーパー状接続面41aを形成した領域までは確実に硬化する。
【0083】
なお、テーパー状接続面は傾斜が一定の斜面でもよいし、R面、U面等の傾斜が徐々に変化している斜面でも良い。
【0084】
また、スルーホール41内部が非感光性導電ペーストの電極導体部42で埋まっていてバイアホールとなっていて、その上に感光性導電ペーストの電極導体部44を設ける構成となってもよい。
【0085】
図8(C)は図8(A),(B)で作製した内周に電極導体部を有するスルーホールを2分割してはんだ付け用端子電極導体部47とした例であり、例えば図6の第4の実施の形態に示すはんだ付け用端子電極導体部33としてそのまま利用できる。
【0086】
湿度検出機能を持つ電子部品に設けるはんだ付け用端子電極導体部が図8(C)の構造であれば、スルーホールを2分割した円周凹面の内面が非感光性導電ペーストの電極導体部42で十分覆われているだけでなく、エッジ部分にも十分な導体が存在している(エッジ部分には非感光性及び感光性の導電ペーストの両方を存在させることができる)から、端子電極として使用してもはんだ食われや断線の心配がいらない、高信頼性の端子電極として使用できる。
【0087】
図9は本発明の第7の実施の形態であって、絶縁基板20(又は素子)上に湿度センサ部50を構成するとともに、その周辺回路を構成するチップ素子51及び配線52を基板20上に設けた湿度検出機能を持つ電子部品としての複合部品を示す。
【0088】
この場合、図9(A)の配線52の導体パターンを含むはんだ付け用電極導体部61はアルミナ等の絶縁基板20(又は素子)の主面上に非感光性導電ペーストをスクリーン印刷機等でパターン印刷して形成する。また、湿度センサ部50の櫛形電極導体部23は感光性導電ペーストを絶縁基板20の主面の所定範囲に塗布し、露光、現像することで得られる。そして、それら電極導体部23,61を焼成後、図9(B)のように電極導体部23に感湿膜25を設けて湿度センサ部50を構成する。また基板上の配線52のはんだパッドには所定種類のチップ素子51をはんだ付けで搭載し、図9(C)のように基板縁部のはんだ付け用電極導体部61にはリード端子56をはんだ付けする。なお、前記感湿膜25は部品搭載後に設けてもよい。
【0089】
なお、湿度センサ部50の櫛形電極導体部23の引出部は配線52に部分的に重なり合って電気的に接続している。また、基板20にスルーホール55を設けて表裏の配線52を接続する構成とすることもでき、この場合、スルーホール55は図7の第5の実施の形態又は図8の第6の実施の形態の構成とすることができる。また、センサ部50の具体的な製造過程は第1の実施の形態と同様である。
【0090】
この第7の実施の形態によれば、湿度センサ及びその周辺回路を一体化して、全体としていっそうの小型化を図り得る。なお、その他の作用効果は前述した第1の実施の形態と同様である。
【0091】
図10は本発明の第8の実施の形態であって、湿度センサの櫛形電極導体部23をメッキを併用した多層構造とした例を示す。この場合、基板20の主面に形成される櫛形電極導体部23の最下層の導体膜70は感光性導電ペーストを印刷、露光、現像し、焼成したものであり、感光性導電ペーストとして銀ペースト等の最も安価で一般的な材料としている。その上の中間メッキ膜71ははんだ食われ防止層であり、はんだ耐食性のあるニッケル等の電気メッキ膜である。最上層のメッキ膜72は金(Au)等の感湿膜25に対して耐食性を有する電気メッキ膜である。
【0092】
なお、その他の構成は前述の第1の実施の形態と同様であり、同一又は相当部分に同一符号を付して説明を省略する。
【0093】
この第8の実施の形態によれば、感湿膜25の解離イオンに対して耐食性のある金等のメッキ膜72で最上層を形成することで、下層の感光性導電ペーストによる導体膜70は最も一般的で安価な導電材料のものを使用できる。
【0094】
なお、感光性導電ペーストの金属材料は、金、銀、銅、パラジウム、白金、ニッケル等の金属や、これらの混合物でも良く、感光性材料としては、アルカリ現像型バインダーモノマー、モノマー及び開始剤を含むもので焼成によって揮発、分解し、パターン中に炭化物を残存させないものであることが重要である。但し、櫛形電極導体部が単層構造の場合、感湿膜に直接接するため、使用する感湿膜に対して耐食性を有することが必要となる。また、図10のように櫛形電極導体部が多層構造である場合、そのような最下層の感光性導電ペーストへの制約は無くなる。
【0095】
以上本発明の実施の形態について説明してきたが、本発明はこれに限定されることなく請求項の記載の範囲内において各種の変形、変更が可能なことは当業者には自明であろう。
【0096】
【発明の効果】
以上説明したように、本発明によれば、基板又は素子に形成される電極導体の全部又は一部が感光性導電材料を用いて構成されているため、従来のスクリーン印刷法におけるスクリーンの劣化等による位置ずれを解消し、電極導体のパターン位置精度の向上を図ることができ、製品の特性ばらつきを極めて小さくするという効果がある。しかも、感湿膜を設ける領域に櫛形の電極導体部を形成するような場合にも、精度良く、狭ピッチのパターニングが行えるため、櫛形の電極導体部を微細化、小型化することが可能となり、また湿度測定ばらつきの減少といった効果も出すことができる。
【図面の簡単な説明】
【図1】本発明に係る湿度検出機能を持つ電子部品及びその製造方法の第1の実施の形態であって、感光性導電ペーストによる電極導体部と、非感光性導電ペーストによる電極導体部とが互いに接続している湿度センサの例を示す説明図である。
【図2】第1の実施の形態における櫛形電極導体部及びその周辺の構造を従来と対比して示す断面図である。
【図3】第1の実施の形態における感光性導電ペーストによる電極導体部と、非感光性導電ペーストによる電極導体部との上下関係を示す説明図である。
【図4】本発明の第2の実施の形態を示す説明図である。
【図5】本発明の第3の実施の形態を示す斜視図である。
【図6】本発明の第4の実施の形態を示す斜視図である。
【図7】本発明の第5の実施の形態であって、スルーホールを有する例を示す説明図である。
【図8】本発明の第6の実施の形態であって、スルーホールを有する他の例、及びスルーホールを2分割した端子電極導体部の例を示す説明図である
【図9】本発明の第7の実施の形態であって、湿度検出機能を持つ電子部品として湿度センサと周辺回路とを一体化した複合部品を作製した例を示す説明図である。
【図10】本発明の第8の実施の形態であって、櫛形電極導体部を多層構造とした場合の例を示す断面図である。
【図11】従来の湿度センサの製造過程を示す説明図である。
【図12】従来の集合基板にスクリーン印刷して多数個取りする製法の場合の説明図である。
【符号の説明】
1,20 絶縁基板
2 端子接続用電極導体部
3,23 櫛形電極導体部
5,26,56 リード端子
10 集合基板
21,61 はんだ付け用電極導体部
22,43 感光性導電ペースト
25 感湿膜
31,32,33,47 端子電極導体部
41,55 スルーホール
41a 接続面
42,44 電極導体部
50 湿度センサ部
51 チップ素子
52 配線
70 導体膜
71,72 メッキ膜
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a humidity sensor, an electronic component having a humidity detection function, such as a composite component including a humidity sensor, and a method for manufacturing the same, and in particular, an electrode conductor is formed on an element main surface with high accuracy using a photosensitive conductive material. The present invention relates to an electronic component having a humidity detection function and a manufacturing method thereof.
[0002]
[Prior art]
In recent years, a polymer type humidity sensor with a moisture sensitive film containing dissociated ions on a pair of microelectrode gaps on the surface of an insulating substrate has a wide measuring range and can be produced at a relatively low cost. Is expanding. Under such circumstances, requirements for humidity measurement on the low-humidity side, which is relatively weak with polymer-type humidity sensors, and accuracy and variations related to product humidity are becoming very strict.
[0003]
In addition, with the miniaturization of products that incorporate humidity sensors, the size of the humidity sensor body is also required to be reduced. As a result, the conductor pattern in the humidity sensor is required to be both miniaturized and highly accurate. Yes. For example, recently, miniaturized portable temperature and humidity measuring instruments, humidity sensors used in storage for low-temperature and low-humidity management, and further as humidity sensors for food and medical fields, etc., further miniaturization and higher accuracy Has been demanded. In particular, the electrode portion is desired to stably produce a high-precision fine pattern in the unit of μm with high yield and high accuracy, and at the same time, free ions (for example, halogens) existing in a polymer film as a moisture-sensitive film are desired. There is a demand for a highly reliable electrode structure with little influence on ions.
[0004]
Regarding electrode pattern accuracy, the pattern pitch of currently available humidity sensors has a size of 250 μm to 1000 μm, but it is expected that it will not be compatible with future miniaturization and high accuracy. Is required to be 30 μm to 50 μm or less.
[0005]
In addition, the mounting pattern that is the mounting part of the humidity sensor, the electrode of the mounting part, etc. are required to be higher in strength and more reliable due to downsizing, and moreover, due to recent lead-free, There is a tendency for the soldering temperature to increase, and there is also a need for a high heat resistance electrode that can withstand that.
[0006]
As a method of forming an electrode conductor on the surface of an insulating substrate, a screen printing method (thick film printing method) using a conductive paste is generally used because vacuum deposition and the like have a thin conductor film thickness and poor productivity. A silver paste, a gold paste, and further a ruthenium oxide paste is printed on a ceramic to form a conductor pattern, and then a drying process is performed to sinter the conductor pattern at a temperature of about 450 ° C. to 1000 ° C. A conductor is formed.
[0007]
FIG. 11 shows a manufacturing process of a humidity sensor using a screen printing method. First, on the insulating substrate 1 such as alumina shown in FIG. 11A, the terminal connecting electrode conductor 2 is printed with a conductive paste such as silver or silver palladium alloy as shown in FIG. Next, as shown in FIG. 11C, a pair of comb-shaped electrode conductor portions 3 facing each other with a minute gap is printed with a conductive paste of ruthenium oxide, and these conductive pastes are baked at a predetermined temperature and baked on the insulating substrate 1. Thereafter, a moisture sensitive film 4 which is a polymer film containing free ions such as halogen ions as shown in FIG. 11 (D) is provided on the pair of comb-shaped electrode conductor portions 3, and lead terminals as shown in FIG. 11 (E). 5 is soldered to the terminal connecting electrode conductor 2.
[0008]
In the actual mass production process, as shown in FIG. 12, the processes from FIGS. 11A to 11D are performed on a large number of sections on the collective substrate 10 to simultaneously produce humidity sensors. At that time, a space as shown by the hatched portion S is provided between adjacent elements in consideration of the positional deviation of the conductor pattern. Note that the comb-shaped electrode conductor portion 3 is not perpendicular to both sides as shown in the enlarged cross section of FIG.
[0009]
[Problems to be solved by the invention]
By the way, according to the above screen printing method, (1) screen position accuracy, (2) jig position accuracy, (3) paste bleeding, (4) print fading, (5) screen deterioration, 6 ▼ In order to form a fine conductor pattern with high accuracy and stability, such as deterioration of the squeegee, there are a number of factors causing dimensional variations. This influence causes the final humidity characteristics to vary among individual products, resulting in tolerances. It has become a big product.
[0010]
In particular, when a conductor pattern is formed by printing, the conductor pattern accuracy deteriorates due to the stretch of the screen that occurs due to repeated printing, the dimensional accuracy of the gap between the conductor patterns deteriorates, and further, the conductor pattern The deterioration of the linearity of the product itself had a great influence on the variation in product characteristics.
[0011]
Conventionally, in order to prevent this influence, a space around the conductor pattern that takes into account the deterioration of printing accuracy has been secured, or the gap between the electrodes has been made large by taking into account the deterioration and poorness of the electrode shape in advance. Was. For example, in the conventional manufacturing method shown in FIG. 11, the terminal connection electrode conductor portion 2 for soldering is formed of silver or the like, and the ruthenium oxide comb-shaped electrode conductor portion 3 is formed thereon. 12 and the position of the comb-shaped electrode portion 3 is shifted. Therefore, when a large number of products are printed at once on the collective substrate, a space around the conductor pattern as shown by the shaded portion S in FIG. Is provided.
[0012]
Further, the linearity of the conductor pattern is poor, and the cross-sectional shape of the comb-shaped electrode conductor portion 3 is also an irregular shape as shown in the enlarged cross section in FIG. 12, so that the shape of the moisture-sensitive film formed around it varies. The movement distance of dissociated ions such as halogen ions in various polymer materials varied and affected the accuracy of characteristics. In order to avoid this, if the gap between the electrodes is made large, ions can no longer move on the low humidity side, and as a result, the electric resistance value becomes large (for example, 100 MΩ or more) and measurement cannot be performed. I was sorry.
[0013]
On the other hand, in the field of wiring boards and plasma displays, recently there is a limit to the miniaturization of the above screen printing, so the use of photosensitive conductive paste (conductive paste having photosensitivity) is also being studied. In particular, a measure for improving the fluidity of the photosensitive conductive paste (Japanese Patent Laid-Open No. 10-112216) has been devised for the defect that a mesh mark causes a pinhole defect by screen printing. In this case, it is necessary to ensure sufficient corrosion resistance against halogen ions, to form a conductor pattern on the soldered portion where solder is easy to attach, and to a portion perpendicular to light (especially , Through-holes with large aspect ratios), ensuring the film thickness of pattern parts on module products that are mixed with other components, etc. Thickness comparable to the non-photosensitive conductive paste which is commercially available (conductive paste having no photosensitivity), items that have yet to still resolve such cheap like cost has not been obtained is present often.
[0014]
JP-A-8-186005 discloses a structure using a photosensitive ruthenium paste as a resistor.
[0015]
The first object of the present invention is not only to improve the conductor pattern printing accuracy, which has been a problem in the prior art, but also to have a predetermined film thickness suitable for the place where the electronic component having a humidity detection function is used, and the conductor pattern and electrode conductor. In addition, an electronic component having a humidity detection function capable of forming an electrode conductor even in a portion having a high aspect ratio and a method for manufacturing the same are provided.
[0016]
The second object of the present invention is to improve the accuracy by stabilizing the position accuracy of the conductor pattern, the accuracy of the line width, and the pattern shape, thereby greatly reducing the variation in the final product characteristics. An object of the present invention is to provide an electronic component having a humidity detection function capable of realizing a product with extremely small variation in characteristics and excellent in reliability, and a manufacturing method thereof.
[0017]
The third object of the present invention is to appropriately use a photosensitive conductive paste and a non-photosensitive conductive paste. For example, the photosensitive conductive paste is used as an electrode conductor portion for humidity detection, and the electrode conductor portion requiring soldering is used. For example, a non-photosensitive conductive paste is used to provide a conductive pattern with a high pattern accuracy, an electrode conductor portion that could not be achieved in the past, and an electrode conductor portion with a film thickness that can withstand soldering etc. An object of the present invention is to provide an electronic component having a humidity detection function that can be formed and a method for manufacturing the same.
[0018]
Other objects and novel features of the present invention will be clarified in embodiments described later.
[0019]
[Means for Solving the Problems]
  In order to achieve the above object, the invention of claim 1 of the present application has a humidity detection function in which a pair of electrode conductors are formed on an insulating substrate so as to face each other with a gap, and a moisture sensitive film is provided in the gap. In electronic components,
  The moisture sensitive film is composed of a polymer film containing dissociative ions,
  The electrode conductor has a multilayer structure, the lowermost layer is made of a photosensitive conductive material, and at least the upper part of the electrode conductor has corrosion resistance to the moisture sensitive film.It is characterized by that.
[0023]
  Claim of this application2The invention of claim1The gap between the pair of electrode conductors is 20 to 100 μm, and the film thickness of each electrode conductor in the gap constituting portion is 3 to 20 μm.
[0024]
  Claim of this application3The invention of claim1 or 2In the present invention, at least a part of the electrode conductor is made of ruthenium, a ruthenium compound, gold, or a gold compound.
[0025]
  Claim of this application4The invention of4. The electrode conductor according to claim 1, wherein the electrode conductor is formed on the insulating substrate.Conductor pattern formed by exposing and developing photosensitive conductive paste on the main surfaceHaveIt has an electrode conductor portion and an electrode conductor portion formed of a non-photosensitive conductive paste, and at least a part of both electrode conductor portions overlap each other to constitute an electrically conductive electrode conductor. It is a feature.
  The invention of claim 5 of the present application is that in claim 4, the electrode conductor portion formed of the non-photosensitive conductive paste forms an end face electrode on the end face of the insulating substrate as at least a part of the electrode conductor. It is a feature.
[0026]
  Claim of this application6The invention is an electronic component having a humidity detection function in which an electrode conductor is formed across the main surface of the element and the other surface in contact with the main surface.
  Conductor pattern formed by exposing and developing a photosensitive conductive paste on the main surfaceHaveAn electrode conductor portion and an electrode conductor portion formed of a non-photosensitive conductive paste on the other surface, and at least a part of both electrode conductor portions in the vicinity of a portion where the main surface and the other surface are in contact with each other. It is characterized in that the electrode conductors are overlapped and electrically conducted.
[0027]
  Claim of this application7The invention of claim6The electrode conductor portion formed of the non-photosensitive conductive paste is characterized in that an end face electrode is formed on the end face of the element as at least a part of the electrode conductor.
[0028]
  Claim of this application8The invention of claim6 or 7The element has a connection surface connecting the main surface and the other surface at a portion where the main surface and the other surface are in contact, and is formed by exposing and developing the photosensitive conductive paste. A conductor pattern extends from the main surface to the connection surface to form an electrode conductor portion.
[0029]
  Claim of this application9According to the invention, an electrode conductorAnd moisture sensitive filmIn the manufacturing method of an electronic component having a humidity detection function formed,
  Exposure and development of photosensitive conductive paste on the main surfaceA pair of conductor patterns facing each other through a gapForming an electrode conductor portion;
  Forming an electrode conductor portion with a non-photosensitive conductive paste;
  Providing the moisture sensitive film,
  Arrange both electrode conductors on the surface of the device so that at least part of both electrode conductors overlap.And
  A metal plating film having corrosion resistance to the moisture sensitive film is formed at least on the electrode conductor portion covered with the moisture sensitive film, and then a moisture sensitive film is provided in the gap.It is characterized by that.
[0030]
  Claim of this application10In the method of manufacturing an electronic component having a humidity detection function in which an electrode conductor is formed across the main surface of the element and the other surface in contact with the main surface,
  Forming an electrode conductor portion with a non-photosensitive conductive paste on the other surface;
  A step of exposing and developing a photosensitive conductive paste on the main surface to form an electrode conductor portion comprising a conductor pattern;
  Both electrode conductor portions are arranged on the main surface and the other surface so that at least a part of both electrode conductor portions overlap each other.
[0031]
  Claim of this application11The invention of claim10The element has a connection surface connecting the main surface and the other surface at a portion where the main surface and the other surface are in contact, and the electrode conductor portion formed of the non-photosensitive conductive paste formed on the other surface is While extending to a connection surface, the electrode conductor part by the photosensitive electrically conductive paste formed in the said main surface is also extended to the said connection surface.
[0032]
  Claim of this application12The invention of claim10In this case, the electrode conductor portion made of the photosensitive conductive paste formed on the main surface overlaps the surface of the electrode conductor portion made of the non-photosensitive conductive paste formed on the other surface, and the photosensitive conductive paste is exposed and developed to form a conductor. A pattern is formed to form an electrode conductor straddling the main surface and the other surface.
[0033]
  Claim of this application13The invention of claim10, 11 or 12A pair of electrode conductor portions are formed so as to face each other through a gap with a conductive pattern obtained by exposing and developing the photosensitive conductive paste, and a metal plating film is formed on at least an upper layer of the electrode conductor portion covered with a moisture sensitive film. After the formation, a moisture sensitive film is provided in the gap.
[0034]
  The invention of claim 14 of the present application claims9, 10, 11, 12, or 13In the above, at least a part of the electrode conductor portion formed of the conductor pattern formed by exposing and developing the photosensitive conductive paste is overlapped with the electrode conductor portion formed of the non-photosensitive conductive paste and fired. It is characterized by.
[0035]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of an electronic component having a humidity detection function and a method for manufacturing the same according to the present invention will be described below with reference to the drawings.
[0036]
A first embodiment of an electronic component having a humidity detection function and a manufacturing method thereof according to the present invention will be described with reference to FIGS. Here, when a humidity sensor is manufactured as an electronic component having a humidity detection function, a pair of comb-shaped electrode conductor portions covered with a moisture-sensitive film is configured using a photosensitive conductive material.
[0037]
In FIG. 1, in the non-photosensitive conductive paste coating step # 1, the non-photosensitive conductive paste is printed on the main surface of an insulating substrate 20 such as alumina by pattern printing with a screen printer or the like as shown in FIG. An attaching electrode conductor portion 21 (which will be a lead terminal connecting electrode conductor portion in this example) is formed and dried at 80 ° C. for 10 minutes in the drying step # 2. Since the positional accuracy of the soldering electrode conductor portion 21 does not cause a problem, a general screen printing method may be used.
[0038]
Next, in the photosensitive conductive paste application step # 3, the photosensitive conductive paste 22 is applied to the insulating substrate 20 so as to at least partially overlap the electrode conductor portion 21 of the non-photosensitive conductive paste as shown in FIG. It is applied to a predetermined range (most or all) of the main surface, and is dried at 80 ° C. for 20 minutes in the drying step # 4.
[0039]
In the exposure and development process # 5 (photolithography process), a predetermined pattern is applied to the photosensitive conductive paste 22 by an exposure light source to 200 to 3000 mJ / cm.2Then, unnecessary portions of the photosensitive conductive paste are removed by a development process. Development is performed by spraying or dipping at 20 ° C. to 50 ° C. with an alkali solution such as sodium carbonate, potassium carbonate, calcium hydroxide, or sodium hydroxide. Specifically, 0.4% Na at 30 ° C. with an ordinary conveyor or spray type developing machine.2CO3For example, by spraying at a spray pressure of 10 to 20 psi. By such development processing, a comb-shaped electrode conductor portion 23 is formed by patterning the photosensitive conductive paste 22 into a comb shape as shown in FIG. A pair of the comb-shaped electrode conductor portions 23 are formed so as to face each other with a minute gap, and are electrode conductor portions for humidity detection to be covered with a moisture-sensitive film.
[0040]
As shown in FIG. 2 (A), the pair of comb-shaped electrode conductor portions 23 has a stable shape because the side of the cross-sectional shape of the pair of comb-shaped electrode conductor portions 23 is vertical as well as the pattern bleeding and the variation in width are small. FIG. 2B shows a cross-sectional shape of a comb-shaped electrode conductor portion patterned with a conventional non-photosensitive conductive paste, and the side surface is not vertical and the shape is not stable.
[0041]
Examples of the exposure include visible light, near ultraviolet light, ultraviolet light, electron beam, X-ray, and laser light. Among these, ultraviolet light is preferable, and the light source thereof is, for example, a low-pressure mercury lamp, a high-pressure mercury lamp, or an ultra-violet light. High pressure mercury lamp, halogen lamp sterilization lamp, etc. can be used. Among these, an ultra high pressure mercury lamp is particularly preferable. In addition, a developing process that does not affect the non-photosensitive conductive paste is selected.
[0042]
In order to dry the substrate 20 after applying the paste, after drying for 5 minutes at 80 ° C. and removing moisture, the electrode conductor portion 21 for soldering with the non-photosensitive conductive paste and the non-photosensitive conductive paste in the baking step # 6 Comb-shaped electrode conductor portion 23 made of photosensitive conductive paste is subjected to main firing for 1 hour (however, at peak time, temperature is 850 ° C. for 10 minutes), and by simultaneous firing, electrode conductor portion 21 and electrode conductor portion 23 overlap each other. An electrically conductive electrode conductor is obtained on the insulating substrate 20. Here, as shown in FIG. 3A, firing is performed in a connection state in which a part of the comb-shaped electrode conductor portion 23 overlaps the electrode conductor portion 21 for soldering. The simultaneous firing is advantageous in reducing the number of steps, but of course, the conductor portions may be fired separately.
[0043]
When the electrode conductor portions 21 and 23 on the insulating substrate 20 are baked, the moisture sensitive film 25 is applied so as to cover the pair of comb-shaped electrode conductor portions 23 in the moisture sensitive film application step # 7 as shown in FIG. And dried at a temperature of room temperature to about 120 ° C. Here, as shown in FIG. 2A, the moisture sensitive film 25 enters between the minute gaps G between the pair of comb-shaped electrode conductor portions 23, and preferably also covers the upper surface of the electrode conductor portion 23. Is formed. The moisture sensitive film 25 is composed of a polymer film containing dissociative ions such as halogen ions.
[0044]
As described with reference to FIG. 2A, the pair of comb-shaped electrode conductor portions 23 have less pattern bleeding and variation in width, and the cross-sectional side surface is also vertical, so that the shape is stable. The variation in the way of attaching 25 can be reduced, and the humidity detection characteristic can be stabilized. FIG. 2B shows a cross-sectional shape of a comb-shaped electrode conductor portion patterned with a conventional non-photosensitive conductive paste, and the side surface is not vertical and the shape is not stable, resulting in a moisture sensitive film. Variations will also occur in the way of attaching, and the characteristics will not be stable.
[0045]
When a humidity sensor having a lead terminal structure is formed after the moisture sensitive film 25 is formed, the lead terminal 26 is soldered to the soldering electrode conductor portion 21 as shown in FIG.
[0046]
In addition, ruthenium, a ruthenium compound (for example, ruthenium oxide, etc.) can be suitably used as the conductive material of the photosensitive conductive paste used for the electrode conductor portion 23 of the comb pattern, and other glass frit and photosensitive resin (monomer, oligomer). Or polymer), photopolymerization initiator, and sensitizer, and in some cases, a thermal polymerization inhibitor, an antioxidant, and a thickener may be added as necessary.
[0047]
By using a photosensitive conductive paste capable of forming a precise and fine pattern for the electrode portion for humidity detection, the gap G between the pair of comb-shaped electrode conductor portions 23 can be about 20 to 100 μm. Moreover, it is desirable that the film thickness of each electrode conductor portion in the gap constituting portion is 3 to 20 μm. If the gap is less than 20 μm, there is a risk of short circuit, and an interval exceeding 100 μm is easy to produce, but the advantage of adopting a photolithography process such as exposure and development of the photosensitive conductive paste is reduced. Further, if the film thickness in the gap constituting part of the comb-shaped electrode conductor portion 23 is less than 3 μm, there is a risk of occurrence of pinholes and comb-shaped patterns, and if the film thickness exceeds 20 μm, the exposure and development process of the photosensitive conductive paste Formation becomes troublesome. Moreover, even if the use as a humidity sensor is considered, it is not necessarily required that the film thickness exceeds 20 μm.
[0048]
In addition, the application | coating process of photosensitive electrically conductive paste can be performed by screen printing etc. similarly to the case of application | coating of a non-photosensitive electrically conductive paste.
[0049]
Since the electrode conductor portion 21 for soldering uses a non-photosensitive conductive paste, it has sufficient solder wettability and an electrode as an electrode portion that requires solderability and solder heat resistance like a normal chip component. The thickness can be increased, and a highly reliable electrode conductor portion can be obtained. As a result, even if soldering is performed using high-temperature solder that is lead-free, disconnection due to electrode biting does not occur.
[0050]
As described above, according to the first embodiment, the advantages of the electrode conductor portion by the non-photosensitive conductive paste and the advantages of the electrode conductor portion by the photosensitive conductive paste are combined, which is a conventional problem. In addition to increasing the pattern accuracy, it is possible to produce an electronic component having a humidity detection function in which an electrode conductor having a predetermined film thickness and pattern suitable for the place of use is formed. Specific effects are listed below.
[0051]
(1) In the production method using a photosensitive conductive paste, the conductive paste does not need to be printed with high accuracy and may be applied to the entire pattern forming surface. In addition, since the photosensitive conductive paste is exposed using a mask during pattern formation, it is not necessary to apply a large pressure to the printing mask (screen) as in the prior art. Accordingly, the pattern accuracy deteriorates due to deterioration of the screen. There is no need to worry about.
[0052]
(2) Since the exposure and development steps are performed, the pattern itself has high dimensional accuracy, there is no distortion of the pattern due to paste bleeding, and there is almost no variation in the pattern width. Therefore, in the case of a humidity sensor, by reducing the gap between the patterns of the pair of comb-shaped electrode conductor portions 23 that are the electrode conductor portions for humidity detection, that is, the gap G, the halogen ions in the polymer material can be reduced even on the low humidity side. Dissociated ions can be sufficiently detected as electrical resistance, and high sensitivity can be achieved. Further, since the comb-shaped electrode can be formed with 1/5 or less of the conventional size, the product itself can be downsized.
[0053]
(3) The comb-shaped electrode conductor portion 23 formed of the photosensitive conductive paste has not only bleeding and variations in the width of the pattern, but also the side surface of the cross-sectional shape is vertical and the shape is stable. Variations in attachment can also be reduced. Therefore, a product with little variation can be obtained. In the conventional pattern formation by screen printing, the side surfaces do not become vertical and the shape is not stable, and as a result, variations occur in how the moisture sensitive film is attached.
[0054]
(4) Furthermore, if the comb-shaped electrode conductor portion 23 is formed of a photosensitive conductive paste using ruthenium or a ruthenium compound that is relatively inexpensive as compared with gold (Au) as a conductive material, a sensitivity that includes halogen ions as dissociated ions. Since the wet film 25 has corrosion resistance, a process such as plating is not required to ensure the corrosion resistance, and the manufacturing process can be simplified. Also, when ruthenium oxide paste is used as the photosensitive conductive paste, since the paste is black, there is no light scattering compared to other metal particles, and light transmittance is higher than that of metal, so pattern formation with higher accuracy can be achieved. Is possible.
[0055]
(5) By eliminating the need for plating to ensure corrosion resistance, not only does the cost increase due to plating, but also a phenomenon called plating elongation, which is a problem for fine patterns (next to fine patterns and narrow pitch patterns). It is possible to solve the problem of short-circuit failure due to a phenomenon in which they are short-circuited by the lateral growth of the plating.
[0056]
(6) Since the non-photosensitive conductive paste is used for the electrode conductor portion 21 for soldering, a high-temperature solder that can be formed with a sufficient film thickness using a material having good conductivity and is lead-free. Even if soldering is performed using, the wire breakage due to electrode biting does not occur.
[0057]
(7) Further, it is not necessary to directly solder the comb-shaped electrode conductor portion 23 with the photosensitive conductive paste, and it is not necessary to apply the photosensitive conductive paste to the thick film more than necessary, and the pattern accuracy can be further improved.
[0058]
In the first embodiment, as shown in FIG. 3A, after applying the electrode conductor portion 21 for soldering with the non-photosensitive conductive paste on the insulating substrate 20, the comb-shaped electrode conductor with the photosensitive conductive paste is used. The part 23 is patterned, but the electrode conductor part 21 for soldering with the non-photosensitive conductive paste is applied in a predetermined pattern after the pattern formation of the comb-shaped electrode conductor part 23 with the photosensitive conductive paste as shown in FIG. But it doesn't matter. In this case, since the non-photosensitive paste can be applied after patterning first, the non-photosensitive conductive paste is applied to the developer (Na2CO3Solution).
[0059]
FIG. 4 shows a second embodiment of the present invention, and a soldering terminal electrode straddling the main surface and side surfaces of the insulating substrate 20 when a humidity sensor as an electronic component having a humidity detecting function is manufactured. A conductor portion 31 is formed.
[0060]
4, in the non-photosensitive conductive paste application step # 11, as shown in FIG. 4A, the non-photosensitive conductive paste is applied to the main surface and the end surface (side surface) of the insulating substrate 20 such as alumina by a screen printer or the like. Pattern printing is performed to form the terminal electrode conductor portion 31 for soldering, and drying is performed at 80 ° C. for 10 minutes in the drying step # 12. The terminal electrode conductor portion 31 may be provided so as to straddle the back surface of the substrate.
[0061]
Next, in the photosensitive conductive paste application step # 13, the photosensitive conductive paste 22 is applied to the insulating substrate 20 so as to at least partially overlap the electrode conductor portion 21 of the non-photosensitive conductive paste as shown in FIG. It is applied to a predetermined range (most or all) of the main surface, and is dried at 80 ° C. for 20 minutes in the drying step # 14.
[0062]
In the exposure and development process # 15 (photolithography process), the photosensitive conductive paste 22 is subjected to a predetermined exposure with an exposure light source in a predetermined pattern, and then an unnecessary portion of the photosensitive conductive paste is removed by a development process. By such development processing, a comb-shaped electrode conductor portion 23 is formed by patterning the photosensitive conductive paste 22 into a comb shape as shown in FIG. A pair of the comb-shaped electrode conductor portions 23 are formed on the main surface of the substrate so as to be opposed to each other with a minute gap, and are electrode conductor portions for humidity detection to be covered with a moisture sensitive film.
[0063]
In order to dry the board | substrate 20 after paste application | coating, after drying for 5 minutes at 80 degreeC and removing a water | moisture content, the terminal electrode conductor part 31 and the photosensitive property by non-photosensitive conductive paste in baking process # 16 Comb-shaped electrode conductor portion 23 made of conductive paste is subjected to main firing for 1 hour (however, at a peak time of 10 minutes at a temperature of 850 ° C.), and by simultaneous firing, electrode conductor portion 31 and electrode conductor portion 23 overlap each other and are electrically A conductive electrode is obtained on the insulating substrate 20.
[0064]
When the firing of the electrode conductor portions 31 and 23 on the insulating substrate 20 is finished, the moisture sensitive film 25 is applied so as to cover the pair of comb electrode conductor portions 23 in the moisture sensitive film coating step # 17, and the temperature is about room temperature to about 120 ° C. Dry at temperature.
[0065]
According to the second embodiment, since the terminal electrode conductor portion 31 for soldering is formed over the main surface and the side surface of the insulating substrate 20, solderability and solder heat resistance like ordinary chip parts are required. The portion that becomes the terminal electrode conductor portion 31 can be configured with a highly reliable electrode conductor portion that is free from problems of sufficient solder wettability, electrode thickness, and solder erosion by the non-photosensitive conductive paste, and is used for humidity detection. A precise and fine pattern can be formed on the electrode conductor portion 23.
[0066]
The manufacturing conditions and the like of the electrode conductor portion 23 for humidity detection are the same as those in the first embodiment described above, and other functions and effects are the same as those in the first embodiment.
[0067]
Also in the second embodiment, the terminal electrode conductor portion 31 for soldering with the non-photosensitive conductive paste may be applied in a predetermined pattern after the comb-shaped electrode conductor portion 23 with the photosensitive conductive paste is formed in a pattern. .
[0068]
FIG. 5 shows a third embodiment of the present invention. When a humidity sensor as an electronic component having a humidity detection function is manufactured, both end portions (main surface, back surface, and side surfaces) of the insulating substrate 20 are shown. Terminal electrode conductor portions 32 for soldering are formed over each of the five surfaces. The lead-out direction of the comb-shaped electrode conductor portion 23 for humidity detection is changed from that of the second embodiment in accordance with the arrangement of the terminal electrode conductor portion 32. Other configurations are the same as those of the second embodiment described above, and the same or corresponding parts are denoted by the same reference numerals and description thereof is omitted.
[0069]
In the third embodiment, since the terminal electrode conductor portions 32 for soldering are formed at both ends of the insulating substrate 20, there is an advantage that it can be handled in the same manner as a normal chip component. Other functions and effects are the same as those of the first embodiment.
[0070]
FIG. 6 shows a fourth embodiment of the present invention. In the case where a humidity sensor as an electronic component having a humidity detection function is manufactured, a through conductor provided with electrode conductor portions on the inner periphery at both ends of the insulating substrate 20 is shown. A terminal electrode conductor portion 33 for soldering having a shape obtained by dividing the hole into two is formed. The shape and lead-out position of the comb-shaped electrode conductor portion 23 for humidity detection are changed from those in the second and third embodiments in accordance with the arrangement of the terminal electrode conductor portion 33. The configuration of the fourth embodiment is a structure suitable for mass production. Other configurations and operational effects are the same as those of the above-described third embodiment.
[0071]
FIG. 7 shows a fifth embodiment of the present invention, which is an example in which a through hole with a high aspect ratio is provided in an electronic component having a humidity detection function, and an insulating substrate (or an element incorporating a humidity sensor). An example in which an electrode conductor portion made of a non-photosensitive conductive paste formed on the inner surface of the through hole and an electrode conductor portion made of a photosensitive conductive paste on the element main surface is connected to each other is shown.
[0072]
In this case, in the non-photosensitive conductive paste application step # 21, as shown in FIG. 7A, the electrode conductor portion 42 is coated with the non-photosensitive conductive paste on the inner peripheral portion of the through hole 41 of the insulating substrate 20 (or element) of the humidity sensor. And dried in the drying step # 22.
[0073]
Next, in the photosensitive conductive paste application step # 23, the photosensitive conductive paste 43 is applied to the main surface (here, the upper surface) of the insulating substrate 20 as shown in FIG. 7B, and dried in the drying step # 24. At this time, the upper end portion of the non-photosensitive conductive paste on the inner surface of the through hole and the photosensitive conductive paste are in contact with each other or partially overlap (the photosensitive conductive paste slightly enters the inside of the through hole by gravity).
[0074]
In the exposure and development step # 25, the photosensitive conductive paste 43 is exposed in a predetermined pattern, and then an unnecessary portion of the photosensitive conductive paste is removed by development processing, and the photosensitive conductive paste 43 is patterned as shown in FIG. The electrode conductor portion 44 is formed.
[0075]
Thereafter, in the firing step # 26, the electrode conductor portion 42 made of the non-photosensitive conductive paste and the electrode conductor portion 44 made of the photosensitive conductive paste are simultaneously fired so that the electrode conductor portion 42 and the electrode conductor portion 44 are in contact with each other or overlap each other. An electrically conductive electrode conductor is obtained on the insulating substrate 20.
[0076]
The conditions such as drying, exposure, and development may be the same as those in the first embodiment. Further, after forming the comb-shaped electrode conductor portion for detecting humidity by exposure and development of the photosensitive conductive paste 43 as in the first embodiment, a moisture sensitive film may be provided. Alternatively, a moisture sensitive film may be provided after a comb-shaped electrode conductor portion is formed by patterning a photosensitive conductive paste on another region or another surface of the insulating substrate 20.
[0077]
In the fifth embodiment shown in FIG. 7, by providing a non-photosensitive conductive paste on the inner surface of the through hole that is difficult to expose, the electrode conductor portion 42 can be formed also in the through hole portion having a high aspect ratio. As a result, an electronic component having a humidity detection function is provided, which includes an electrode conductor that is electrically connected to the electrode conductor portion 44 of the photosensitive conductive paste on the surface side. At this time, ultraviolet rays for exposure are transmitted through the end face of the through hole to a certain depth, so that the photosensitive conductive paste is also cured to the entrance of the through hole, and the inside of the through hole is an electrode conductor having a sufficient thickness. In addition to being covered, the thickness of the edge portion of the through hole can be increased to some extent, and the connection reliability is improved (both pastes can be present at the edge portion).
[0078]
Further, since the non-photosensitive conductive paste is used for the through hole portion, the through hole portion is not uncured, and the film thickness of the electrode conductor portion 42 can be sufficiently secured. For example, when the soldering terminal electrode conductor portion 33 shown in the fourth embodiment of FIG. 6 is configured by dividing the through hole having the electrode conductor portion into the inner surface obtained in the step of FIG. Even if soldering is performed using lead-free high-temperature solder, disconnection due to electrode biting does not occur.
[0079]
It should be noted that, as in the fifth embodiment of FIG. 7, the non-photosensitive conductive paste is placed on the bottom, and the photosensitive conductive paste is overlaid thereon. good. In this case, since the non-photosensitive paste can be applied after patterning first, the non-photosensitive conductive paste is applied to the developer (Na2CO3Solution).
[0080]
FIG. 8 shows a sixth embodiment of the present invention, which is an example in which a through hole with a high aspect ratio is provided in an electronic component having a humidity detection function, and is an insulating substrate (or an element incorporating a humidity sensor). An example in which an electrode conductor portion made of a non-photosensitive conductive paste formed on the inner surface of the through hole and an electrode conductor portion made of a photosensitive conductive paste on the element main surface are connected to each other so as to overlap each other is shown.
[0081]
In this case, as shown in FIGS. 8A and 8B, a tapered connection surface 41a is formed at the end of the through hole 41 formed in the insulating substrate 20 (or element) on the element main surface (upper surface) side. The angle of the connection surface 41a with respect to the main surface is preferably about 45 ° to 60 °, but may be tapered. Then, a non-photosensitive conductive paste is applied to the inner surface of the through hole 41 including the tapered connection surface 41a and dried to form the electrode conductor portion 42, and then the photosensitive conductive paste 43 is applied to the element main surface and the tapered connection surface 41a. And dry. At this time, as shown in FIGS. 8A and 8B, the non-photosensitive conductive paste and the photosensitive conductive paste on the tapered connection surface 41a at the end of the through hole overlap each other. Thereafter, the photosensitive conductive paste 43 is exposed in a predetermined pattern, an unnecessary portion of the photosensitive conductive paste is removed by a development process, and an electrode conductor portion 44 obtained by patterning the photosensitive conductive paste 43 is formed. Then, the electrode conductor portion 42 made of the non-photosensitive conductive paste and the electrode conductor portion 44 made of the photosensitive conductive paste are fired simultaneously (or separately fired) so that the electrode conductor portion 42 and the electrode conductor portion 44 overlap each other to be electrically Conductive electrode conductors are obtained on the insulating substrate 20. The conditions such as drying, exposure, and development may be the same as those in the first embodiment.
[0082]
In the sixth embodiment, by forming the tapered connection surface 41a at the end of the inner surface of the through hole 41 that is difficult to expose, the overlapping portion of the non-photosensitive conductive paste and the photosensitive conductive paste is prevented. It becomes wide enough and there are no defects such as edge breaks. Ultraviolet rays used for exposure are highly linear, but by attaching a taper of about 45 ° to 60 ° to the end of the through hole in this way, the photosensitive conductive paste can be reliably obtained up to the region where the tapered connection surface 41a is formed. Harden.
[0083]
The tapered connection surface may be a slope with a constant slope, or a slope with a gradually changing slope, such as an R plane or a U plane.
[0084]
Further, the inside of the through hole 41 may be filled with the electrode conductor portion 42 of the non-photosensitive conductive paste to form a via hole, and the electrode conductor portion 44 of the photosensitive conductive paste may be provided thereon.
[0085]
FIG. 8C shows an example in which a through hole having an electrode conductor portion on the inner periphery produced in FIGS. 8A and 8B is divided into two to form a terminal electrode conductor portion 47 for soldering. For example, FIG. The soldering terminal electrode conductor portion 33 shown in the fourth embodiment can be used as it is.
[0086]
If the soldering terminal electrode conductor provided in the electronic component having the humidity detection function has the structure of FIG. 8C, the inner surface of the circumferential concave surface obtained by dividing the through hole into two is the electrode conductor portion 42 of the non-photosensitive conductive paste. As a terminal electrode, there is sufficient conductor in the edge portion (both non-photosensitive and photosensitive conductive paste can be present in the edge portion). Even if it is used, it can be used as a highly reliable terminal electrode without worrying about solder erosion or disconnection.
[0087]
FIG. 9 shows a seventh embodiment of the present invention, in which the humidity sensor unit 50 is formed on the insulating substrate 20 (or element), and the chip elements 51 and the wirings 52 constituting the peripheral circuit are formed on the substrate 20. A composite part as an electronic part having a humidity detection function provided in FIG.
[0088]
In this case, the non-photosensitive conductive paste is applied to the main surface of the insulating substrate 20 (or element) such as alumina by using a screen printing machine or the like for the soldering electrode conductor 61 including the conductor pattern of the wiring 52 in FIG. Formed by pattern printing. Further, the comb-shaped electrode conductor portion 23 of the humidity sensor unit 50 is obtained by applying a photosensitive conductive paste to a predetermined range of the main surface of the insulating substrate 20 and exposing and developing. And after baking these electrode conductor parts 23 and 61, as shown in FIG.9 (B), the moisture sensitive film | membrane 25 is provided in the electrode conductor part 23, and the humidity sensor part 50 is comprised. Further, a predetermined type of chip element 51 is mounted on the solder pad of the wiring 52 on the substrate by soldering, and the lead terminal 56 is soldered to the soldering electrode conductor portion 61 at the substrate edge as shown in FIG. Attach. The moisture sensitive film 25 may be provided after mounting the components.
[0089]
The lead portion of the comb-shaped electrode conductor portion 23 of the humidity sensor portion 50 partially overlaps the wiring 52 and is electrically connected. Further, the substrate 20 may be provided with a through hole 55 to connect the front and back wirings 52. In this case, the through hole 55 is provided in the fifth embodiment of FIG. 7 or the sixth embodiment of FIG. It can be configured as a form. The specific manufacturing process of the sensor unit 50 is the same as that of the first embodiment.
[0090]
According to the seventh embodiment, the humidity sensor and its peripheral circuits can be integrated to further reduce the size as a whole. Other functions and effects are the same as those of the first embodiment described above.
[0091]
FIG. 10 shows an eighth embodiment of the present invention, and shows an example in which the comb-shaped electrode conductor portion 23 of the humidity sensor has a multilayer structure using plating together. In this case, the lowermost conductor film 70 of the comb-shaped electrode conductor portion 23 formed on the main surface of the substrate 20 is obtained by printing, exposing, developing, and firing a photosensitive conductive paste, and a silver paste as the photosensitive conductive paste. The cheapest and most common materials. The intermediate plating film 71 thereon is a solder erosion prevention layer and is an electroplating film of nickel or the like having solder corrosion resistance. The uppermost plating film 72 is an electroplating film having corrosion resistance against the moisture sensitive film 25 such as gold (Au).
[0092]
Other configurations are the same as those of the first embodiment described above, and the same or corresponding parts are denoted by the same reference numerals and description thereof is omitted.
[0093]
According to the eighth embodiment, the uppermost layer is formed of a plating film 72 made of gold or the like that is corrosion resistant to the dissociated ions of the moisture sensitive film 25, so that the conductive film 70 made of the lower photosensitive conductive paste is formed. The most common and inexpensive conductive material can be used.
[0094]
Note that the metal material of the photosensitive conductive paste may be a metal such as gold, silver, copper, palladium, platinum, nickel, or a mixture thereof. As the photosensitive material, an alkali developing binder monomer, a monomer, and an initiator are used. It is important that it is contained and volatilized and decomposed by firing so that no carbides remain in the pattern. However, when the comb-shaped electrode conductor portion has a single layer structure, it is necessary to have corrosion resistance with respect to the moisture sensitive film to be used because it is in direct contact with the moisture sensitive film. Further, when the comb-shaped electrode conductor portion has a multilayer structure as shown in FIG. 10, such a restriction on the lowermost photosensitive conductive paste is eliminated.
[0095]
Although the embodiments of the present invention have been described above, it will be obvious to those skilled in the art that the present invention is not limited to these embodiments, and various modifications and changes can be made within the scope of the claims.
[0096]
【The invention's effect】
As described above, according to the present invention, since all or part of the electrode conductor formed on the substrate or the element is configured using the photosensitive conductive material, the deterioration of the screen in the conventional screen printing method, etc. It is possible to eliminate the misalignment caused by the above, to improve the pattern position accuracy of the electrode conductor, and to extremely reduce the variation in product characteristics. In addition, even when the comb-shaped electrode conductor is formed in the area where the moisture sensitive film is to be formed, it is possible to perform patterning with a narrow pitch with high accuracy, so that the comb-shaped electrode conductor can be miniaturized and miniaturized. In addition, the effect of reducing variation in humidity measurement can be achieved.
[Brief description of the drawings]
FIG. 1 is a first embodiment of an electronic component having a humidity detection function and a method for manufacturing the same according to the present invention; an electrode conductor portion made of a photosensitive conductive paste; and an electrode conductor portion made of a non-photosensitive conductive paste; It is explanatory drawing which shows the example of the humidity sensor which is mutually connected.
FIG. 2 is a cross-sectional view showing a structure of a comb-shaped electrode conductor portion and its periphery in the first embodiment in comparison with the conventional one.
FIG. 3 is an explanatory diagram showing a vertical relationship between an electrode conductor portion made of a photosensitive conductive paste and an electrode conductor portion made of a non-photosensitive conductive paste in the first embodiment.
FIG. 4 is an explanatory diagram showing a second embodiment of the present invention.
FIG. 5 is a perspective view showing a third embodiment of the present invention.
FIG. 6 is a perspective view showing a fourth embodiment of the present invention.
FIG. 7 is an explanatory diagram showing an example having a through hole according to a fifth embodiment of the present invention.
FIG. 8 is an explanatory diagram showing another example of a through hole according to the sixth embodiment of the present invention and an example of a terminal electrode conductor portion obtained by dividing the through hole into two parts.
FIG. 9 is an explanatory diagram showing an example in which a composite part in which a humidity sensor and a peripheral circuit are integrated is manufactured as an electronic part having a humidity detection function according to a seventh embodiment of the present invention.
FIG. 10 is a cross-sectional view showing an example in which the comb-shaped electrode conductor portion has a multilayer structure according to the eighth embodiment of the present invention.
FIG. 11 is an explanatory diagram showing a manufacturing process of a conventional humidity sensor.
FIG. 12 is an explanatory diagram in the case of a manufacturing method in which a large number are obtained by screen printing on a conventional collective substrate.
[Explanation of symbols]
1,20 Insulating substrate
2 Terminal conductor electrode conductor
3,23 Comb electrode conductor
5, 26, 56 Lead terminal
10 Assembly board
21, 61 Soldering electrode conductor
22, 43 Photosensitive conductive paste
25 Moisture sensitive film
31, 32, 33, 47 Terminal electrode conductor
41,55 through hole
41a Connection surface
42,44 electrode conductor
50 Humidity sensor
51 chip elements
52 Wiring
70 Conductor film
71,72 Plating film

Claims (14)

絶縁基板上にギャップを介して対向するように一対の電極導体を形成し、該ギャップに感湿膜を設けた湿度検出機能を持つ電子部品において、
前記感湿膜が解離型イオンを含む高分子膜で構成され、
前記電極導体が多層構造であり、最下層が感光性導電材料を用いて構成され、少なくとも電極導体上層部が前記感湿膜に対する耐食性を有することを特徴とする湿度検出機能を持つ電子部品。
In an electronic component having a humidity detection function in which a pair of electrode conductors are formed on an insulating substrate so as to face each other through a gap, and a moisture sensitive film is provided in the gap,
The moisture sensitive film is composed of a polymer film containing dissociative ions,
An electronic component having a humidity detection function, wherein the electrode conductor has a multilayer structure, the lowermost layer is made of a photosensitive conductive material, and at least the upper layer portion of the electrode conductor has corrosion resistance to the moisture sensitive film .
前記一対の電極導体間のギャップが20〜100μmであり、当該ギャップ構成部分における各電極導体の膜厚が3〜20μmであることを特徴とする請求項記載の湿度検出機能を持つ電子部品。The gap between the pair of electrode conductor is 20 to 100 [mu] m, an electronic component having a humidity detecting function according to claim 1, wherein the thickness of each electrode conductor, characterized in that a 3~20μm in the gap components. 前記電極導体の少なくとも一部がルテニウム、ルテニウム化合物、金、又は金化合物で構成されている請求項1又は2記載の湿度検出機能を持つ電子部品。At least a part of ruthenium, ruthenium compounds, gold, or an electronic component having a humidity detecting function according to claim 1 or 2, wherein is composed of a gold compound of the electrode conductor. 前記電極導体が、前記絶縁基板の主面に感光性導電ペーストを露光、現像して形成した導体パターンを有する電極導体部と、非感光性導電ペーストにより形成した電極導体部とを有し、かつ、両方の電極導体部の少なくとも一部が互いに重なって電気的に導通した電極導体を構成していることを特徴とする請求項1,2又は3記載の湿度検出機能を持つ電子部品。 The electrode conductor has an electrode conductor portion having a conductor pattern formed by exposing and developing a photosensitive conductive paste on the main surface of the insulating substrate ; and an electrode conductor portion formed of a non-photosensitive conductive paste; and 4. The electronic component having a humidity detecting function according to claim 1 , wherein at least a part of both electrode conductor portions overlap each other to form an electrically conductive electrode conductor. 前記非感光性導電ペーストにより形成した電極導体部は、前記電極導体の少なくとも一部として前記絶縁基板の端面で端面電極を形成していることを特徴とする請求項記載の湿度検出機能を持つ電子部品。5. The humidity detecting function according to claim 4 , wherein the electrode conductor portion formed of the non-photosensitive conductive paste forms an end face electrode on an end face of the insulating substrate as at least a part of the electrode conductor. Electronic components. 素子の主面と該主面に接する他面とに跨って電極導体を形成した湿度検出機能を持つ電子部品において、
該主面に感光性導電ペーストを露光、現像して形成した導体パターンを有する電極導体部と、該他面に非感光性導電ペーストにより形成した電極導体部とを有し、かつ、前記主面と前記他面が接する部分の近傍で両方の電極導体部の少なくとも一部が重なって電気的に導通した電極導体を構成していることを特徴とする湿度検出機能を持つ電子部品。
In an electronic component having a humidity detection function in which an electrode conductor is formed across the main surface of the element and the other surface in contact with the main surface,
An electrode conductor portion having a conductor pattern formed by exposing and developing a photosensitive conductive paste on the main surface, and an electrode conductor portion formed of a non-photosensitive conductive paste on the other surface, and the main surface An electronic component having a humidity detecting function, wherein at least a part of both electrode conductor portions overlap each other and form an electrically conductive electrode in the vicinity of a portion in contact with the other surface.
前記非感光性導電ペーストにより形成した電極導体部は、前記電極導体の少なくとも一部として前記素子の端面で端面電極を形成していることを特徴とする請求項記載の湿度検出機能を持つ電子部品。The electrode having a humidity detecting function according to claim 6 , wherein the electrode conductor portion formed of the non-photosensitive conductive paste forms an end face electrode at an end face of the element as at least a part of the electrode conductor. parts. 前記素子は、前記主面と前記他面が接する部分に、該主面と該他面をつなぐ接続面を有しており、しかも、前記感光性導電ペーストを露光、現像して形成した導体パターンが前記主面から前記接続面に延びて電極導体部を形成していることを特徴とする請求項6又は7記載の湿度検出機能を持つ電子部品。The element has a connection surface connecting the main surface and the other surface at a portion where the main surface and the other surface are in contact with each other, and a conductive pattern formed by exposing and developing the photosensitive conductive paste. The electronic component having a humidity detecting function according to claim 6, wherein an electrode conductor portion is formed by extending from the main surface to the connection surface. 素子の主面に電極導体及び感湿膜を形成した湿度検出機能を持つ電子部品の製造方法において、
該主面に感光性導電ペーストを露光、現像した導体パターンでギャップを介して対向するように一対の電極導体部を形成するステップと、
非感光性導電ペーストにより電極導体部を形成するステップと、
前記感湿膜を設けるステップとを備え、
両方の電極導体部の少なくとも一部が重なるように当該両方の電極導体部を前記素子の表面に配置するとともに、
少なくとも前記感湿膜で覆われる前記電極導体部の上層に前記感湿膜に対する耐食性を有する金属メッキ膜を形成し、その後前記ギャップに感湿膜を設けることを特徴とする湿度検出機能を持つ電子部品の製造方法。
In the method of manufacturing an electronic component having a humidity detection function in which an electrode conductor and a moisture sensitive film are formed on the main surface of the element,
Forming a pair of electrode conductor portions so as to be opposed to each other with a conductor pattern exposed and developed on the main surface through a gap ;
Forming an electrode conductor portion with a non-photosensitive conductive paste;
Providing the moisture sensitive film,
Both electrode conductor portions are arranged on the surface of the element so that at least a part of both electrode conductor portions overlap , and
An electronic device having a humidity detection function, wherein a metal plating film having corrosion resistance to the moisture sensitive film is formed on at least an upper layer of the electrode conductor portion covered with the moisture sensitive film, and then a moisture sensitive film is provided in the gap. A manufacturing method for parts.
素子の主面と該主面に接する他面とに跨って電極導体を形成した湿度検出機能を持つ電子部品の製造方法において、
前記他面に非感光性導電ペーストにより電極導体部を形成するステップと、
前記主面に感光性導電ペーストを露光、現像して導体パターンからなる電極導体部を形成するステップとを備え、
両方の電極導体部の少なくとも一部が重なるように当該両方の電極導体部を前記主面及び他面に配置したことを特徴とする湿度検出機能を持つ電子部品の製造方法。
In the method of manufacturing an electronic component having a humidity detection function in which an electrode conductor is formed across the main surface of the element and the other surface in contact with the main surface,
Forming an electrode conductor portion with a non-photosensitive conductive paste on the other surface;
A step of exposing and developing a photosensitive conductive paste on the main surface to form an electrode conductor portion comprising a conductor pattern;
A method of manufacturing an electronic component having a humidity detection function, wherein both electrode conductor portions are arranged on the main surface and the other surface so that at least a part of both electrode conductor portions overlap.
前記素子は、前記主面と前記他面が接する部分に、該主面と該他面をつなぐ接続面を有し、前記他面に形成する非感光性導電ペーストによる電極導体部を前記接続面に延在させるとともに、前記主面に形成する感光性導電ペーストによる電極導体部も前記接続面に延在させることを特徴とする請求項10記載の湿度検出機能を持つ電子部品の製造方法。The element has a connection surface connecting the main surface and the other surface at a portion where the main surface and the other surface are in contact with each other, and an electrode conductor portion made of a non-photosensitive conductive paste formed on the other surface is connected to the connection surface. The method of manufacturing an electronic component having a humidity detection function according to claim 10, wherein an electrode conductor portion made of a photosensitive conductive paste formed on the main surface is also extended to the connection surface. 前記主面に形成する感光性導電ペーストによる電極導体部は、前記他面に形成した非感光性導電ペーストによる電極導体部の表面に重なり、前記感光性導電ペーストを露光、現像して導体パターンが形成されて前記主面と前記他面とに跨る電極導体を形成することを特徴とする請求項10記載の湿度検出機能を持つ電子部品の製造方法。The electrode conductor portion formed by the photosensitive conductive paste formed on the main surface overlaps the surface of the electrode conductor portion formed by the non-photosensitive conductive paste formed on the other surface, and the conductive conductive paste is exposed and developed to form a conductor pattern. The method of manufacturing an electronic component having a humidity detection function according to claim 10 , wherein an electrode conductor formed so as to straddle the main surface and the other surface is formed. 前記感光性導電ペーストを露光、現像した導体パターンでギャップを介して対向するように一対の電極導体部を形成し、少なくとも感湿膜で覆われる前記電極導体部の上層に金属メッキ膜を形成し、その後前記ギャップに感湿膜を設けることを特徴とする請求項10,11又は12記載の湿度検出機能を持つ電子部品の製造方法。A pair of electrode conductor portions are formed so as to face each other through a gap with a conductive pattern obtained by exposing and developing the photosensitive conductive paste, and a metal plating film is formed on an upper layer of the electrode conductor portion covered with at least a moisture sensitive film. 13. A method for manufacturing an electronic component having a humidity detection function according to claim 10, 11 or 12 , wherein a moisture sensitive film is provided in the gap thereafter. 前記感光性導電ペーストを露光、現像して形成した導体パターンからなる電極導体部は、少なくともその一部が、前記非感光性導電ペーストにより形成した電極導体部に重なって焼成されていることを特徴とする請求項9,10,11,12又は13記載の湿度検出機能を持つ電子部品の製造方法。The electrode conductor portion formed of a conductor pattern formed by exposing and developing the photosensitive conductive paste is at least partially baked to overlap the electrode conductor portion formed of the non-photosensitive conductive paste. A method for manufacturing an electronic component having a humidity detection function according to claim 9, 10, 11, 12, or 13 .
JP2000083800A 2000-03-24 2000-03-24 Electronic component having humidity detection function and manufacturing method thereof Expired - Fee Related JP4236021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000083800A JP4236021B2 (en) 2000-03-24 2000-03-24 Electronic component having humidity detection function and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000083800A JP4236021B2 (en) 2000-03-24 2000-03-24 Electronic component having humidity detection function and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001272366A JP2001272366A (en) 2001-10-05
JP4236021B2 true JP4236021B2 (en) 2009-03-11

Family

ID=18600373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000083800A Expired - Fee Related JP4236021B2 (en) 2000-03-24 2000-03-24 Electronic component having humidity detection function and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4236021B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104007147A (en) * 2014-06-06 2014-08-27 华进半导体封装先导技术研发中心有限公司 Device and method for detecting surface of bottom electrode in microstructure with high depth-width ratio

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002071613A (en) * 2000-06-14 2002-03-12 Shinei Kk Resistance detection type humidity sensing element and its manufacturing method
JP2006019589A (en) * 2004-07-02 2006-01-19 Denso Corp Semiconductor apparatus
JP2007278867A (en) * 2006-04-07 2007-10-25 Ghitron Technology Co Ltd Electrode structure of humidity sensing part
JP4765848B2 (en) * 2006-09-06 2011-09-07 株式会社デンソー Humidity sensor
JP5849836B2 (en) * 2012-04-10 2016-02-03 株式会社デンソー Humidity sensor
US10004433B2 (en) * 2014-07-07 2018-06-26 Verily Life Sciences Llc Electrochemical sensor chip

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0244390B2 (en) * 1983-01-19 1990-10-03 Mitsubishi Electric Corp KANSHITSUZAIRYO
JPS6221052A (en) * 1985-07-19 1987-01-29 Tokyo Kosumosu Denki Kk condensation sensor
JPH04318450A (en) * 1991-04-16 1992-11-10 Nok Corp Electrostatic capacitance-type humidity sensor
JPH0666756A (en) * 1992-08-24 1994-03-11 Tokyo Cosmos Electric Co Ltd Condensation sensor paste for moisture-sensitive resistor and manufacturing method thereof
JP4159056B2 (en) * 1995-01-05 2008-10-01 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Aqueous developable photosensitive resistor composition for photolithography and method for forming thick film resistor
JPH10112216A (en) * 1996-08-09 1998-04-28 Toray Ind Inc Photosensitive conductive paste, electrode therewith and manufacture thereof
JP3520721B2 (en) * 1997-05-28 2004-04-19 東レ株式会社 Method for producing photosensitive conductive paste and electrode
JP3168983B2 (en) * 1998-05-20 2001-05-21 日本電気株式会社 Contact pin for printed circuit board inspection and method of manufacturing the same
JP3094993B2 (en) * 1998-07-23 2000-10-03 株式会社村田製作所 Electronic component manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104007147A (en) * 2014-06-06 2014-08-27 华进半导体封装先导技术研发中心有限公司 Device and method for detecting surface of bottom electrode in microstructure with high depth-width ratio
CN104007147B (en) * 2014-06-06 2016-07-13 华进半导体封装先导技术研发中心有限公司 The detecting device of bottom electrode surface and detection method in high aspect ratio microstructures

Also Published As

Publication number Publication date
JP2001272366A (en) 2001-10-05

Similar Documents

Publication Publication Date Title
JP4722318B2 (en) Chip resistor
JP4202606B2 (en) Equipment for humidity measurement
JP4502090B2 (en) Electronic component and manufacturing method thereof
JPH11204301A (en) Resistor
JP4236021B2 (en) Electronic component having humidity detection function and manufacturing method thereof
WO2020246253A1 (en) Sulfurization detection sensor
JP5262159B2 (en) Method for manufacturing thin film chip resistor
JP4051783B2 (en) Jumper resistor
JP7197393B2 (en) Sulfurization detection sensor and manufacturing method thereof
JPH0595071U (en) Thick film circuit board
TW577249B (en) Printed steel plate and process applied in SMT assembly of SMT electronic components
CN221150009U (en) Package structure
JP2020125966A (en) Sulfurization detection resistor
JP7359714B2 (en) Sulfide detection sensor
JP3460384B2 (en) Composite electronic component and method of manufacturing the same
JP5295071B2 (en) Base for pressure detection device and pressure detection device
JP2009147129A (en) Wiring board and manufacturing method thereof
JPH11126797A (en) Wiring board connection structure
JP2024147444A (en) Electronic Circuit Device
JP2024069349A (en) Wiring Board
JP2021067463A (en) Sulfurization detection sensor and mounting structure of sulfurization detection sensor
JP2001264384A (en) Substrate for measuring electric characteristics and measuring method thereof
JPH03297190A (en) Printed wiring board
JP2004335858A (en) Electronic device and electronic apparatus employing the same
JP2006071292A (en) Manufacturing method of circuit device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080917

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081210

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4236021

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131226

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees