Nothing Special   »   [go: up one dir, main page]

JP4233024B2 - Pulse backwash device for ceramic filter - Google Patents

Pulse backwash device for ceramic filter Download PDF

Info

Publication number
JP4233024B2
JP4233024B2 JP2003084459A JP2003084459A JP4233024B2 JP 4233024 B2 JP4233024 B2 JP 4233024B2 JP 2003084459 A JP2003084459 A JP 2003084459A JP 2003084459 A JP2003084459 A JP 2003084459A JP 4233024 B2 JP4233024 B2 JP 4233024B2
Authority
JP
Japan
Prior art keywords
backwashing
ceramic filter
container
backwash
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003084459A
Other languages
Japanese (ja)
Other versions
JP2004290769A (en
Inventor
晋 松▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2003084459A priority Critical patent/JP4233024B2/en
Publication of JP2004290769A publication Critical patent/JP2004290769A/en
Application granted granted Critical
Publication of JP4233024B2 publication Critical patent/JP4233024B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Filtering Of Dispersed Particles In Gases (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、放射性雑固体廃棄物の焼却炉などから出た高温の排ガスを処理する集塵装置に組み込んで用いられるセラミックフィルタのパルス逆洗装置に関するものである。
【0002】
【従来の技術】
【特許文献1】
特公平6−59374号公報
【0003】
放射性雑固体廃棄物の焼却炉排ガスを処理するための集塵装置には、上記の特許文献1に示すように、従来からセラミックフィルタが用いられている。このセラミックフィルタCはキャンドル型と呼ばれる有底円筒状のものであり、図4に示すように容器1内に水平に設けられた支持板2に首部を支持されて吊り下げられている。この支持板2は容器1の内部を排ガス流入室3と上部の清浄室4とに区画するためのもので、高温の排ガスは容器下部の排ガス流入口5から排ガス流入室3に入り、セラミックフィルタCの多孔質の壁面でろ過される。そして清浄ガスは容器1の上部の清浄ガス取出し口6から排出される。
【0004】
このような運転を継続していると、ダストによりセラミックフィルタCの多孔質の壁面が次第に目詰まりしてろ過差圧が上昇してくる。このため従来は容器1の天井面に図4に示すように逆洗用パイプ7を設置し、この逆洗用パイプ7から圧縮空気を清浄室4内にバックブローすることによって、各セラミックフィルタCの目詰まり物質を一括して払い落としている。しかしこのような一括逆洗方式は設備停止が必要となるうえ、十分な逆洗効果が得られないという問題がある。
【0005】
そこで本発明者等は一括逆洗方式に代えて、図5に示すように先端を1本ないし数本のセラミックフィルタCに対向させた逆洗ノズル8を前記支持板2の上部に多数配置し、各逆洗ノズル8に対して圧縮空気を順次パルス的に供給するパルス逆洗方式を開発した。パルス逆洗のためには、0.05秒以下の高速度で弁の開閉が可能なストレート型電磁弁9が用いられる。この方式によれば設備の運転を継続したままで順次逆洗が可能となる。なおこのような逆洗ノズル8については、特許文献1にも開示されている。
【0006】
ところが、パルス逆洗を行ったセラミックフィルタCを詳細に観察すると、全長が1500mmのセラミックフィルタCのうち、下側部分は目詰まり物質が十分に除去されているものの、上側部分については除去効果が不十分であることが判明した。このため圧力センサを取り付けて逆洗時におけるセラミックフィルタCの表面の圧力を測定したところ、逆洗時平均圧力は2.4kPaに過ぎないことが確認された。
【0007】
このように有底円筒状のセラミックフィルタCの口部から圧縮空気をパルスジェットとして吹き込んだ場合、上側部分よりも下側部分の圧力が高まることはある程度は止むを得ないことである。しかし逆洗効果を高めて実設備で問題なく稼動させるためには、セラミックフィルタCの逆洗時平均表面圧力が9.8kPa以上となることが望まれる。
【0008】
この目的を簡単に達成するためには、逆洗用圧縮空気の元圧を現状の600kPaよりも高めればよい。しかし、このように逆洗用圧縮空気の元圧を高めると逆洗時に容器1の内圧が高まり、放射性物質の外部への漏洩を防止するために常に負圧運転を行うという設備の原則を損なうこととなる。従って逆洗用圧縮空気の元圧を高めることなく、セラミックフィルタの逆洗圧力を高める必要がある。
【0009】
【発明が解決しようとする課題】
本発明は上記した従来の問題点を解決して、設備の運転を継続したままで順次逆洗が可能なパルス逆洗を行うことができ、しかも逆洗用圧縮空気の元圧を高めることなく、セラミックフィルタの全長にわたって十分な逆洗圧力を与えることができるセラミックフィルタのパルス逆洗装置を提供するためになされたものである。
【0010】
【課題を解決するための手段】
上記の課題を解決するためになされた本発明は、容器内の支持板に首部を支持された多数本のセラミックフィルタのパルス逆洗装置であって、先端を1本ないし数本のセラミックフィルタに対向させた逆洗ノズルを、その先端とセラミックフィルタの上端との距離を20〜40mmとして前記支持板の上部に多数配置するとともに、各逆洗ノズルの基部に接続されたパイプを容器天井面を貫通させて容器外周に水平に引き出し、弁の流量計数であるCv値が80以上のアングル型電磁弁を介して容器外周のヘッダに接続したことを特徴とするものである。
【0011】
本発明は、各逆洗ノズルの基部に接続されたパイプを容器天井面を貫通させて容器外周に水平に引き出し、アングル型電磁弁を介して容器外周のヘッダに接続したことを特徴としている。以下に説明するとおり、アングル型電磁弁は通常の電磁弁とは異なり、圧縮空気の入口流路と出口流路とに直角等の角度を持たせてあり、その交差部分に弁座が設けられている。このため弁の作動開始と同時に多量の圧縮空気を逆洗ノズルに流すことができ、逆洗用圧縮空気の元圧を高めることなく、セラミックフィルタの逆洗時平均表面圧力が9.8kPa以上の逆洗圧力を与えることができる。
【0012】
【発明の実施の形態】
以下に本発明の好ましい実施形態を示す。
図1は本発明の好ましい実施形態を示す斜視図、図2はその平面図である。集塵装置の構造は従来と同様であり、1は容器、2はその内部を排ガス流入室3と上部の清浄室4とに区画する支持板であって、多数本のキャンドル型のセラミックフィルタCが支持板2に首部を支持されて吊り下げられている。この実施形態ではセラミックフィルタCの本数は約100程度である。高温の排ガスは容器下部の排ガス流入口5から排ガス流入室3に入り、セラミックフィルタCの多孔質の壁面でろ過される。そして清浄ガスは容器1の上部の清浄ガス取出し口6から排出されるようになっている。
【0013】
支持板2の上部には、先端を1本ないし数本のセラミックフィルタCに対向させた逆洗ノズル8が多数配置されている。この実施形態では逆洗ノズル8は同時に4本のセラミックフィルタCを逆洗できる構造となっているが、その本数は10本程度までは増やすことができる。各逆洗ノズル8の基部に接続されたパイプ10は容器天井面11を貫通させて容器外周に水平に引き出されている。容器外周にはリング状のヘッダ管19が配置されており、ヘッダ管19から延びる垂直パイプ12の上端にそれぞれアングル型電磁弁13が配置されている。そしてパイプ10はこれらのアングル型電磁弁13を介して、容器外周のヘッダ管19に接続されている。アングル型電磁弁13は図示しない制御装置により順次開かれ、ヘッダ管19内の圧縮空気を各逆洗ノズル8に約2秒間程度ずつ順次供給してパルス逆洗を行う。
【0014】
図3は、アングル型電磁弁13の内部を従来のストレート型電磁弁9と対比した概念図である。いずれもソレノイド14により駆動されるディスク15を内部に備え、弁座16に対してディスク15を接離させることにより開閉動作を行う。しかし圧縮空気の入口流路17と出口流路18とを同一直線上に配置したストレート型電磁弁9においては、ディスク15が弁座16から離れた際に圧縮空気が矢印で示す狭い流路を複雑に屈曲して流れるのに対し、入口流路17と出口流路18とを直交させたアングル型電磁弁13では、弁の内部空間を大きく取ることができ、ディスク15が弁座16から離れた際の流れが単純である。
【0015】
このため、本発明によればアングル型電磁弁13が開いた瞬間に大量の圧縮空気を逆洗ノズル8に供給することができ、逆洗用圧縮空気の元圧を高めることなく、セラミックフィルタの逆洗時平均表面圧力が9.8kPa以上の逆洗圧力を与えることができる。なお、電磁弁の能力は弁の流量計数であるCv値であらわすことができる。Cv値は弁を全開にして弁前後の圧力降下を1psiにしたときの水の流量をgal/minの単位で表した値である。本発明ではCv値が80以上のものを使用することが好ましく、50Aのアングル型電磁弁のCv値は80以上、80Aのアングル型電磁弁のCv値は100以上となる。
【0016】
なお、逆洗ノズル8の先端とセラミックフィルタCの上端とは密着させるのではなく、20〜40mmの距離を持たせて設置することが好ましい。これにより逆洗時に周囲のガスが逆洗用空気に随伴してセラミックフィルタCの内部に入り、逆洗効果を高めることができる。以下に本発明の実施例を示す。
【0017】
【実施例】
(実施例1)
実施形態に示したセラミックフィルタCを備えた試験装置を用い、同時に4本の逆洗が可能な逆洗ノズルから元圧が600kPaの逆洗用空気を2秒間パルスジェットした。空気量は10〜15リットル、ノズル先端径は20mmである。使用したアングル型電磁弁は50Aのサイズであり、動作速度は0.05秒以下、逆洗ノズルの先端とセラミックフィルタCの上端とは20mm離した。その結果、セラミックフィルタCの逆洗時平均表面圧力は14.2kPaに達した。また逆洗ノズルの先端とセラミックフィルタCの上端とを40mm離したところ、セラミックフィルタCの平均逆洗圧力は13.4kPaに達し、いずれも優れた逆洗効果が得られた。
【0018】
(実施例2)
実施例1と同じ集塵装置を用い、同時に7本の逆洗が可能な逆洗ノズルから元圧が600kPaの逆洗用空気を2秒間パルスジェットした。空気量は30〜36リットル、ノズル先端径は23mmである。使用したアングル型電磁弁は80Aのサイズであり、動作速度は0.05秒以下、逆洗ノズルの先端とセラミックフィルタCの上端とは40mm離した。その結果、セラミックフィルタCの逆洗時平均表面圧力は13.7kPaに達し、優れた逆洗効果が得られた。
【0019】
【発明の効果】
以上に説明したように、本発明のセラミックフィルタのパルス逆洗装置によれば、集塵設備の運転を継続したままで順次セラミックフィルタの逆洗が可能である。しかも逆洗用圧縮空気の供給経路を改良したことにより、元圧を高めることなくセラミックフィルタの逆洗時平均表面圧力が9.8kPa以上の逆洗圧力を与え、優れた逆洗効果を得ることができる。
【図面の簡単な説明】
【図1】本発明の実施形態を示す斜視図である。
【図2】本発明の実施形態を示す平面図である。
【図3】アングル型電磁弁とストレート型電磁弁とを対比した概念図である。
【図4】従来の一括逆洗方式を示す斜視図である。
【図5】先行するパルス逆洗方式を示す断面図である。
【符号の説明】
1 容器、2 支持板、3 排ガス流入室、4 清浄室、5 排ガス流入口、6清浄ガス取出し口、7 逆洗用パイプ、8 逆洗ノズル、9 ストレート型電磁弁、10 パイプ、11 容器天井面、12 垂直パイプ、13 アングル型電磁弁、14 ソレノイド、15 ディスク、16 弁座、17 入口流路、18 出口流路、19 ヘッダ管、C セラミックフィルタ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pulse backwashing device for a ceramic filter used by being incorporated in a dust collector for treating high-temperature exhaust gas emitted from an incinerator or the like of radioactive miscellaneous solid waste.
[0002]
[Prior art]
[Patent Document 1]
Japanese Examined Patent Publication No. 6-59374
As shown in Patent Document 1, a ceramic filter has been conventionally used in a dust collector for treating incinerator exhaust gas of radioactive miscellaneous solid waste. This ceramic filter C has a bottomed cylindrical shape called a candle type, and is suspended with a neck supported by a support plate 2 provided horizontally in the container 1 as shown in FIG. This support plate 2 is for partitioning the inside of the container 1 into an exhaust gas inflow chamber 3 and an upper cleaning chamber 4, and high temperature exhaust gas enters the exhaust gas inflow chamber 3 from the exhaust gas inlet 5 at the lower part of the container, and passes through the ceramic filter. It is filtered through the C porous wall. Then, the clean gas is discharged from the clean gas outlet 6 at the top of the container 1.
[0004]
If such an operation is continued, the porous wall surface of the ceramic filter C is gradually clogged with dust, and the filtration differential pressure increases. For this reason, conventionally, as shown in FIG. 4, a backwash pipe 7 is installed on the ceiling surface of the container 1, and compressed air is back-blowed into the clean chamber 4 from the backwash pipe 7. All the clogging substances are removed. However, such a batch backwashing method requires the facility to be stopped and has a problem that a sufficient backwashing effect cannot be obtained.
[0005]
In view of this, the present inventors have arranged a large number of backwash nozzles 8 with their tips opposed to one or several ceramic filters C as shown in FIG. A pulse backwashing system has been developed in which compressed air is sequentially supplied to each backwashing nozzle 8 in a pulsed manner. For pulse backwashing, a straight solenoid valve 9 capable of opening and closing the valve at a high speed of 0.05 seconds or less is used. According to this method, backwashing can be performed sequentially while the operation of the facility is continued. Such a backwash nozzle 8 is also disclosed in Patent Document 1.
[0006]
However, when the ceramic filter C subjected to the pulse back washing is observed in detail, the clogging substance is sufficiently removed in the lower part of the ceramic filter C having a total length of 1500 mm, but the removal effect is obtained in the upper part. It turned out to be insufficient. For this reason, when a pressure sensor was attached and the pressure on the surface of the ceramic filter C during backwashing was measured, it was confirmed that the average pressure during backwashing was only 2.4 kPa.
[0007]
Thus, when compressed air is blown as a pulse jet from the mouth of the bottomed cylindrical ceramic filter C, it is inevitable that the pressure in the lower part is higher than the upper part. However, in order to enhance the backwashing effect and operate without problems in actual equipment, it is desirable that the average surface pressure during backwashing of the ceramic filter C be 9.8 kPa or more.
[0008]
In order to easily achieve this object, the original pressure of the compressed air for backwashing may be increased from the current 600 kPa. However, if the original pressure of the compressed air for backwashing is increased in this way, the internal pressure of the container 1 increases during backwashing, and the principle of equipment that always performs negative pressure operation to prevent leakage of radioactive substances to the outside is impaired. It will be. Therefore, it is necessary to increase the backwash pressure of the ceramic filter without increasing the original pressure of the compressed air for backwashing.
[0009]
[Problems to be solved by the invention]
The present invention solves the above-mentioned conventional problems, and can perform pulse backwashing that can be sequentially backwashed while the operation of the equipment is continued, and without increasing the original pressure of the compressed air for backwashing. The present invention has been made to provide a pulse backwashing device for a ceramic filter capable of providing a sufficient backwashing pressure over the entire length of the ceramic filter.
[0010]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention provides a pulse backwashing device for a plurality of ceramic filters whose necks are supported by a support plate in a container, the tip of which is one or several ceramic filters. A number of backwash nozzles opposed to each other are arranged on the upper part of the support plate with a distance between the tip of the ceramic filter and the upper end of the ceramic filter of 20 to 40 mm, and pipes connected to the bases of the backwash nozzles are arranged on the container ceiling surface. It is penetrated and drawn horizontally to the outer periphery of the container, and is connected to the header on the outer periphery of the container through an angle type electromagnetic valve having a Cv value of 80 or more as a flow rate count of the valve .
[0011]
The present invention is characterized in that a pipe connected to the base of each backwash nozzle passes through the top surface of the container, is drawn horizontally to the outer periphery of the container, and is connected to a header on the outer periphery of the container via an angle type electromagnetic valve. As described below, the angle type solenoid valve is different from a normal solenoid valve in that an angle such as a right angle is formed between the inlet flow path and the outlet flow path of the compressed air, and a valve seat is provided at the intersection. ing. For this reason, a large amount of compressed air can flow to the backwash nozzle simultaneously with the start of the valve operation, and the average surface pressure during backwashing of the ceramic filter is not less than 9.8 kPa without increasing the original pressure of the compressed air for backwashing. Backwash pressure can be applied.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Preferred embodiments of the present invention are shown below.
FIG. 1 is a perspective view showing a preferred embodiment of the present invention, and FIG. 2 is a plan view thereof. The structure of the dust collector is the same as in the prior art. 1 is a container, 2 is a support plate that divides the inside into an exhaust gas inflow chamber 3 and an upper cleaning chamber 4, and a large number of candle-type ceramic filters C Is supported by the support plate 2 with the neck supported. In this embodiment, the number of ceramic filters C is about 100. The hot exhaust gas enters the exhaust gas inflow chamber 3 from the exhaust gas inlet 5 at the bottom of the container and is filtered by the porous wall surface of the ceramic filter C. The clean gas is discharged from the clean gas outlet 6 at the top of the container 1.
[0013]
A large number of backwash nozzles 8 with their tips opposed to one or several ceramic filters C are arranged on the upper side of the support plate 2. In this embodiment, the backwash nozzle 8 has a structure capable of backwashing four ceramic filters C at the same time, but the number can be increased up to about ten. A pipe 10 connected to the base of each backwash nozzle 8 penetrates the container ceiling surface 11 and is drawn horizontally to the outer periphery of the container. A ring-shaped header pipe 19 is arranged on the outer periphery of the container, and angle type electromagnetic valves 13 are arranged at the upper ends of the vertical pipes 12 extending from the header pipe 19. The pipe 10 is connected to the header pipe 19 on the outer periphery of the container via these angle type electromagnetic valves 13. The angle type solenoid valve 13 is sequentially opened by a control device (not shown), and the compressed air in the header pipe 19 is sequentially supplied to each backwash nozzle 8 for about 2 seconds to perform pulse backwashing.
[0014]
FIG. 3 is a conceptual diagram in which the angle type electromagnetic valve 13 is compared with the conventional straight type electromagnetic valve 9. In either case, a disk 15 driven by a solenoid 14 is provided inside, and an opening / closing operation is performed by bringing the disk 15 into and out of contact with the valve seat 16. However, in the straight type electromagnetic valve 9 in which the compressed air inlet channel 17 and the outlet channel 18 are arranged on the same straight line, when the disk 15 is separated from the valve seat 16, the compressed air has a narrow channel indicated by an arrow. The angle type electromagnetic valve 13 in which the inlet channel 17 and the outlet channel 18 are orthogonal to each other while flowing in a complicated manner allows a large internal space of the valve, and the disk 15 is separated from the valve seat 16. The flow is simple.
[0015]
For this reason, according to the present invention, a large amount of compressed air can be supplied to the backwashing nozzle 8 at the moment when the angle type electromagnetic valve 13 is opened, and without increasing the original pressure of the backwashing compressed air, An average surface pressure at the time of backwashing can give a backwashing pressure of 9.8 kPa or more. The capability of the solenoid valve can be expressed by a Cv value that is a flow rate count of the valve. The Cv value is a value representing the flow rate of water in the unit of gal / min when the valve is fully opened and the pressure drop before and after the valve is 1 psi. In the present invention, it is preferable to use a Cv value of 80 or more. The Cv value of a 50A angle type solenoid valve is 80 or more, and the Cv value of an 80A angle type solenoid valve is 100 or more.
[0016]
The tip of the backwash nozzle 8 and the upper end of the ceramic filter C are not in close contact with each other, but are preferably installed with a distance of 20 to 40 mm. Thereby, the surrounding gas enters the inside of the ceramic filter C along with the backwashing air during backwashing, and the backwashing effect can be enhanced. Examples of the present invention are shown below.
[0017]
【Example】
Example 1
Using the test apparatus provided with the ceramic filter C shown in the embodiment, backwashing air having an original pressure of 600 kPa was pulse jetted for 2 seconds from four backwashing nozzles capable of backwashing at the same time. The amount of air is 10 to 15 liters, and the nozzle tip diameter is 20 mm. The angle type solenoid valve used had a size of 50A, the operation speed was 0.05 seconds or less, and the tip of the backwash nozzle and the top of the ceramic filter C were separated by 20 mm. As a result, the average surface pressure during backwashing of the ceramic filter C reached 14.2 kPa. When the tip of the backwash nozzle and the upper end of the ceramic filter C were separated by 40 mm, the average backwash pressure of the ceramic filter C reached 13.4 kPa, and an excellent backwash effect was obtained in all cases.
[0018]
(Example 2)
Using the same dust collector as in Example 1, air for backwashing with an original pressure of 600 kPa was pulse jetted for 2 seconds from 7 backwashing nozzles capable of backwashing at the same time. The amount of air is 30 to 36 liters, and the nozzle tip diameter is 23 mm. The angle type solenoid valve used had a size of 80 A, the operation speed was 0.05 seconds or less, and the tip of the backwash nozzle and the top of the ceramic filter C were separated by 40 mm. As a result, the average surface pressure during backwashing of the ceramic filter C reached 13.7 kPa, and an excellent backwashing effect was obtained.
[0019]
【The invention's effect】
As described above, according to the ceramic filter pulse backwashing device of the present invention, the ceramic filter can be backwashed sequentially while the operation of the dust collecting equipment is continued. Moreover, by improving the supply path of the compressed air for backwashing, the average surface pressure during backwashing of the ceramic filter is given a backwash pressure of 9.8 kPa or more without increasing the original pressure, and an excellent backwashing effect is obtained. Can do.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an embodiment of the present invention.
FIG. 2 is a plan view showing an embodiment of the present invention.
FIG. 3 is a conceptual diagram comparing an angle type solenoid valve and a straight type solenoid valve.
FIG. 4 is a perspective view showing a conventional batch backwash system.
FIG. 5 is a cross-sectional view showing a preceding pulse backwashing system.
[Explanation of symbols]
1 container, 2 support plate, 3 exhaust gas inflow chamber, 4 clean room, 5 exhaust gas inlet, 6 clean gas outlet, 7 backwash pipe, 8 backwash nozzle, 9 straight solenoid valve, 10 pipe, 11 container ceiling Surface, 12 Vertical pipe, 13 Angle type solenoid valve, 14 Solenoid, 15 Disc, 16 Valve seat, 17 Inlet flow path, 18 Outlet flow path, 19 Header pipe, C Ceramic filter

Claims (1)

容器内の支持板に首部を支持された多数本のセラミックフィルタのパルス逆洗装置であって、先端を1本ないし数本のセラミックフィルタに対向させた逆洗ノズルを、その先端とセラミックフィルタの上端との距離を20〜40mmとして前記支持板の上部に多数配置するとともに、各逆洗ノズルの基部に接続されたパイプを容器天井面を貫通させて容器外周に水平に引き出し、弁の流量計数であるCv値が80以上のアングル型電磁弁を介して容器外周のヘッダに接続したことを特徴とするセラミックフィルタのパルス逆洗装置。A pulse backwashing device for a plurality of ceramic filters whose necks are supported by a support plate in a container, wherein a backwashing nozzle having a tip opposed to one or several ceramic filters is connected to the tip and the ceramic filter. A large number of pipes connected to the base of each backwash nozzle are pulled out to the outer circumference of the container horizontally through the top of the support plate with a distance of 20 to 40 mm from the upper end, and the flow rate of the valve is counted. A pulse backwashing device for a ceramic filter, which is connected to a header on the outer periphery of a container through an angle type solenoid valve having a Cv value of 80 or more .
JP2003084459A 2003-03-26 2003-03-26 Pulse backwash device for ceramic filter Expired - Fee Related JP4233024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003084459A JP4233024B2 (en) 2003-03-26 2003-03-26 Pulse backwash device for ceramic filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003084459A JP4233024B2 (en) 2003-03-26 2003-03-26 Pulse backwash device for ceramic filter

Publications (2)

Publication Number Publication Date
JP2004290769A JP2004290769A (en) 2004-10-21
JP4233024B2 true JP4233024B2 (en) 2009-03-04

Family

ID=33399626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003084459A Expired - Fee Related JP4233024B2 (en) 2003-03-26 2003-03-26 Pulse backwash device for ceramic filter

Country Status (1)

Country Link
JP (1) JP4233024B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100699340B1 (en) 2005-07-21 2007-03-26 한국서부발전 주식회사 Back-fed tubing with variable branch pipes for easy backwash water discharge from the ion exchange resin regeneration tank
ES2574408T3 (en) * 2012-02-28 2016-06-17 Pall Corporation Hot gas filtration system and procedure to regenerate said system

Also Published As

Publication number Publication date
JP2004290769A (en) 2004-10-21

Similar Documents

Publication Publication Date Title
JP5379401B2 (en) High pressure blowback gas delivery system utilizing a plenum in a flow filtration system, performed in a continuous process configuration
US3726066A (en) Dust collector
CA1306958C (en) Backflushed air filters
US10300411B2 (en) Filtration system and method
US6736881B2 (en) Method and arrangement for cleaning pipe-shaped filter elements
US3513638A (en) Filter
US5242472A (en) Flow restrictor in a pulse cleaning system
JPH10503967A (en) Apparatus and method for removing particulate deposits from high temperature filters
US4113449A (en) Baghouse cleaning method
WO2001080966A1 (en) Vertical filter and method
JP4233024B2 (en) Pulse backwash device for ceramic filter
US3537239A (en) Smoke abatement device
US3289839A (en) Filtering equipment for fluids
CN115581977A (en) Filter device operation method and filter device
JPH0252525B2 (en)
JP2002537969A (en) Purification equipment
CN215505976U (en) Back-washing type dust collecting filter cylinder
JP4243122B2 (en) Backwash equipment
CN107648940A (en) A kind of method filtered using pneumatic filter
RU1672790C (en) Apparatus for removing acidic and alkaline aerosols from air
CN209188535U (en) Big flux ultrafiltration membrane water purifier
JPS63100913A (en) Dust removing device
SU1680273A1 (en) Bag filter for cleaning gases from dust
JPH01193011A (en) Processing device for dust containing gas
JPH07332647A (en) Multiple-tube and-chamber dedusting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081205

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4233024

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees