JP4231967B2 - Oxide sintered body, method for producing the same, transparent conductive film, and solar cell obtained using the same - Google Patents
Oxide sintered body, method for producing the same, transparent conductive film, and solar cell obtained using the same Download PDFInfo
- Publication number
- JP4231967B2 JP4231967B2 JP2007233826A JP2007233826A JP4231967B2 JP 4231967 B2 JP4231967 B2 JP 4231967B2 JP 2007233826 A JP2007233826 A JP 2007233826A JP 2007233826 A JP2007233826 A JP 2007233826A JP 4231967 B2 JP4231967 B2 JP 4231967B2
- Authority
- JP
- Japan
- Prior art keywords
- oxide
- sintered body
- phase
- film
- atomic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 56
- 239000010408 film Substances 0.000 claims description 521
- 239000012071 phase Substances 0.000 claims description 404
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 266
- 229910052596 spinel Inorganic materials 0.000 claims description 171
- 239000011029 spinel Substances 0.000 claims description 171
- 239000000203 mixture Substances 0.000 claims description 153
- 229910052782 aluminium Inorganic materials 0.000 claims description 141
- 229910052733 gallium Inorganic materials 0.000 claims description 128
- 239000011787 zinc oxide Substances 0.000 claims description 126
- 239000000758 substrate Substances 0.000 claims description 120
- 239000000843 powder Substances 0.000 claims description 114
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 108
- 239000011701 zinc Substances 0.000 claims description 105
- 238000002834 transmittance Methods 0.000 claims description 103
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 102
- 239000013078 crystal Substances 0.000 claims description 101
- 239000002994 raw material Substances 0.000 claims description 82
- 229910052984 zinc sulfide Inorganic materials 0.000 claims description 75
- 238000004544 sputter deposition Methods 0.000 claims description 74
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 claims description 65
- 229910001195 gallium oxide Inorganic materials 0.000 claims description 65
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 64
- 238000010304 firing Methods 0.000 claims description 60
- 238000002156 mixing Methods 0.000 claims description 58
- 239000010409 thin film Substances 0.000 claims description 46
- 239000011324 bead Substances 0.000 claims description 42
- 239000004065 semiconductor Substances 0.000 claims description 42
- 229910052725 zinc Inorganic materials 0.000 claims description 37
- 238000012545 processing Methods 0.000 claims description 28
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 23
- 239000011521 glass Substances 0.000 claims description 20
- 229910052751 metal Inorganic materials 0.000 claims description 19
- 239000002184 metal Substances 0.000 claims description 19
- 239000002002 slurry Substances 0.000 claims description 18
- 150000001875 compounds Chemical class 0.000 claims description 17
- 238000007733 ion plating Methods 0.000 claims description 13
- 230000031700 light absorption Effects 0.000 claims description 13
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 9
- 229910052710 silicon Inorganic materials 0.000 claims description 9
- 239000010703 silicon Substances 0.000 claims description 9
- LNTHITQWFMADLM-UHFFFAOYSA-N gallic acid Chemical compound OC(=O)C1=CC(O)=C(O)C(O)=C1 LNTHITQWFMADLM-UHFFFAOYSA-N 0.000 claims description 8
- 229910052749 magnesium Inorganic materials 0.000 claims description 7
- 229910004613 CdTe Inorganic materials 0.000 claims description 6
- 239000006104 solid solution Substances 0.000 claims description 6
- 229910000611 Zinc aluminium Inorganic materials 0.000 claims description 4
- 239000012736 aqueous medium Substances 0.000 claims description 3
- 229910052793 cadmium Inorganic materials 0.000 claims description 3
- 229920003023 plastic Polymers 0.000 claims description 2
- 239000004033 plastic Substances 0.000 claims description 2
- 238000000034 method Methods 0.000 description 134
- 230000015572 biosynthetic process Effects 0.000 description 107
- 239000002245 particle Substances 0.000 description 96
- 239000000463 material Substances 0.000 description 57
- 238000004458 analytical method Methods 0.000 description 48
- 238000006243 chemical reaction Methods 0.000 description 48
- 238000005477 sputtering target Methods 0.000 description 33
- 230000000052 comparative effect Effects 0.000 description 27
- 238000010894 electron beam technology Methods 0.000 description 27
- 239000007789 gas Substances 0.000 description 25
- 238000004993 emission spectroscopy Methods 0.000 description 24
- 230000005540 biological transmission Effects 0.000 description 23
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 23
- 238000005259 measurement Methods 0.000 description 23
- 238000000634 powder X-ray diffraction Methods 0.000 description 23
- 239000011148 porous material Substances 0.000 description 22
- 229910021417 amorphous silicon Inorganic materials 0.000 description 21
- 238000010298 pulverizing process Methods 0.000 description 20
- 238000010438 heat treatment Methods 0.000 description 18
- 229910052738 indium Inorganic materials 0.000 description 18
- 229910052760 oxygen Inorganic materials 0.000 description 18
- 238000005245 sintering Methods 0.000 description 18
- 239000001301 oxygen Substances 0.000 description 16
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 15
- 230000003628 erosive effect Effects 0.000 description 15
- 238000000465 moulding Methods 0.000 description 15
- 239000011347 resin Substances 0.000 description 15
- 229920005989 resin Polymers 0.000 description 15
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 14
- -1 argon cations Chemical class 0.000 description 14
- 230000002159 abnormal effect Effects 0.000 description 13
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 12
- 230000002950 deficient Effects 0.000 description 11
- 229910052786 argon Inorganic materials 0.000 description 9
- 239000002019 doping agent Substances 0.000 description 9
- 150000002500 ions Chemical class 0.000 description 9
- 238000001755 magnetron sputter deposition Methods 0.000 description 9
- 239000010949 copper Substances 0.000 description 8
- 230000006378 damage Effects 0.000 description 8
- 229910021424 microcrystalline silicon Inorganic materials 0.000 description 8
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 7
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 6
- 238000009792 diffusion process Methods 0.000 description 6
- 239000011777 magnesium Substances 0.000 description 6
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 description 6
- 238000001771 vacuum deposition Methods 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 5
- 239000000919 ceramic Substances 0.000 description 5
- 238000013329 compounding Methods 0.000 description 5
- 238000000151 deposition Methods 0.000 description 5
- 238000010891 electric arc Methods 0.000 description 5
- 239000003574 free electron Substances 0.000 description 5
- 238000000227 grinding Methods 0.000 description 5
- 239000012535 impurity Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 4
- 239000004372 Polyvinyl alcohol Substances 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 125000004429 atom Chemical group 0.000 description 4
- 238000010296 bead milling Methods 0.000 description 4
- 230000008602 contraction Effects 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 229910001882 dioxygen Inorganic materials 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 238000000265 homogenisation Methods 0.000 description 4
- 229910003437 indium oxide Inorganic materials 0.000 description 4
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 4
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 4
- 229920002451 polyvinyl alcohol Polymers 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 229910052718 tin Inorganic materials 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 229910006404 SnO 2 Inorganic materials 0.000 description 3
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Natural products NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 3
- 238000000498 ball milling Methods 0.000 description 3
- 238000009694 cold isostatic pressing Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 239000011812 mixed powder Substances 0.000 description 3
- 239000011259 mixed solution Substances 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 3
- 229910001887 tin oxide Inorganic materials 0.000 description 3
- 229910018516 Al—O Inorganic materials 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005401 electroluminescence Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 125000005842 heteroatom Chemical group 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 239000011268 mixed slurry Substances 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000005546 reactive sputtering Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 238000009751 slip forming Methods 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 239000013077 target material Substances 0.000 description 2
- 238000011077 uniformity evaluation Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910005793 GeO 2 Inorganic materials 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- 229910020923 Sn-O Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 206010048259 Zinc deficiency Diseases 0.000 description 1
- GEIAQOFPUVMAGM-UHFFFAOYSA-N ZrO Inorganic materials [Zr]=O GEIAQOFPUVMAGM-UHFFFAOYSA-N 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- XJVBHCCEUWWHMI-UHFFFAOYSA-N argon(.1+) Chemical compound [Ar+] XJVBHCCEUWWHMI-UHFFFAOYSA-N 0.000 description 1
- 238000000098 azimuthal photoelectron diffraction Methods 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000002003 electron diffraction Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 150000002259 gallium compounds Chemical class 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000001659 ion-beam spectroscopy Methods 0.000 description 1
- 238000000752 ionisation method Methods 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000000608 laser ablation Methods 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 150000003346 selenoethers Chemical class 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 230000009974 thixotropic effect Effects 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/10—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/6261—Milling
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/22—Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
- C03C17/23—Oxides
- C03C17/245—Oxides by deposition from the vapour phase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/453—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
- C23C14/086—Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/10—Glass or silica
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
- C23C14/3414—Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
- H01L31/1884—Manufacture of transparent electrodes, e.g. TCO, ITO
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3217—Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3217—Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
- C04B2235/3222—Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3284—Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3286—Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5445—Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/76—Crystal structural characteristics, e.g. symmetry
- C04B2235/762—Cubic symmetry, e.g. beta-SiC
- C04B2235/763—Spinel structure AB2O4
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/76—Crystal structural characteristics, e.g. symmetry
- C04B2235/767—Hexagonal symmetry, e.g. beta-Si3N4, beta-Sialon, alpha-SiC or hexa-ferrites
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/78—Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
- C04B2235/786—Micrometer sized grains, i.e. from 1 to 100 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/80—Phases present in the sintered or melt-cast ceramic products other than the main phase
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Structural Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Physical Vapour Deposition (AREA)
- Photovoltaic Devices (AREA)
- Non-Insulated Conductors (AREA)
Description
本発明は、酸化物焼結体、その製造方法、透明導電膜、およびそれを用いて得られる太陽電池に関し、より詳しくは、酸化亜鉛を主成分とし、さらにアルミニウムとガリウムを含有する酸化物焼結体とその製法、スパッタリング法やイオンプレーティング法によって異常放電が全く発生せず、連続で長時間成膜できるターゲット、それを用いて得られる低抵抗で高透過性の高品質な透明導電膜、さらにこれを用いた高変換効率の太陽電池に関するものである。 The present invention relates to an oxide sintered body, a method for producing the same, a transparent conductive film, and a solar cell obtained by using the oxide sintered body. More specifically, the present invention relates to an oxide sintered body containing zinc oxide as a main component and further containing aluminum and gallium. A target that can be formed continuously for a long time without any abnormal discharge due to the bonded body and its manufacturing method, sputtering method or ion plating method, and a high-quality transparent conductive film with low resistance and high permeability obtained by using it Furthermore, the present invention relates to a high conversion efficiency solar cell using the same.
高い導電性と可視光領域での高い透過率とを有する透明導電膜は、太陽電池や液晶表示素子、その他各種受光素子の電極などに利用されており、その他、自動車窓や建築用の熱線反射膜、帯電防止膜、冷凍ショーケースなど各種の防曇用の透明発熱体としても利用されている。
透明導電膜には、酸化錫(SnO2)系、酸化亜鉛(ZnO)系、酸化インジウム(In2O3)系の薄膜が知られている。酸化スズ系には、アンチモンをドーパントとして含むもの(ATO)やフッ素をドーパントとして含むもの(FTO)が利用されている。酸化亜鉛系には、アルミニウムをドーパントとして含むもの(AZO)やガリウムをドーパントとして含むもの(GZO)が利用されている。最も工業的に利用されている透明導電膜は、酸化インジウム系であって、中でも錫をドーパントとして含む酸化インジウムは、ITO(Indium−Tin−Oxide)膜と称され、特に低抵抗の膜が容易に得られることから、これまで幅広く利用されてきた。
Transparent conductive films with high conductivity and high transmittance in the visible light region are used for electrodes of solar cells, liquid crystal display elements, and other various light receiving elements, as well as heat ray reflection for automobile windows and buildings. It is also used as a transparent heating element for various types of anti-fogging, such as a film, an antistatic film, and a frozen showcase.
As the transparent conductive film, tin oxide (SnO 2 ) -based, zinc oxide (ZnO) -based, and indium oxide (In 2 O 3 ) -based thin films are known. As the tin oxide, those containing antimony as a dopant (ATO) and those containing fluorine as a dopant (FTO) are used. As the zinc oxide system, those containing aluminum as a dopant (AZO) and those containing gallium as a dopant (GZO) are used. The transparent conductive film most industrially used is an indium oxide type. Indium oxide containing tin as a dopant is called an ITO (Indium-Tin-Oxide) film, and a low resistance film is particularly easy. It has been widely used so far.
低抵抗の透明導電膜は、太陽電池、液晶、有機エレクトロルミネッセンスおよび無機エレクトロルミネッセンスなどの表面素子や、タッチパネルなどに好適である。これらに有用な透明導電膜の製造には、スパッタリング法やイオンプレーティング法が良く用いられている。特にスパッタリング法は、蒸気圧の低い材料の成膜の際や、精密な膜厚制御を必要とする際に有効な手法であり、操作が非常に簡便であるため、工業的に広範に利用されている。
スパッタリング法は、薄膜の原料としてスパッタリングターゲットを用いる成膜法である。ターゲットは、成膜したい薄膜を構成している金属元素を含む固体であり、金属、金属酸化物、金属窒化物、金属炭化物などの焼結体や、場合によっては単結晶が使われる。この方法では、一般に真空装置を一旦高真空にした後、アルゴン等の希ガスを導入し、約10Pa以下のガス圧のもとで、基板を陽極、スパッタリングターゲットを陰極とし、これらの間にグロー放電を起こしてアルゴンプラズマを発生させ、プラズマ中のアルゴン陽イオンを陰極のスパッタリングターゲットに衝突させ、これによってはじきとばされるターゲット成分の粒子を、基板上に堆積させて膜を形成する。
The low-resistance transparent conductive film is suitable for surface elements such as solar cells, liquid crystals, organic electroluminescence, and inorganic electroluminescence, and touch panels. Sputtering methods and ion plating methods are often used for the production of transparent conductive films useful for these. In particular, the sputtering method is an effective method when forming a material with a low vapor pressure or when precise film thickness control is required, and since it is very easy to operate, it is widely used industrially. ing.
The sputtering method is a film forming method using a sputtering target as a raw material for a thin film. The target is a solid containing a metal element constituting a thin film to be formed, and a sintered body such as a metal, a metal oxide, a metal nitride, or a metal carbide, or a single crystal depending on the case. In this method, a vacuum apparatus is generally evacuated once and then a rare gas such as argon is introduced. Under a gas pressure of about 10 Pa or less, the substrate is used as an anode and the sputtering target is used as a cathode. An argon plasma is generated by causing a discharge, and the argon cations in the plasma collide with the sputtering target of the cathode, and particles of target components that are repelled by this are deposited on the substrate to form a film.
また、スパッタリング法は、アルゴンプラズマの発生方法で分類され、高周波プラズマを用いるものは高周波スパッタリング法といい、直流プラズマを用いるものは直流スパッタリング法という。
一般に、直流スパッタリング法は、高周波スパッタリング法と比べて成膜速度が速く、電源設備が安価であり、成膜操作が簡単であるなどの理由で、工業的に広範に利用されている。しかし、絶縁性ターゲットでも成膜することができる高周波スパッタリング法に対して、直流スパッタリング法では、導電性ターゲットを用いなければならない。
スパッタリング法を用いて成膜する時の成膜速度は、ターゲット物質の化学結合と密接な関係がある。スパッタリング法は、運動エネルギーをもったアルゴン陽イオンがターゲット表面に衝突して、ターゲット表面の物質がエネルギーを受け取って弾き出される現象を用いたものであり、ターゲット物質のイオン間結合もしくは原子間結合が弱いほど、スパッタリングによって飛び出す確率は増加する。
Sputtering methods are classified according to the method of generating argon plasma, those using high-frequency plasma are called high-frequency sputtering methods, and those using direct-current plasma are called direct-current sputtering methods.
In general, the direct current sputtering method is widely used industrially because the film forming speed is higher than that of the high frequency sputtering method, the power supply equipment is inexpensive, and the film forming operation is simple. However, in contrast to the high-frequency sputtering method, which can form a film even with an insulating target, in the direct current sputtering method, a conductive target must be used.
The film formation rate when the film is formed using the sputtering method is closely related to the chemical bonding of the target material. The sputtering method uses a phenomenon in which an argon cation having kinetic energy collides with a target surface, and a substance on the target surface receives energy and is ejected. The weaker the probability of popping out by sputtering increases.
ITOなどの酸化物の透明導電膜をスパッタリング法で成膜する方法には、膜を構成する元素の合金ターゲット(ITO膜の場合はIn−Sn合金)を用いて、アルゴンと酸素の混合ガス中における反応性スパッタリング法によって酸化物膜を成膜する方法と、膜を構成する元素の酸化物焼結体ターゲット(ITO膜の場合はIn−Sn−O焼結体)を用いてアルゴンと酸素の混合ガス中における反応性スパッタリング法によって酸化物膜を成膜する方法がある。 In the method of forming a transparent conductive film of an oxide such as ITO by sputtering, an alloy target of an element constituting the film (In-Sn alloy in the case of an ITO film) is used in a mixed gas of argon and oxygen. A method of forming an oxide film by the reactive sputtering method and an oxide sintered body target of an element constituting the film (In-Sn-O sintered body in the case of an ITO film) of argon and oxygen There is a method of forming an oxide film by a reactive sputtering method in a mixed gas.
このうち合金ターゲットを用いる方法は、スパッタリング中の酸素ガスを多めに供給するが、成膜速度や膜の特性(比抵抗、透過率)の成膜中に導入する酸素ガス量依存性が極めて大きく、安定して一定の膜厚、所望の特性の透明導電膜を製造することが難しい。これに対して酸化物ターゲットを用いる方法は、膜に供給される酸素の一部がターゲットからスパッタリングにより供給され、残りの不足酸素量が酸素ガスとして供給される。そのため成膜中に導入する酸素ガス量に対する成膜速度や膜の特性(比抵抗、透過率)の依存性が、合金ターゲットを用いる場合よりも小さく、より安定して一定の膜厚、特性の透明導電膜を製造することができるため、工業的には酸化物ターゲットを用いる方法が採られている。
生産性や製造コストを考慮すると、直流スパッタリング法の方が高周波スパッタリング法よりも、高速成膜は容易である。つまり、同一の電力を同一のターゲットに投入して成膜速度を比較すると、直流スパッタリング法の方が2〜3倍ほど速い。また直流スパッタリング法でも、高い直流電力を投入するほど成膜速度が上がるため、生産性の面で有利である。このため、工業的には高い直流電力を投入しても安定して成膜することが可能なスパッタリングターゲットが有用となる。
Among these, the method using an alloy target supplies a large amount of oxygen gas during sputtering, but the film formation rate and film characteristics (specific resistance, transmittance) are extremely dependent on the amount of oxygen gas introduced during film formation. It is difficult to stably produce a transparent conductive film having a constant film thickness and desired characteristics. On the other hand, in the method using an oxide target, a part of oxygen supplied to the film is supplied by sputtering from the target, and the remaining deficient oxygen amount is supplied as oxygen gas. Therefore, the dependency of the film formation rate and film characteristics (specific resistance, transmittance) on the amount of oxygen gas introduced during film formation is smaller than when using an alloy target, and the film thickness and characteristics are more stable and constant. Since a transparent conductive film can be produced, an industrial method using an oxide target has been adopted.
Considering productivity and manufacturing cost, the direct current sputtering method is easier to form at high speed than the high frequency sputtering method. That is, when the same power is input to the same target and the film formation rates are compared, the direct current sputtering method is about two to three times faster. Also, the direct current sputtering method is advantageous in terms of productivity because the film formation rate increases as higher direct current power is applied. For this reason, industrially, a sputtering target capable of forming a film stably even when high DC power is applied is useful.
一方、イオンプレーティングは、膜となるターゲット材の表面をアーク放電で局部的に加熱して、昇華、イオン化し、負に帯電させたワークに付着させて成膜する方法である。いずれも、低温で密着性のよい膜が得られ、非常に多種の基板性質や膜性質が選択でき、合金や化合物の成膜が可能で、環境にやさしいプロセスであるという特徴を有する。イオンプレーティングで酸化物膜を成膜する場合でもスパッタリングと同様で、酸化物焼結体タブレットを用いた方が安定して一定の膜厚、特性の透明導電膜を製造することができる。 On the other hand, ion plating is a method in which the surface of a target material to be a film is locally heated by arc discharge to be sublimated, ionized, and attached to a negatively charged workpiece to form a film. In any case, a film having good adhesion at a low temperature can be obtained, a very wide variety of substrate properties and film properties can be selected, an alloy or a compound can be formed, and the process is environmentally friendly. Even when an oxide film is formed by ion plating, it is the same as sputtering, and a transparent conductive film having a certain film thickness and characteristics can be manufactured more stably by using an oxide sintered body tablet.
上述のようにITOなどの酸化インジウム系材料が、工業的に広範に用いられているが、希少金属のインジウムが高価であること、インジウム元素が環境や人体に悪影響を与えるような毒性を有する成分を含むことから、近年では非インジウム系の透明導電膜材料が求められている。非インジウム系の材料としては、上述の様に、GZOやAZOなどの酸化亜鉛系材料、FTOやATOなどの酸化スズ系材料が知られている。特に酸化亜鉛系は、資源として豊富に埋蔵されていて低コスト材料として、あるいは環境や人体にも優しい材料として注目されている。 As described above, indium oxide-based materials such as ITO are widely used industrially, but rare metals indium is expensive, and components having toxicity such that the indium element adversely affects the environment and the human body. In recent years, a non-indium-based transparent conductive film material has been demanded. As described above, zinc oxide materials such as GZO and AZO and tin oxide materials such as FTO and ATO are known as non-indium materials. In particular, zinc oxide-based materials are attracting attention as low-cost materials that are abundantly embedded as resources or as materials that are friendly to the environment and the human body.
酸化亜鉛系透明導電膜材料のうち、AZOに関するものでは、酸化亜鉛を主成分として酸化アルミニウムを混合したターゲットを用いて直流マグネトロンスパッタリング法でC軸配向したAZO透明導電膜を製造する方法が提案されている(特許文献1参照)。また、焼結密度5g/cm3以上で比抵抗が1Ω・cm以下の正三価以上の原子価を有する元素を含有する酸化亜鉛焼結体からなるスパッタリングターゲットが提案されている(特許文献2参照)。これらAZOターゲットでは、高速で成膜を行うためにターゲットに投入する電力密度を高めて直流スパッタリング成膜を行うと、アーキング(異常放電)が多発してしまう。成膜ラインの生産工程においてアーキングが発生すると、膜の欠陥が生じたり、所定の膜厚の膜が得られなくなったりして、高品位の透明導電膜を安定に製造することが不可能になる。 Among the zinc oxide-based transparent conductive film materials, a method for manufacturing an AZO transparent conductive film that is C-axis oriented by a direct current magnetron sputtering method using a target in which aluminum oxide is mixed with zinc oxide as a main component is proposed. (See Patent Document 1). Further, a sputtering target made of a zinc oxide sintered body containing an element having a positive trivalent or higher valence having a sintered density of 5 g / cm 3 or higher and a specific resistance of 1 Ω · cm or lower has been proposed (see Patent Document 2). ). In these AZO targets, arc deposition (abnormal discharge) frequently occurs when DC sputtering film formation is performed by increasing the power density applied to the target in order to perform film formation at high speed. When arcing occurs in the production process of a film forming line, a film defect occurs or a film having a predetermined film thickness cannot be obtained, making it impossible to stably manufacture a high-quality transparent conductive film. .
また、GZOに関しては、ホットプレス焼結法で作製したガリウムを含む酸化亜鉛焼結体からなるスパッタリングターゲットが提案されている(特許文献3参照)。このGZOターゲットを用いると、AZOと比べて異常放電は生じにくく低抵抗の薄膜を得ることが可能となるが、ターゲットのエロージョン(スパッタリングによって掘れる部分)以外の表面に付着したGZO膜が剥がれやすく、パーティクルが発生しやすいなどの問題が生じる。成膜量産工程で連続成膜を行っているときに、真空槽の中でこのようなパーティクルが発生すると、成膜ガスの気流によって真空槽内で舞って基板に付着する。パーティクルの付着した基板に成膜を行うと、ピンホールなどの欠陥のある膜しか得られず高品位の透明導電膜を製造することができない。また、パーティクルがエロージョン部に堆積すればアーキングの原因となる。よって、このような場合は、連続ラインの操業を停止して除去作業を行わざるを得ず、ラインの生産性を大幅に低下させてしまうという課題があった。 Regarding GZO, a sputtering target made of a zinc oxide sintered body containing gallium produced by a hot press sintering method has been proposed (see Patent Document 3). When this GZO target is used, it is possible to obtain a low-resistance thin film that is less susceptible to abnormal discharge than AZO, but the GZO film attached to the surface other than the target erosion (the portion dug by sputtering) is easily peeled off. Problems such as easy generation of particles occur. When such a particle is generated in the vacuum chamber during continuous film formation in the film formation mass production process, the particles move in the vacuum chamber and adhere to the substrate by the air flow of the film forming gas. When a film is formed on a substrate to which particles are attached, only a film having a defect such as a pinhole is obtained, and a high-quality transparent conductive film cannot be manufactured. Further, if particles are deposited on the erosion portion, it causes arcing. Therefore, in such a case, there is a problem that the operation of the continuous line must be stopped and the removal operation must be performed, and the productivity of the line is greatly reduced.
そのため、本出願人は、第三元素(Ti、Ge、Al、Mg、In、Sn)の添加により異常放電を低減させたスパッタターゲットを提案した(特許文献4参照)。ここで、GZO焼結体は、Ga、Ti、Ge、Al、Mg、In、Snからなる群より選ばれた少なくとも1種類を2重量%以上固溶したZnO相が組織の主な構成相であり、他の構成相には上記少なくとも1種が固溶していないZnO相や、ZnGa2O4(スピネル相)で表される中間化合物相である。このようなAlなどの第三元素を添加したGZOターゲットでは、特許文献4に記載されているように異常放電は確かに低減することができたが、異常放電を完全に消失させることはできなかった。成膜の連続ラインにおいて、一度でも異常放電が生じれば、その成膜時の製品は欠陥品となってしまい製造歩留まりに影響を及ぼすため、実質的に異常放電の発生しないスパッタターゲットが得られる焼結体が望まれていた。
本発明の目的は、上記従来技術の課題に鑑み、酸化亜鉛を主成分とし、さらにアルミニウムとガリウムを含有する酸化物焼結体とその製法、スパッタリング法やイオンプレーティング法によって異常放電が全く発生せず、連続で長時間成膜できるターゲット、それを用いて得られる低抵抗で高透過性の高品質な透明導電膜、さらにこれを用いた高変換効率の太陽電池を提供することにある。 The object of the present invention is to provide an oxide sintered body containing zinc oxide as a main component and further containing aluminum and gallium, and its production method, sputtering method and ion plating method. It is an object of the present invention to provide a target that can be continuously formed for a long time, a low-resistance and high-transparency high-quality transparent conductive film obtained by using the target, and a high conversion efficiency solar cell using the target.
本発明者らは、上記従来の問題点を解決するために鋭意研究を重ね、酸化亜鉛を主成分とし、さらに添加元素のアルミニウムとガリウムを含有する酸化物焼結体において、アルミニウムとガリウムの含有量を最適化するとともに、焼成中に生成される結晶相の種類と組成、特にスピネル結晶相の組成を最適に制御することで、スパッタリング装置で連続長時間成膜を行ってもパーティクルが生じにくく、高い直流電力投入下でも異常放電が全く生じないターゲット用酸化物焼結体が得られることを見出し、これを用いれば低抵抗で高透過性の高品質な透明導電膜を成膜できるので、高変換効率の太陽電池の製造に適用できることを確認して本発明を完成するに至った。 In order to solve the above-described conventional problems, the present inventors have made extensive studies, and in an oxide sintered body containing zinc oxide as a main component and further containing aluminum and gallium as additive elements, the inclusion of aluminum and gallium Optimizing the amount and optimally controlling the type and composition of the crystal phase produced during firing, especially the spinel crystal phase, makes it difficult for particles to form even if the film is formed for a long time with a sputtering device. , It is found that a target oxide sintered body that does not cause any abnormal discharge even when high DC power is applied can be obtained, and if this is used, a high-quality transparent conductive film with low resistance and high permeability can be formed. The present invention has been completed by confirming that it can be applied to the production of high conversion efficiency solar cells.
すなわち、本発明の第1の発明によれば、酸化亜鉛と、アルミニウムとガリウムとを含有し、実質的にウルツ鉱型酸化亜鉛相とスピネル型酸化物相の結晶相から構成されている酸化物焼結体であって、(1)酸化物焼結体中のアルミニウム及びガリウムの含有量が、(Al+Ga)/(Zn+Al+Ga)原子数比で0.3〜6.5原子%、かつ、アルミニウムの含有量が、Al/(Al+Ga)原子数比で30〜70原子%であり、(2)スピネル型酸化物相中のアルミニウムの含有量が、Al/(Al+Ga)原子数比で10〜90原子%であることを特徴とする酸化物焼結体が提供される。 That is, according to the first invention of the present invention, an oxide containing zinc oxide, aluminum and gallium, and being substantially composed of a crystal phase of a wurtzite zinc oxide phase and a spinel oxide phase. (1) The content of aluminum and gallium in the oxide sintered body is 0.3 to 6.5 atomic% in terms of (Al + Ga) / (Zn + Al + Ga) atomic ratio, and The content is 30 to 70 atomic% in terms of Al / (Al + Ga) atomic ratio, and (2) the content of aluminum in the spinel type oxide phase is 10 to 90 atoms in terms of Al / (Al + Ga) atomic ratio. % Of oxide sinter is provided.
また、本発明の第2の発明によれば、第1の発明において、アルミニウムとガリウムが、ウルツ鉱型酸化亜鉛相および/またはスピネル型酸化物相に全て含まれており、酸化アルミニウム相と酸化ガリウム相を含まないことを特徴とする酸化物焼結体が提供される。
さらに、本発明の第3の発明によれば、第1又は2の発明において、アルミニウム酸亜鉛またはガリウム酸亜鉛のスピネル型酸化物相を含まないことを特徴とする酸化物焼結体が提供される。
According to the second invention of the present invention, in the first invention, aluminum and gallium are all contained in the wurtzite zinc oxide phase and / or the spinel oxide phase, and the aluminum oxide phase and the oxide are oxidized. An oxide sintered body characterized by not containing a gallium phase is provided.
Furthermore, according to the third invention of the present invention, there is provided an oxide sintered body characterized by not containing a spinel oxide phase of zinc aluminate or zinc gallate in the first or second invention. The
一方、本発明の第4の発明によれば、第1〜3の発明において、原料粉末として、酸化亜鉛粉末に、酸化ガリウム粉末と酸化アルミニウム粉末を添加・混合した後、引き続き、この原料粉末に水系媒体を配合して得られたスラリーを粉砕・混合処理し、次に粉砕・混合物を成形し、その後、成形体を焼成する酸化物焼結体の製造方法であって、スラリー中の原料粉末を、Al/(Al+Ga)原子数比の標準偏差が25原子%以下となるに十分な条件下に均一に粉砕・混合することを特徴とする酸化物焼結体の製造方法が提供される。 On the other hand, according to the fourth invention of the present invention, in the first to third inventions, after adding and mixing the gallium oxide powder and the aluminum oxide powder to the zinc oxide powder as the raw material powder, A method for producing an oxide sintered body in which a slurry obtained by blending an aqueous medium is pulverized and mixed, then pulverized and mixed, and then the molded body is fired. Is uniformly ground and mixed under conditions sufficient for the standard deviation of the Al / (Al + Ga) atomic ratio to be 25 atomic% or less.
また、本発明の第5の発明によれば、第4の発明において、酸化ガリウム粉末と酸化アルミニウム粉末が、(Al+Ga)/(Zn+Al+Ga)原子数比で0.3〜6.5原子%含有するように酸化亜鉛粉末に添加されることを特徴とする酸化物焼結体の製造方法が提供される。
また、本発明の第6の発明によれば、第4又は5の発明において、酸化ガリウム粉末と酸化アルミニウム粉末が、Al/(Al+Ga)原子数比で30〜70原子%となる割合で酸化亜鉛粉末に添加されることを特徴とする酸化物焼結体の製造方法が提供される。
また、本発明の第7の発明によれば、第4の発明において、原料粉末が、ビーズミルを用いて粉砕・混合処理されることを特徴とする酸化物焼結体の製造方法が提供される。
また、本発明の第8の発明によれば、第4又は7の発明において、原料粉末が、ボールミルで予備的に粉砕・混合処理されることを特徴とする酸化物焼結体の製造方法が提供される。
さらに、本発明の第9の発明によれば、第4の発明において、成形体が、1250〜1350℃の温度で15〜25時間かけて常圧焼成されることを特徴とする酸化物焼結体の製造方法が提供される。
According to the fifth aspect of the present invention, in the fourth aspect, the gallium oxide powder and the aluminum oxide powder contain 0.3 to 6.5 atomic percent in terms of (Al + Ga) / (Zn + Al + Ga) atomic ratio. Thus, the manufacturing method of the oxide sintered compact characterized by adding to zinc oxide powder is provided.
Further, according to the sixth invention of the present invention, in the fourth or fifth invention, zinc oxide at a ratio that the gallium oxide powder and the aluminum oxide powder are 30 to 70 atomic% in Al / (Al + Ga) atomic ratio. A method for producing an oxide sintered body characterized by being added to a powder is provided.
According to a seventh aspect of the present invention, there is provided the method for producing an oxide sintered body according to the fourth aspect, wherein the raw material powder is pulverized and mixed using a bead mill. .
According to an eighth aspect of the present invention, there is provided the method for producing an oxide sintered body according to the fourth or seventh aspect, wherein the raw material powder is preliminarily pulverized and mixed by a ball mill. Provided.
Furthermore, according to the ninth invention of the present invention, in the fourth invention, the sintered compact is characterized in that the compact is fired at a temperature of 1250 to 1350 ° C. for 15 to 25 hours under normal pressure. A method of manufacturing a body is provided.
一方、本発明の第10の発明によれば、第1〜3のいずれかの発明に係り、アルミニウムとガリウムを含む酸化亜鉛系の酸化物焼結体を加工して得られるターゲットが提供される。
また、本発明の第11の発明によれば、第10の発明に係り、ターゲットを用いて、スパッタリング法あるいはイオンプレーティング法で基板上に形成される透明導電膜が提供される。
On the other hand, according to a tenth aspect of the present invention, there is provided a target obtained by processing a zinc oxide-based oxide sintered body containing aluminum and gallium according to any one of the first to third aspects. .
According to an eleventh aspect of the present invention, in accordance with the tenth aspect, there is provided a transparent conductive film formed on a substrate by sputtering or ion plating using a target.
また、本発明の第12の発明によれば、第11の発明において、アルミニウムとガリウムの含有量が、(Al+Ga)/(Zn+Al+Ga)原子数比で0.3〜6.5原子%であることを特徴とする透明導電膜が提供される。
また、本発明の第13の発明によれば、第11又は12の発明において、アルミニウムの含有量が、Al/(Al+Ga)原子数比で30〜70原子%であることを特徴とする透明導電膜が提供される。
また、本発明の第14の発明によれば、第11の発明において、実質的にウルツ鉱型酸化亜鉛相からなる結晶相から構成されていることを特徴とする透明導電膜が提供される。
また、本発明の第15の発明によれば、第11の発明において、アルミニウムおよびガリウムが、ウルツ鉱型酸化亜鉛相に全て含まれており、酸化アルミニウム相と酸化ガリウム相を含まないことを特徴とする透明導電膜が提供される。
また、本発明の第16の発明によれば、第11の発明において、比抵抗が9.0×10−4Ωcm以下であることを特徴とする透明導電膜が提供される。
また、本発明の第17の発明によれば、第11〜16のいずれかの発明において、波長780〜1200nmにおける膜自体の透過率が76%以上であることを特徴とする透明導電膜が提供される。
さらに、本発明の第18の発明によれば、第11〜17の発明において、基板が、ガラス又はプラスチック製の透明基板であることを特徴とする透明導電膜が提供される。
According to the twelfth aspect of the present invention, in the eleventh aspect, the content of aluminum and gallium is 0.3 to 6.5 atomic% in terms of (Al + Ga) / (Zn + Al + Ga) atomic ratio. A transparent conductive film is provided.
According to the thirteenth aspect of the present invention, in the eleventh or twelfth aspect, the aluminum content is 30 to 70 atomic% in terms of the Al / (Al + Ga) atomic ratio, A membrane is provided.
According to a fourteenth aspect of the present invention, there is provided the transparent conductive film characterized in that, in the eleventh aspect, the transparent conductive film is composed of a crystal phase substantially consisting of a wurtzite type zinc oxide phase.
According to the fifteenth aspect of the present invention, in the eleventh aspect, aluminum and gallium are all contained in the wurtzite zinc oxide phase and do not contain the aluminum oxide phase and the gallium oxide phase. A transparent conductive film is provided.
According to a sixteenth aspect of the present invention, there is provided the transparent conductive film according to the eleventh aspect, wherein the specific resistance is 9.0 × 10 −4 Ωcm or less.
According to a seventeenth aspect of the present invention, there is provided the transparent conductive film according to any one of the first to sixteenth aspects, wherein the transmittance of the film itself at a wavelength of 780 to 1200 nm is 76% or more. Is done.
Furthermore, according to an eighteenth aspect of the present invention, there is provided the transparent conductive film according to the eleventh to seventeenth aspects, wherein the substrate is a transparent substrate made of glass or plastic.
一方、本発明の第19の発明によれば、第11〜17の発明に係り、透明導電膜を電極として用いてなる太陽電池が提供される。
また、本発明の第20の発明によれば、第19の発明において、光電変換素子として、シリコン系半導体もしくは化合物半導体を用いた薄膜系太陽電池であることを特徴とする太陽電池が提供される。
また、本発明の第21の発明によれば、第19の発明において、電極層を設けた非金属基板または電極性を備えた金属基板上に、p型半導体の光吸収層と、n型半導体の中間層と、半導体の窓層と、前記透明導電膜からなる電極層が順次積層された構造を含むことを特徴とする太陽電池が提供される。
また、本発明の第22の発明によれば、第19の発明において、透明基板上の前記透明導電膜からなる電極層の上に、半導体の窓層と、n型の半導体の中間層と、p型の半導体の光吸収層が順次積層された構造を含むことを特徴とする太陽電池が提供される。
また、本発明の第23の発明によれば、第21または22の発明において、光吸収層が、CuInSe2、CuInS2、CuGaSe2、CuGaS2、これらの固溶体、又はCdTeから選ばれる少なくとも一つであることを特徴とする太陽電池が提供される。
また、本発明の第24の発明によれば、第21〜23のいずれかの発明において、中間層が、溶液析出のCdS層または(Cd,Zn)S層であることを特徴とする太陽電池が提供される。
さらに、本発明の第25の発明によれば、第21〜24のいずれかの発明において、窓層が、ZnOまたは(Zn,Mg)Oであることを特徴とする太陽電池が提供される。
On the other hand, according to the nineteenth aspect of the present invention, there is provided a solar cell using the transparent conductive film as an electrode according to the eleventh to seventeenth aspects.
According to a twentieth aspect of the present invention, there is provided a solar cell according to the nineteenth aspect, wherein the photoelectric conversion element is a thin film solar cell using a silicon-based semiconductor or a compound semiconductor. .
According to a twenty-first aspect of the present invention, in the nineteenth aspect, a p-type semiconductor light absorbing layer and an n-type semiconductor are provided on a non-metallic substrate provided with an electrode layer or a metal substrate having electrode properties. A solar cell comprising a structure in which an intermediate layer, a semiconductor window layer, and an electrode layer made of the transparent conductive film are sequentially laminated is provided.
According to a twenty-second aspect of the present invention, in the nineteenth aspect, on the electrode layer made of the transparent conductive film on the transparent substrate, a semiconductor window layer, an n-type semiconductor intermediate layer, A solar cell comprising a structure in which p-type semiconductor light absorption layers are sequentially stacked is provided.
According to the twenty-third aspect of the present invention, in the twenty-first or twenty- second aspect , the light absorption layer is at least one selected from CuInSe 2 , CuInS 2 , CuGaSe 2 , CuGaS 2 , a solid solution thereof, or CdTe. A solar cell is provided.
According to a twenty-fourth aspect of the present invention, in any one of the twenty-first to twenty-third aspects, the intermediate layer is a solution-deposited CdS layer or (Cd, Zn) S layer. Is provided.
Furthermore, according to a twenty-fifth aspect of the present invention, there is provided a solar cell according to any one of the twenty-first to twenty-fourth aspects, wherein the window layer is ZnO or (Zn, Mg) O.
本発明の酸化物焼結体は、酸化亜鉛を主成分としているが、酸化亜鉛は資源として豊富に埋蔵されていて低コスト材料であり、しかも環境や人体にも優しい。また、本発明の酸化物焼結体を加工したターゲットを用いると、生産効率を上げるために直流電力密度を高めて直流スパッタリングを行う際にも、従来のAZOターゲットやGZOターゲットで課題となっていたアーキングが全く発生しない。また、連続成膜で使用してもターゲット表面や成膜室の壁に付着した膜はがれによるパーティクルも発生しにくい。よって、成膜の連続ライン工程で欠陥商品がほとんどない歩留まりの高い量産成膜が可能となるため、生産性が大幅に向上する。
しかも、本発明の酸化物焼結体を用いてスパッタリングなどにより得られた透明導電膜は、従来のAZO膜と比べて、低抵抗であり可視光透過性が損なわれることなく、従来のGZO膜と比べて、近赤外光の透過性が高い。基板を加熱しなくても高い導電性の透明導電膜を得ることができるため、耐熱性に劣ったフィルム基板などの有機物上にも低抵抗膜を得ることができる。さらに、太陽電池などの透明電極に用いれば、低抵抗で、可視域から近赤外域の広い領域で透過性が高いため、高いエネルギー変換効率を得ることができる。また、タッチパネルやフラットパネルディスプレイ(LCD、PDP、ELなど)や発光デバイス(LED、LDなど)の透明電極としても有用である。
The oxide sintered body of the present invention contains zinc oxide as a main component, but zinc oxide is abundantly embedded as a resource, is a low-cost material, and is also friendly to the environment and the human body. In addition, when the target obtained by processing the oxide sintered body of the present invention is used, the conventional AZO target or GZO target is a problem when performing direct current sputtering by increasing direct current power density in order to increase production efficiency. No arcing occurs. Further, even when used in continuous film formation, particles due to film peeling off the surface of the target or the wall of the film formation chamber are less likely to occur. Therefore, mass production film formation with a high yield with almost no defective products is possible in the continuous film forming process, and productivity is greatly improved.
Moreover, the transparent conductive film obtained by sputtering or the like using the oxide sintered body of the present invention has a low resistance compared to the conventional AZO film and the conventional GZO film without impairing the visible light transmittance. Compared to, the near infrared light permeability is high. Since a highly conductive transparent conductive film can be obtained without heating the substrate, a low resistance film can also be obtained on an organic substance such as a film substrate having poor heat resistance. Furthermore, when used for a transparent electrode such as a solar cell, high energy conversion efficiency can be obtained because of low resistance and high transparency in a wide region from the visible region to the near infrared region. It is also useful as a transparent electrode for touch panels, flat panel displays (LCD, PDP, EL, etc.) and light emitting devices (LED, LD, etc.).
以下、本発明の酸化物焼結体、それを用いたターゲット、透明導電膜、それらの製造方法について詳細に説明する。 Hereinafter, the oxide sintered body of the present invention, the target using the oxide sintered body, the transparent conductive film, and the production methods thereof will be described in detail.
1.酸化物焼結体
本発明の酸化物焼結体は、酸化亜鉛と、アルミニウムとガリウムとを含有し、実質的にウルツ鉱型酸化亜鉛相とスピネル型酸化物相の結晶相から構成されている酸化物焼結体であって、(1)酸化物焼結体中のアルミニウム及びガリウムの含有量が、(Al+Ga)/(Zn+Al+Ga)原子数比で0.3〜6.5原子%、かつ、アルミニウムの含有量が、Al/(Al+Ga)原子数比で30〜70原子%であり、(2)スピネル型酸化物相中のアルミニウムの含有量が、Al/(Al+Ga)原子数比で10〜90原子%であることを特徴とする。
1. Oxide sintered body The oxide sintered body of the present invention contains zinc oxide, aluminum and gallium, and is substantially composed of a crystal phase of a wurtzite zinc oxide phase and a spinel oxide phase. (1) The content of aluminum and gallium in the oxide sintered body is 0.3 to 6.5 atomic% in terms of (Al + Ga) / (Zn + Al + Ga) atomic ratio, and The aluminum content is 30 to 70 atomic% in terms of Al / (Al + Ga) atomic ratio, and (2) the aluminum content in the spinel oxide phase is 10 to 10 in terms of Al / (Al + Ga) atomic ratio. It is characterized by 90 atomic%.
すなわち、本発明の酸化物焼結体は、亜鉛とアルミニウムとガリウムを含有する酸化物焼結体であり、その組成は、アルミニウムとガリウムの含有量の総和が(Al+Ga)/(Zn+Al+Ga)原子数比で0.3〜6.5原子%である。
本発明の酸化物焼結体を用いてスパッタ法あるいはイオンプレーティング法で得られる透明導電膜の組成は、酸化物焼結体とほぼ同一であるが、酸化物焼結体中のアルミニウムとガリウムの含有量の総和がこの範囲内であれば、幅広い成膜条件下でも、特に基板を加熱しないで室温成膜においてでも、高い導電性の透明導電膜を得ることができる。アルミニウムとガリウムの含有量の総和が0.3原子%より少ないと膜中のキャリア自由電子の発生量が少ないため高い導電性を得ることができない。また、アルミニウムとガリウムの含有量の総和が6.5原子%を超えると、特に室温成膜の場合には、結晶性の低下にともなうキャリア自由電子の移動度の低下が顕著となり、高い導電性の膜が得られない。
特に基板を加熱せずに室温の成膜条件で低抵抗の透明導電膜(例えば約200nmの膜厚で、4.9×10−4〜9.0×10−4Ωcmの比抵抗)を得るためには、アルミニウムとガリウムの含有量の総和が3.2〜6.5原子%であることが必要である。
That is, the oxide sintered body of the present invention is an oxide sintered body containing zinc, aluminum, and gallium, and the composition is such that the total content of aluminum and gallium is (Al + Ga) / (Zn + Al + Ga) atoms. The ratio is 0.3 to 6.5 atomic%.
The composition of the transparent conductive film obtained by sputtering or ion plating using the oxide sintered body of the present invention is almost the same as that of the oxide sintered body, but aluminum and gallium in the oxide sintered body are the same. If the sum total of the contents is within this range, a highly conductive transparent conductive film can be obtained even under a wide range of film formation conditions, particularly at room temperature film formation without heating the substrate. If the total content of aluminum and gallium is less than 0.3 atomic%, the amount of generated carrier free electrons in the film is small, so that high conductivity cannot be obtained. In addition, when the total content of aluminum and gallium exceeds 6.5 atomic%, especially in the case of room temperature film formation, the decrease in carrier free electron mobility accompanying the decrease in crystallinity becomes significant, and the high conductivity. This film cannot be obtained.
In particular, a low-resistance transparent conductive film (for example, a specific resistance of 4.9 × 10 −4 to 9.0 × 10 −4 Ωcm at a film thickness of about 200 nm) is obtained under film forming conditions at room temperature without heating the substrate. For this purpose, the total content of aluminum and gallium needs to be 3.2 to 6.5 atomic%.
得られる透明導電膜の透過率について言及すると、アルミニウムとガリウムの含有量の総和が0.3〜6.5原子%の範囲内の酸化物焼結体では、可視域(波長400〜800nm)における透過率は高く、{(基板を含めた透過率)/(基板のみの透過率)}×100(%)で規定した膜自体の透過率で87%以上である。近赤外域(波長800〜1200nm)の透過率について言及すると、アルミニウムとガリウムの含有量の総和が0.3〜3.2原子%のときに特に優れていて、膜厚が200nmにおける同様に規定した膜自体の透過率で91〜94%の高透過性を発揮するとともに、太陽電池に用いるのに十分な低抵抗の透明導電膜(例えば約200nmの膜厚において、9.0×10−4〜3.0×10−3Ωcmの比抵抗)が得られる。 Regarding the transmittance of the obtained transparent conductive film, in the oxide sintered body in which the total content of aluminum and gallium is in the range of 0.3 to 6.5 atomic%, in the visible region (wavelength 400 to 800 nm). The transmittance is high, and the transmittance of the film itself defined by {(transmittance including substrate) / (transmittance of substrate only)} × 100 (%) is 87% or more. Referring to the transmittance in the near-infrared region (wavelength 800 to 1200 nm), it is particularly excellent when the total content of aluminum and gallium is 0.3 to 3.2 atomic%, and the film thickness is similarly defined at 200 nm. The film itself exhibits a high transmittance of 91 to 94% and a low-resistance transparent conductive film sufficient for use in a solar cell (for example, at a film thickness of about 200 nm, 9.0 × 10 −4 To 3.0 × 10 −3 Ωcm).
そして、本発明の酸化物焼結体は、アルミニウムとガリウムの割合が、Al/(Al+Ga)原子数比で30〜70原子%、好ましくは40〜60原子%である。酸化物焼結体のAl/(Al+Ga)原子数比が30原子%未満であると、後述するように、焼結体中にAl/(Al+Ga)原子数比が10原子%未満のスピネル型酸化物相が生成されてしまい、このような酸化物焼結体をターゲットとして用いて連続長時間スパッタリングを行うと、パーティクルが発生しやすくなる。また、酸化物焼結体のAl/(Al+Ga)原子数比が70原子%を超えると、後述するように、焼結体中にAl/(Al+Ga)原子数比が90原子%を超えるスピネル型酸化物相が生成されてしまい、このような酸化物焼結体をターゲットとして用いて直流投入電力を高めて直流スパッタリングを行うとアーキングが発生しやすくなる。 In the oxide sintered body of the present invention, the ratio of aluminum to gallium is 30 to 70 atomic%, preferably 40 to 60 atomic% in terms of Al / (Al + Ga) atomic ratio. When the Al / (Al + Ga) atomic ratio of the oxide sintered body is less than 30 atomic%, as will be described later, the spinel oxidation in which the Al / (Al + Ga) atomic ratio is less than 10 atomic% in the sintered body. A physical phase is generated, and when such an oxide sintered body is used as a target and sputtering is performed for a long time, particles are likely to be generated. Moreover, when the Al / (Al + Ga) atomic ratio of the oxide sintered body exceeds 70 atomic%, the spinel type in which the Al / (Al + Ga) atomic ratio exceeds 90 atomic% in the sintered body, as will be described later. An oxide phase is generated, and arcing tends to occur when direct current sputtering is performed using such an oxide sintered body as a target to increase direct current input power.
また、本発明の酸化物焼結体は、結晶相から構成されており、該結晶相は、実質的にウルツ鉱型酸化亜鉛相とスピネル型酸化物相であり、スピネル型酸化物相中のアルミニウムの含有量が、Al/(Al+Ga)原子数比で10〜90原子%である。アルミニウム元素およびガリウム元素は、ウルツ鉱型酸化亜鉛相および/またはスピネル型酸化物相に全て含まれており、酸化アルミニウム相と酸化ガリウム相を含まない。酸化アルミニウム相や酸化ガリウム相が酸化物焼結体中に含まれていると、これらは高抵抗、あるいは絶縁性物質であるため、スパッタリング成膜時のアーキングの原因となってしまう。よって、アルミニウム元素およびガリウム元素は、酸化物焼結体の中で酸化アルミニウム相や酸化ガリウム相として存在するのではなく、ウルツ鉱型酸化亜鉛相および/またはスピネル型酸化物相に全て含まれている必要がある。 The oxide sintered body of the present invention is composed of a crystal phase, and the crystal phase is substantially a wurtzite zinc oxide phase and a spinel oxide phase. Aluminum content is 10-90 atomic% in Al / (Al + Ga) atomic ratio. The aluminum element and the gallium element are all contained in the wurtzite zinc oxide phase and / or the spinel oxide phase, and do not contain the aluminum oxide phase and the gallium oxide phase. If an aluminum oxide phase or a gallium oxide phase is contained in the oxide sintered body, these are high resistance or insulating materials, which may cause arcing during sputtering film formation. Therefore, the aluminum element and the gallium element do not exist as an aluminum oxide phase or a gallium oxide phase in the oxide sintered body, but are all contained in the wurtzite zinc oxide phase and / or the spinel oxide phase. Need to be.
本発明において、酸化物焼結体中のウルツ鉱型酸化亜鉛相は、JCPDSカード36−1451に記載された六方晶のウルツ鉱構造のものを指し、酸素欠損、亜鉛欠損の非化学量論組成のものも含まれる。酸化亜鉛相は、このような非化学量論組成の状態をとることで自由電子を発生させて導電性が高まるため、直流スパッタリング時にアーキングが発生しにくい。また、このウルツ鉱型酸化亜鉛相は、上述のようにガリウムおよび/またはアルミニウムが固溶していてもかまわない。これらが亜鉛サイトに固溶した方が、キャリア電子を発生させて導電性が高まるため、直流スパッタリング時にアーキングが発生しにくく好ましい。 In the present invention, the wurtzite type zinc oxide phase in the oxide sintered body refers to a hexagonal wurtzite structure described in JCPDS card 36-1451, and has a non-stoichiometric composition of oxygen deficiency and zinc deficiency. Are also included. Since the zinc oxide phase takes such a non-stoichiometric composition to generate free electrons and increase conductivity, arcing is unlikely to occur during DC sputtering. Further, the wurtzite zinc oxide phase may contain gallium and / or aluminum in solid solution as described above. It is preferable that these are solid-dissolved in the zinc site because carrier electrons are generated and the conductivity is increased, so that arcing is less likely to occur during DC sputtering.
さらに、本発明の酸化物焼結体中のスピネル型酸化物相には、亜鉛とアルミニウムとガリウムが含まれていて、スピネル型酸化物相中のアルミニウムとガリウムは、Al/(Al+Ga)原子数比で10〜90原子%の割合であることが必要である。従って、アルミニウム酸亜鉛、ガリウム酸亜鉛のスピネル酸化物相をそれぞれ単独では含まず、アルミニウムとガリウムが固溶したスピネル型酸化物相であることが本発明の特徴であり、この点で、前記特許文献4に記載されているガリウム酸亜鉛のスピネル酸化物相(ZnGa2O4)を含むGZO焼結体とは大きく異なる。
Furthermore, the spinel-type oxide phase in the oxide sintered body of the present invention contains zinc, aluminum, and gallium, and the aluminum and gallium in the spinel-type oxide phase contain Al / (Al + Ga) atoms. The ratio needs to be 10 to 90 atomic%. Therefore, the spinel oxide phase of zinc aluminate and zinc gallate is not included singly, but is a spinel type oxide phase in which aluminum and gallium are solid-solved. This is significantly different from the GZO sintered body containing the spinel oxide phase (ZnGa 2 O 4 ) of zinc gallate described in
本発明において、酸化物焼結体中に含まれるZn−Al−Ga−O系のスピネル酸化物相は、Zn(Al,Ga)2O4−δ(δ≧0)で代表される組成を有し、Al/(Al+Ga)原子数比が10原子%未満のスピネル酸化物相が含まれると、成膜中にパーティクルの発生が多くなってしまうため好ましくない。
ターゲット中のスピネル相の組成がAl/(Al+Ga)原子数比が10原子%未満のスピネル相が含まれていると、ターゲット表面に堆積した膜の剥離によるパーティクルが多くなる。これは、スピネル結晶相のAl/(Al+Ga)原子数比が10原子%未満となると、スピネル相―酸化亜鉛堆積膜との熱膨張係数の差が特に大きくなり、上述の熱履歴により堆積膜が剥離しやすくなるためと考えられる。
よって、本発明の酸化物焼結体中にはAl/(Al+Ga)原子数比が10原子%未満の組成のスピネル相が存在してはならなく、特に焼結体中に生成しやすいZnGa2O4−δ(δ≧0)の組成で代表されるガリウム酸亜鉛のスピネル化合物は存在してはならない。また、酸化物焼結体に、Al/(Al+Ga)原子数比が90原子%超えるスピネル相が存在すると、アーキングが発生しやすくなる。
よって、本発明の酸化物焼結体中にはAl/(Al+Ga)原子数比が90原子%を超えた組成のスピネル相が存在してはならなく、特に焼結体中に生成しやすいZnAl2O4−δ(δ≧0)の組成で代表されるアルミニウム酸亜鉛のスピネル化合物は存在してはならない。
In the present invention, the Zn—Al—Ga—O-based spinel oxide phase contained in the oxide sintered body has a composition represented by Zn (Al, Ga) 2 O 4-δ (δ ≧ 0). If a spinel oxide phase having an Al / (Al + Ga) atomic ratio of less than 10 atomic% is included, particles are generated during film formation, which is not preferable.
If the spinel phase composition in the target contains a spinel phase having an Al / (Al + Ga) atomic ratio of less than 10 atomic%, particles due to peeling of the film deposited on the target surface increase. This is because, when the Al / (Al + Ga) atomic ratio of the spinel crystal phase is less than 10 atomic%, the difference in thermal expansion coefficient between the spinel phase and the zinc oxide deposited film becomes particularly large, and the deposited film is formed by the thermal history described above. This is considered to be easy to peel.
Therefore, in the oxide sintered body of the present invention, a spinel phase having a composition with an Al / (Al + Ga) atomic number ratio of less than 10 atomic% should not exist, and ZnGa 2 that is particularly easily formed in the sintered body. There must be no zinc gallate spinel compound represented by the composition O 4 -δ (δ ≧ 0). In addition, when a spinel phase having an Al / (Al + Ga) atomic ratio exceeding 90 atomic% is present in the oxide sintered body, arcing is likely to occur.
Therefore, the oxide sintered body of the present invention must not have a spinel phase having a composition in which the Al / (Al + Ga) atomic ratio exceeds 90 atomic%, and ZnAl, which is particularly easily formed in the sintered body. There must be no zinc aluminate spinel compounds represented by the composition of 2 O 4-δ (δ ≧ 0).
なお、本発明の酸化物焼結体は、亜鉛やアルミニウムやガリウムや酸素以外に、他の元素(例えば、インジウム、チタン、タングステン、モリブデン、イリジウム、ルテニウム、レニウム、セリウム、マグネシウム、珪素、フッ素、など)が、本発明の目的を損なわない範囲で含まれていてもかまわない。
また本発明の酸化物焼結体は、スパッタリングターゲットだけでなく、イオンビームスパッタ法やレーザーアブレーション法のターゲットや、真空蒸着法やイオンプレーティング法のタブレットとして利用することもできる。
In addition to zinc, aluminum, gallium, and oxygen, the oxide sintered body of the present invention includes other elements (for example, indium, titanium, tungsten, molybdenum, iridium, ruthenium, rhenium, cerium, magnesium, silicon, fluorine, Etc.) may be included as long as the object of the present invention is not impaired.
The oxide sintered body of the present invention can be used not only as a sputtering target but also as a target for ion beam sputtering or laser ablation, or a tablet for vacuum deposition or ion plating.
2.酸化物焼結体の製造方法
本発明の酸化物焼結体の製造方法は、原料粉末として、酸化亜鉛粉末に、酸化ガリウム粉末と酸化アルミニウム粉末を添加・混合した後、引き続き、この原料粉末に水系媒体を配合して得られたスラリーを粉砕・混合処理し、次に粉砕・混合物を成形し、その後、成形体を焼成する酸化物焼結体の製造方法であって、スラリー中の原料粉末を、Al/(Al+Ga)原子数比の標準偏差が25原子%以下となるに十分な条件下に均一に粉砕・混合することを特徴とする。
2. Method for Producing Oxide Sintered Body The method for producing an oxide sintered body according to the present invention comprises adding and mixing gallium oxide powder and aluminum oxide powder to zinc oxide powder as raw material powder, A method of producing an oxide sintered body in which a slurry obtained by blending an aqueous medium is pulverized and mixed, then pulverized and mixed, and then the molded body is fired. Is uniformly pulverized and mixed under conditions sufficient for the standard deviation of the Al / (Al + Ga) atomic ratio to be 25 atomic% or less.
上述したように、亜鉛とアルミニウムとガリウムを含有する酸化物焼結体は、実質的にウルツ鉱型酸化亜鉛相とスピネル型酸化物相の結晶相で構成されており、アルミニウム元素およびガリウム元素は、ウルツ鉱型酸化亜鉛相および/またはスピネル型酸化物相に全て含まれており、そのスピネル型酸化物相には、亜鉛とアルミニウムとガリウムが含まれていて、その組成がAl/(Al+Ga)原子数比で10〜90原子%の割合である、などの特徴を有する。このような酸化物焼結体を製造するためには、以下に述べるように製造条件を制御する必要がある。 As described above, an oxide sintered body containing zinc, aluminum, and gallium is substantially composed of a crystal phase of a wurtzite type zinc oxide phase and a spinel type oxide phase. , The wurtzite type zinc oxide phase and / or the spinel type oxide phase are all contained, and the spinel type oxide phase contains zinc, aluminum and gallium, and the composition thereof is Al / (Al + Ga). It has characteristics such as a ratio of 10 to 90 atomic% in atomic ratio. In order to manufacture such an oxide sintered body, it is necessary to control manufacturing conditions as described below.
亜鉛とアルミニウムとガリウムを含む酸化物焼結体は、酸化亜鉛、酸化アルミニウム、酸化ガリウムの各粉末を原料として、これらを混合して、成型して圧粉体を形成し、高温に焼成して、反応・焼結させて作る。酸化亜鉛、酸化アルミニウム、酸化ガリウムの各粉末は、特別なものではなく、従来から用いられている酸化物焼結体用原料でよい。使用する粉末の平均粒径は、1.5μm以下であり、好ましくは0.1〜1.1μmである。 Oxide sintered bodies containing zinc, aluminum and gallium are made from zinc oxide, aluminum oxide and gallium oxide powders, mixed and molded to form a green compact, which is fired at a high temperature. , Made by reaction and sintering. Each powder of zinc oxide, aluminum oxide, and gallium oxide is not special and may be a conventionally used raw material for oxide sintered bodies. The average particle diameter of the powder used is 1.5 μm or less, preferably 0.1 to 1.1 μm.
一般的には、酸化物焼結体を製造する際の原料粉末の混合法としては、前記特許文献4に記載されているとおり、ボールミル混合法が利用されている。ボールミルは、セラミックなどの硬質のボール(ボール径10〜30mm)と、材料の粉を容器にいれて回転させることによって、材料をすりつぶしながら混合して微細な混合粉末を作る装置である。ボールミル(粉砕メディア)は、缶体として鋼、ステンレス、ナイロンなどがあり、内張りとしてアルミナ、磁気質、天然ケイ石、ゴム、ウレタンなどを用いる。ボールは、アルミナを主成分とするアルミナボール、天然ケイ石、鉄芯入りナイロンボール、ジルコニアボールなどがある。湿式と乾式の粉砕方法があり、焼結体を得るための原料粉末の混合・粉砕に広範に利用されている。
しかし、本発明の酸化物焼結体を得るためには、ボールミル法による原料粉末の混合・粉砕では不十分である。ボールミルによる原料粉末の混合・粉砕では、上記の均一性評価法でσが25原子%を超える場合があり、σが25原子%以下の均一性の高い混合原料粉末を得ることができない。σが25原子%以下の均一性の高い混合原料粉末を得るには、ビーズミル法やジェットミル法が有効である。
In general, as described in
However, in order to obtain the oxide sintered body of the present invention, mixing and pulverization of the raw material powder by the ball mill method is insufficient. In the mixing and pulverization of the raw material powder by the ball mill, σ may exceed 25 atomic% in the above-described uniformity evaluation method, and a highly uniform mixed raw material powder having σ of 25 atomic% or less cannot be obtained. A bead mill method or a jet mill method is effective for obtaining a highly uniform mixed raw material powder having σ of 25 atomic% or less.
ビーズミル法とは、ベッセルと呼ばれる容器の中に、ビーズ(粉砕メディア、ビーズ径0.005〜3mm)を70〜90%充填しておき、ベッセル中央の回転軸を周速7〜15m/秒で回転させることによりビーズに運動を与える。ここに原料粉末などの被粉砕物を液体に混ぜたスラリーをポンプで送り込み、ビーズを衝突させることによって微粉砕・分散させる。ビーズミルの場合、被粉砕物に合わせてビーズ径を小さくすれば効率が上がる。一般的に、ビーズミルはボールミルの1千倍近い加速度で微粉砕と混合を実現することができる。このような仕組みのビーズミルは、様々な名称で呼ばれており、例えば、サンドグラインダー、アクアマイザイー、アトライター、パールミル、アベックスミル、ウルトラビスコミル、ダイノーミル、アジテーターミル、コボールミル、スパイクミル、SCミル、などが知られており、本発明において、いずれも使用できる。
また、ジェットミルとは、原料粉末などの被粉砕物を、ノズルから音速前後で噴射される高圧の空気あるいは蒸気を超高速ジェットとして粒子に衝突させて粒子同士の衝撃によって微粒子に粉砕することができる。
In the bead mill method, 70-90% of beads (crushed media, bead diameter 0.005-3 mm) are filled in a container called a vessel, and the rotation axis at the center of the vessel is set at a peripheral speed of 7-15 m / sec. Giving motion to the beads by rotating. A slurry in which a material to be crushed such as a raw material powder is mixed with a liquid is pumped in here, and the particles are pulverized and dispersed by colliding with beads. In the case of a bead mill, efficiency can be improved by reducing the bead diameter in accordance with the object to be crushed. In general, a bead mill can achieve pulverization and mixing at an acceleration close to 1,000 times that of a ball mill. The bead mill with such a structure is called by various names. For example, sand grinder, aquamizer, attritor, pearl mill, avex mill, ultra visco mill, dyno mill, agitator mill, coball mill, spike mill, SC mill Are known, and any of them can be used in the present invention.
In addition, a jet mill is a method in which a material to be crushed, such as a raw material powder, is crushed into fine particles by the impact of particles by colliding the particles with high-pressure air or steam jetted at around sonic speed from a nozzle as an ultra-high speed jet. it can.
微細で凝集していない原料粉末を用いる場合は、ビーズミル法またはジェットミル法だけで微粉砕と混合を行えば、本発明の酸化物焼結体を得ることができる。しかし、ボールミル法による粉砕混合を行ったあとで、ビーズミル法で微粉砕・混合を行うと、確実に本発明の酸化物焼結体を得ることができる。上記のように、本発明の酸化物焼結体は、好ましくは、ボールミルとビーズミルを併用した方法で例えば以下のように製造することができる。 When using fine and non-agglomerated raw material powder, the oxide sintered body of the present invention can be obtained by finely pulverizing and mixing only by the bead mill method or the jet mill method. However, after pulverizing and mixing by the ball mill method and then finely pulverizing and mixing by the bead mill method, the oxide sintered body of the present invention can be surely obtained. As described above, the oxide sintered body of the present invention can be preferably manufactured as follows, for example, by a method using both a ball mill and a bead mill.
はじめに、原料粉末として酸化亜鉛粉末と酸化アルミニウム粉末と酸化ガリウム粉末を所望の割合でボールミル用ポットに投入し、乾式あるいは湿式混合して混合粉末を調製する。
本発明の酸化物焼結体を得るためには、上記の原料粉末の配合割合は、アルミニウムとガリウムの含有量が(Al+Ga)/(Zn+Al+Ga)原子数比で0.3〜6.5原子%であり、アルミニウムとガリウムがAl/(Al+Ga)原子数比で30〜70原子%であることが好ましい。
First, zinc oxide powder, aluminum oxide powder, and gallium oxide powder as raw material powders are put into a ball mill pot at a desired ratio, and mixed powder is prepared by dry or wet mixing.
In order to obtain the oxide sintered body of the present invention, the mixing ratio of the raw material powder is such that the content of aluminum and gallium is 0.3 to 6.5 atomic% in terms of (Al + Ga) / (Zn + Al + Ga) atomic ratio. It is preferable that aluminum and gallium have an Al / (Al + Ga) atomic number ratio of 30 to 70 atomic%.
こうして得られた粉末に水および分散材・バインダー等の有機物を加えてスラリーを製造する。スラリーの粘度は150〜5000cPが好ましく、より好ましくは400〜3000cPである。
次に、得られたスラリーとビーズとをビーズミルの容器に入れて処理する。ビーズ材としては、ジルコニア、アルミナ等をあげることができるが、耐摩耗性の点でジルコニアが好ましい。ビーズの直径は、粉砕効率の点から1〜3mmが好ましい。パス数は1回でもよいが、2回以上が好ましく、5回以下で十分な効果が得られる。また、処理時間としては、好ましくは10時間以下、更に好ましくは4〜8時間である。
このような処理を行うことによって、スラリ−中における酸化亜鉛粉末と酸化アルミニウム粉末と酸化ガリウム粉末の粉砕・混合が良好となり、焼成前の時点でスラリー中のアルミニウムとガリウムの相対的な均一性は高くなる。前記アルミニウムとガリウムの均一性は、以下に記す成形体にしたとき、Al/(Al+Ga)原子数比が標準偏差で25原子%以下となるまで混合・粉砕処理を行うことが必要である。このようなスラリーを使用することにより、焼成中に均一化がさらに進み、本発明の酸化物焼結体を得ることができる。
A slurry is produced by adding water and organic substances such as a dispersing agent and a binder to the powder thus obtained. The viscosity of the slurry is preferably 150 to 5000 cP, more preferably 400 to 3000 cP.
Next, the obtained slurry and beads are placed in a bead mill container and processed. Examples of the bead material include zirconia and alumina. Zirconia is preferable from the viewpoint of wear resistance. The diameter of the beads is preferably 1 to 3 mm from the viewpoint of grinding efficiency. The number of passes may be one, but is preferably two or more, and a sufficient effect can be obtained by five or less. Moreover, as processing time, Preferably it is 10 hours or less, More preferably, it is 4 to 8 hours.
By performing such treatment, the pulverization and mixing of the zinc oxide powder, aluminum oxide powder and gallium oxide powder in the slurry is improved, and the relative uniformity of aluminum and gallium in the slurry before firing is Get higher. The uniformity of the aluminum and gallium needs to be mixed and pulverized until the Al / (Al + Ga) atomic ratio is 25 atomic% or less in standard deviation when the molded body described below is formed. By using such a slurry, homogenization further proceeds during firing, and the oxide sintered body of the present invention can be obtained.
次に、このようにして処理されたスラリーを用いて成形を行う。成形方法としては、鋳込み成形法、プレス成形法のいずれも採用することができる。鋳込み成形を行う場合、得られたスラリーを鋳込み成型用の型に注入して成形体を製造する。ビーズミルの処理から鋳込みまでの時間は、10時間以内とするのが好ましい。こうすることにより、得られたスラリーがチクソトロピー性を示すことを防ぐことができる。プレス成形を行う場合、得られたスラリーにポリビニルアルコールなどのバインダー等を添加し、必要に応じて水分調節を行ってからスプレードライヤー等で乾燥させて粉末とする。得られた粉末を所定の大きさの金型に充填した後、プレス機を用いて100〜300kg/cm2の圧力でプレスを行い成形体とする。この成形体を用いて、Al/(Al+Ga)原子数比の均一性評価を上記の方法で行うと、σが25原子%以下の均一性が得られる。この時の成形体の厚みを、この後のCIP工程や焼成工程による収縮を考慮して、厚さ10mm以上の焼結体を得ることができる厚さに設定する。 Next, it shape | molds using the slurry processed in this way. As the molding method, either a cast molding method or a press molding method can be employed. When cast molding is performed, the obtained slurry is injected into a casting mold to produce a molded body. The time from the bead mill treatment to casting is preferably within 10 hours. By carrying out like this, it can prevent that the obtained slurry shows thixotropic property. When press molding is performed, a binder such as polyvinyl alcohol is added to the obtained slurry, moisture is adjusted as necessary, and then dried with a spray dryer or the like to obtain a powder. After filling the obtained powder into a metal mold having a predetermined size, a pressed body is pressed at a pressure of 100 to 300 kg / cm 2 to obtain a molded body. When the uniformity evaluation of the Al / (Al + Ga) atomic number ratio is performed by the above method using this molded body, the uniformity with σ of 25 atomic% or less is obtained. The thickness of the molded body at this time is set to a thickness at which a sintered body having a thickness of 10 mm or more can be obtained in consideration of the shrinkage caused by the subsequent CIP process or firing process.
次に、こうして得られた成形体は、必要に応じて冷間等方圧プレス(CIP)による処理を行う。この際、CIPの圧力は十分な圧密効果を得るため1ton/cm2以上、好ましくは2〜5ton/cm2であることが望ましい。上述の混合粉末から作製した成形体を用いれば、焼成法としてはホットプレス法でも常圧焼結法でも本発明の酸化物焼結体を得ることができる。しかし低製造コストで大型の焼結体を作ることができる常圧焼結法で製造することが好ましい。
Next, the molded body thus obtained is subjected to treatment by cold isostatic pressing (CIP) as necessary. At this time, since the pressure of the CIP to obtain a
常圧焼結法で焼成して酸化物焼結体を得る場合には以下のようになる。得られた成形体に対して300〜500℃の温度で5〜20時間程度で脱バインダー処理を行った後、焼成を行う。昇温速度は、効果的に内部の空孔を外部へ放出させるため150℃/時間以下、好ましくは100℃/時間以下、更に好ましくは80℃/時間以下とする。焼結温度は、1200〜1600℃、好ましくは、1200〜1400℃、より好ましくは、1250〜1350℃とし、5〜40時間、好ましくは10〜30時間、より好ましくは15〜25時間焼結する。焼結後、冷却する際は酸素導入を止め、1000℃までを0.1〜8℃/分、好ましくは0.2〜5℃/分、特に好ましくは、0.2〜1℃/分の範囲の降温速度で降温することが好ましい。こうすることにより、上述のような本発明の酸化物焼結体を得ることができる。 In the case of obtaining an oxide sintered body by firing by the normal pressure sintering method, the following is performed. The obtained molded body is debindered at a temperature of 300 to 500 ° C. for about 5 to 20 hours, and then fired. The rate of temperature rise is set to 150 ° C./hour or less, preferably 100 ° C./hour or less, and more preferably 80 ° C./hour or less in order to effectively release internal vacancies to the outside. The sintering temperature is 1200 to 1600 ° C, preferably 1200 to 1400 ° C, more preferably 1250 to 1350 ° C, and sintering is performed for 5 to 40 hours, preferably 10 to 30 hours, more preferably 15 to 25 hours. . After sintering, when introducing oxygen, the introduction of oxygen is stopped and the temperature up to 1000 ° C. is 0.1 to 8 ° C./min, preferably 0.2 to 5 ° C./min, particularly preferably 0.2 to 1 ° C./min. It is preferable to lower the temperature at a temperature falling rate within the range. By doing so, the oxide sintered body of the present invention as described above can be obtained.
以上、述べてきたような工程に従い、微細な原料粉末を用い、ビーズミルを用いた十分な粉砕・混合を必ず行うとともに、拡散が進行するのに十分な焼結温度で焼結を行えば、酸化物焼結体中に酸化アルミニウム相や酸化ガリウム相を含まず、さらにアルミニウム酸亜鉛やガリウム酸亜鉛などのAl/(Al+Ga)原子数比で10〜90原子%の割合から逸脱した組成のスピネル型酸化物相(Zn−Al−Ga−O系)が含まれない酸化物焼結体を得ることができる。即ち、酸化物焼結体中のアルミニウムとガリウムの含有量の総和が(Al+Ga)/(Zn+Al+Ga)原子数比で0.3〜6.5原子%であり、酸化物焼結体はウルツ鉱型酸化亜鉛相とスピネル型酸化物相で構成されていて、酸化物焼結体中のスピネル型酸化物相(Zn−Al−Ga−O系)の組成がAl/(Al+Ga)原子数比で10〜90原子%の割合であるなどの特徴を有する本発明の酸化物焼結体を製造することができる。 In accordance with the process described above, fine raw material powder is used, and sufficient pulverization and mixing using a bead mill is always performed, and if sintering is performed at a sintering temperature sufficient for diffusion to proceed, oxidation A spinel type composition that does not contain an aluminum oxide phase or a gallium oxide phase in the sintered product, and further deviates from a ratio of 10 to 90 atomic% in terms of the number ratio of Al / (Al + Ga) atoms such as zinc aluminate and zinc gallate. An oxide sintered body containing no oxide phase (Zn—Al—Ga—O system) can be obtained. That is, the sum of the contents of aluminum and gallium in the oxide sintered body is 0.3 to 6.5 atomic% in terms of the (Al + Ga) / (Zn + Al + Ga) atomic ratio, and the oxide sintered body is a wurtzite type. It is composed of a zinc oxide phase and a spinel oxide phase, and the composition of the spinel oxide phase (Zn—Al—Ga—O system) in the oxide sintered body is 10 in terms of the Al / (Al + Ga) atomic ratio. The oxide sintered body of the present invention having characteristics such as a ratio of ˜90 atomic% can be produced.
この焼成時に、アルミニウムやガリウムが固溶したウルツ鉱型酸化亜鉛相やZnAl2O4−δ(δ≧0)やZnGa2O4−δ(δ≧0)などの単純組成のスピネル相がすぐに形成される。そして、焼成時間とともに各結晶相間で拡散による組成の均一化が進むのであるが、Al/(Al+Ga)原子数比が10〜90原子%の範囲を逸脱して偏った組成のスピネル相が生じることがある。それが焼結体中に生じる要因は次のとおりである。
固溶体内の焼成時の拡散による均一化は同価数のイオン間では非常に遅く、Zn(Al,Ga)2O4−δ(δ≧0)の場合は、同じサイトを占有して互いに価数の等しいAlイオンとGaイオン間の不均一性は電荷バランスを崩さないため安定であり、焼成時の拡散による均一化は非常に遅い。
混合原料粉末中の組成の偏りが大きすぎると、焼成中の拡散による均一化が不十分となり、大きな組成変動が生じたままの焼結体が得られてしまう。特に同じ原子価のAlイオンとGaイオン間の均一性は、混合原料粉末中のAlとGaの不均一性の影響を受けやすい。つまり、不十分な混合によって、焼成前の圧粉体中で、部分的に酸化ガリウムよりも酸化アルミニウム粒子が非常に多い部分が存在すると、酸化アルミニウム相や、ZnAl2O4−δ(δ≧0)を中心としたアルミニウム組成の多いスピネル相(以下、ZAO相と記す場合がある)が焼成後にも焼結体中に含まれてしまう。その逆に、酸化ガリウム粉末が多い部分が存在すると、酸化ガリウム相やZnGa2O4−δ(δ≧0)を中心としたガリウム組成の多いスピネル相(以下、ZGO相と記す場合がある)が焼成後に焼結体中に含まれてしまう。ZAO相とZGO相間でAlイオンとGaイオンの拡散が起きるが、同一の価数であるため均一化の為の拡散は遅く、混合原料粉末中のアルミニウムとガリウムの局所的な偏りを反映して、ZAO相とZGO相が分布した酸化物焼結体が得られてしまう。
During this firing, a wurtzite zinc oxide phase in which aluminum or gallium is dissolved, or a spinel phase having a simple composition such as ZnAl 2 O 4-δ (δ ≧ 0) or ZnGa 2 O 4-δ (δ ≧ 0) is immediately obtained. Formed. As the firing time progresses, the composition of each crystal phase is made uniform by diffusion, but a spinel phase having a composition in which the Al / (Al + Ga) atomic ratio deviates from the range of 10 to 90 atomic% is generated. There is. The factors that occur in the sintered body are as follows.
Uniformity due to diffusion during firing in a solid solution is very slow between ions of the same valence. In the case of Zn (Al, Ga) 2 O 4-δ (δ ≧ 0), the same site is occupied and the valence is mutually increased. The non-uniformity between the equal number of Al ions and Ga ions is stable because it does not break the charge balance, and homogenization by diffusion during firing is very slow.
If the compositional deviation in the mixed raw material powder is too large, homogenization due to diffusion during firing will be insufficient, and a sintered body with a large composition variation will be obtained. In particular, the uniformity between Al ions and Ga ions having the same valence is likely to be affected by the nonuniformity of Al and Ga in the mixed raw material powder. In other words, due to insufficient mixing, if there is a portion where the aluminum oxide particles are partly much more than gallium oxide in the green compact before firing, the aluminum oxide phase, ZnAl 2 O 4-δ (δ ≧ The spinel phase (hereinafter sometimes referred to as ZAO phase) having a large aluminum composition centering on 0) is contained in the sintered body even after firing. On the contrary, if there is a portion with a large amount of gallium oxide powder, a gallium oxide phase or a spinel phase with a large gallium composition centered on ZnGa 2 O 4 -δ (δ ≧ 0) (hereinafter sometimes referred to as a ZGO phase) Will be contained in the sintered body after firing. Al ions and Ga ions are diffused between the ZAO phase and the ZGO phase, but because of the same valence, diffusion for homogenization is slow, reflecting the local bias of aluminum and gallium in the mixed raw material powder. Thus, an oxide sintered body in which the ZAO phase and the ZGO phase are distributed is obtained.
このような混合原料粉末中の組成の偏りを減らすには、原料粉末の中で、特に酸化アルミニウム粉末と酸化ガリウム粉末の混合と粉砕が重要であり、焼成前の混合原料粉末の酸化アルミニウムと酸化ガリウム間の混合均一化が特に重要である。
焼成前の混合原料粉末の均一性は、次の方法で評価することができる。混合原料粉末を用いて成形体を作製し、その破面に対して走査型電子顕微鏡で観察しながら、付属するエネルギー分散型X線分析装置(EDX)を用いて電子ビームを照射して約1μmΦの微小領域の組成分析を行い、その領域のAl/(Al+Ga)原子数比を把握する。任意の50箇所においてAl/(Al+Ga)原子数比を測定し、その標準偏差σをもとめる。均一性が高いほどσは小さく、本発明の酸化物焼結体を得るためには、σが25原子%以下であることが必要である。
In order to reduce the compositional deviation in the mixed raw material powder, it is important to mix and pulverize the aluminum oxide powder and the gallium oxide powder among the raw material powder. Uniform mixing between gallium is particularly important.
The uniformity of the mixed raw material powder before firing can be evaluated by the following method. Using a mixed raw material powder to produce a compact and observing the fractured surface with a scanning electron microscope, using an attached energy dispersive X-ray analyzer (EDX) to irradiate an electron beam to about 1 μmΦ The composition analysis of the minute region is performed, and the Al / (Al + Ga) atomic ratio in the region is grasped. The Al / (Al + Ga) atomic ratio is measured at an arbitrary 50 points, and the standard deviation σ is obtained. The higher the uniformity, the smaller the σ. In order to obtain the oxide sintered body of the present invention, it is necessary that σ is 25 atomic% or less.
3.ターゲット
上記の方法で製造された酸化物焼結体は、平面研削等により加工し、所定の寸法にしてから、無酸素銅からなるバッキングプレートに、インジウムはんだなどを用いて接着することにより、スパッタリングターゲット(単一ターゲットともいう)とすることができる。必要により数枚の焼結体を分割形状にならべて、大面積のターゲットとしても良い。
本発明において、ターゲットは、酸化亜鉛を主成分とする透明導電膜をスパッタリングで代表される気相合成法で製造するときに用いるものであり、このターゲットを用いれば、投入電力密度を高めて高速で直流スパッタリング成膜を行ってもアーキングなどの異常放電が全く発生せず、連続で長時間成膜したときでもターゲット表面に付着した膜の剥離によるパーティクルが発生しにくい。
3. Target The oxide sintered body produced by the above method is processed by surface grinding or the like to obtain a predetermined dimension, and then bonded to a backing plate made of oxygen-free copper by using indium solder or the like. It can be a target (also called a single target). If necessary, several sintered bodies may be divided into divided shapes to form a large area target.
In the present invention, the target is used when producing a transparent conductive film containing zinc oxide as a main component by a vapor phase synthesis method represented by sputtering. By using this target, the input power density is increased and high speed is achieved. Even when DC sputtering film formation is performed, abnormal discharge such as arcing does not occur at all, and even when the film is continuously formed for a long time, particles due to peeling of the film attached to the target surface are hardly generated.
本発明において、ターゲットは、酸化亜鉛と、アルミニウムとガリウムとを含有し、実質的にウルツ鉱型酸化亜鉛相とスピネル型酸化物相の結晶相から構成されている酸化物焼結体を加工したものであって、アルミニウムとガリウムの含有量が、(Al+Ga)/(Zn+Al+Ga)原子数比で0.3〜6.5原子%、かつ、アルミニウムとガリウムの割合が、Al/(Al+Ga)原子数比で30〜70原子%である。そして、アルミニウムとガリウムが、ウルツ鉱型酸化亜鉛相および/またはスピネル型酸化物相に全て含まれており、酸化アルミニウム相と酸化ガリウム相を含んでいない。 In the present invention, the target is a processed oxide sintered body containing zinc oxide, aluminum and gallium, and substantially composed of a crystal phase of a wurtzite zinc oxide phase and a spinel oxide phase. The content of aluminum and gallium is 0.3 to 6.5 atomic% in terms of (Al + Ga) / (Zn + Al + Ga) atomic ratio, and the ratio of aluminum to gallium is Al / (Al + Ga) atomic number. The ratio is 30 to 70 atomic%. Aluminum and gallium are all contained in the wurtzite type zinc oxide phase and / or the spinel type oxide phase, and do not contain the aluminum oxide phase and the gallium oxide phase.
また、アルミニウムとガリウムが、スピネル型酸化物相中にAl/(Al+Ga)原子数比で10〜90原子%の割合で含まれており、アルミニウム酸亜鉛およびガリウム酸亜鉛のスピネル酸化物相を含んでいない。この酸化物焼結体中に含まれるZn−Al−Ga−O系のスピネル酸化物相は、Zn(Al,Ga)2O4−δ(δ≧0)で代表される組成を有し、Al/(Al+Ga)原子数比が10原子%未満のスピネル酸化物相が含まれると、成膜中にパーティクルの発生が多くなってしまうため好ましくない。成膜時にパーティクルが発生すると、基板上に付着して膜の欠陥が発生したり、ターゲットのエロージョン部に堆積するとアーキング発生の原因となる。 Aluminum and gallium are contained in the spinel-type oxide phase at a ratio of Al / (Al + Ga) atomic ratio of 10 to 90 atomic%, including zinc aluminate and zinc gallate spinel oxide phase. Not. The Zn—Al—Ga—O-based spinel oxide phase contained in this oxide sintered body has a composition represented by Zn (Al, Ga) 2 O 4-δ (δ ≧ 0), When a spinel oxide phase having an Al / (Al + Ga) atomic ratio of less than 10 atomic% is included, particles are generated during film formation, which is not preferable. If particles are generated at the time of film formation, they will adhere to the substrate and cause film defects, or if they are deposited on the erosion part of the target, it will cause arcing.
成膜中に発生するパーティクルは以下のメカニズムで起きる。スパッタリング成膜では、スパッタリングされた粒子は、ターゲットに対して対向側に取り付けた基板に向かって飛んでいくが、スパッタリングされた粒子の一部はスパッタガス粒子に衝突してターゲット面上に戻ってくる。この戻ってくるスパッタ粒子は、主にターゲット面でスパッタリングされない非エロージョン部分(エロージョン部:スパッタリングして削れる部分)に堆積して薄膜を形成する。この堆積膜は、ZnとAlとGaの酸化物焼結体のターゲットを用いたときはAlとGaが固溶した酸化亜鉛相の結晶膜である。ターゲット焼結体の表面には、AlとGaが固溶した酸化亜鉛結晶相と、Zn―Al―Ga―Oスピネル結晶相で構成されており、その上に薄膜は堆積される。成膜中にはプラズマから熱の輻射を受けるためターゲット表面は加熱されるが、成膜が終了すると冷却される。ターゲット表面と堆積膜は、加熱と冷却の際に熱膨張、収縮を受ける。ターゲット中の酸化亜鉛相と堆積膜の酸化亜鉛相との間の熱膨張差、収縮差は同じ結晶構造であるため比較的小さいが、ターゲット中のスピネル結晶相と堆積膜の酸化亜鉛相との間の熱膨張差、収縮差は比較的大きく、その差はスピネル結晶相の組成に大きく依存する。 Particles generated during film formation occur by the following mechanism. In sputtering film formation, the sputtered particles fly toward the substrate mounted on the opposite side of the target, but some of the sputtered particles collide with the sputter gas particles and return to the target surface. come. The returning sputtered particles are deposited mainly on a non-erosion portion (erosion portion: a portion that can be cut by sputtering) that is not sputtered on the target surface to form a thin film. This deposited film is a crystal film of a zinc oxide phase in which Al and Ga are dissolved when a target of an oxide sintered body of Zn, Al, and Ga is used. The surface of the target sintered body is composed of a zinc oxide crystal phase in which Al and Ga are dissolved, and a Zn—Al—Ga—O spinel crystal phase, on which a thin film is deposited. During film formation, the target surface is heated to receive heat radiation from the plasma, but is cooled when film formation is completed. The target surface and the deposited film undergo thermal expansion and contraction during heating and cooling. The difference in thermal expansion and contraction between the zinc oxide phase in the target and the zinc oxide phase in the deposited film is relatively small because of the same crystal structure, but the spinel crystal phase in the target and the zinc oxide phase in the deposited film are relatively small. The difference in thermal expansion and contraction is relatively large, and the difference greatly depends on the composition of the spinel crystal phase.
本発明において、ターゲット中のスピネル相の組成がAl/(Al+Ga)原子数比で10原子%未満であると、ターゲット表面に堆積した膜の剥離によるパーティクルが多くなる傾向を示す。
これは、Al/(Al+Ga)原子数比が10原子%未満となると、スピネル相―酸化亜鉛堆積膜との熱膨張係数の差が特に大きくなり、上述の熱履歴により堆積膜が剥離しやすくなるためと考えられる。ほとんどの場合は、成膜終了後の冷却時にスピネル相と堆積膜の熱収縮差から、堆積膜が強い応力を受け、剥離してパーティクルとなるのである。また、酸化物焼結体に、Al/(Al+Ga)原子数比が90原子%を超えるスピネル相が存在すると、アーキングが発生しやすくなる。
その要因は、Al/(Al+Ga)原子数比が90原子%超えるスピネル相は、高抵抗になるため、そのようなスピネル相が存在した酸化物焼結体のターゲットを用いて、高い直流電力を投入したスパッタリング成膜を行うと、高抵抗のスピネル相にアルゴンイオンの照射による帯電が生じ、絶縁破壊を起こして、アーキングが発生しやすくなるものと考えられる。
In the present invention, if the composition of the spinel phase in the target is less than 10 atomic% in terms of the Al / (Al + Ga) atomic ratio, particles tend to increase due to peeling of the film deposited on the target surface.
This is because when the Al / (Al + Ga) atomic ratio is less than 10 atomic%, the difference in thermal expansion coefficient between the spinel phase and the zinc oxide deposited film becomes particularly large, and the deposited film is easily peeled off due to the above-described thermal history. This is probably because of this. In most cases, during cooling after film formation, the deposited film is subjected to strong stress due to the difference in thermal contraction between the spinel phase and the deposited film, and peels off to become particles. In addition, if the oxide sintered body has a spinel phase having an Al / (Al + Ga) atomic ratio exceeding 90 atomic%, arcing is likely to occur.
The reason is that a spinel phase with an Al / (Al + Ga) atomic ratio exceeding 90 atomic% has a high resistance. Therefore, using a target of an oxide sintered body in which such a spinel phase exists, a high DC power is used. When the deposited sputtering film is formed, it is considered that the high resistance spinel phase is charged by irradiation with argon ions, causing dielectric breakdown and easily causing arcing.
4.透明導電膜とその製造方法
本発明の透明導電膜は、上記のターゲットを用いて、成膜装置中で基板の上にスパッタリング法あるいはイオンプレーティング法により形成される。特に、直流(DC)スパッタリング法は、成膜時の熱影響が少なく、高速成膜が可能であるため工業的に有利である。
4). Transparent conductive film and method for producing the same The transparent conductive film of the present invention is formed on a substrate by sputtering or ion plating in a film forming apparatus using the above target. In particular, the direct current (DC) sputtering method is industrially advantageous because it has less thermal influence during film formation and enables high-speed film formation.
本発明の透明導電膜は、上記酸化物焼結体を原料として成膜されるため、酸化物焼結体の組成が反映されている。すなわち、酸化亜鉛を主成分とし、さらにアルミニウムとガリウムを含有する透明導電膜であって、(1)アルミニウムとガリウムの含有量の総和が、(Al+Ga)/(Zn+Al+Ga)原子数比で0.3〜6.5原子%であり、また、アルミニウムとガリウムが、Al/(Al+Ga)原子数比で30〜70原子%であるとともに、(2)該透明導電膜は結晶相から構成されている。また、本発明の透明導電膜の結晶相は実質的にウルツ鉱型酸化亜鉛相からなり、アルミニウム元素およびガリウム元素は、ウルツ鉱型酸化亜鉛相に全て含まれていることが好ましい。 Since the transparent conductive film of the present invention is formed using the oxide sintered body as a raw material, the composition of the oxide sintered body is reflected. That is, a transparent conductive film containing zinc oxide as a main component and further containing aluminum and gallium. (1) The total content of aluminum and gallium is 0.3 in terms of (Al + Ga) / (Zn + Al + Ga) atomic ratio. -6.5 atomic%, and aluminum and gallium are 30-70 atomic% in Al / (Al + Ga) atomic ratio, and (2) the transparent conductive film is composed of a crystalline phase. Moreover, it is preferable that the crystal phase of the transparent conductive film of the present invention is substantially composed of a wurtzite zinc oxide phase, and the aluminum element and the gallium element are all contained in the wurtzite zinc oxide phase.
また、得られたウルツ鉱型酸化亜鉛相は、上記ガラスなどの基板に垂直方向にc軸配向する。結晶性が良いほど(結晶粒子が大きいほど)キャリア電子の移動度が速いため優れた導電性を有している。酸化亜鉛系の透明導電膜の導電性は、膜厚が厚いほど高い導電性が得られやすい。膜厚が厚いと、膜の結晶性が良くなり、キャリア電子の移動度が増大するからである。 Further, the obtained wurtzite type zinc oxide phase is c-axis oriented in a direction perpendicular to the substrate such as glass. The better the crystallinity (the larger the crystal grain), the faster the mobility of carrier electrons, and thus the better the conductivity. As the conductivity of the zinc oxide-based transparent conductive film, the higher the film thickness, the higher the conductivity. This is because when the film thickness is large, the crystallinity of the film is improved and the mobility of carrier electrons is increased.
本発明では、前記酸化物焼結体から得られたターゲットを用い、特定の基板温度、圧力、酸素濃度などのスパッタリング条件を採用することで、基板上にアルミニウムとガリウムを含有する酸化亜鉛よりなる透明導電膜を形成することができる。本発明の酸化物焼結体を用いてスパッタ法あるいはイオンプレーティング法で得られる透明導電膜の組成は、酸化物焼結体の組成と同じである。
基板としては、ガラス、樹脂、金属、セラミックなどその材質によって特に限定されず、透明でも非透明のものでもよいが透明基板が好ましい。樹脂の場合、板状、フィルムなど様々な形状のものが使用でき、例えば150℃以下の低融点のものであっても構わない。
In the present invention, by using a target obtained from the oxide sintered body and adopting sputtering conditions such as a specific substrate temperature, pressure, oxygen concentration, etc., the substrate is made of zinc oxide containing aluminum and gallium. A transparent conductive film can be formed. The composition of the transparent conductive film obtained by sputtering or ion plating using the oxide sintered body of the present invention is the same as the composition of the oxide sintered body.
The substrate is not particularly limited by the material such as glass, resin, metal, ceramic, and may be transparent or non-transparent, but a transparent substrate is preferable. In the case of a resin, those having various shapes such as a plate shape and a film can be used.
ターゲット(酸化物焼結体)の組成は、前記のとおり、アルミニウムとガリウムの含有量の総和が(Al+Ga)/(Zn+Al+Ga)原子数比で0.3〜6.5原子%である。 特に基板を加熱せずに室温の成膜条件で低抵抗の透明導電膜(例えば約200nmの膜厚において、4.9×10−4〜9.0×10−4Ωcmの比抵抗)を得るためには、アルミニウムとガリウムの含有量の総和が3.2〜6.5原子%であることが必要である。 As described above, the composition of the target (oxide sintered body) is such that the total content of aluminum and gallium is 0.3 to 6.5 atomic% in terms of the (Al + Ga) / (Zn + Al + Ga) atomic ratio. In particular, a low-resistance transparent conductive film (for example, a specific resistance of 4.9 × 10 −4 to 9.0 × 10 −4 Ωcm at a film thickness of about 200 nm) is obtained under film formation conditions at room temperature without heating the substrate. For this purpose, the total content of aluminum and gallium needs to be 3.2 to 6.5 atomic%.
得られる透明導電膜の透過率について言及すると、アルミニウムとガリウムの含有量の総和が0.3〜6.5原子%の範囲内の酸化物焼結体では、可視域(波長400〜800nm)における透過率は高く、{(基板を含めた透過率)/(基板のみの透過率)}×100(%)で規定した膜自体の透過率で87%以上である。近赤外域(波長800〜1200nm)の透過率について言及すると、アルミニウムとガリウムの含有量の総和が0.3〜3.2原子%のときに特に優れていて、膜厚が200nmにおける同様に規定した膜自体の透過率で91〜94%の高透過性を発揮するとともに、太陽電池に用いるのに十分な低抵抗の透明導電膜(例えば約200nmの膜厚において、9.0×10−4〜3.0×10−3Ωcmの比抵抗)が得られる。 Regarding the transmittance of the obtained transparent conductive film, in the oxide sintered body in which the total content of aluminum and gallium is in the range of 0.3 to 6.5 atomic%, in the visible region (wavelength 400 to 800 nm). The transmittance is high, and the transmittance of the film itself defined by {(transmittance including substrate) / (transmittance of substrate only)} × 100 (%) is 87% or more. Referring to the transmittance in the near-infrared region (wavelength 800 to 1200 nm), it is particularly excellent when the total content of aluminum and gallium is 0.3 to 3.2 atomic%, and the film thickness is similarly defined at 200 nm. The film itself exhibits a high transmittance of 91 to 94% and a low-resistance transparent conductive film sufficient for use in a solar cell (for example, at a film thickness of about 200 nm, 9.0 × 10 −4 To 3.0 × 10 −3 Ωcm).
このような亜鉛とアルミニウムとガリウムを含有する酸化物焼結体からスパッタリング法で製造される透明導電膜は、アルミニウムイオンとガリウムイオンがドーパントとして亜鉛イオンサイトに置換した酸化亜鉛を主成分とするn型半導体の導電性の結晶薄膜である。アルミニウムイオンとガリウムイオンは正三価であり、これらが正二価の亜鉛イオンサイトを置換することで膜中のキャリア自由電子を発生して導電性を上げることができる。 A transparent conductive film manufactured from such an oxide sintered body containing zinc, aluminum, and gallium by sputtering is composed mainly of zinc oxide in which aluminum ions and gallium ions are substituted into zinc ion sites as dopants. It is a conductive crystalline thin film of type semiconductor. Aluminum ions and gallium ions are positively trivalent, and by replacing these positively divalent zinc ion sites, carrier free electrons in the film can be generated to increase conductivity.
本発明においてターゲットの組成は、アルミニウムとガリウムの含有量の総和が(Al+Ga)/(Zn+Al+Ga)原子数比で0.3〜6.5原子%と規定しているが、この範囲内であれば、幅広い成膜条件下でも、特に基板を加熱しないで室温成膜においてでも、高い導電性の透明導電膜を得ることができ、可視域における透過率も高い。
アルミニウムとガリウムの含有量の総和が0.3原子%より少ないと膜中のキャリア自由電子の発生量が少ないため高い導電性を得ることができない。また、アルミニウムとガリウムの含有量の総和が6.5原子%を超えると、特に室温成膜の場合には、高い導電性の膜が得られない。
室温成膜の場合は、ドーパント量が多すぎて全て酸化亜鉛相に固溶できず、粒界にアルミニウムやガリウムの化合物が析出して薄膜の結晶性が劣ってしまい、キャリア電子の移動度の低下にともなう導電性の悪化が顕著となる。基板を400〜500℃に加熱しながら成膜すれば、13原子%の添加まで、高い導電性の透明導電膜が得られるが、このような高温成膜は特殊な成膜条件であり、導電性の高い透明導電膜を、室温成膜を含めた幅広い成膜条件で得るためには、アルミニウムとガリウムの含有量の総和が(Al+Ga)/(Zn+Al+Ga)原子数比で0.3〜6.5原子%であるターゲットを用いる必要がある。
特に基板を加熱せずに室温の成膜条件で低抵抗の透明導電膜(例えば約200nmの膜厚において、4.9×10−4〜9.0×10−4Ωcmの比抵抗)を得るためには、アルミニウムとガリウムの含有量の総和が3.2〜6.5原子%であることが必要である。
In the present invention, the composition of the target stipulates that the total content of aluminum and gallium is 0.3 to 6.5 atomic% in terms of the (Al + Ga) / (Zn + Al + Ga) atomic ratio. Even under a wide range of film formation conditions, a highly conductive transparent conductive film can be obtained even at room temperature film formation without heating the substrate, and the transmittance in the visible region is also high.
If the total content of aluminum and gallium is less than 0.3 atomic%, the amount of generated carrier free electrons in the film is small, so that high conductivity cannot be obtained. In addition, when the total content of aluminum and gallium exceeds 6.5 atomic%, a highly conductive film cannot be obtained particularly at room temperature.
In the case of room temperature film formation, the amount of dopant is too large to be completely dissolved in the zinc oxide phase, the aluminum or gallium compound is precipitated at the grain boundary, and the crystallinity of the thin film is deteriorated. The deterioration of conductivity due to the decrease is remarkable. If the film is formed while heating the substrate to 400 to 500 ° C., a highly conductive transparent conductive film can be obtained up to the addition of 13 atomic%. However, such high temperature film formation is a special film formation condition. In order to obtain a highly transparent conductive film under a wide range of film formation conditions including room temperature film formation, the sum of the contents of aluminum and gallium is 0.3 to 6.6 in terms of the (Al + Ga) / (Zn + Al + Ga) atomic ratio. It is necessary to use a target that is 5 atomic%.
In particular, a low-resistance transparent conductive film (for example, a specific resistance of 4.9 × 10 −4 to 9.0 × 10 −4 Ωcm at a film thickness of about 200 nm) is obtained under film formation conditions at room temperature without heating the substrate. For this purpose, the total content of aluminum and gallium needs to be 3.2 to 6.5 atomic%.
得られる透明導電膜の透過率について言及すると、アルミニウムとガリウムの含有量の総和が0.3〜6.5原子%の範囲内の酸化物焼結体では、可視域(波長400〜800nm)における透過率は高く、{(基板を含めた透過率)/(基板のみの透過率)}×100(%)で規定した膜自体の透過率で87%以上である。
近赤外域(波長800〜1200nm)の透過率について言及すると、膜の(Al+Ga)/(Zn+Al+Ga)原子数比が0.3〜3.2原子%のときに特に優れていて、膜厚が200nmにおける同様に規定した膜自体の透過率で91〜94%の高透過性を発揮するとともに、太陽電池に用いるのに十分な低抵抗の透明導電膜(例えば約200nmの膜厚において、9.0×10−4〜3.0×10−3Ωcmの比抵抗)が得られる。
Regarding the transmittance of the obtained transparent conductive film, in the oxide sintered body in which the total content of aluminum and gallium is in the range of 0.3 to 6.5 atomic%, in the visible region (wavelength 400 to 800 nm). The transmittance is high, and the transmittance of the film itself defined by {(transmittance including substrate) / (transmittance of substrate only)} × 100 (%) is 87% or more.
Referring to the transmittance in the near-infrared region (wavelength 800 to 1200 nm), the film is particularly excellent when the (Al + Ga) / (Zn + Al + Ga) atomic ratio of the film is 0.3 to 3.2 atomic%, and the film thickness is 200 nm. A transparent conductive film having a low resistance sufficient for use in a solar cell (e.g., 9.0 at a film thickness of about 200 nm) while exhibiting high transmittance of 91 to 94% with the transmittance of the film itself defined in the same manner. X10 −4 to 3.0 × 10 −3 Ωcm).
本発明においては、スパッタリングガスとしてアルゴンなどの不活性ガスを用い、直流スパッタリングを用いることが好ましい。例えば、5×10−5Pa以下まで真空排気後、純Arガスを導入し、ガス圧を0.1〜1Pa、特に0.2〜0.8Paとし、0.55〜4.7W/cm2の投入直流電力密度(直流投入電力/ターゲットの面積)を印加して直流プラズマを発生させ、プリスパッタを実施することができる。このプリスパッタリングを5〜30分間行った後、必要により基板位置を修正したうえでスパッタリングすることが好ましい。本発明の前記酸化物焼結体から得たターゲットを用いると、4.7W/cm2の高い直流電力を投入してもアーキングなどの異常放電が全く発生せずに安定に高速成膜することができる。 In the present invention, it is preferable to use DC sputtering by using an inert gas such as argon as the sputtering gas. For example, after evacuating to 5 × 10 −5 Pa or less, pure Ar gas is introduced, and the gas pressure is set to 0.1 to 1 Pa, particularly 0.2 to 0.8 Pa, and 0.55 to 4.7 W / cm 2. The DC power density (DC input power / target area) can be applied to generate DC plasma and presputtering can be performed. After performing this pre-sputtering for 5 to 30 minutes, it is preferable to perform sputtering after correcting the substrate position if necessary. When the target obtained from the oxide sintered body of the present invention is used, high-speed film formation can be stably performed without causing any abnormal discharge such as arcing even when a high DC power of 4.7 W / cm 2 is applied. Can do.
酸化亜鉛系の透明導電膜の導電性は、成膜時の基板加熱温度に大きく依存する。これは基板加熱温度が高温になると、膜の結晶性が良くなり、キャリア電子の移動度が増大するからである。本発明では、基板を加熱せずに成膜できるが、基板を50〜300℃、特に80〜200℃に加熱することもできる。基板を加熱して成膜した方が、得られる透明導電膜の結晶性が良くなり、上述の要因で優れた導電性を実現することができる。しかし、基板が樹脂板、樹脂フィルムなど低融点のものである場合は加熱しないで成膜することが望ましい。
上記本発明の酸化物焼結体から作製したスパッタリングターゲットを用いれば、資源枯渇の心配が少なくて、安価で導電性に優れたZnO系透明導電膜を、高い投入電力の直流スパッタリング法でアーキングが発生せずに安定に基板上に製造することができ、製造コストを大幅に削減できる。
The conductivity of the zinc oxide-based transparent conductive film greatly depends on the substrate heating temperature during film formation. This is because when the substrate heating temperature is high, the crystallinity of the film is improved and the mobility of carrier electrons is increased. In the present invention, a film can be formed without heating the substrate, but the substrate can also be heated to 50 to 300 ° C., particularly 80 to 200 ° C. When the film is formed by heating the substrate, the crystallinity of the obtained transparent conductive film is improved, and excellent conductivity can be realized due to the above-described factors. However, when the substrate has a low melting point such as a resin plate or resin film, it is desirable to form the film without heating.
If the sputtering target produced from the oxide sintered body of the present invention is used, there is less concern about resource depletion, and a ZnO-based transparent conductive film that is inexpensive and excellent in electrical conductivity can be arced with a high input power DC sputtering method. It can be stably produced on the substrate without generating, and the production cost can be greatly reduced.
本発明の透明導電膜は、従来のAZO膜と比べて低抵抗であり、また従来のGZO膜と比べて可視域から近赤外域における透過率が高い。基板を含めた可視域(波長400〜800nm)の平均透過率は85%以上であり、基板を含めた波長800〜1200nmの近赤外域の平均透過率は80%以上である。すなわち、膜自体の透過率を、{(基板を含めた透過率)/(基板のみの透過率)}×100(%)で規定すると、本発明の透明導電膜の膜自体の平均透過率は、波長400〜800nmにおいて87%以上、波長800〜1200nmにおいて88%以上である。よって、可視域から近赤外域での太陽光エネルギーを有効利用する高効率の太陽電池の透明電極として有用である。 The transparent conductive film of the present invention has a low resistance compared to a conventional AZO film, and has a higher transmittance in the visible region to the near infrared region than a conventional GZO film. The average transmittance in the visible region (wavelength 400 to 800 nm) including the substrate is 85% or more, and the average transmittance in the near infrared region of the wavelength 800 to 1200 nm including the substrate is 80% or more. That is, when the transmittance of the film itself is defined by {(transmittance including the substrate) / (transmittance of the substrate only)} × 100 (%), the average transmittance of the film itself of the transparent conductive film of the present invention is , 87% or more at a wavelength of 400 to 800 nm, and 88% or more at a wavelength of 800 to 1200 nm. Therefore, it is useful as a transparent electrode of a high-efficiency solar cell that effectively uses solar energy from the visible range to the near-infrared range.
また、上記酸化物焼結体から作製したイオンプレーティング用のタブレット(ペレットあるいはターゲットとも呼ぶ。)を用いた場合にも、同様の透明導電膜の形成が可能である。イオンプレーティング法では、蒸発源となるタブレットに、電子ビームやアーク放電による熱などを照射すると、照射された部分は局所的に高温になり、蒸発粒子が蒸発して基板に堆積される。このとき、蒸発粒子を電子ビームやアーク放電によってイオン化する。イオン化する方法には、様々な方法があるが、プラズマ発生装置(プラズマガン)を用いた高密度プラズマアシスト蒸着法(HDPE法)は、良質な透明導電膜の形成に適している。この方法では、プラズマガンを用いたアーク放電を利用する。該プラズマガンに内蔵されたカソードと蒸発源の坩堝(アノード)との間でアーク放電が維持される。カソードから放出される電子を磁場偏向により坩堝内に導入して、坩堝に仕込まれたタブレットの局部に集中して照射する。この電子ビームによって、局所的に高温となった部分から、蒸発粒子が蒸発して基板に堆積される。気化した蒸発粒子や反応ガスとして導入されたO2ガスは、このプラズマ内でイオン化ならびに活性化されるため、良質な透明導電膜を作製することができる。
本発明によれば、従来のAZO膜と比べて、低抵抗の透明導電膜が可視光透過性を損なうことなく製造できる。また、基板を加熱しなくても高い導電性の透明導電膜を得ることができるため、耐熱性に劣ったフィルム基板などの有機物上にも低抵抗膜を得ることができる。
In addition, when a tablet for ion plating (also referred to as a pellet or a target) produced from the oxide sintered body is used, a similar transparent conductive film can be formed. In the ion plating method, when a tablet as an evaporation source is irradiated with heat by an electron beam or arc discharge, the irradiated portion becomes locally high in temperature, and evaporated particles are evaporated and deposited on the substrate. At this time, the evaporated particles are ionized by an electron beam or arc discharge. There are various ionization methods. The high-density plasma-assisted deposition method (HDPE method) using a plasma generator (plasma gun) is suitable for forming a high-quality transparent conductive film. In this method, arc discharge using a plasma gun is used. Arc discharge is maintained between the cathode built in the plasma gun and the crucible (anode) of the evaporation source. Electrons emitted from the cathode are introduced into the crucible by magnetic field deflection, and concentrated and irradiated on the local part of the tablet charged in the crucible. By this electron beam, the evaporated particles are evaporated and deposited on the substrate from the portion where the temperature is locally high. Since vaporized evaporated particles and O 2 gas introduced as a reaction gas are ionized and activated in the plasma, a high-quality transparent conductive film can be produced.
According to the present invention, a transparent conductive film having a low resistance can be manufactured without impairing visible light transmittance as compared with a conventional AZO film. In addition, since a highly conductive transparent conductive film can be obtained without heating the substrate, a low resistance film can be obtained on an organic substance such as a film substrate having poor heat resistance.
5.太陽電池
本発明の太陽電池は、上記透明導電膜を電極として用いてなる光電変換素子である。光電変換素子の構造は、特に限定されず、p型半導体とn型半導体を積層したPN接合型、p型半導体とn型半導体の間に絶縁層(I層)を介在したPIN接合型、或いは、種類の異なったこれらの接合部が複数層積層されたハイブリッドなどが挙げられる。
5. Solar cell The solar cell of the present invention is a photoelectric conversion element using the transparent conductive film as an electrode. The structure of the photoelectric conversion element is not particularly limited, and is a PN junction type in which a p-type semiconductor and an n-type semiconductor are stacked, a PIN junction type in which an insulating layer (I layer) is interposed between the p-type semiconductor and the n-type semiconductor, or And a hybrid in which a plurality of these types of joints are stacked.
これらの光電変換素子は両面に電極が形成される。本発明の太陽電池は、両面の電極のうち少なくとも一方の面の電極に本発明の透明導電膜を用いたものである。太陽光が入射する側の電極には透明電極は不可欠であり、本発明の透明導電膜を用いると有効である。また、太陽光が入射しない側の電極は、金属電極が用いられる場合もあるが、本発明の透明導電膜(光電変換素子側)と金属膜の積層膜を用いると有効である。この場合、PNもしくは光電変換素子を通過した太陽光が光電変換素子と金属膜との間の透明導電膜で閉じこめられ、光電変換されるのであるが、本発明の透明導電膜を用いれば光損失が少ないため有効である。
光電変換素子は、薄膜で形成される場合は、ガラスや金属などの基板上に設けられるが、本発明の太陽電池は、基板上でのPN接合部やPIN接合部の積層順序は問わない。つまり本発明の太陽電池は、本発明の透明導電膜が光電変換素子と基板との間に設けられる場合もあるが、光電変換素子の表面側に設けられる場合もあり、またその両方に設けられる場合もあり、いずれも有効である。
These photoelectric conversion elements have electrodes formed on both sides. The solar cell of the present invention uses the transparent conductive film of the present invention for at least one of the electrodes on both sides. A transparent electrode is indispensable for the electrode on the side where sunlight enters, and it is effective to use the transparent conductive film of the present invention. Moreover, although the metal electrode may be used for the electrode on the side where sunlight does not enter, it is effective to use the laminated film of the transparent conductive film (photoelectric conversion element side) and the metal film of the present invention. In this case, sunlight passing through the PN or the photoelectric conversion element is confined by the transparent conductive film between the photoelectric conversion element and the metal film, and is photoelectrically converted. It is effective because there are few.
When the photoelectric conversion element is formed as a thin film, the photoelectric conversion element is provided on a substrate such as glass or metal. However, the solar cell of the present invention does not matter in the stacking order of the PN junction and the PIN junction on the substrate. That is, in the solar cell of the present invention, the transparent conductive film of the present invention may be provided between the photoelectric conversion element and the substrate, but may be provided on the surface side of the photoelectric conversion element, or may be provided on both. In some cases, both are valid.
また、太陽電池は、半導体の種類によって大別され、単結晶シリコン、多結晶シリコン、微結晶シリコン、アモルファスシリコンなどのシリコン系半導体を用いた太陽電池と、CuInSe系やCu(In,Ga)Se系、Ag(In,Ga)Se系、CuInS系、Cu(In,Ga)S系、Ag(In,Ga)S系やこれらの固溶体、GaAs系、CdTe系などで代表される化合物半導体の薄膜を用いた化合物薄膜系太陽電池と、有機色素を用いた色素増感型太陽電池(グレッツェルセル型太陽電池とも呼ばれる)に分類されるが、本発明の太陽電池は何れの場合も含まれ、上記透明導電膜を電極として用いることで高効率が実現できる。
特に、アモルファスシリコンや微結晶シリコンを用いた太陽電池や化合物薄膜系太陽電池では、太陽光が入射する側(受光部側、表側)の電極には透明導電膜が必要不可欠であり、本発明の透明導電膜を用いることで高い変換効率の特性を発揮することができる。アモルファスシリコンの光電変換素子と微結晶シリコンの光電変換素子が積層された構造や、アモルファスシリコンの光電変換素子と単結晶シリコンの光電変換素子が積層された構造、アモルファスシリコンの光電変換素子と多結晶シリコンの光電変換素子が積層された構造、微結晶シリコンの光電変換素子と単結晶シリコンの光電変換素子が積層された構造、微結晶シリコンの光電変換素子と多結晶シリコンの光電変換素子が積層された構造などのハイブリッドタイプでも透明導電膜は必要不可欠であり、本発明の透明導電膜を用いることで高い変換効率を発揮することができる。
Solar cells are broadly classified according to the type of semiconductor. Solar cells using silicon-based semiconductors such as single crystal silicon, polycrystalline silicon, microcrystalline silicon, and amorphous silicon, and CuInSe and Cu (In, Ga) Se are used. Thin films of compound semiconductors typified by Pt, Ag (In, Ga) Se, CuInS, Cu (In, Ga) S, Ag (In, Ga) S, solid solutions thereof, GaAs, CdTe, and the like Are classified into a compound thin film solar cell using a dye and a dye-sensitized solar cell using an organic dye (also called a Gretzel cell solar cell), but the solar cell of the present invention is included in any case, and High efficiency can be realized by using a transparent conductive film as an electrode.
In particular, in a solar cell or a compound thin film solar cell using amorphous silicon or microcrystalline silicon, a transparent conductive film is indispensable for the electrode on which sunlight is incident (light receiving unit side, front side). By using a transparent conductive film, high conversion efficiency characteristics can be exhibited. A structure in which an amorphous silicon photoelectric conversion element and a microcrystalline silicon photoelectric conversion element are stacked, a structure in which an amorphous silicon photoelectric conversion element and a single crystal silicon photoelectric conversion element are stacked, an amorphous silicon photoelectric conversion element and a polycrystal A structure in which a photoelectric conversion element of silicon is laminated, a structure in which a photoelectric conversion element of microcrystalline silicon and a photoelectric conversion element of single crystal silicon are laminated, a photoelectric conversion element of microcrystalline silicon and a photoelectric conversion element of polycrystalline silicon are laminated. A transparent conductive film is indispensable even in a hybrid type such as a structure, and high conversion efficiency can be exhibited by using the transparent conductive film of the present invention.
これらシリコン系の太陽電池について概説すると、PN接合型の太陽電池素子は、例えば厚み0.2〜0.5mm程度、大きさ180mm角程度の単結晶や多結晶のシリコン基板を用いることができ、素子のシリコン基板内部にはボロンなどのP型不純物を多く含んだP層とリンなどのN型不純物を多く含んだN層が接したPN接合が形成される。また、シリコン基板の代わりにガラス板、樹脂板、樹脂フィルムなどの透明基板も使用される。本発明においては、透明基板であることが好ましい。その場合、基板に上記の本発明の透明導電膜を電極として形成した後、アモルファスあるいは微結晶のシリコン薄膜が積層される。アモルファスあるいは微結晶のシリコンは、シランガスを用いて、ガラスや樹脂などの基板上に比較的低温にて薄膜状で形成することができる。 When these silicon-based solar cells are outlined, a PN junction solar cell element can use, for example, a monocrystalline or polycrystalline silicon substrate having a thickness of about 0.2 to 0.5 mm and a size of about 180 mm square, Inside the silicon substrate of the element, a PN junction is formed in which a P layer containing a large amount of P-type impurities such as boron and an N layer containing a large amount of N-type impurities such as phosphorus are in contact. Further, a transparent substrate such as a glass plate, a resin plate, or a resin film is also used instead of the silicon substrate. In the present invention, a transparent substrate is preferable. In that case, after forming the transparent conductive film of the present invention as an electrode on a substrate, an amorphous or microcrystalline silicon thin film is laminated. Amorphous or microcrystalline silicon can be formed in a thin film at a relatively low temperature on a substrate such as glass or resin using silane gas.
アモルファスあるいは微結晶のシリコン薄膜では、例えば、図1に示すように、PN接合の間に絶縁層(I層)が介在したPIN接合とされる。ガラス基板1の上に、表側(受光部側)透明電極膜2と、p型アモルファスシリコン膜又は水素化アモルファスシリコンカーバイド膜3と、不純物を含まないアモルファスシリコン膜4と、n型アモルファスシリコン膜5と、裏側透明電極膜(接触改善層)6と、裏側金属電極すなわち裏面電極7が積層されている。p型アモルファスシリコン膜又は水素化アモルファスシリコンカーバイド膜3と、不純物を含まないアモルファスシリコン膜4と、n型アモルファスシリコン膜5は、通常、プラズマCVD法によって形成される。
In the case of an amorphous or microcrystalline silicon thin film, for example, as shown in FIG. 1, a PIN junction in which an insulating layer (I layer) is interposed between PN junctions. On the
次に、化合物薄膜系太陽電池について詳説する。化合物薄膜を用いた太陽電池は、通常は広いバンドギャップを持つ化合物半導体薄膜(n型半導体の中間層)と狭いバンドギャップを持つ化合物半導体(p型半導体の光吸収層)のヘテロ結合で構成されている。一般的な構造は、図2に示すように、「表面電極(透明導電膜)/窓層/中間層/光吸収層/裏面電極(金属または透明導電膜)」となる。具体的には図2に示すように、ガラス基板12の上に本発明の透明電極膜11と、窓層10のZnO薄膜と、半導体中間層9と、p型半導体の光吸収層8と、裏面電極7のAu膜とが積層されている。また、図3には、ガラス基板12の上に下部電極、すなわち裏面電極13と、p型半導体の光吸収層8と、半導体の中間層9と、窓層10と、本発明の酸化亜鉛系の透明電極膜11とが積層されている。いずれの構造も、透明電極膜11側が太陽光線の入射方向となっている。
Next, the compound thin film solar cell will be described in detail. A solar cell using a compound thin film is usually composed of a heterojunction of a compound semiconductor thin film (n-type semiconductor intermediate layer) having a wide band gap and a compound semiconductor (p-type semiconductor light absorbing layer) having a narrow band gap. ing. As shown in FIG. 2, the general structure is “surface electrode (transparent conductive film) / window layer / intermediate layer / light absorption layer / back electrode (metal or transparent conductive film)”. Specifically, as shown in FIG. 2, the
基板としては、前記のとおり、ガラス、樹脂、金属、セラミックなどその材質によって特に限定されず、透明でも非透明のものでもよいが透明基板が好ましい。樹脂の場合、板状、フィルムなど様々な形状のものが使用でき、例えば150℃以下の低融点のものであっても構わない。金属の場合、ステンレス鋼、アルミニウムなど、セラミックとしては、アルミナ、酸化亜鉛、カーボン、窒化珪素、炭化珪素などを挙げることができる。アルミナ、酸化亜鉛以外の酸化物として、Ga,Y,In,La,Si,Ti,Ge,Zr,Sn,Nb又はTaから選ばれる酸化物を含んだものでもよい。これらの酸化物としては、例えば、Ga2O3,Y2O3,In2O3,La2O3,SiO2,TiO2,GeO2,ZrO2,SnO2,Nb2O5,Ta2O5等を挙げることができる。本発明においては、これらガラス、樹脂、セラミック製の基板を非金属基板という。基板表面は、少なくとも一方に山型の凹凸を設けること、エッチングなどで粗雑化することにより入射する太陽光線を反射しやすくしておくことが望ましい。 As described above, the substrate is not particularly limited by the material such as glass, resin, metal, ceramic, and may be transparent or non-transparent, but a transparent substrate is preferable. In the case of a resin, those having various shapes such as a plate shape and a film can be used. In the case of a metal, examples of the ceramic such as stainless steel and aluminum include alumina, zinc oxide, carbon, silicon nitride, and silicon carbide. As oxides other than alumina and zinc oxide, oxides selected from Ga, Y, In, La, Si, Ti, Ge, Zr, Sn, Nb or Ta may be used. Examples of these oxides include Ga 2 O 3 , Y 2 O 3 , In 2 O 3 , La 2 O 3 , SiO 2 , TiO 2 , GeO 2 , ZrO 2 , SnO 2 , Nb 2 O 5 , Ta. 2 O 5 etc. can be mentioned. In the present invention, these glass, resin, and ceramic substrates are referred to as non-metallic substrates. It is desirable that the surface of the substrate is provided with a mountain-shaped unevenness on at least one side, and is roughened by etching or the like so as to easily reflect incident sunlight.
裏面電極13としては、Mo、Ag、Au、Al、Ti、Pd、Ni、それらの合金など導電性電極材料が使用され、Mo、Ag、Au、又はAlのいずれかが好ましい。通常、0.5〜5μm、好ましくは1〜3μmの厚さとされる。その形成手段は、特に限定されないが、例えば、直流マグネトロンスパッタ法、真空蒸着法やCVD法とされる。
As the
光吸収層8のp型半導体としては、CuInSe2、CuInS2、CuGaSe2、CuGaS2、AgInSe2、AgInS2、AgGaSe2、AgGaS2およびこれらの固溶体やCdTeが利用可能である。より高いエネルギー変換効率を得るために必要とされる条件は、より多くの光電流を得るための光学的な最適設計と、界面または特に吸収層においてキャリアの再結合のない高品質なヘテロ接合および薄膜を作ることである。通常、1〜5μm、好ましくは2〜3μmの厚さとされる。その形成手段は、特に限定されないが、例えば、真空蒸着法やCVD法で形成される。高品質なヘテロ界面は、中間層/吸収層の組み合わせと関係が深く、CdS/CdTe系やCdS/CuInSe2系、CdS/Cu(In,Ga)Se2系、CdS/Ag(In,Ga)Se2系などにおいて有用なヘテロ接合が得られる。
CuInSe 2 , CuInS 2 , CuGaSe 2 , CuGaS 2 , AgInSe 2 , AgInS 2 , AgGaSe 2 , AgGaS 2 and their solid solutions and CdTe can be used as the p-type semiconductor of the
また、太陽電池を高効率化するには、より広いバンドギャップをもつ半導体、例えば、中間層9が半導体薄膜としてCdSやCdZnS等を用いられる。これによって、太陽光の短波長の感度向上をはかることができる。通常、10〜200nm、好ましくは30〜100nmの厚さとされる。中間層9の形成手段は、特に限定されないが、CdS薄膜の場合、溶液析出法で、CdI2、NH4Cl2、NH3、およびチオ尿素の混合溶液を用い形成される。
In order to increase the efficiency of the solar cell, a semiconductor having a wider band gap, for example, the
さらに、中間層9であるCdSや(Cd,Zn)Sの入射光側には、それらの薄膜よりもバンドギャップの大きな半導体を窓層10として配することができる。これにより、再現性の高い高性能な太陽電池となる。窓層10は、例えばZnOや(Zn,Mg)O薄膜など導電率がCdS薄膜と同程度の薄膜であり、通常、50〜300nm、好ましくは100〜200nmの厚さとされる。窓層10の形成手段は、特に限定されないが、直流マグネトロンスパッタ法で、ZnOや(Zn,Mg)Oなどのターゲットと、スパッタガスとしてArを用いて形成される。
本発明の太陽電池は、このような化合物薄膜系太陽電池の太陽光が入射する側(表面および/または裏面)の電極に本発明の透明導電膜を用いたものであり、従来の透明導電膜よりも低抵抗で透過率が高いため、高い変換効率を実現できる。
Further, on the incident light side of CdS or (Cd, Zn) S, which is the
The solar cell of the present invention is obtained by using the transparent conductive film of the present invention as an electrode on the side (front surface and / or back surface) on which sunlight of such a compound thin film solar cell is incident. Therefore, high conversion efficiency can be realized.
上述の化合物薄膜系は、組成の異なる光電変換素子が積層されたハイブリッドタイプの太陽電池の場合でも、本発明の透明導電膜を用いると高い変換効率が得られる。特に、光吸収の波長域が異なる組成の異なる光吸収層を積層して得られた太陽電池は、幅広い波長領域の太陽光を有効利用できるため、可視〜近赤外まで透過率の高い本発明の透明導電膜を用いることが有用である。 The above-described compound thin film system can achieve high conversion efficiency when the transparent conductive film of the present invention is used even in the case of a hybrid type solar cell in which photoelectric conversion elements having different compositions are laminated. In particular, a solar cell obtained by laminating light absorption layers having different compositions with different light absorption wavelength ranges can effectively use sunlight in a wide wavelength range, and therefore has high transmittance from visible to near infrared. It is useful to use a transparent conductive film.
いずれの型の素子でも受光面(表面)側及び裏面側には、銀ペーストをスクリーンプリント法などによりバスバー電極とフィンガー電極がそれぞれ形成され、またこれらの電極表面は、その保護と接続タブを取り付けやすくするために、そのほぼ全面にわたりハンダコートされる。なお、素子がシリコン基板の場合は、受光面側に、ガラス板、樹脂板、樹脂フィルムなどの透明な保護材が設けられる。 In both types of elements, the bus bar electrode and finger electrode are formed on the light receiving surface (front surface) side and back surface side by screen printing method, etc., and these electrode surfaces are attached with protection and connection tabs. In order to make it easier, the entire surface is solder coated. When the element is a silicon substrate, a transparent protective material such as a glass plate, a resin plate, or a resin film is provided on the light receiving surface side.
透明導電膜の厚さは、特に制限されるわけではなく、材料の組成などにもよるが、50〜1500nm、特に400〜1300nmであることが望ましい。本発明の上記透明導電膜は、低抵抗であり、波長380nm〜1200nmの可視光線から近赤外線までを含む太陽光の透過率が高いため、太陽光の光エネルギーを極めて有効に電気エネルギーに変換することができる。 The thickness of the transparent conductive film is not particularly limited and is preferably 50 to 1500 nm, particularly preferably 400 to 1300 nm, although it depends on the composition of the material. The transparent conductive film of the present invention has a low resistance and has a high transmittance of sunlight including visible light to near infrared light having a wavelength of 380 nm to 1200 nm. Therefore, the light energy of sunlight is extremely effectively converted into electric energy. be able to.
なお、本発明の透明導電膜は、太陽電池以外にも、光検出素子、タッチパネルやフラットパネルディスプレイ(LCD、PDP、ELなど)や発光デバイス(LED、LDなど)の透明電極としても有用である。 In addition to the solar cell, the transparent conductive film of the present invention is also useful as a transparent electrode of a light detection element, a touch panel, a flat panel display (LCD, PDP, EL, etc.) and a light emitting device (LED, LD, etc.). .
例えば、光検出素子の場合、ガラス電極、光入射側の透明電極、赤外線などの光検知材料層、裏面電極を積層させた構造を含んでいる。赤外線を検出するための光検知材料層には、GeやInGeAsをベースとした半導体材料を用いたタイプ(フォトダイオード(PD)やアバランシェフォトダイオード(APD))、アルカリ土類金属元素の硫化物或いはセレン化物に、Eu、Ce、Mn、Cuの中から選ばれる1種類以上の元素と、Sm、Bi、Pbの中から選ばれる1種類以上の元素とを添加した材料などがある。この他に非晶質珪素ゲルマニウムと非晶質珪素との積層体を用いたAPDも知られており、いずれも使用できる。 For example, the light detection element includes a structure in which a glass electrode, a transparent electrode on the light incident side, a light detection material layer such as infrared rays, and a back electrode are laminated. The photo-sensitive material layer for detecting infrared rays is a type using a semiconductor material based on Ge or InGeAs (photodiode (PD) or avalanche photodiode (APD)), sulfide of an alkaline earth metal element or Examples include a material obtained by adding one or more elements selected from Eu, Ce, Mn, and Cu and one or more elements selected from Sm, Bi, and Pb to selenide. In addition, APDs using a laminate of amorphous silicon germanium and amorphous silicon are also known, and any of them can be used.
以下に、本発明の実施例を用いて、さらに詳細に説明するが、本発明は、これら実施例によって限定されるものではない。なお、評価方法は次のとおりである。 Hereinafter, the present invention will be described in more detail using examples, but the present invention is not limited to these examples. The evaluation method is as follows.
<焼成前の混合原料粉末の均一性>
混合原料粉末を用いて成形体を作製し、その破面に対して走査型電子顕微鏡で観察しながら、付属するエネルギー分散型X線分析装置(EDX)を用いて電子ビームを照射して約1μmΦの微小領域の組成分析を行い、その領域のAl/(Al+Ga)原子数比を把握する。任意の50箇所においてAl/(Al+Ga)原子数比を測定し、その標準偏差σをもとめる。均一性が高いほどσは小さく、本発明の酸化物焼結体を得るためには、σが25原子%以下であることが必要である。
<Uniformity of mixed raw material powder before firing>
Using a mixed raw material powder to produce a compact and observing the fractured surface with a scanning electron microscope, using an attached energy dispersive X-ray analyzer (EDX) to irradiate an electron beam to about 1 μmΦ The composition analysis of the minute region is performed, and the Al / (Al + Ga) atomic ratio in the region is grasped. The Al / (Al + Ga) atomic ratio is measured at an arbitrary 50 points, and the standard deviation σ is obtained. The higher the uniformity, the smaller the σ. In order to obtain the oxide sintered body of the present invention, it is necessary that σ is 25 atomic% or less.
<酸化物焼結体の評価>
得られた酸化物焼結体を深さ方向に切断して、切断面を鏡面研磨した後で、熱腐食させて結晶粒界を析出させてから走査型電子顕微鏡にて組織を観察し、平均結晶粒径、最大空孔径をもとめた。また酸化物焼結体の、焼結密度、体積抵抗率は、切断面の鏡面研磨した面にて四探針法で測定した。また、得られた酸化物焼結体の端材を粉砕し、粉末X線回折測定を実施し、生成相の同定を行った。酸化物焼結体の端材をFIB加工により薄片化し、エネルギー分散型蛍光X線分析装置(EDX)搭載の透過型電子顕微鏡(TEM)で観察した。50個のスピネル結晶相に対してEDX組成分析を行い、Al/(Al+Ga)原子数比を測定した。
<Evaluation of oxide sintered body>
After cutting the obtained oxide sintered body in the depth direction and mirror-polishing the cut surface, it was subjected to thermal corrosion to precipitate crystal grain boundaries, and the structure was observed with a scanning electron microscope. The crystal grain size and maximum pore size were determined. The sintered density and volume resistivity of the oxide sintered body were measured by a four-probe method on a mirror-polished surface of the cut surface. Moreover, the end material of the obtained oxide sintered body was pulverized, powder X-ray diffraction measurement was performed, and the generated phase was identified. The end material of the oxide sintered body was sliced by FIB processing and observed with a transmission electron microscope (TEM) mounted on an energy dispersive X-ray fluorescence spectrometer (EDX). EDX composition analysis was performed on 50 spinel crystal phases, and the Al / (Al + Ga) atomic ratio was measured.
<透明導電膜の評価>
得られた透明導電膜の膜厚を表面粗さ計(テンコール社製)で測定した。膜の比抵抗は、四探針法によって測定した表面抵抗と膜厚の積から算出した。膜の光学特性は、分光光度計(日立製作所社製)で測定した。膜の生成相は、X線回折測定(PANalytical社製)によって同定した。また膜の組成は、ICP発光分光法で測定した。膜の生成相をX線回折測定によって同定した。
<Evaluation of transparent conductive film>
The film thickness of the obtained transparent conductive film was measured with a surface roughness meter (manufactured by Tencor). The specific resistance of the film was calculated from the product of the surface resistance and the film thickness measured by the four probe method. The optical properties of the film were measured with a spectrophotometer (manufactured by Hitachi, Ltd.). The formation phase of the film was identified by X-ray diffraction measurement (manufactured by PANalytical). The film composition was measured by ICP emission spectroscopy. The product phase of the film was identified by X-ray diffraction measurement.
<放電特性、パーティクルの評価>
成膜条件のうち直流投入電力だけを850W(投入直流電力密度:4.7W/cm2)まで増加させ、10分ほどプリスパッタリングを行った後、10分間当たりのアーキング(異常放電)の発生回数を測定した。また、連続して直流電力200Wを印加して4kWhまで電力を投入したあとにターゲット表面を観察した。
<Evaluation of discharge characteristics and particles>
Number of occurrences of arcing (abnormal discharge) per 10 minutes after increasing the DC input power only to 850 W (input DC power density: 4.7 W / cm 2 ) and performing pre-sputtering for about 10 minutes. Was measured. In addition, the target surface was observed after continuously applying DC power of 200 W and supplying power up to 4 kWh.
(実施例1)
<酸化物焼結体の作製>
亜鉛およびアルミニウムおよびガリウムを含有する酸化物焼結体を次のようにして作製した。それぞれ平均粒径が1μm以下の酸化亜鉛粉末と平均粒径が1μm以下の酸化アルミニウム粉末と平均粒径が1μm以下の酸化ガリウム粉末を出発原料として用い、原料の配合比は、Al/(Al+Ga)原子数比で55原子%、(Al+Ga)/(Zn+Al+Ga)原子数比で5.2原子%となるように配合した。原料粉末を水とともに樹脂製ポットに入れ、湿式ボールミルで混合した。この際、硬質ZrO2ボールを用い、混合時間を18時間とした。ボールミル混合後、このスラリーを取り出し、分散剤およびポリビニルアルコールのバインダーを添加した。このスラリーをジルコニア製の直径3mmのビーズを入れたビーズミルに入れ2パス処理した。処理時間は合計6時間であった。このスラリーを濾過、乾燥、造粒した。該造粒物を、冷間静水圧プレスで3ton/cm2の圧力をかけて成形した。
この様に作製した焼成前の成形体を用いて、混合原料粉末の均一性を評価した。成形体の破面に対して走査型電子顕微鏡で観察しながら、付属するエネルギー分散型X線分析装置(EDX)を用いて電子ビームを照射した約1μmΦの微小領域の組成分析を行い、その領域のAl/(Al+Ga)原子数比を測定した。破面の任意の50箇所においてAl/(Al+Ga)原子数比を測定し、その標準偏差σを算出したところ、15原子%であり、上記の混合・粉砕は十分に行われていることがわかった。
次に、成形体を次のように焼結した。焼結炉内の雰囲気を大気として、昇温速度0.5℃/分にて1000℃まで昇温した。1000℃に到達後、炉内容積0.1m3当たり5リットル/分の割合で、焼結炉内の大気に酸素を導入し、1000℃のまま3時間保持した。続いて、再び昇温速度0.5℃/分にて焼結温度1250℃まで昇温し、到達後、15時間保持して焼結した。焼結後の冷却の際は酸素導入を止め、1000℃までを0.5℃/分で降温し、亜鉛およびアルミニウムおよびガリウムを含有する酸化物焼結体を作製した。得られた酸化物焼結体の端材を粉砕してICP発光分光分析法による組成を分析したところ、(Al+Ga)/(Zn+Al+Ga)原子数比が5.3原子%であり、Al/(Al+Ga)原子数比も含めて、ほぼ配合組成と同じであることを確認した。
得られた酸化物焼結体を深さ方向に切断して、切断面を鏡面研磨した後で、熱腐食させて結晶粒界を析出させてから走査型電子顕微鏡にて組織を観察し、平均結晶粒径、最大空孔径をもとめた。また酸化物焼結体の、焼結密度、体積抵抗率は、切断面の鏡面研磨した面にて四探針法で測定した。その結果、酸化物焼結体の体積抵抗率は0.007Ωcmであり、また密度は5.1g/cm3で、平均結晶粒径は7μm、最大空孔径は1μmであった。また、得られた酸化物焼結体の端材を粉砕し、粉末X線回折測定を実施し、生成相の同定を行ったところ、六方晶のウルツ鉱構造をとる酸化亜鉛結晶相とスピネル型構造の結晶相に起因する回折ピークが確認され、酸化アルミニウム相や酸化ガリウム相に起因する回折ピークは検出されなかった。
酸化物焼結体の端材をFIB加工により薄片化し、エネルギー分散型蛍光X線分析装置(EDX)搭載の透過型電子顕微鏡(TEM)で観察した。酸化物焼結体は、電子線回折から、ウルツ鉱型構造の母相の中に1〜5μmのスピネル結晶相が分散していることが確認された。EDXによる局所組成分析を行うと、ウルツ鉱型構造の母相はアルミニウムとガリウムが含まれた酸化亜鉛であり、スピネル結晶相はZn−Al−Ga−O相であることがわかった。50個のスピネル結晶相に対してEDX組成分析を行い、Al/(Al+Ga)原子数比を測定したところ、44〜67原子%であり、Al/(Al+Ga)原子数比が10〜90原子%の範囲を逸脱したスピネル相は存在しなかった。
<透明導電膜の作製>
このような酸化物焼結体を、無酸素銅製のバッキングプレートに金属インジウムを用いてボンディングして、スパッタリングターゲットとした。直径152mm、厚み5mmの大きさに加工し、スパッタリング面をカップ砥石で最大高さRzが3.0μm以下となるように磨いた。これをスパッタリングターゲットとし、直流スパッタリングによる成膜を行った。アーキング抑制機能のない直流電源を装備した直流マグネトロンスパッタリング装置の非磁性体ターゲット用カソードに、スパッタリングターゲットを取り付けた。基板には、無アルカリのガラス基板(コーニング♯7059、厚み1.1mmt)を用い、ターゲット−基板間距離を60mmに固定した。5×10−5Pa以下まで真空排気後、純Arガスを導入し、ガス圧を0.3Paとし、直流電力200Wを印加して直流プラズマを発生させ、プリスパッタを実施した。十分なプリスパッタリング後、スパッタリングターゲットの中心(非エロージョン部)の直上に静止して基板を配置し、加熱せずにスパッタリングを実施して、膜厚200nmの透明導電膜を形成した。
得られた透明導電膜の膜厚を表面粗さ計(テンコール社製)で測定した。膜の比抵抗は、四探針法によって測定した表面抵抗と膜厚の積から算出した。膜の光学特性は、分光光度計(日立製作所社製)で測定した。膜の生成相は、X線回折測定(PANalytical社製)によって同定した。また膜の組成は、ICP発光分光法で測定した。得られた透明導電膜の組成は、ターゲットとほぼ同じであることが確認された。膜の生成相をX線回折測定によって同定したところ、六方晶のウルツ鉱構造をとる酸化亜鉛相のみによって構成されていた。この六方晶のウルツ鉱構造をとる酸化亜鉛相の回折ピークは、c面(002)反射によるもののみが観察されc軸配向の薄膜であった。膜の比抵抗を測定したところ、5.5×10−4Ωcmであり、基板を含めた可視域(波長400〜800nm)透過率は85%であり、基板を含めた波長800〜1200nmの近赤外域の透過率は83%であった。膜自体の透過率を、{(基板を含めた透過率)/(基板のみの透過率)}×100(%)で規定すると、本発明の透明導電膜の透過率は、可視域で87%、近赤外域で90%であった。
よって、このような可視域だけでなく近赤外域の透過率も高くて低抵抗の透明電極膜を、例えば図1に示すような太陽電池の受光部側の表面透明電極膜(2)および/あるいはpin接合部の裏側の透明電極膜(6)に用いると、赤外線領域の太陽エネルギーを有効に電気エネルギーに変換することができる。なお、このような導電性の高い透明導電膜は、ターゲットへの直流投入電力を850Wにあげて成膜しても安定に得ることができた。
上記成膜条件の中で直流投入電力だけを850W(投入直流電力密度:4.7W/cm2)まで増加させ、10分ほどプリスパッタリングを行った後、10分間当たりのアーキング(異常放電)の発生回数を測定した。しかし、アーキングは全く発生せず安定して放電し、得られた膜の特性は200Wで成膜して得た膜と同じであった。また、連続して4kWhまで電力を投入したあとにターゲット表面を観察したが、非エロージョン部の薄膜の剥離によるパーティクルは発生していなかった。これらの結果を表1に示した。
Example 1
<Preparation of sintered oxide>
An oxide sintered body containing zinc, aluminum and gallium was prepared as follows. Zinc oxide powder having an average particle size of 1 μm or less, aluminum oxide powder having an average particle size of 1 μm or less, and gallium oxide powder having an average particle size of 1 μm or less are used as starting materials, and the mixing ratio of the materials is Al / (Al + Ga) It mix | blended so that it might be set to 55 atomic% by atomic ratio, and 5.2 atomic% by (Al + Ga) / (Zn + Al + Ga) atomic ratio. The raw material powder was put into a resin pot together with water and mixed by a wet ball mill. At this time, hard ZrO 2 balls were used and the mixing time was 18 hours. After ball mill mixing, this slurry was taken out, and a dispersant and a binder of polyvinyl alcohol were added. This slurry was placed in a bead mill containing beads having a diameter of 3 mm made of zirconia and subjected to two passes. The total processing time was 6 hours. This slurry was filtered, dried and granulated. The granulated product was molded by applying a pressure of 3 ton / cm 2 with a cold isostatic press.
The uniformity of the mixed raw material powder was evaluated using the green body thus produced. While observing the fractured surface of the molded body with a scanning electron microscope, composition analysis was performed on a minute region of about 1 μmΦ irradiated with an electron beam using the attached energy dispersive X-ray analyzer (EDX). The Al / (Al + Ga) atomic ratio was measured. When the Al / (Al + Ga) atomic ratio was measured at an arbitrary 50 locations on the fracture surface and the standard deviation σ was calculated, it was 15 atomic%, and it was found that the above mixing and grinding were sufficiently performed. It was.
Next, the compact was sintered as follows. The temperature in the sintering furnace was raised to 1000 ° C. at a rate of temperature rise of 0.5 ° C./min with the atmosphere as air. After reaching 1000 ° C., oxygen was introduced into the atmosphere in the sintering furnace at a rate of 5 liters / minute per 0.1 m 3 of the furnace volume, and kept at 1000 ° C. for 3 hours. Subsequently, the temperature was raised again to a sintering temperature of 1250 ° C. at a heating rate of 0.5 ° C./min. When cooling after sintering, the introduction of oxygen was stopped, and the temperature was lowered to 1000 ° C. at 0.5 ° C./min to produce an oxide sintered body containing zinc, aluminum and gallium. The milled end of the obtained oxide sintered body was pulverized and analyzed for composition by ICP emission spectroscopy. As a result, the (Al + Ga) / (Zn + Al + Ga) atomic ratio was 5.3 atomic%, and Al / (Al + Ga) ) It was confirmed that the composition was almost the same, including the atomic ratio.
After cutting the obtained oxide sintered body in the depth direction and mirror-polishing the cut surface, it was subjected to thermal corrosion to precipitate crystal grain boundaries, and the structure was observed with a scanning electron microscope. The crystal grain size and maximum pore size were determined. The sintered density and volume resistivity of the oxide sintered body were measured by a four-probe method on a mirror-polished surface of the cut surface. As a result, the volume resistivity of the oxide sintered body was 0.007 Ωcm, the density was 5.1 g / cm 3 , the average crystal grain size was 7 μm, and the maximum pore size was 1 μm. In addition, when the milled end of the obtained oxide sintered body was pulverized, powder X-ray diffraction measurement was performed, and the formation phase was identified, the zinc oxide crystal phase and the spinel type having a hexagonal wurtzite structure A diffraction peak attributed to the crystalline phase of the structure was confirmed, and a diffraction peak attributed to the aluminum oxide phase or the gallium oxide phase was not detected.
The end material of the oxide sintered body was sliced by FIB processing and observed with a transmission electron microscope (TEM) mounted on an energy dispersive X-ray fluorescence spectrometer (EDX). In the oxide sintered body, it was confirmed from electron diffraction that the spinel crystal phase of 1 to 5 μm was dispersed in the mother phase having a wurtzite structure. When local composition analysis was performed by EDX, it was found that the parent phase of the wurtzite structure was zinc oxide containing aluminum and gallium, and the spinel crystal phase was a Zn—Al—Ga—O phase. When EDX composition analysis was performed on 50 spinel crystal phases and the Al / (Al + Ga) atomic ratio was measured, it was 44 to 67 atomic%, and the Al / (Al + Ga) atomic ratio was 10 to 90 atomic%. There was no spinel phase outside the range.
<Preparation of transparent conductive film>
Such an oxide sintered body was bonded to a backing plate made of oxygen-free copper using metallic indium to obtain a sputtering target. The diameter was 152 mm and the thickness was 5 mm, and the sputtering surface was polished with a cup grindstone so that the maximum height Rz was 3.0 μm or less. Using this as a sputtering target, film formation by direct current sputtering was performed. A sputtering target was attached to a cathode for a non-magnetic target of a DC magnetron sputtering apparatus equipped with a DC power supply without an arcing suppression function. As the substrate, an alkali-free glass substrate (Corning # 7059, thickness 1.1 mmt) was used, and the target-substrate distance was fixed to 60 mm. After evacuating to 5 × 10 −5 Pa or less, pure Ar gas was introduced, the gas pressure was set to 0.3 Pa, DC power was applied at 200 W to generate DC plasma, and pre-sputtering was performed. After sufficient pre-sputtering, the substrate was placed immediately above the center (non-erosion part) of the sputtering target, and sputtering was performed without heating to form a transparent conductive film having a thickness of 200 nm.
The film thickness of the obtained transparent conductive film was measured with a surface roughness meter (manufactured by Tencor). The specific resistance of the film was calculated from the product of the surface resistance and the film thickness measured by the four probe method. The optical properties of the film were measured with a spectrophotometer (manufactured by Hitachi, Ltd.). The formation phase of the film was identified by X-ray diffraction measurement (manufactured by PANalytical). The film composition was measured by ICP emission spectroscopy. It was confirmed that the composition of the obtained transparent conductive film was almost the same as that of the target. When the formation phase of the film was identified by X-ray diffraction measurement, it was composed only of a zinc oxide phase having a hexagonal wurtzite structure. The diffraction peak of the zinc oxide phase having a hexagonal wurtzite structure was observed only due to c-plane (002) reflection, and was a c-axis oriented thin film. When the specific resistance of the film was measured, it was 5.5 × 10 −4 Ωcm, the visible region including the substrate (wavelength 400 to 800 nm) had a transmittance of 85%, and the wavelength including the substrate was about 800 to 1200 nm. The transmittance in the infrared region was 83%. When the transmittance of the film itself is defined as {(transmittance including substrate) / (transmittance of substrate only)} × 100 (%), the transmittance of the transparent conductive film of the present invention is 87% in the visible region. It was 90% in the near infrared region.
Therefore, a transparent electrode film having a high transmittance in the near infrared region as well as in the visible region and having a low resistance can be obtained by using a surface transparent electrode film (2) and / or Or if it uses for the transparent electrode film (6) of the back side of a pin junction part, the solar energy of an infrared region can be effectively converted into an electrical energy. Such a highly conductive transparent conductive film could be stably obtained even when the direct current input power to the target was increased to 850 W.
In the above film forming conditions, only DC input power is increased to 850 W (input DC power density: 4.7 W / cm 2 ), pre-sputtering is performed for about 10 minutes, and then arcing (abnormal discharge) per 10 minutes is performed. The number of occurrences was measured. However, arcing did not occur at all and the discharge was stably performed, and the characteristics of the obtained film were the same as those obtained by forming at 200 W. Moreover, although the target surface was observed after supplying electric power continuously to 4 kWh, the particle | grains by peeling of the thin film of a non-erosion part were not generate | occur | produced. These results are shown in Table 1.
(実施例2)
原料粉末のボールミルによる混合・粉砕処理を行わず、ビーズミル処理のみを行った以外は実施例1と同じ方法、条件で、亜鉛およびアルミニウムおよびガリウムを含有する酸化物焼結体を製造した。すなわち、原料粉末の種類・配合比、ビーズミル条件、成形体の作製条件、焼成条件は、実施例1と同じ方法・条件である。
実施例1と同様に焼成前の成形体を用いて、混合原料粉末のAl/(Al+Ga)原子数比の均一性を評価したところ、標準偏差σは25原子%であり、焼成前の時点で高い均一性を有していた。
また焼成後に得られた酸化物焼結体の評価を実施例1と同様に行った。得られた酸化物焼結体の端材を粉砕し、粉末X線回折測定を実施し、生成相の同定を行ったところ、六方晶のウルツ鉱構造をとる酸化亜鉛結晶相とスピネル型構造の結晶相に起因する回折ピークが確認され、酸化アルミニウム相や酸化ガリウム相に起因する回折ピークは検出されなかった。得られた酸化物焼結体の端材を粉砕してICP発光分光分析法による組成を分析したところ、(Al+Ga)/(Zn+Al+Ga)原子数比が5.2原子%であり、Al/(Al+Ga)原子数比も含めて、ほぼ配合組成と同じであることを確認した。また、酸化物焼結体の体積抵抗率は0.006Ωcmであり、また密度は5.0g/cm3で、平均結晶粒径は6μm、最大空孔径は1μmであった。
酸化物焼結体の端材をFIB加工により薄片化し、エネルギー分散型蛍光X線分析装置(EDX)搭載の透過型電子顕微鏡(TEM)で観察した。酸化物焼結体は、電子線回折から、ウルツ鉱型構造の母相の中にスピネル結晶相が分散していることが確認された。EDXによる局所組成分析を行うと、ウルツ鉱型構造の母相はアルミニウムとガリウムが含まれた酸化亜鉛であり、スピネル相はZn−Al−Ga−O相であることがわかった。50個のスピネル相に対してEDX組成分析を行い、Al/(Al+Ga)原子数比を測定したところ、33〜81原子%であり、Al/(Al+Ga)原子数比が10〜90原子%の範囲を逸脱したスピネル相は存在しなかった。
実施例1と同様の方法、条件でスパッタリングターゲットを作製し、同様の条件で成膜を行ったところ、比抵抗5.4×10−4Ωcmで基板を含めた透過率が可視域で85%であり近赤外域で83%の透明導電膜を得ることができた。膜自体の透過率は、可視域で87%、近赤外域で90%であった。よってこのような可視域だけでなく近赤外域の透過率も高くて低抵抗の透明電極膜を、例えば図1に示すような太陽電池の受光部側の表面透明電極膜(2)および/あるいはPIN接合部の裏側の透明電極膜(6)に用いると、赤外線領域の太陽エネルギーを有効に電気エネルギーに変換することができる。
なお、このような導電性の高い透明導電膜は、ターゲットへの直流投入電力を850Wにあげて成膜しても安定に得ることができ、高速に成膜することができた。得られた膜の特性は200Wで成膜した膜と同等であった。また、実施例1と同様の方法、条件で、アーキングの発生、パーティクルの発生状況を評価した。しかし、アーキングは全く発生せず、パーティクルも発生しなかった。これらの結果を表1に示した。
(Example 2)
An oxide sintered body containing zinc, aluminum, and gallium was produced under the same method and conditions as in Example 1 except that the raw powder was not mixed and pulverized by a ball mill, but only bead milled. That is, the type and blending ratio of the raw material powder, the bead mill conditions, the production conditions of the molded body, and the firing conditions are the same methods and conditions as in Example 1.
When the uniformity of the Al / (Al + Ga) atomic number ratio of the mixed raw material powder was evaluated using the green body before firing as in Example 1, the standard deviation σ was 25 atomic%. It had high uniformity.
The oxide sintered body obtained after firing was evaluated in the same manner as in Example 1. The milled end of the obtained oxide sintered body was pulverized, powder X-ray diffraction measurement was performed, and the formation phase was identified. A diffraction peak attributed to the crystal phase was confirmed, and a diffraction peak attributed to the aluminum oxide phase or the gallium oxide phase was not detected. The milled end of the obtained oxide sintered body was pulverized and analyzed for composition by ICP emission spectroscopy. ) It was confirmed that the composition was almost the same, including the atomic ratio. The volume resistivity of the oxide sintered body was 0.006 Ωcm, the density was 5.0 g / cm 3 , the average crystal grain size was 6 μm, and the maximum pore size was 1 μm.
The end material of the oxide sintered body was sliced by FIB processing and observed with a transmission electron microscope (TEM) mounted on an energy dispersive X-ray fluorescence spectrometer (EDX). In the oxide sintered body, it was confirmed by electron beam diffraction that the spinel crystal phase was dispersed in the parent phase of the wurtzite structure. When local composition analysis was performed by EDX, it was found that the parent phase of the wurtzite structure was zinc oxide containing aluminum and gallium, and the spinel phase was a Zn—Al—Ga—O phase. EDX composition analysis was performed on 50 spinel phases, and the Al / (Al + Ga) atomic ratio was measured. As a result, it was 33 to 81 atomic%, and the Al / (Al + Ga) atomic ratio was 10 to 90 atomic%. There was no spinel phase out of range.
When a sputtering target was produced under the same method and conditions as in Example 1 and a film was formed under the same conditions, the transmittance including the substrate with a specific resistance of 5.4 × 10 −4 Ωcm was 85% in the visible region. Thus, 83% of a transparent conductive film could be obtained in the near infrared region. The transmittance of the film itself was 87% in the visible region and 90% in the near infrared region. Therefore, a transparent electrode film having a high transmittance in the near infrared region as well as in the visible region and having a low resistance can be obtained by, for example, the surface transparent electrode film (2) on the light receiving portion side of the solar cell as shown in FIG. When used for the transparent electrode film (6) on the back side of the PIN junction, solar energy in the infrared region can be effectively converted into electrical energy.
Such a highly conductive transparent conductive film could be stably obtained even when the direct current input power to the target was increased to 850 W, and the film could be formed at high speed. The characteristics of the obtained film were equivalent to those of the film formed at 200W. Further, the occurrence of arcing and the occurrence of particles were evaluated under the same method and conditions as in Example 1. However, no arcing occurred and no particles were generated. These results are shown in Table 1.
(比較例1)
原料粉末のビーズミルによる混合・粉砕処理を行わず、ボールミル処理のみを行った以外は実施例1と同じ方法、条件で、亜鉛およびアルミニウムおよびガリウムを含有する酸化物焼結体を製造した。すなわち、原料粉末の種類・配合比、ボールミル条件、成形体の作製条件、焼成条件は、実施例1と同じ方法・条件である。
実施例1と同様に焼成前の成形体を用いて、混合原料粉末のAl/(Al+Ga)原子数比の均一性を評価したところ、標準偏差σは35原子%であり、焼成前の時点でAlとGa間の均一性は実施例と比べて劣っていた。
得られた酸化物焼結体の評価を実施例1と同様に行った。得られた酸化物焼結体の端材を粉砕し、粉末X線回折測定を実施し、生成相の同定を行ったところ、六方晶のウルツ鉱構造をとる酸化亜鉛結晶相とスピネル型構造の結晶相に起因する回折ピークが確認され、酸化アルミニウム相や酸化ガリウム相に起因する回折ピークは検出されなかった。得られた酸化物焼結体の端材を粉砕してICP発光分光分析法による組成を分析したところ、(Al+Ga)/(Zn+Al+Ga)原子数比が5.5原子%であり、Al/(Al+Ga)原子数比も含めて、ほぼ配合組成と同じであることを確認した。また、酸化物焼結体の体積抵抗率は0.01Ωcmであり、また密度は5.1g/cm3で、平均結晶粒径は6μm、最大空孔径は1μmであった。
酸化物焼結体の端材をFIB加工により薄片化し、エネルギー分散型蛍光X線分析装置(EDX)搭載の透過型電子顕微鏡(TEM)で観察した。酸化物焼結体は、電子線回折から、ウルツ鉱型構造の母相の中にスピネル結晶相が分散していることが確認された。EDXによる局所組成分析を行うと、ウルツ鉱型構造の母相はアルミニウムとガリウムが含まれた酸化亜鉛であり、スピネル相はZn−Al−Ga−O相であることがわかった。50個のスピネル相に対してEDX組成分析を行い、Al/(Al+Ga)原子数比を測定したところ、15〜92原子%であり、Al/(Al+Ga)原子数比が10〜90原子%の範囲を逸脱しスピネル相が存在した。
実施例1と同様の方法、条件でスパッタリングターゲットを作製し、同様の条件で成膜を行ったところ、比抵抗7.9×10−4Ωcmで基板を含めた可視透過率が85%以上の透明導電膜を得ることができた。また、実施例1と全く同様の方法、条件で、アーキングの発生、パーティクルの発生状況を評価した。パーティクルも発生しなかった。しかし、アーキングは10分間で5回発生した。このような酸化物焼結体は、透明導電膜の量産用のターゲットとしては使うことはできない。原料配合比が同じで本発明の酸化物焼結体である実施例1、2から作製した膜と比べて比抵抗が高いのは、成膜中のアーキングにより膜に欠陥が含まれてしまったからである。ターゲットへの直流投入電力を850Wにあげて同様に成膜を行うと、上述のような導電性や透過率の高い透明導電膜は得られなかった。これは、成膜中に発生するアーキングが原因であり、膜損傷を受けて欠陥のある膜しか得られず、実施例のような組織が緻密で良質の膜を形成していない。よって、高効率の太陽電池の透明電極として利用することができない。これらの結果を表1に示した。
(Comparative Example 1)
An oxide sintered body containing zinc, aluminum and gallium was produced under the same method and conditions as in Example 1 except that the raw powder was not mixed and pulverized by a bead mill but only a ball mill process was performed. That is, the types and blending ratios of the raw material powders, the ball mill conditions, the production conditions of the molded body, and the firing conditions are the same methods and conditions as in Example 1.
When the uniformity of the Al / (Al + Ga) atomic number ratio of the mixed raw material powder was evaluated using the compact before firing in the same manner as in Example 1, the standard deviation σ was 35 atomic%. The uniformity between Al and Ga was inferior to the examples.
The obtained oxide sintered body was evaluated in the same manner as in Example 1. The milled end of the obtained oxide sintered body was pulverized, powder X-ray diffraction measurement was performed, and the formation phase was identified. A diffraction peak attributed to the crystal phase was confirmed, and a diffraction peak attributed to the aluminum oxide phase or the gallium oxide phase was not detected. The milled end material of the obtained oxide sintered body was pulverized and analyzed for composition by ICP emission spectroscopy. As a result, the (Al + Ga) / (Zn + Al + Ga) atomic number ratio was 5.5 atomic%, and Al / (Al + Ga). ) It was confirmed that the composition was almost the same, including the atomic ratio. The volume resistivity of the oxide sintered body was 0.01 Ωcm, the density was 5.1 g / cm 3 , the average crystal grain size was 6 μm, and the maximum pore size was 1 μm.
The end material of the oxide sintered body was sliced by FIB processing and observed with a transmission electron microscope (TEM) mounted on an energy dispersive X-ray fluorescence spectrometer (EDX). In the oxide sintered body, it was confirmed by electron beam diffraction that the spinel crystal phase was dispersed in the parent phase of the wurtzite structure. When local composition analysis was performed by EDX, it was found that the parent phase of the wurtzite structure was zinc oxide containing aluminum and gallium, and the spinel phase was a Zn—Al—Ga—O phase. When EDX composition analysis was performed on 50 spinel phases and the Al / (Al + Ga) atomic ratio was measured, it was 15 to 92 atomic%, and the Al / (Al + Ga) atomic ratio was 10 to 90 atomic%. Out of range, there was a spinel phase.
When a sputtering target was prepared under the same method and conditions as in Example 1 and film formation was performed under the same conditions, the visible transmittance including the substrate with a specific resistance of 7.9 × 10 −4 Ωcm was 85% or more. A transparent conductive film could be obtained. Further, the occurrence of arcing and the occurrence of particles were evaluated under the same method and conditions as in Example 1. No particles were generated. However, arcing occurred 5 times in 10 minutes. Such an oxide sintered body cannot be used as a target for mass production of a transparent conductive film. The specific resistance is higher than the films prepared from Examples 1 and 2 that are the same raw material compounding ratio and the oxide sintered body of the present invention because the film contains defects due to arcing during film formation. It is. When a film was formed in the same manner by increasing the DC input power to the target to 850 W, a transparent conductive film having high conductivity and high transmittance as described above could not be obtained. This is due to arcing that occurs during film formation, and only a defective film is obtained due to film damage, and the structure as in the example does not form a dense and high-quality film. Therefore, it cannot be used as a transparent electrode of a highly efficient solar cell. These results are shown in Table 1.
(実施例3)
原料粉末の酸化亜鉛と酸化アルミニウムと酸化ガリウムの配合比を、Al/(Al+Ga)原子数比で31原子%、(Al+Ga)/(Zn+Al+Ga)原子数比で5.2原子%とした以外は実施例1と同様の手順、条件で、ボールミルとビーズミルによる混合・粉砕処理を行い、成形、焼成を行って酸化物焼結体を製造した。
実施例1と同様に焼成前の成形体を用いて、混合原料粉末のAl/(Al+Ga)原子数比の均一性を評価したところ、標準偏差σは18原子%であり、焼成前の時点で高い均一性を有していた。
また焼成後に得られた酸化物焼結体の評価を実施例1と同様に行った。得られた酸化物焼結体の端材を粉砕し、粉末X線回折測定を実施し、生成相の同定を行ったところ、六方晶のウルツ鉱構造をとる酸化亜鉛結晶相とスピネル型構造の結晶相に起因する回折ピークが確認され、酸化アルミニウム相や酸化ガリウム相に起因する回折ピークは検出されなかった。得られた酸化物焼結体の端材を粉砕してICP発光分光分析法による組成を分析したところ、(Al+Ga)/(Zn+Al+Ga)原子数比が5.4原子%であり、Al/(Al+Ga)原子数比も含めて、ほぼ配合組成と同じであることを確認した。また、酸化物焼結体の体積抵抗率は0.008Ωcmであり、また密度は5.2g/cm3で、平均結晶粒径は6μm、最大空孔径は1μmであった。
酸化物焼結体の端材をFIB加工により薄片化し、エネルギー分散型蛍光X線分析装置(EDX)搭載の透過型電子顕微鏡(TEM)で観察した。酸化物焼結体は、電子線回折から、ウルツ鉱型構造の母相の中にスピネル結晶相が分散していることが確認された。EDXによる局所組成分析を行うと、ウルツ鉱型構造の母相はアルミニウムとガリウムが含まれた酸化亜鉛であり、スピネル相はZn−Al−Ga−O相であることがわかった。50個のスピネル相に対してEDX組成分析を行い、Al/(Al+Ga)原子数比を測定したところ、17〜44原子%であり、Al/(Al+Ga)原子数比が10〜90原子%の範囲を逸脱したスピネル相は存在しなかった。
実施例1と同様の方法、条件でスパッタリングターゲットを作製し、同様の条件で成膜を行ったところ、比抵抗4.9×10−4Ωcmで基板を含めた透過率が可視域で85%であり近赤外域で80%の透明導電膜を得ることができた(膜自体の透過率は、可視域で87%、近赤外域で87%)。なお、このような導電性の高くて透過率の高い透明導電膜は、ターゲットへの直流投入電力を850Wにあげて成膜しても安定に得ることができた。また、実施例1と同様の方法、条件で、アーキングの発生、パーティクルの発生状況を評価した。しかし、アーキングは全く発生せず、パーティクルも発生しなかった。
これらの結果を表1に示した。
(Example 3)
Implementation was performed except that the mixing ratio of zinc oxide, aluminum oxide and gallium oxide in the raw material powder was 31 atomic% in the Al / (Al + Ga) atomic ratio and 5.2 atomic% in the (Al + Ga) / (Zn + Al + Ga) atomic ratio A mixed and pulverized treatment using a ball mill and a bead mill was performed under the same procedure and conditions as in Example 1, followed by molding and firing to produce an oxide sintered body.
When the uniformity of the Al / (Al + Ga) atomic number ratio of the mixed raw material powder was evaluated using the molded body before firing in the same manner as in Example 1, the standard deviation σ was 18 atomic%. It had high uniformity.
The oxide sintered body obtained after firing was evaluated in the same manner as in Example 1. The milled end of the obtained oxide sintered body was pulverized, powder X-ray diffraction measurement was performed, and the formation phase was identified. A diffraction peak attributed to the crystal phase was confirmed, and a diffraction peak attributed to the aluminum oxide phase or the gallium oxide phase was not detected. The milled end of the obtained oxide sintered body was pulverized and analyzed for composition by ICP emission spectroscopy. The (Al + Ga) / (Zn + Al + Ga) atomic ratio was 5.4 atomic%, and Al / (Al + Ga) ) It was confirmed that the composition was almost the same, including the atomic ratio. The volume resistivity of the oxide sintered body was 0.008 Ωcm, the density was 5.2 g / cm 3 , the average crystal grain size was 6 μm, and the maximum pore size was 1 μm.
The end material of the oxide sintered body was sliced by FIB processing and observed with a transmission electron microscope (TEM) mounted on an energy dispersive X-ray fluorescence spectrometer (EDX). In the oxide sintered body, it was confirmed by electron beam diffraction that the spinel crystal phase was dispersed in the parent phase of the wurtzite structure. When local composition analysis was performed by EDX, it was found that the parent phase of the wurtzite structure was zinc oxide containing aluminum and gallium, and the spinel phase was a Zn—Al—Ga—O phase. EDX composition analysis was performed on 50 spinel phases, and the Al / (Al + Ga) atomic ratio was measured. As a result, it was 17 to 44 atomic%, and the Al / (Al + Ga) atomic ratio was 10 to 90 atomic%. There was no spinel phase out of range.
When a sputtering target was produced under the same method and conditions as in Example 1 and a film was formed under the same conditions, the transmittance including the substrate with a specific resistance of 4.9 × 10 −4 Ωcm was 85% in the visible region. Thus, an 80% transparent conductive film was obtained in the near infrared region (the transmittance of the film itself was 87% in the visible region and 87% in the near infrared region). Such a transparent conductive film with high conductivity and high transmittance could be stably obtained even when the direct current input power to the target was increased to 850 W. Further, the occurrence of arcing and the occurrence of particles were evaluated under the same method and conditions as in Example 1. However, no arcing occurred and no particles were generated.
These results are shown in Table 1.
(実施例4)
原料粉末の酸化亜鉛と酸化アルミニウムと酸化ガリウムの配合比を、Al/(Al+Ga)原子数比で68原子%、(Al+Ga)/(Zn+Al+Ga)原子数比で5.2原子%とした以外は実施例1と同様の手順、条件で、ボールミルとビーズミルによる混合・粉砕処理を行い、成形、焼成を行って酸化物焼結体を製造した。
実施例1と同様に焼成前の成形体を用いて、混合原料粉末のAl/(Al+Ga)原子数比の均一性を評価したところ、標準偏差σは16原子%であり、焼成前の時点で高い均一性を有していた。
また焼成後に得られた酸化物焼結体の評価を実施例1と同様に行った。得られた酸化物焼結体の端材を粉砕し、粉末X線回折測定を実施し、生成相の同定を行ったところ、六方晶のウルツ鉱構造をとる酸化亜鉛結晶相とスピネル型構造の結晶相に起因する回折ピークが確認され、酸化アルミニウム相や酸化ガリウム相に起因する回折ピークは検出されなかった。得られた酸化物焼結体の端材を粉砕してICP発光分光分析法による組成を分析したところ、(Al+Ga)/(Zn+Al+Ga)原子数比が5.3原子%であり、Al/(Al+Ga)原子数比も含めて、ほぼ配合組成と同じであることを確認した。また、酸化物焼結体の体積抵抗率は0.004Ωcmであり、また密度は5.3g/cm3で、平均結晶粒径は6μm、最大空孔径は0.8μmであった。
酸化物焼結体の端材をFIB加工により薄片化し、エネルギー分散型蛍光X線分析装置(EDX)搭載の透過型電子顕微鏡(TEM)で観察した。酸化物焼結体は、電子線回折から、ウルツ鉱型構造の母相の中にスピネル結晶相が分散していることが確認された。EDXによる局所組成分析を行うと、ウルツ鉱型構造の母相はアルミニウムとガリウムが含まれた酸化亜鉛であり、スピネル相はZn−Al−Ga−O相であることがわかった。50個のスピネル相に対してEDX組成分析を行い、Al/(Al+Ga)原子数比を測定したところ、54〜85原子%であり、Al/(Al+Ga)原子数比が10〜90原子%の範囲を逸脱したスピネル相は存在しなかった。
実施例1と同様の方法、条件でスパッタリングターゲットを作製し、同様の条件で成膜を行ったところ、比抵抗6.1×10−4Ωcmで基板を含めた透過率が可視域で85%であり近赤外域で84%の透明導電膜を得ることができた(膜自体の透過率は、可視域で87%以上、近赤外域で92%)。
よって、このような可視域だけでなく近赤外域の透過率も高くて低抵抗の透明電極膜を、例えば図1に示すような太陽電池の受光部側の表面透明電極膜(2)および/あるいはPIN接合部の裏側の透明電極膜(6)に用いると、赤外線領域の太陽エネルギーを有効に電気エネルギーに変換することができる。
なお、このような導電性の高い透明導電膜は、ターゲットへの直流投入電力を850Wにあげて成膜しても安定に得ることができた。また、実施例1と同様の方法、条件で、アーキングの発生、パーティクルの発生状況を評価した。しかし、アーキングは全く発生せず、パーティクルも発生しなかった。
これらの結果を表1に示した。
Example 4
Implementation was performed except that the mixing ratio of zinc oxide, aluminum oxide and gallium oxide in the raw material powder was 68 atomic% in terms of Al / (Al + Ga) atomic ratio and 5.2 atomic% in terms of (Al + Ga) / (Zn + Al + Ga) atomic ratio. A mixed and pulverized treatment using a ball mill and a bead mill was performed under the same procedure and conditions as in Example 1, followed by molding and firing to produce an oxide sintered body.
When the uniformity of the Al / (Al + Ga) atomic number ratio of the mixed raw material powder was evaluated using the green body before firing as in Example 1, the standard deviation σ was 16 atomic%. It had high uniformity.
The oxide sintered body obtained after firing was evaluated in the same manner as in Example 1. The milled end of the obtained oxide sintered body was pulverized, powder X-ray diffraction measurement was performed, and the formation phase was identified. A diffraction peak attributed to the crystal phase was confirmed, and a diffraction peak attributed to the aluminum oxide phase or the gallium oxide phase was not detected. The milled end of the obtained oxide sintered body was pulverized and analyzed for composition by ICP emission spectroscopy. As a result, the (Al + Ga) / (Zn + Al + Ga) atomic ratio was 5.3 atomic%, and Al / (Al + Ga) ) It was confirmed that the composition was almost the same, including the atomic ratio. The volume resistivity of the oxide sintered body was 0.004 Ωcm, the density was 5.3 g / cm 3 , the average crystal grain size was 6 μm, and the maximum pore size was 0.8 μm.
The end material of the oxide sintered body was sliced by FIB processing and observed with a transmission electron microscope (TEM) mounted on an energy dispersive X-ray fluorescence spectrometer (EDX). In the oxide sintered body, it was confirmed by electron beam diffraction that the spinel crystal phase was dispersed in the parent phase of the wurtzite structure. When local composition analysis was performed by EDX, it was found that the parent phase of the wurtzite structure was zinc oxide containing aluminum and gallium, and the spinel phase was a Zn—Al—Ga—O phase. EDX composition analysis was performed on 50 spinel phases, and the Al / (Al + Ga) atomic ratio was measured. As a result, it was 54 to 85 atomic%, and the Al / (Al + Ga) atomic ratio was 10 to 90 atomic%. There was no spinel phase out of range.
When a sputtering target was produced under the same method and conditions as in Example 1 and a film was formed under the same conditions, the transmittance including the substrate with a specific resistance of 6.1 × 10 −4 Ωcm was 85% in the visible region. 84% transparent conductive film was obtained in the near infrared region (the transmittance of the film itself was 87% or more in the visible region and 92% in the near infrared region).
Therefore, a transparent electrode film having a high transmittance in the near infrared region as well as in the visible region and having a low resistance can be obtained by, for example, the surface transparent electrode film (2) on the light receiving portion side of the solar cell as shown in FIG. Or if it uses for the transparent electrode film (6) of the back side of a PIN junction part, the solar energy of an infrared region can be effectively converted into an electrical energy.
Such a highly conductive transparent conductive film could be stably obtained even when the direct current input power to the target was increased to 850 W. Further, the occurrence of arcing and the occurrence of particles were evaluated under the same method and conditions as in Example 1. However, no arcing occurred and no particles were generated.
These results are shown in Table 1.
(比較例2)
原料粉末の酸化亜鉛と酸化アルミニウムと酸化ガリウムの配合比を、Al/(Al+Ga)原子数比で31原子%、(Al+Ga)/(Zn+Al+Ga)原子数比で5.2原子%とした以外は比較例1と同様の手順、条件で、ボールミルによる混合・粉砕処理を行い、成形、焼成を行って酸化物焼結体を製造した。すなわち、原料粉末の混合・粉砕には、ビーズミルによる処理を行わず、ボールミルによる処理だけ実施した。
実施例1と同様に焼成前の成形体を用いて、混合原料粉末のAl/(Al+Ga)原子数比の均一性を評価したところ、標準偏差σは35原子%であり、焼成前の時点でAlとGa間の均一性は実施例と比べて劣っていた。
得られた酸化物焼結体の評価を実施例1と同様に行った。得られた酸化物焼結体の端材を粉砕し、粉末X線回折測定を実施し、生成相の同定を行ったところ、六方晶のウルツ鉱構造をとる酸化亜鉛結晶相とスピネル型構造の結晶相に起因する回折ピークが確認され、酸化アルミニウム相や酸化ガリウム相に起因する回折ピークは検出されなかった。得られた酸化物焼結体の端材を粉砕してICP発光分光分析法による組成を分析したところ、(Al+Ga)/(Zn+Al+Ga)原子数比が5.4原子%であり、Al/(Al+Ga)原子数比も含めて、ほぼ配合組成と同じであることを確認した。また、酸化物焼結体の体積抵抗率は0.01Ωcmであり、また密度は5.1g/cm3で、平均結晶粒径は6μm、最大空孔径は1μmであった。
酸化物焼結体の端材をFIB加工により薄片化し、エネルギー分散型蛍光X線分析装置(EDX)搭載の透過型電子顕微鏡(TEM)で観察した。酸化物焼結体は、電子線回折から、ウルツ鉱型構造の母相の中にスピネル結晶相が分散していることが確認された。EDXによる局所組成分析を行うと、ウルツ鉱型構造の母相はアルミニウムとガリウムが含まれた酸化亜鉛であり、スピネル相はZn−Al−Ga−O相であることがわかった。50個のスピネル相に対してEDX組成分析を行い、Al/(Al+Ga)原子数比を測定したところ、7〜57原子%であり、Al/(Al+Ga)原子数比が10〜90原子%の範囲を逸脱したスピネル相が存在した。
実施例1と同様の方法、条件でスパッタリングターゲットを作製し、同様の条件で成膜を行ったところ、比抵抗5.9×10−4Ωcmで基板を含めた可視透過率が85%以上の透明導電膜を得ることができた。また、実施例1と全く同様の方法、条件で、アーキングの発生、パーティクルの発生状況を評価した。原料配合比が同じ実施例3の本発明の酸化物焼結体から作製した膜と比べて比較例2の膜の比抵抗が高いのは、成膜中にアーキングが発生して欠損を含んだ膜となっているからである。連続スパッタリングを行うとパーティクルの発生も多く、アーキングは10分間で2回発生した。パーティクルの発生は、酸化物焼結体中のAl/(Al+Ga)原子数比が10原子%以下のスピネル相が多数含まれていたからと思われる。またアーキングの要因はパーティクルによるものと思われる。
このような酸化物焼結体は、透明導電膜の量産用のターゲットとしては使うことはできない。
ターゲットへの直流投入電力を850Wにあげて同様に成膜した場合は、上述のような導電性や透過率の高い透明導電膜は得られなかった。これは、成膜中に発生するアーキングが原因であり、膜損傷を受けて欠陥のある膜しか得られず、実施例のような組織が緻密で良質の膜を形成していない。よって、高効率の太陽電池の透明電極として利用することができない。これらの結果を表1に示した。
(Comparative Example 2)
Compared except that the mixing ratio of zinc oxide, aluminum oxide and gallium oxide in the raw material powder is 31 atomic% in terms of Al / (Al + Ga) atomic ratio, and 5.2 atomic% in terms of (Al + Ga) / (Zn + Al + Ga) atomic ratio. A mixed and pulverized treatment using a ball mill was performed under the same procedure and conditions as in Example 1, followed by forming and firing to produce an oxide sintered body. That is, for the mixing and pulverization of the raw material powder, the treatment with the ball mill was performed without the treatment with the bead mill.
When the uniformity of the Al / (Al + Ga) atomic number ratio of the mixed raw material powder was evaluated using the compact before firing in the same manner as in Example 1, the standard deviation σ was 35 atomic%. The uniformity between Al and Ga was inferior to the examples.
The obtained oxide sintered body was evaluated in the same manner as in Example 1. The milled end of the obtained oxide sintered body was pulverized, powder X-ray diffraction measurement was performed, and the formation phase was identified. A diffraction peak attributed to the crystal phase was confirmed, and a diffraction peak attributed to the aluminum oxide phase or the gallium oxide phase was not detected. The milled end of the obtained oxide sintered body was pulverized and analyzed for composition by ICP emission spectroscopy. The (Al + Ga) / (Zn + Al + Ga) atomic ratio was 5.4 atomic%, and Al / (Al + Ga) ) It was confirmed that the composition was almost the same, including the atomic ratio. The volume resistivity of the oxide sintered body was 0.01 Ωcm, the density was 5.1 g / cm 3 , the average crystal grain size was 6 μm, and the maximum pore size was 1 μm.
The end material of the oxide sintered body was sliced by FIB processing and observed with a transmission electron microscope (TEM) mounted on an energy dispersive X-ray fluorescence spectrometer (EDX). In the oxide sintered body, it was confirmed by electron beam diffraction that the spinel crystal phase was dispersed in the parent phase of the wurtzite structure. When local composition analysis was performed by EDX, it was found that the parent phase of the wurtzite structure was zinc oxide containing aluminum and gallium, and the spinel phase was a Zn—Al—Ga—O phase. The EDX composition analysis was performed on 50 spinel phases, and the Al / (Al + Ga) atomic ratio was measured. As a result, it was 7 to 57 atomic%, and the Al / (Al + Ga) atomic ratio was 10 to 90 atomic%. There was a spinel phase out of range.
When a sputtering target was prepared under the same method and conditions as in Example 1 and film formation was performed under the same conditions, the visible transmittance including the substrate with a specific resistance of 5.9 × 10 −4 Ωcm was 85% or more. A transparent conductive film could be obtained. Further, the occurrence of arcing and the occurrence of particles were evaluated under the same method and conditions as in Example 1. The specific resistance of the film of Comparative Example 2 is higher than that of the film produced from the oxide sintered body of the present invention of Example 3 having the same raw material blending ratio. This is because it is a film. When continuous sputtering was performed, many particles were generated, and arcing occurred twice in 10 minutes. The generation of particles seems to be because a large number of spinel phases having an Al / (Al + Ga) atomic ratio of 10 atomic% or less in the oxide sintered body were included. The arcing factor seems to be due to particles.
Such an oxide sintered body cannot be used as a target for mass production of a transparent conductive film.
When the film was formed in the same manner by increasing the DC input power to the target to 850 W, a transparent conductive film having high conductivity and high transmittance as described above could not be obtained. This is due to arcing that occurs during film formation, and only a defective film is obtained due to film damage, and the structure as in the example does not form a dense and high-quality film. Therefore, it cannot be used as a transparent electrode of a highly efficient solar cell. These results are shown in Table 1.
(比較例3)
原料粉末の酸化亜鉛と酸化アルミニウムと酸化ガリウムの配合比を、Al/(Al+Ga)原子数比で68原子%、(Al+Ga)/(Zn+Al+Ga)原子数比で5.2原子%とした以外は比較例1と同様の手順、条件で、ボールミルによる混合・粉砕処理を行い、成形、焼成を行って酸化物焼結体を製造した。すなわち、原料粉末の混合・粉砕には、ビーズミルによる処理を行わず、ボールミルによる処理だけ実施した。
実施例1と同様に焼成前の成形体を用いて、混合原料粉末のAl/(Al+Ga)原子数比の均一性を評価したところ、標準偏差σは32原子%であり、焼成前の時点でAlとGa間の均一性は実施例と比べて劣っていた。
得られた酸化物焼結体の評価を実施例1と同様に行った。得られた酸化物焼結体の端材を粉砕し、粉末X線回折測定を実施し、生成相の同定を行ったところ、六方晶のウルツ鉱構造をとる酸化亜鉛結晶相とスピネル型構造の結晶相に起因する回折ピークが確認され、酸化アルミニウム相や酸化ガリウム相に起因する回折ピークは検出されなかった。得られた酸化物焼結体の端材を粉砕してICP発光分光分析法による組成を分析したところ、(Al+Ga)/(Zn+Al+Ga)原子数比が5.3原子%であり、Al/(Al+Ga)原子数比も含めて、ほぼ配合組成と同じであることを確認した。また、酸化物焼結体の体積抵抗率は0.02Ωcmであり、また密度は5.0g/cm3で、平均結晶粒径は6μm、最大空孔径は1μmであった。
酸化物焼結体の端材をFIB加工により薄片化し、エネルギー分散型蛍光X線分析装置(EDX)搭載の透過型電子顕微鏡(TEM)で観察した。酸化物焼結体は、電子線回折から、ウルツ鉱型構造の母相の中にスピネル結晶相が分散していることが確認された。EDXによる局所組成分析を行うと、ウルツ鉱型構造の母相はアルミニウムとガリウムが含まれた酸化亜鉛であり、スピネル相はZn−Al−Ga−O相であることがわかった。50個のスピネル相に対してEDX組成分析を行い、Al/(Al+Ga)原子数比を測定したところ、42〜98原子%であり、Al/(Al+Ga)原子数比が10〜90原子%の範囲を逸脱したスピネル相が存在した。
実施例1と同様の方法、条件でスパッタリングターゲットを作製し、同様の条件で成膜を行ったところ、比抵抗6.9×10−4Ωcmで基板を含めた可視透過率が85%以上の透明導電膜を得ることができた。
また、実施例1と全く同様の方法、条件で、アーキングの発生、パーティクルの発生状況を評価した。連続スパッタリングを行うとパーティクルの発生はなかった。しかし、アーキングは10分間で11回発生した。原料配合比が同じである実施例4の酸化物焼結体から得た膜と比べて、比較例3の膜の比抵抗が高いのは、成膜中にアーキングが生じて、膜に損傷しているからである。アーキングの要因は、酸化物焼結体中のスピネル相のAl/(Al+Ga)原子数比が10〜90原子%を逸脱して高抵抗のものが存在したからと思われる。ターゲットへの直流投入電力を850Wにあげて同様に成膜を行うと、上述のような導電性や透過率の高い透明導電膜は得られなかった。これは、成膜中に発生するアーキングが原因であり、膜損傷を受けて欠陥のある膜しか得られず、実施例のような組織が緻密で良質の膜を形成していない。よって、高効率の太陽電池の透明電極として利用することができない。このような酸化物焼結体は、透明導電膜の量産用のターゲットとしては使うことはできない。これらの結果を表1に示した。
(Comparative Example 3)
Compared except that the mixing ratio of the raw material zinc oxide, aluminum oxide and gallium oxide was 68 atomic% in terms of the Al / (Al + Ga) atomic ratio and 5.2 atomic% in the (Al + Ga) / (Zn + Al + Ga) atomic ratio. A mixed and pulverized treatment using a ball mill was performed under the same procedure and conditions as in Example 1, followed by forming and firing to produce an oxide sintered body. That is, for the mixing and pulverization of the raw material powder, the treatment with the ball mill was performed without the treatment with the bead mill.
When the uniformity of the Al / (Al + Ga) atomic number ratio of the mixed raw material powder was evaluated using the molded body before firing in the same manner as in Example 1, the standard deviation σ was 32 atomic%. The uniformity between Al and Ga was inferior to the examples.
The obtained oxide sintered body was evaluated in the same manner as in Example 1. The milled end of the obtained oxide sintered body was pulverized, powder X-ray diffraction measurement was performed, and the formation phase was identified. A diffraction peak attributed to the crystal phase was confirmed, and a diffraction peak attributed to the aluminum oxide phase or the gallium oxide phase was not detected. The milled end of the obtained oxide sintered body was pulverized and analyzed for composition by ICP emission spectroscopy. As a result, the (Al + Ga) / (Zn + Al + Ga) atomic ratio was 5.3 atomic%, and Al / (Al + Ga) ) It was confirmed that the composition was almost the same, including the atomic ratio. The volume resistivity of the oxide sintered body was 0.02 Ωcm, the density was 5.0 g / cm 3 , the average crystal grain size was 6 μm, and the maximum pore size was 1 μm.
The end material of the oxide sintered body was sliced by FIB processing and observed with a transmission electron microscope (TEM) mounted on an energy dispersive X-ray fluorescence spectrometer (EDX). In the oxide sintered body, it was confirmed by electron beam diffraction that the spinel crystal phase was dispersed in the parent phase of the wurtzite structure. When local composition analysis was performed by EDX, it was found that the parent phase of the wurtzite structure was zinc oxide containing aluminum and gallium, and the spinel phase was a Zn—Al—Ga—O phase. EDX composition analysis was performed on 50 spinel phases, and the Al / (Al + Ga) atomic number ratio was measured to be 42 to 98 atomic%, and the Al / (Al + Ga) atomic ratio was 10 to 90 atomic%. There was a spinel phase out of range.
When a sputtering target was prepared under the same method and conditions as in Example 1 and film formation was performed under the same conditions, the visible transmittance including the substrate was 85% or more with a specific resistance of 6.9 × 10 −4 Ωcm. A transparent conductive film could be obtained.
Further, the occurrence of arcing and the occurrence of particles were evaluated under the same method and conditions as in Example 1. When continuous sputtering was performed, no particles were generated. However, arcing occurred 11 times in 10 minutes. The specific resistance of the film of Comparative Example 3 is higher than that of the film obtained from the oxide sintered body of Example 4 in which the raw material blending ratio is the same. This is because arcing occurs during film formation and the film is damaged. Because. The cause of arcing seems to be that the Al / (Al + Ga) atomic ratio of the spinel phase in the oxide sintered body deviates from 10 to 90 atomic% and has high resistance. When a film was formed in the same manner by increasing the DC input power to the target to 850 W, a transparent conductive film having high conductivity and high transmittance as described above could not be obtained. This is due to arcing that occurs during film formation, and only a defective film is obtained due to film damage, and the structure as in the example does not form a dense and high-quality film. Therefore, it cannot be used as a transparent electrode of a highly efficient solar cell. Such an oxide sintered body cannot be used as a target for mass production of a transparent conductive film. These results are shown in Table 1.
(実施例5)
原料粉末の酸化亜鉛と酸化アルミニウムと酸化ガリウムの配合比を、Al/(Al+Ga)原子数比で55原子%、(Al+Ga)/(Zn+Al+Ga)原子数比で6.3原子%とし、原料粉末のボールミルによる混合・粉砕処理を行わず、ビーズミル処理のみを行った以外は実施例1と同じ方法、条件で、亜鉛およびアルミニウムおよびガリウムを含有する酸化物焼結体を製造した。すなわち、ビーズミル条件、成形体の作製条件、焼成条件は、実施例1と同じ方法・条件である。
実施例1と同様に焼成前の成形体を用いて、混合原料粉末のAl/(Al+Ga)原子数比の均一性を評価したところ、標準偏差σは23原子%であり、焼成前の時点で高い均一性を有していた。
また焼成後に得られた酸化物焼結体の評価を実施例1と同様に行った。得られた酸化物焼結体の端材を粉砕し、粉末X線回折測定を実施し、生成相の同定を行ったところ、六方晶のウルツ鉱構造をとる酸化亜鉛結晶相とスピネル型構造の結晶相に起因する回折ピークが確認され、酸化アルミニウム相や酸化ガリウム相に起因する回折ピークは検出されなかった。得られた酸化物焼結体の端材を粉砕してICP発光分光分析法による組成を分析したところ、(Al+Ga)/(Zn+Al+Ga)原子数比が6.5原子%であり、Al/(Al+Ga)原子数比も含めて、ほぼ配合組成と同じであることを確認した。また、酸化物焼結体の体積抵抗率は0.008Ωcmであり、また密度は5.2g/cm3で、平均結晶粒径は6μm、最大空孔径は0.9μmであった。
酸化物焼結体の端材をFIB加工により薄片化し、エネルギー分散型蛍光X線分析装置(EDX)搭載の透過型電子顕微鏡(TEM)で観察した。酸化物焼結体は、電子線回折から、ウルツ鉱型構造の母相の中にスピネル結晶相が分散していることが確認された。EDXによる局所組成分析を行うと、ウルツ鉱型構造の母相はアルミニウムとガリウムが含まれた酸化亜鉛であり、スピネル相はZn−Al−Ga−O相であることがわかった。50個のスピネル相に対してEDX組成分析を行い、Al/(Al+Ga)原子数比を測定したところ、35〜82原子%であり、Al/(Al+Ga)原子数比が10〜90原子%の範囲を逸脱したスピネル相は存在しなかった。
実施例1と同様の方法、条件でスパッタリングターゲットを作製し、同様の条件で成膜を行ったところ、比抵抗8.5×10−4Ωcmで基板を含めた透過率が可視域で85%であり近赤外域で80%の透明導電膜を得ることができた(膜自体の透過率は、可視域で87%、近赤外域で88%)。よってこのような可視域だけでなく近赤外域の透過率も高くて低抵抗の透明電極膜を、例えば図1に示すような太陽電池の受光部側の表面透明電極膜(2)および/あるいはPIN接合部の裏側の透明電極膜(6)に用いると、赤外線領域の太陽エネルギーを有効に電気エネルギーに変換することができる。
なお、このような導電性の高い透明導電膜は、ターゲットへの直流投入電力を850Wにあげて成膜しても安定に得ることができた。また、実施例1と同様の方法、条件で、アーキングの発生、パーティクルの発生状況を評価した。しかし、アーキングは全く発生せず、パーティクルも発生しなかった。これらの結果を表1に示した。
(Example 5)
The mixing ratio of zinc oxide, aluminum oxide, and gallium oxide in the raw material powder is 55 atomic% in the Al / (Al + Ga) atomic ratio, and 6.3 atomic% in the (Al + Ga) / (Zn + Al + Ga) atomic ratio, An oxide sintered body containing zinc, aluminum, and gallium was produced under the same method and conditions as in Example 1 except that only the bead mill treatment was performed without performing the mixing / pulverization treatment by the ball mill. That is, the bead mill conditions, the molded body production conditions, and the firing conditions are the same methods and conditions as in Example 1.
When the uniformity of the Al / (Al + Ga) atomic number ratio of the mixed raw material powder was evaluated using the molded body before firing in the same manner as in Example 1, the standard deviation σ was 23 atomic%. It had high uniformity.
The oxide sintered body obtained after firing was evaluated in the same manner as in Example 1. The milled end of the obtained oxide sintered body was pulverized, powder X-ray diffraction measurement was performed, and the formation phase was identified. A diffraction peak attributed to the crystal phase was confirmed, and a diffraction peak attributed to the aluminum oxide phase or the gallium oxide phase was not detected. The milled end of the obtained oxide sintered body was pulverized and analyzed for composition by ICP emission spectroscopy. As a result, the (Al + Ga) / (Zn + Al + Ga) atomic ratio was 6.5 atomic%, and Al / (Al + Ga). ) It was confirmed that the composition was almost the same as the composition, including the atomic ratio. The volume resistivity of the oxide sintered body was 0.008 Ωcm, the density was 5.2 g / cm 3 , the average crystal grain size was 6 μm, and the maximum pore size was 0.9 μm.
The end material of the oxide sintered body was sliced by FIB processing and observed with a transmission electron microscope (TEM) mounted on an energy dispersive X-ray fluorescence spectrometer (EDX). In the oxide sintered body, it was confirmed by electron beam diffraction that the spinel crystal phase was dispersed in the parent phase of the wurtzite structure. When local composition analysis was performed by EDX, it was found that the parent phase of the wurtzite structure was zinc oxide containing aluminum and gallium, and the spinel phase was a Zn—Al—Ga—O phase. EDX composition analysis was performed on 50 spinel phases, and the Al / (Al + Ga) atomic ratio was measured. As a result, it was 35 to 82 atomic%, and the Al / (Al + Ga) atomic ratio was 10 to 90 atomic%. There was no spinel phase out of range.
When a sputtering target was produced under the same method and conditions as in Example 1 and a film was formed under the same conditions, the transmittance including the substrate with a specific resistance of 8.5 × 10 −4 Ωcm was 85% in the visible region. Thus, an 80% transparent conductive film could be obtained in the near infrared region (the transmittance of the film itself was 87% in the visible region and 88% in the near infrared region). Therefore, a transparent electrode film having a high transmittance in the near infrared region as well as in the visible region and having a low resistance can be obtained by, for example, the surface transparent electrode film (2) on the light receiving portion side of the solar cell as shown in FIG. When used for the transparent electrode film (6) on the back side of the PIN junction, solar energy in the infrared region can be effectively converted into electrical energy.
Such a highly conductive transparent conductive film could be stably obtained even when the direct current input power to the target was increased to 850 W. Further, the occurrence of arcing and the occurrence of particles were evaluated under the same method and conditions as in Example 1. However, no arcing occurred and no particles were generated. These results are shown in Table 1.
(実施例6)
原料粉末の酸化亜鉛と酸化アルミニウムと酸化ガリウムの配合比を、Al/(Al+Ga)原子数比で55原子%、(Al+Ga)/(Zn+Al+Ga)原子数比で4.5原子%とし、原料粉末のボールミルによる混合・粉砕処理を行わず、ビーズミル処理のみを行った以外は実施例1と同じ方法、条件で、亜鉛およびアルミニウムおよびガリウムを含有する酸化物焼結体を製造した。すなわち、ビーズミル条件、成形体の作製条件、焼成条件は、実施例1と同じ方法・条件である。
実施例1と同様に焼成前の成形体を用いて、混合原料粉末のAl/(Al+Ga)原子数比の均一性を評価したところ、標準偏差σは21原子%であり、焼成前の時点で高い均一性を有していた。
また焼成後に得られた酸化物焼結体の評価を実施例1と同様に行った。得られた酸化物焼結体の端材を粉砕し、粉末X線回折測定を実施し、生成相の同定を行ったところ、六方晶のウルツ鉱構造をとる酸化亜鉛結晶相とスピネル型構造の結晶相に起因する回折ピークが確認され、酸化アルミニウム相や酸化ガリウム相に起因する回折ピークは検出されなかった。得られた酸化物焼結体の端材を粉砕してICP発光分光分析法による組成を分析したところ、(Al+Ga)/(Zn+Al+Ga)原子数比が4.4原子%であり、Al/(Al+Ga)原子数比も含めて、ほぼ配合組成と同じであることを確認した。また、酸化物焼結体の体積抵抗率は0.006Ωcmであり、また密度は5.1g/cm3で、平均結晶粒径は6μm、最大空孔径は0.8μmであった。
酸化物焼結体の端材をFIB加工により薄片化し、エネルギー分散型蛍光X線分析装置(EDX)搭載の透過型電子顕微鏡(TEM)で観察した。酸化物焼結体は、電子線回折から、ウルツ鉱型構造の母相の中にスピネル結晶相が分散していることが確認された。EDXによる局所組成分析を行うと、ウルツ鉱型構造の母相はアルミニウムとガリウムが含まれた酸化亜鉛であり、スピネル相はZn−Al−Ga−O相であることがわかった。50個のスピネル相に対してEDX組成分析を行い、Al/(Al+Ga)原子数比を測定したところ、32〜80原子%であり、Al/(Al+Ga)原子数比が10〜90原子%の範囲を逸脱したスピネル相は存在しなかった。
実施例1と同様の方法、条件でスパッタリングターゲットを作製し、同様の条件で成膜を行ったところ、比抵抗6.6×10−4Ωcmで基板を含めた透過率が可視域で85%であり、近赤外域で82%の透明導電膜を得ることができた(膜自体の透過率は、可視域で87%、近赤外域で89%)。よってこのような可視域だけでなく近赤外域の透過率も高くて低抵抗の透明電極膜を、例えば図1に示すような太陽電池の受光部側の表面透明電極膜(2)および/あるいはPIN接合部の裏側の透明電極膜(6)に用いると、赤外線領域の太陽エネルギーを有効に電気エネルギーに変換することができる。
なお、このような導電性の高い透明導電膜は、ターゲットへの直流投入電力を850Wにあげて成膜しても安定に得ることができた。また、実施例1と同様の方法、条件で、アーキングの発生、パーティクルの発生状況を評価した。しかし、アーキングは全く発生せず、パーティクルも発生しなかった。これらの結果を表1に示した。
(Example 6)
The mixing ratio of zinc oxide, aluminum oxide, and gallium oxide in the raw material powder is 55 atomic% in the Al / (Al + Ga) atomic ratio, and 4.5 atomic% in the (Al + Ga) / (Zn + Al + Ga) atomic ratio. An oxide sintered body containing zinc, aluminum, and gallium was produced under the same method and conditions as in Example 1 except that only the bead mill treatment was performed without performing the mixing / pulverization treatment by the ball mill. That is, the bead mill conditions, the molded body production conditions, and the firing conditions are the same methods and conditions as in Example 1.
When the uniformity of the Al / (Al + Ga) atomic number ratio of the mixed raw material powder was evaluated using the compact before firing in the same manner as in Example 1, the standard deviation σ was 21 atomic%. It had high uniformity.
The oxide sintered body obtained after firing was evaluated in the same manner as in Example 1. The milled end of the obtained oxide sintered body was pulverized, powder X-ray diffraction measurement was performed, and the formation phase was identified. A diffraction peak attributed to the crystal phase was confirmed, and a diffraction peak attributed to the aluminum oxide phase or the gallium oxide phase was not detected. The milled end of the obtained oxide sintered body was pulverized and analyzed for composition by ICP emission spectroscopy. The (Al + Ga) / (Zn + Al + Ga) atomic ratio was 4.4 atomic%, and Al / (Al + Ga) ) It was confirmed that the composition was almost the same, including the atomic ratio. The volume resistivity of the oxide sintered body was 0.006 Ωcm, the density was 5.1 g / cm 3 , the average crystal grain size was 6 μm, and the maximum pore size was 0.8 μm.
The end material of the oxide sintered body was sliced by FIB processing and observed with a transmission electron microscope (TEM) mounted on an energy dispersive X-ray fluorescence spectrometer (EDX). In the oxide sintered body, it was confirmed by electron beam diffraction that the spinel crystal phase was dispersed in the parent phase of the wurtzite structure. When local composition analysis was performed by EDX, it was found that the parent phase of the wurtzite structure was zinc oxide containing aluminum and gallium, and the spinel phase was a Zn—Al—Ga—O phase. EDX composition analysis was performed on 50 spinel phases, and the Al / (Al + Ga) atomic ratio was measured. As a result, it was 32 to 80 atomic%, and the Al / (Al + Ga) atomic ratio was 10 to 90 atomic%. There was no spinel phase out of range.
When a sputtering target was produced under the same method and conditions as in Example 1 and a film was formed under the same conditions, the transmittance including the substrate with a specific resistance of 6.6 × 10 −4 Ωcm was 85% in the visible region. Thus, a transparent conductive film of 82% could be obtained in the near infrared region (the transmittance of the film itself was 87% in the visible region and 89% in the near infrared region). Therefore, a transparent electrode film having a high transmittance in the near infrared region as well as in the visible region and having a low resistance can be obtained by, for example, the surface transparent electrode film (2) on the light receiving portion side of the solar cell as shown in FIG. When used for the transparent electrode film (6) on the back side of the PIN junction, solar energy in the infrared region can be effectively converted into electrical energy.
Such a highly conductive transparent conductive film could be stably obtained even when the direct current input power to the target was increased to 850 W. Further, the occurrence of arcing and the occurrence of particles were evaluated under the same method and conditions as in Example 1. However, no arcing occurred and no particles were generated. These results are shown in Table 1.
(実施例7)
原料粉末の酸化亜鉛と酸化アルミニウムと酸化ガリウムの配合比を、Al/(Al+Ga)原子数比で55原子%、(Al+Ga)/(Zn+Al+Ga)原子数比で3.4原子%とし、原料粉末のボールミルによる混合・粉砕処理を行わず、ビーズミル処理のみを行った以外は実施例1と同じ方法、条件で、亜鉛およびアルミニウムおよびガリウムを含有する酸化物焼結体を製造した。すなわち、ビーズミル条件、成形体の作製条件、焼成条件は、実施例1と同じ方法・条件である。
実施例1と同様に焼成前の成形体を用いて、混合原料粉末のAl/(Al+Ga)原子数比の均一性を評価したところ、標準偏差σは24原子%であり、焼成前の時点で高い均一性を有していた。
また焼成後に得られた酸化物焼結体の評価を実施例1と同様に行った。得られた酸化物焼結体の端材を粉砕し、粉末X線回折測定を実施し、生成相の同定を行ったところ、六方晶のウルツ鉱構造をとる酸化亜鉛結晶相とスピネル型構造の結晶相に起因する回折ピークが確認され、酸化アルミニウム相や酸化ガリウム相に起因する回折ピークは検出されなかった。得られた酸化物焼結体の端材を粉砕してICP発光分光分析法による組成を分析したところ、(Al+Ga)/(Zn+Al+Ga)原子数比が3.2原子%であり、Al/(Al+Ga)原子数比も含めて、ほぼ配合組成と同じであることを確認した。また、酸化物焼結体の体積抵抗率は0.008Ωcmであり、また密度は5.2g/cm3で、平均結晶粒径は6μm、最大空孔径は1μmであった。
酸化物焼結体の端材をFIB加工により薄片化し、エネルギー分散型蛍光X線分析装置(EDX)搭載の透過型電子顕微鏡(TEM)で観察した。酸化物焼結体は、電子線回折から、ウルツ鉱型構造の母相の中にスピネル結晶相が分散していることが確認された。EDXによる局所組成分析を行うと、ウルツ鉱型構造の母相はアルミニウムとガリウムが含まれた酸化亜鉛であり、スピネル相はZn−Al−Ga−O相であることがわかった。50個のスピネル相に対してEDX組成分析を行い、Al/(Al+Ga)原子数比を測定したところ、30〜83原子%であり、Al/(Al+Ga)原子数比が10〜90原子%の範囲を逸脱したスピネル相は存在しなかった。
実施例1と同様の方法、条件でスパッタリングターゲットを作製し、同様の条件で成膜を行ったところ、比抵抗9.0×10−4Ωcmで基板を含めた透過率が可視域で86%であり、近赤外域で83%の透明導電膜を得ることができた(膜自体の透過率は、可視域で88%、近赤外域で90%)。よってこのような可視域だけでなく近赤外域の透過率も高くて低抵抗の透明電極膜を、例えば図1に示すような太陽電池の受光部側の表面透明電極膜(2)および/あるいはPIN接合部の裏側の透明電極膜(6)に用いると、赤外線領域の太陽エネルギーを有効に電気エネルギーに変換することができる。
なお、このような導電性の高い透明導電膜は、ターゲットへの直流投入電力を850Wにあげて成膜しても安定に得ることができた。また、実施例1と同様の方法、条件で、アーキングの発生、パーティクルの発生状況を評価した。しかし、アーキングは全く発生せず、パーティクルも発生しなかった。これらの結果を表1に示した。
(Example 7)
The mixing ratio of zinc oxide, aluminum oxide, and gallium oxide in the raw material powder is 55 atomic% in the Al / (Al + Ga) atomic ratio, and 3.4 atomic% in the (Al + Ga) / (Zn + Al + Ga) atomic ratio, An oxide sintered body containing zinc, aluminum, and gallium was produced under the same method and conditions as in Example 1 except that only the bead mill treatment was performed without performing the mixing / pulverization treatment by the ball mill. That is, the bead mill conditions, the molded body production conditions, and the firing conditions are the same methods and conditions as in Example 1.
When the uniformity of the Al / (Al + Ga) atomic number ratio of the mixed raw material powder was evaluated using the green body before firing as in Example 1, the standard deviation σ was 24 atomic%. It had high uniformity.
The oxide sintered body obtained after firing was evaluated in the same manner as in Example 1. The milled end of the obtained oxide sintered body was pulverized, powder X-ray diffraction measurement was performed, and the formation phase was identified. A diffraction peak attributed to the crystal phase was confirmed, and a diffraction peak attributed to the aluminum oxide phase or the gallium oxide phase was not detected. When the milled end material of the obtained oxide sintered body was pulverized and the composition was analyzed by ICP emission spectroscopy, the (Al + Ga) / (Zn + Al + Ga) atomic ratio was 3.2 atomic%, and Al / (Al + Ga) ) It was confirmed that the composition was almost the same, including the atomic ratio. The volume resistivity of the oxide sintered body was 0.008 Ωcm, the density was 5.2 g / cm 3 , the average crystal grain size was 6 μm, and the maximum pore size was 1 μm.
The end material of the oxide sintered body was sliced by FIB processing and observed with a transmission electron microscope (TEM) mounted on an energy dispersive X-ray fluorescence spectrometer (EDX). In the oxide sintered body, it was confirmed by electron beam diffraction that the spinel crystal phase was dispersed in the parent phase of the wurtzite structure. When local composition analysis was performed by EDX, it was found that the parent phase of the wurtzite structure was zinc oxide containing aluminum and gallium, and the spinel phase was a Zn—Al—Ga—O phase. EDX composition analysis was performed on 50 spinel phases, and the Al / (Al + Ga) atomic ratio was measured. As a result, it was 30 to 83 atomic%, and the Al / (Al + Ga) atomic ratio was 10 to 90 atomic%. There was no spinel phase out of range.
When a sputtering target was prepared under the same method and conditions as in Example 1 and film formation was performed under the same conditions, the transmittance including the substrate with a specific resistance of 9.0 × 10 −4 Ωcm was 86% in the visible region. Thus, a transparent conductive film of 83% was obtained in the near infrared region (the transmittance of the film itself was 88% in the visible region and 90% in the near infrared region). Therefore, a transparent electrode film having a high transmittance in the near infrared region as well as in the visible region and having a low resistance can be obtained by, for example, the surface transparent electrode film (2) on the light receiving portion side of the solar cell as shown in FIG. When used for the transparent electrode film (6) on the back side of the PIN junction, solar energy in the infrared region can be effectively converted into electrical energy.
Such a highly conductive transparent conductive film could be stably obtained even when the direct current input power to the target was increased to 850 W. Further, the occurrence of arcing and the occurrence of particles were evaluated under the same method and conditions as in Example 1. However, no arcing occurred and no particles were generated. These results are shown in Table 1.
(実施例8)
原料粉末の酸化亜鉛と酸化アルミニウムと酸化ガリウムの配合比を、Al/(Al+Ga)原子数比で55原子%、(Al+Ga)/(Zn+Al+Ga)原子数比で2.8原子%とした以外は実施例1と同様の手順、条件で、ボールミルとビーズミルによる混合・粉砕処理を行い、成形、焼成を行って酸化物焼結体を製造した。
実施例1と同様に焼成前の成形体を用いて、混合原料粉末のAl/(Al+Ga)原子数比の均一性を評価したところ、標準偏差σは18原子%であり、焼成前の時点でAlとGa間の均一性は良好であった。
得られた酸化物焼結体の評価を実施例1と同様に行った。得られた酸化物焼結体の端材を粉砕し、粉末X線回折測定を実施し、生成相の同定を行ったところ、六方晶のウルツ鉱構造をとる酸化亜鉛結晶相とスピネル型構造の結晶相に起因する回折ピークが確認され、酸化アルミニウム相や酸化ガリウム相に起因する回折ピークは検出されなかった。得られた酸化物焼結体の端材を粉砕してICP発光分光分析法による組成を分析したところ、(Al+Ga)/(Zn+Al+Ga)原子数比が2.9原子%であり、Al/(Al+Ga)原子数比も含めて、ほぼ配合組成と同じであることを確認した。また、酸化物焼結体の体積抵抗率は0.02Ωcmであり、また密度は5.0g/cm3で、平均結晶粒径は6μm、最大空孔径は1μmであった。
酸化物焼結体の端材をFIB加工により薄片化し、エネルギー分散型蛍光X線分析装置(EDX)搭載の透過型電子顕微鏡(TEM)で観察した。酸化物焼結体は、電子線回折から、ウルツ鉱型構造の母相の中にスピネル結晶相が分散していることが確認された。EDXによる局所組成分析を行うと、ウルツ鉱型構造の母相はアルミニウムとガリウムが含まれた酸化亜鉛であり、スピネル相はZn−Al−Ga−O相であることがわかった。50個のスピネル相に対してEDX組成分析を行い、Al/(Al+Ga)原子数比を測定したところ、41〜64原子%であり、Al/(Al+Ga)原子数比が10〜90原子%の範囲を逸脱したスピネル相は存在しなかった。
実施例1と同様の方法、条件でスパッタリングターゲットを作製し、同様の方法、条件で、アーキングの発生、パーティクルの発生状況を評価したが、アーキングは全く発生せず、パーティクルも発生しなかった。
さらに実施例1と同様の条件で成膜を行ったところ、得られた膜は、基板を含めた可視透過率が85%であり、比抵抗は1.4×10−3Ωcmであった。しかし、近赤外域の透過率は基板を含めて84%(膜自体で92%)であり、近赤外域での透過率が特に高い透明導電膜であることがわかった。
(Example 8)
Implementation was carried out except that the mixing ratio of zinc oxide, aluminum oxide and gallium oxide in the raw material powder was 55 atomic% in the Al / (Al + Ga) atomic ratio and 2.8 atomic% in the (Al + Ga) / (Zn + Al + Ga) atomic ratio. A mixed and pulverized treatment using a ball mill and a bead mill was performed under the same procedure and conditions as in Example 1, followed by molding and firing to produce an oxide sintered body.
When the uniformity of the Al / (Al + Ga) atomic number ratio of the mixed raw material powder was evaluated using the molded body before firing in the same manner as in Example 1, the standard deviation σ was 18 atomic%. The uniformity between Al and Ga was good.
The obtained oxide sintered body was evaluated in the same manner as in Example 1. The milled end of the obtained oxide sintered body was pulverized, powder X-ray diffraction measurement was performed, and the formation phase was identified. A diffraction peak attributed to the crystal phase was confirmed, and a diffraction peak attributed to the aluminum oxide phase or the gallium oxide phase was not detected. When the milled end material of the obtained oxide sintered body was pulverized and the composition was analyzed by ICP emission spectroscopy, the (Al + Ga) / (Zn + Al + Ga) atomic ratio was 2.9 atomic%, and Al / (Al + Ga) ) It was confirmed that the composition was almost the same, including the atomic ratio. The volume resistivity of the oxide sintered body was 0.02 Ωcm, the density was 5.0 g / cm 3 , the average crystal grain size was 6 μm, and the maximum pore size was 1 μm.
The end material of the oxide sintered body was sliced by FIB processing and observed with a transmission electron microscope (TEM) mounted on an energy dispersive X-ray fluorescence spectrometer (EDX). In the oxide sintered body, it was confirmed by electron beam diffraction that the spinel crystal phase was dispersed in the parent phase of the wurtzite structure. When local composition analysis was performed by EDX, it was found that the parent phase of the wurtzite structure was zinc oxide containing aluminum and gallium, and the spinel phase was a Zn—Al—Ga—O phase. When EDX composition analysis was performed on 50 spinel phases and the Al / (Al + Ga) atomic ratio was measured, it was 41 to 64 atomic%, and the Al / (Al + Ga) atomic ratio was 10 to 90 atomic%. There was no spinel phase out of range.
A sputtering target was produced under the same method and conditions as in Example 1, and the occurrence of arcing and the occurrence of particles were evaluated under the same method and conditions, but no arcing occurred and no particles were generated.
Further, when film formation was performed under the same conditions as in Example 1, the obtained film had a visible transmittance of 85% including the substrate, and the specific resistance was 1.4 × 10 −3 Ωcm. However, the transmittance in the near-infrared region is 84% including the substrate (92% in the film itself), indicating that the transparent conductive film has a particularly high transmittance in the near-infrared region.
(実施例9)
原料粉末の酸化亜鉛と酸化アルミニウムと酸化ガリウムの配合比を、Al/(Al+Ga)原子数比で55原子%、(Al+Ga)/(Zn+Al+Ga)原子数比で0.3原子%とした以外は実施例1と同様の手順、条件で、ボールミルとビーズミルによる混合・粉砕処理を行い、成形、焼成を行って酸化物焼結体を製造した。
実施例1と同様に焼成前の成形体を用いて、混合原料粉末のAl/(Al+Ga)原子数比の均一性を評価したところ、標準偏差σは17原子%であり、焼成前の時点でAlとGa間の均一性は良好であった。
得られた酸化物焼結体の評価を実施例1と同様に行った。得られた酸化物焼結体の端材を粉砕し、粉末X線回折測定を実施し、生成相の同定を行ったところ、六方晶のウルツ鉱構造をとる酸化亜鉛結晶相とスピネル型構造の結晶相に起因する回折ピークが確認され、酸化アルミニウム相や酸化ガリウム相に起因する回折ピークは検出されなかった。得られた酸化物焼結体の端材を粉砕してICP発光分光分析法による組成を分析したところ、(Al+Ga)/(Zn+Al+Ga)原子数比が0.3原子%であり、Al/(Al+Ga)原子数比も含めて、配合組成と同じであることを確認した。また、酸化物焼結体の体積抵抗率は0.03Ωcmであり、また密度は5.0g/cm3で、平均結晶粒径は6μm、最大空孔径は1μmであった。
酸化物焼結体の端材をFIB加工により薄片化し、エネルギー分散型蛍光X線分析装置(EDX)搭載の透過型電子顕微鏡(TEM)で観察した。酸化物焼結体は、電子線回折から、ウルツ鉱型構造の母相の中にスピネル結晶相が分散していることが確認された。EDXによる局所組成分析を行うと、ウルツ鉱型構造の母相はアルミニウムとガリウムが含まれた酸化亜鉛であり、スピネル相はZn−Al−Ga−O相であることがわかった。50個のスピネル相に対してEDX組成分析を行い、Al/(Al+Ga)原子数比を測定したところ、42〜66原子%であり、Al/(Al+Ga)原子数比が10〜90原子%の範囲を逸脱したスピネル相は存在しなかった。
実施例1と同様の方法、条件でスパッタリングターゲットを作製し、同様の方法、条件で、アーキングの発生、パーティクルの発生状況を評価したが、アーキングは全く発生せず、パーティクルも発生しなかった。
さらに実施例1と同様の条件で成膜を行ったところ、得られた膜は、基板を含めた可視透過率が85%であり、比抵抗は2.9×10−3Ωcmであった。しかし、近赤外域の透過率は基板を含めて86%(膜自体で94%)であり、近赤外域での透過率が特に高い透明導電膜であることがわかった。
Example 9
Implementation was performed except that the mixing ratio of zinc oxide, aluminum oxide and gallium oxide in the raw material powder was 55 atomic% in the Al / (Al + Ga) atomic ratio and 0.3 atomic% in the (Al + Ga) / (Zn + Al + Ga) atomic ratio. A mixed and pulverized treatment using a ball mill and a bead mill was performed under the same procedure and conditions as in Example 1, followed by molding and firing to produce an oxide sintered body.
When the uniformity of the Al / (Al + Ga) atomic number ratio of the mixed raw material powder was evaluated using the molded body before firing in the same manner as in Example 1, the standard deviation σ was 17 atomic%. The uniformity between Al and Ga was good.
The obtained oxide sintered body was evaluated in the same manner as in Example 1. The milled end of the obtained oxide sintered body was pulverized, powder X-ray diffraction measurement was performed, and the formation phase was identified. A diffraction peak attributed to the crystal phase was confirmed, and a diffraction peak attributed to the aluminum oxide phase or the gallium oxide phase was not detected. The milled end of the obtained oxide sintered body was pulverized and analyzed for composition by ICP emission spectroscopy. The (Al + Ga) / (Zn + Al + Ga) atomic ratio was 0.3 atomic%, and Al / (Al + Ga) ) It was confirmed that the composition was the same, including the atomic ratio. The volume resistivity of the oxide sintered body was 0.03 Ωcm, the density was 5.0 g / cm 3 , the average crystal grain size was 6 μm, and the maximum pore size was 1 μm.
The end material of the oxide sintered body was sliced by FIB processing and observed with a transmission electron microscope (TEM) mounted on an energy dispersive X-ray fluorescence spectrometer (EDX). In the oxide sintered body, it was confirmed by electron beam diffraction that the spinel crystal phase was dispersed in the parent phase of the wurtzite structure. When local composition analysis was performed by EDX, it was found that the parent phase of the wurtzite structure was zinc oxide containing aluminum and gallium, and the spinel phase was a Zn—Al—Ga—O phase. EDX composition analysis was performed on 50 spinel phases, and the Al / (Al + Ga) atomic number ratio was measured to be 42 to 66 atomic%, and the Al / (Al + Ga) atomic ratio was 10 to 90 atomic%. There was no spinel phase out of range.
A sputtering target was produced under the same method and conditions as in Example 1, and the occurrence of arcing and the occurrence of particles were evaluated under the same method and conditions, but no arcing occurred and no particles were generated.
Further, when film formation was performed under the same conditions as in Example 1, the obtained film had a visible transmittance of 85% including the substrate, and the specific resistance was 2.9 × 10 −3 Ωcm. However, the transmittance in the near-infrared region is 86% including the substrate (94% in the film itself), which indicates that the transparent conductive film has a particularly high transmittance in the near-infrared region.
(比較例4)
原料粉末の酸化亜鉛と酸化アルミニウムと酸化ガリウムの配合比を、Al/(Al+Ga)原子数比で55原子%、(Al+Ga)/(Zn+Al+Ga)原子数比で0.15原子%とした以外は実施例1と同様の手順、条件で、ボールミルとビーズミルによる混合・粉砕処理を行い、成形、焼成を行って酸化物焼結体を製造した。
実施例1と同様に焼成前の成形体を用いて、混合原料粉末のAl/(Al+Ga)原子数比の均一性を評価したところ、標準偏差σは18原子%であり、焼成前の時点でAlとGa間の均一性は良好であった。
得られた酸化物焼結体の評価を実施例1と同様に行った。得られた酸化物焼結体の端材を粉砕し、粉末X線回折測定を実施し、生成相の同定を行ったところ、六方晶のウルツ鉱構造をとる酸化亜鉛結晶相とスピネル型構造の結晶相に起因する回折ピークが確認され、酸化アルミニウム相や酸化ガリウム相に起因する回折ピークは検出されなかった。得られた酸化物焼結体の端材を粉砕してICP発光分光分析法による組成を分析したところ、(Al+Ga)/(Zn+Al+Ga)原子数比が0.16原子%であり、Al/(Al+Ga)原子数比も含めて、ほぼ配合組成と同じであることを確認した。また、酸化物焼結体の体積抵抗率は0.02Ωcmであり、また密度は5.0g/cm3で、平均結晶粒径は6μm、最大空孔径は1μmであった。
酸化物焼結体の端材をFIB加工により薄片化し、エネルギー分散型蛍光X線分析装置(EDX)搭載の透過型電子顕微鏡(TEM)で観察した。酸化物焼結体は、電子線回折から、ウルツ鉱型構造の母相の中にスピネル結晶相が分散していることが確認された。EDXによる局所組成分析を行うと、ウルツ鉱型構造の母相はアルミニウムとガリウムが含まれた酸化亜鉛であり、スピネル相はZn−Al−Ga−O相であることがわかった。50個のスピネル相に対してEDX組成分析を行い、Al/(Al+Ga)原子数比を測定したところ、40〜69原子%であり、Al/(Al+Ga)原子数比が10〜90原子%の範囲を逸脱したスピネル相は存在しなかった。
実施例1と同様の方法、条件でスパッタリングターゲットを作製し、同様の方法、条件で、アーキングの発生、パーティクルの発生状況を評価したが、アーキングは全く発生せず、パーティクルも発生しなかった。
さらに実施例1と同様の条件で成膜を行ったところ、得られた膜は、基板を含めた可視透過率が85%以上であり、近赤外域の透過率も高かったが、比抵抗は6.8×10−3Ωcmと高く、低抵抗の透明導電膜を得ることができなかった。この原因は、酸化物焼結体中のアルミニウムとガリウムの量が少なすぎて((Al+Ga)/(Zn+Al+Ga)原子数比で0.15原子%)、膜の低抵抗化に寄与するこれらのドーパントが不足したからと思われる。このような高抵抗の透明導電膜を太陽電池の透明電極に用いると、高い効率を実現することができない。
(Comparative Example 4)
Implementation was carried out except that the mixing ratio of zinc oxide, aluminum oxide and gallium oxide in the raw material powder was 55 atomic% in the Al / (Al + Ga) atomic ratio and 0.15 atomic% in the (Al + Ga) / (Zn + Al + Ga) atomic ratio. A mixed and pulverized treatment using a ball mill and a bead mill was performed under the same procedure and conditions as in Example 1, followed by molding and firing to produce an oxide sintered body.
When the uniformity of the Al / (Al + Ga) atomic number ratio of the mixed raw material powder was evaluated using the molded body before firing in the same manner as in Example 1, the standard deviation σ was 18 atomic%. The uniformity between Al and Ga was good.
The obtained oxide sintered body was evaluated in the same manner as in Example 1. The milled end of the obtained oxide sintered body was pulverized, powder X-ray diffraction measurement was performed, and the formation phase was identified. A diffraction peak attributed to the crystal phase was confirmed, and a diffraction peak attributed to the aluminum oxide phase or the gallium oxide phase was not detected. The milled end of the obtained oxide sintered body was pulverized and analyzed for composition by ICP emission spectroscopy. The (Al + Ga) / (Zn + Al + Ga) atomic ratio was 0.16 atomic%, and Al / (Al + Ga) ) It was confirmed that the composition was almost the same as the composition, including the atomic ratio. The volume resistivity of the oxide sintered body was 0.02 Ωcm, the density was 5.0 g / cm 3 , the average crystal grain size was 6 μm, and the maximum pore size was 1 μm.
The end material of the oxide sintered body was sliced by FIB processing and observed with a transmission electron microscope (TEM) mounted on an energy dispersive X-ray fluorescence spectrometer (EDX). In the oxide sintered body, it was confirmed by electron beam diffraction that the spinel crystal phase was dispersed in the parent phase of the wurtzite structure. When local composition analysis was performed by EDX, it was found that the parent phase of the wurtzite structure was zinc oxide containing aluminum and gallium, and the spinel phase was a Zn—Al—Ga—O phase. EDX composition analysis was performed on 50 spinel phases, and the Al / (Al + Ga) atomic ratio was measured. As a result, it was 40 to 69 atomic%, and the Al / (Al + Ga) atomic ratio was 10 to 90 atomic%. There was no spinel phase out of range.
A sputtering target was produced under the same method and conditions as in Example 1, and the occurrence of arcing and the occurrence of particles were evaluated under the same method and conditions, but no arcing occurred and no particles were generated.
Further, when film formation was performed under the same conditions as in Example 1, the obtained film had a visible transmittance of 85% or more including the substrate and a high transmittance in the near infrared region, but the specific resistance was A high resistance of 6.8 × 10 −3 Ωcm and a low resistance transparent conductive film could not be obtained. This is because the amount of aluminum and gallium in the oxide sintered body is too small (0.15 atomic% in terms of (Al + Ga) / (Zn + Al + Ga) atomic ratio), and these dopants contribute to lowering the resistance of the film. It seems that there was a shortage. If such a high-resistance transparent conductive film is used for a transparent electrode of a solar cell, high efficiency cannot be realized.
(比較例5)
原料粉末の酸化亜鉛と酸化アルミニウムと酸化ガリウムの配合比を、Al/(Al+Ga)原子数比で55原子%、(Al+Ga)/(Zn+Al+Ga)原子数比で6.8原子%とした以外は実施例1と同様の手順、条件で、ボールミルとビーズミルによる混合・粉砕処理を行い、成形、焼成を行って酸化物焼結体を製造した。
実施例1と同様に焼成前の成形体を用いて、混合原料粉末のAl/(Al+Ga)原子数比の均一性を評価したところ、標準偏差σは16原子%であり、焼成前の時点でAlとGa間の均一性は良好だった。
得られた酸化物焼結体の評価を実施例1と同様に行った。得られた酸化物焼結体の端材を粉砕し、粉末X線回折測定を実施し、生成相の同定を行ったところ、六方晶のウルツ鉱構造をとる酸化亜鉛結晶相とスピネル型構造の結晶相に起因する回折ピークが確認され、酸化アルミニウム相や酸化ガリウム相に起因する回折ピークは検出されなかった。得られた酸化物焼結体の端材を粉砕してICP発光分光分析法による組成を分析したところ、(Al+Ga)/(Zn+Al+Ga)原子数比が6.9原子%であり、Al/(Al+Ga)原子数比も含めて、ほぼ配合組成と同じであることを確認した。また、酸化物焼結体の体積抵抗率は0.02Ωcmであり、また密度は5.0g/cm3で、平均結晶粒径は6μm、最大空孔径は1μmであった。
酸化物焼結体の端材をFIB加工により薄片化し、エネルギー分散型蛍光X線分析装置(EDX)搭載の透過型電子顕微鏡(TEM)で観察した。酸化物焼結体は、電子線回折から、ウルツ鉱型構造の母相の中にスピネル結晶相が分散していることが確認された。EDXによる局所組成分析を行うと、ウルツ鉱型構造の母相はアルミニウムとガリウムが含まれた酸化亜鉛であり、スピネル相はZn−Al−Ga−O相であることがわかった。50個のスピネル相に対してEDX組成分析を行い、Al/(Al+Ga)原子数比を測定したところ、43〜65原子%であり、Al/(Al+Ga)原子数比が10〜90原子%の範囲を逸脱したスピネル相は存在しなかった。
実施例1と同様の方法、条件でスパッタリングターゲットを作製し、同様の方法、条件で、アーキングの発生、パーティクルの発生状況を評価したが、アーキングは全く発生せず、パーティクルも発生しなかった。さらに実施例1と同様の条件で成膜を行ったところ、得られた膜は、基板を含めた可視透過率が85%であったが、比抵抗は5.5×10−3Ωcmと高く、低抵抗の透明導電膜を得ることができなかった。この原因は、酸化物焼結体中のアルミニウムとガリウムの量が多すぎて((Al+Ga)/(Zn+Al+Ga)原子数比で6.9原子%)、膜の低抵抗化に寄与するこれらのドーパントが多すぎたからと思われる。また基板を含めた近赤外域の透過率は62%(膜自体の透過率では67%)と本発明の透明導電膜と比べて低かった。このような高抵抗の透明導電膜を太陽電池の透明電極に用いると、高い効率を実現することができない。これらの結果を表1に示した。
(Comparative Example 5)
Implementation was carried out except that the mixing ratio of zinc oxide, aluminum oxide and gallium oxide in the raw material powder was 55 atomic% in the Al / (Al + Ga) atomic ratio and 6.8 atomic% in the (Al + Ga) / (Zn + Al + Ga) atomic ratio. A mixed and pulverized treatment using a ball mill and a bead mill was performed under the same procedure and conditions as in Example 1, followed by molding and firing to produce an oxide sintered body.
When the uniformity of the Al / (Al + Ga) atomic number ratio of the mixed raw material powder was evaluated using the green body before firing as in Example 1, the standard deviation σ was 16 atomic%. The uniformity between Al and Ga was good.
The obtained oxide sintered body was evaluated in the same manner as in Example 1. The milled end of the obtained oxide sintered body was pulverized, powder X-ray diffraction measurement was performed, and the formation phase was identified. A diffraction peak attributed to the crystal phase was confirmed, and a diffraction peak attributed to the aluminum oxide phase or the gallium oxide phase was not detected. The milled end material of the obtained oxide sintered body was pulverized and analyzed for composition by ICP emission spectroscopy. As a result, the (Al + Ga) / (Zn + Al + Ga) atomic ratio was 6.9 atomic%, and Al / (Al + Ga) ) It was confirmed that the composition was almost the same, including the atomic ratio. The volume resistivity of the oxide sintered body was 0.02 Ωcm, the density was 5.0 g / cm 3 , the average crystal grain size was 6 μm, and the maximum pore size was 1 μm.
The end material of the oxide sintered body was sliced by FIB processing and observed with a transmission electron microscope (TEM) mounted on an energy dispersive X-ray fluorescence spectrometer (EDX). In the oxide sintered body, it was confirmed by electron beam diffraction that the spinel crystal phase was dispersed in the parent phase of the wurtzite structure. When local composition analysis was performed by EDX, it was found that the parent phase of the wurtzite structure was zinc oxide containing aluminum and gallium, and the spinel phase was a Zn—Al—Ga—O phase. The EDX composition analysis was performed on 50 spinel phases, and the Al / (Al + Ga) atomic ratio was measured. As a result, it was 43 to 65 atomic%, and the Al / (Al + Ga) atomic ratio was 10 to 90 atomic%. There was no spinel phase out of range.
A sputtering target was produced under the same method and conditions as in Example 1, and the occurrence of arcing and the occurrence of particles were evaluated under the same method and conditions, but no arcing occurred and no particles were generated. Further, when film formation was performed under the same conditions as in Example 1, the obtained film had a visible transmittance of 85% including the substrate, but the specific resistance was as high as 5.5 × 10 −3 Ωcm. A low-resistance transparent conductive film could not be obtained. This is because the amount of aluminum and gallium in the oxide sintered body is too large (6.9% by atomic ratio of (Al + Ga) / (Zn + Al + Ga)), and these dopants contribute to the reduction in resistance of the film. It seems that there were too many. Further, the transmittance in the near infrared region including the substrate was 62% (67% in the transmittance of the film itself), which was lower than that of the transparent conductive film of the present invention. If such a high-resistance transparent conductive film is used for a transparent electrode of a solar cell, high efficiency cannot be realized. These results are shown in Table 1.
(比較例6)
原料粉末として、酸化ガリウムを用いず、酸化亜鉛と酸化アルミニウムを用い、その配合比を、(Al+Ga)/(Zn+Al+Ga)原子数比(すなわちAl/(Zn+Al)原子数比)で5.1原子%とした以外は実施例1と同様の手順、条件で、ボールミルとビーズミルによる混合・粉砕処理を行い、成形、焼成を行って、従来の酸化物焼結体(AZO)を製造した。
得られた酸化物焼結体の評価を実施例1と同様に行った。得られた酸化物焼結体の端材を粉砕し、粉末X線回折測定を実施し、生成相の同定を行ったところ、六方晶のウルツ鉱構造をとる酸化亜鉛結晶相とスピネル型構造の結晶相に起因する回折ピークが確認され、酸化アルミニウム相や酸化ガリウム相に起因する回折ピークは検出されなかった。得られた酸化物焼結体の端材を粉砕してICP発光分光分析法による組成を分析したところ、(Al+Ga)/(Zn+Al+Ga)原子数比(すなわちAl/(Zn+Al)原子数比)が5.2原子%であり、ほぼ配合組成と同じであることを確認した。また、酸化物焼結体の体積抵抗率は0.04Ωcmであり、また密度は5.2g/cm3で、平均結晶粒径は10μm、最大空孔径は1μmであった。
酸化物焼結体の端材をFIB加工により薄片化し、エネルギー分散型蛍光X線分析装置(EDX)搭載の透過型電子顕微鏡(TEM)で観察した。酸化物焼結体は、電子線回折から、ウルツ鉱型構造の母相の中にスピネル結晶相が分散していることが確認された。EDXによる局所組成分析を行うと、ウルツ鉱型構造の母相はアルミニウムが含まれた酸化亜鉛であり、スピネル相はZn−Al−O相であることがわかった。50個のスピネル相に対してEDX組成分析を行ったところ、全てほぼZnAl2O3に近い組成であった。つまり、本発明で規定したスピネル相の組成がAl/(Al+Ga)原子数比が10〜90原子%の範囲を逸脱したスピネル相である。
実施例1と同様の方法、条件でスパッタリングターゲットを作製し、同様の方法、条件で、アーキングの発生、パーティクルの発生状況を評価した。パーティクルも発生しなかったが、アーキングは10分間で230回も発生した。よってこのようなターゲットは、高入電力による高速成膜を行うことができず、量産には向かない。
さらに実施例1と同様の条件で成膜を行ったところ、得られた膜は、基板を含めた透過率が可視域で85%であり近赤外域で84%(膜自体の透過率は、可視域で87%、近赤外域で92%)であったが、比抵抗は1.5×10−3Ωcmであった。しかし、850Wでのアーキングの発生した状況で得られた透明導電膜の比抵抗は8.1×10−3Ωcmと高かった。
(Comparative Example 6)
As raw material powder, gallium oxide is not used but zinc oxide and aluminum oxide are used, and the compounding ratio is 5.1 atomic% in terms of (Al + Ga) / (Zn + Al + Ga) atomic ratio (ie, Al / (Zn + Al) atomic ratio). A conventional oxide sintered body (AZO) was manufactured by performing mixing and pulverizing treatment with a ball mill and a bead mill under the same procedures and conditions as in Example 1, except that the molding and firing were performed.
The obtained oxide sintered body was evaluated in the same manner as in Example 1. The milled end of the obtained oxide sintered body was pulverized, powder X-ray diffraction measurement was performed, and the formation phase was identified. A diffraction peak attributed to the crystal phase was confirmed, and a diffraction peak attributed to the aluminum oxide phase or the gallium oxide phase was not detected. When the milled chip of the obtained oxide sintered body was pulverized and the composition was analyzed by ICP emission spectroscopy, the (Al + Ga) / (Zn + Al + Ga) atomic ratio (that is, Al / (Zn + Al) atomic ratio) was 5. .2 atomic%, confirming that it was almost the same as the composition. The volume resistivity of the oxide sintered body was 0.04 Ωcm, the density was 5.2 g / cm 3 , the average crystal grain size was 10 μm, and the maximum pore size was 1 μm.
The end material of the oxide sintered body was sliced by FIB processing and observed with a transmission electron microscope (TEM) mounted on an energy dispersive X-ray fluorescence spectrometer (EDX). In the oxide sintered body, it was confirmed by electron beam diffraction that the spinel crystal phase was dispersed in the parent phase of the wurtzite structure. When local composition analysis was performed by EDX, it was found that the parent phase of the wurtzite structure was zinc oxide containing aluminum, and the spinel phase was a Zn—Al—O phase. When the EDX composition analysis was performed on 50 spinel phases, the compositions were all close to ZnAl 2 O 3 . That is, the composition of the spinel phase defined in the present invention is a spinel phase in which the Al / (Al + Ga) atomic ratio is outside the range of 10 to 90 atomic%.
A sputtering target was produced under the same method and conditions as in Example 1, and the occurrence of arcing and the generation of particles were evaluated under the same method and conditions. No particles were generated, but arcing occurred 230 times in 10 minutes. Therefore, such a target cannot perform high-speed film formation with high input power and is not suitable for mass production.
Furthermore, when film formation was performed under the same conditions as in Example 1, the obtained film had a transmittance including the substrate of 85% in the visible region and 84% in the near infrared region (the transmittance of the film itself is It was 87% in the visible region and 92% in the near infrared region), but the specific resistance was 1.5 × 10 −3 Ωcm. However, the specific resistance of the transparent conductive film obtained in a state where arcing occurred at 850 W was as high as 8.1 × 10 −3 Ωcm.
(比較例7)
原料粉末として、酸化アルミニウムを用いず、酸化亜鉛と酸化ガリウムを用い、その配合比を、(Al+Ga)/(Zn+Al+Ga)原子数比(すなわちGa/(Zn+Ga)原子数比)で5.3原子%とした以外は実施例1と同様の手順、条件で、ボールミルとビーズミルによる混合・粉砕処理を行い、成形、焼成を行って、従来の酸化物焼結体(GZO)を製造した。
得られた酸化物焼結体の評価を実施例1と同様に行った。得られた酸化物焼結体の端材を粉砕し、粉末X線回折測定を実施し、生成相の同定を行ったところ、六方晶のウルツ鉱構造をとる酸化亜鉛結晶相とスピネル型構造の結晶相に起因する回折ピークが確認され、酸化アルミニウム相や酸化ガリウム相に起因する回折ピークは検出されなかった。得られた酸化物焼結体の端材を粉砕してICP発光分光分析法による組成を分析したところ、(Al+Ga)/(Zn+Al+Ga)原子数比(すなわちGa/(Zn+Ga)原子数比)が5.3原子%であり、ほぼ配合組成と同じであることを確認した。また、酸化物焼結体の体積抵抗率は0.01Ωcmであり、また密度は4.8g/cm3で、平均結晶粒径は6μm、最大空孔径は2μmであった。
酸化物焼結体の端材をFIB加工により薄片化し、エネルギー分散型蛍光X線分析装置(EDX)搭載の透過型電子顕微鏡(TEM)で観察した。酸化物焼結体は、電子線回折から、ウルツ鉱型構造の母相の中にスピネル結晶相が分散していることが確認された。EDXによる局所組成分析を行うと、ウルツ鉱型構造の母相はアルミニウムが含まれた酸化亜鉛であり、スピネル相はZn−Ga−O相であることがわかった。50個のスピネル相に対してEDX組成分析を行ったところ、全てほぼZnGa2O3に近い組成であった。つまり、本発明で規定したスピネル相の組成がAl/(Al+Ga)原子数比が10〜90原子%の範囲を逸脱したスピネル相である。
実施例1と同様の条件で成膜を行ったところ、得られた膜は、基板を含めた透過率が可視域では85%(膜自体の透過率で87%)であり、比抵抗は4.5×10−4Ωcmと低抵抗の透明導電膜を得ることができたが、近赤外域では79%(膜自体の透過率で86%)であり、近赤外域での透過率は本発明の透明導電膜よりも低かった。このような透明導電膜を太陽電池の透明電極に用いたのでは、近赤外域の太陽光エネルギーを有効利用できないため高効率の太陽電池を実現することができない。さらに実施例1と同様の方法、条件でスパッタリングターゲットを作製し、同様の方法、条件で、アーキングの発生、パーティクルの発生状況を評価した。連続スパッタリングを行うとパーティクルの発生も多く、アーキングは10分間で12回ほど発生した。パーティクルの発生要因は、酸化物焼結体中にZnGa2O3に近い組成のスピネル相が含まれていたからと思われる。アーキングの要因はパーティクルによるものと思われる。このような酸化物焼結体は、透明導電膜の量産用のターゲットとしては使うことはできない。
ターゲットへの直流投入電力を850Wにあげて同様に成膜した場合は、上述のような導電性や透過率の高い透明導電膜は得られなかった。アーキングの発生した状況で得られた透明導電膜の比抵抗は5.7×10−3Ωcmと高かった。これは、成膜中に発生するアーキングが原因であり、膜損傷を受けて欠陥のある膜しか得られず、実施例のような組織が緻密で良質の膜を形成していない。よって、高効率の太陽電池の透明電極として利用することができない。これらの結果を表1に示した。
(Comparative Example 7)
As the raw material powder, zinc oxide and gallium oxide are used without using aluminum oxide, and the compounding ratio is 5.3 atomic% in terms of (Al + Ga) / (Zn + Al + Ga) atomic ratio (that is, Ga / (Zn + Ga) atomic ratio). A conventional oxide sintered body (GZO) was manufactured by performing mixing and pulverization treatment with a ball mill and a bead mill under the same procedures and conditions as in Example 1, except that the molding and firing were performed.
The obtained oxide sintered body was evaluated in the same manner as in Example 1. The milled end of the obtained oxide sintered body was pulverized, powder X-ray diffraction measurement was performed, and the formation phase was identified. A diffraction peak attributed to the crystal phase was confirmed, and a diffraction peak attributed to the aluminum oxide phase or the gallium oxide phase was not detected. When the milled end of the obtained oxide sintered body was pulverized and the composition was analyzed by ICP emission spectroscopy, the (Al + Ga) / (Zn + Al + Ga) atomic ratio (that is, Ga / (Zn + Ga) atomic ratio) was 5. .3 atomic%, confirming that it was almost the same as the composition. The volume resistivity of the oxide sintered body was 0.01 Ωcm, the density was 4.8 g / cm 3 , the average crystal grain size was 6 μm, and the maximum pore size was 2 μm.
The end material of the oxide sintered body was sliced by FIB processing and observed with a transmission electron microscope (TEM) mounted on an energy dispersive X-ray fluorescence spectrometer (EDX). In the oxide sintered body, it was confirmed by electron beam diffraction that the spinel crystal phase was dispersed in the parent phase of the wurtzite structure. When local composition analysis was performed by EDX, it was found that the parent phase of the wurtzite structure was zinc oxide containing aluminum, and the spinel phase was a Zn—Ga—O phase. When the EDX composition analysis was performed on 50 spinel phases, all the compositions were almost similar to ZnGa 2 O 3 . That is, the composition of the spinel phase defined in the present invention is a spinel phase in which the Al / (Al + Ga) atomic ratio is outside the range of 10 to 90 atomic%.
When film formation was performed under the same conditions as in Example 1, the obtained film had a transmittance including the substrate of 85% in the visible range (87% as the transmittance of the film itself), and a specific resistance of 4 A transparent conductive film having a low resistance of 5 × 10 −4 Ωcm could be obtained, but it was 79% in the near infrared region (86% in the transmittance of the film itself), and the transmittance in the near infrared region was It was lower than the transparent conductive film of the invention. If such a transparent conductive film is used for a transparent electrode of a solar cell, a solar cell with high efficiency cannot be realized because solar energy in the near infrared region cannot be effectively used. Furthermore, a sputtering target was produced under the same method and conditions as in Example 1, and the occurrence of arcing and the generation of particles were evaluated under the same methods and conditions. When continuous sputtering was performed, many particles were generated, and arcing occurred about 12 times in 10 minutes. The cause of the generation of particles seems to be that the oxide sintered body contained a spinel phase having a composition close to that of ZnGa 2 O 3 . The arcing factor is probably due to particles. Such an oxide sintered body cannot be used as a target for mass production of a transparent conductive film.
When the film was formed in the same manner by increasing the DC input power to the target to 850 W, a transparent conductive film having high conductivity and high transmittance as described above could not be obtained. The specific resistance of the transparent conductive film obtained in the state where arcing occurred was as high as 5.7 × 10 −3 Ωcm. This is due to arcing that occurs during film formation, and only a defective film is obtained due to film damage, and the structure as in the example does not form a dense and high-quality film. Therefore, it cannot be used as a transparent electrode of a highly efficient solar cell. These results are shown in Table 1.
(比較例8)
原料粉末として、酸化ガリウムを用いず、酸化亜鉛と酸化アルミニウムを用い、その配合比を、(Al+Ga)/(Zn+Al+Ga)原子数比(すなわちAl/(Zn+Al)原子数比)で0.3原子%とした以外は実施例1と同様の手順、条件で、ボールミルとビーズミルによる混合・粉砕処理を行い、成形、焼成を行って、従来の酸化物焼結体(AZO)を製造した。
得られた酸化物焼結体の評価を実施例1と同様に行った。得られた酸化物焼結体の端材を粉砕し、粉末X線回折測定を実施し、生成相の同定を行ったところ、六方晶のウルツ鉱構造をとる酸化亜鉛結晶相とスピネル型構造の結晶相に起因する回折ピークが確認され、酸化アルミニウム相や酸化ガリウム相に起因する回折ピークは検出されなかった。得られた酸化物焼結体の端材を粉砕してICP発光分光分析法による組成を分析したところ、(Al+Ga)/(Zn+Al+Ga)原子数比(すなわちAl/(Zn+Al)原子数比)が0.3原子%であり、ほぼ配合組成と同じであることを確認した。また、酸化物焼結体の体積抵抗率は0.08Ωcmであり、また密度は5.0g/cm3で、平均結晶粒径は10μm、最大空孔径は1μmであった。
酸化物焼結体の端材をFIB加工により薄片化し、エネルギー分散型蛍光X線分析装置(EDX)搭載の透過型電子顕微鏡(TEM)で観察した。酸化物焼結体は、電子線回折から、ウルツ鉱型構造の母相の中にスピネル結晶相が分散していることが確認された。EDXによる局所組成分析を行うと、ウルツ鉱型構造の母相はアルミニウムが含まれた酸化亜鉛であり、スピネル相はZn−Al−O相であることがわかった。50個のスピネル相に対してEDX組成分析を行ったところ、全てほぼZnAl2O3に近い組成であった。つまり、本発明で規定したスピネル相の組成がAl/(Al+Ga)原子数比が10〜90原子%の範囲を逸脱したスピネル相である。
実施例1と同様の方法、条件でスパッタリングターゲットを作製し、同様の方法、条件で、アーキングの発生、パーティクルの発生状況を評価した。パーティクルも発生しなかったが、アーキングは10分間で120回も発生した。よってこのようなターゲットは、高入電力による高速成膜を行うことができず、量産には向かない。
また、実施例1と同様の条件で成膜を行ったところ、得られた膜は、基板を含めた透過率が可視域で85%であり近赤外域で86%(膜自体の透過率は、可視域で87%、近赤外域で94%)であったが、比抵抗は8.5×10−3Ωcmと高かった。特に850Wでのアーキングの発生した状況で得られた透明導電膜の比抵抗は1.3×10−2Ωcmと非常に高かった。
(Comparative Example 8)
As raw material powder, gallium oxide is not used but zinc oxide and aluminum oxide are used, and the compounding ratio is 0.3 atomic% in terms of (Al + Ga) / (Zn + Al + Ga) atomic ratio (ie, Al / (Zn + Al) atomic ratio). A conventional oxide sintered body (AZO) was manufactured by performing mixing and pulverizing treatment with a ball mill and a bead mill under the same procedures and conditions as in Example 1, except that the molding and firing were performed.
The obtained oxide sintered body was evaluated in the same manner as in Example 1. The milled end of the obtained oxide sintered body was pulverized, powder X-ray diffraction measurement was performed, and the formation phase was identified. A diffraction peak attributed to the crystal phase was confirmed, and a diffraction peak attributed to the aluminum oxide phase or the gallium oxide phase was not detected. When the milled chip of the obtained oxide sintered body was pulverized and the composition was analyzed by ICP emission spectrometry, the (Al + Ga) / (Zn + Al + Ga) atomic ratio (that is, Al / (Zn + Al) atomic ratio) was 0. .3 atomic%, confirming that it was almost the same as the composition. The volume resistivity of the oxide sintered body was 0.08 Ωcm, the density was 5.0 g / cm 3 , the average crystal grain size was 10 μm, and the maximum pore size was 1 μm.
The end material of the oxide sintered body was sliced by FIB processing and observed with a transmission electron microscope (TEM) mounted on an energy dispersive X-ray fluorescence spectrometer (EDX). In the oxide sintered body, it was confirmed by electron beam diffraction that the spinel crystal phase was dispersed in the parent phase of the wurtzite structure. When local composition analysis was performed by EDX, it was found that the parent phase of the wurtzite structure was zinc oxide containing aluminum, and the spinel phase was a Zn—Al—O phase. When the EDX composition analysis was performed on 50 spinel phases, the compositions were all close to ZnAl 2 O 3 . That is, the composition of the spinel phase defined in the present invention is a spinel phase in which the Al / (Al + Ga) atomic ratio is outside the range of 10 to 90 atomic%.
A sputtering target was produced under the same method and conditions as in Example 1, and the occurrence of arcing and the generation of particles were evaluated under the same method and conditions. No particles were generated, but arcing occurred 120 times in 10 minutes. Therefore, such a target cannot perform high-speed film formation with high input power and is not suitable for mass production.
Further, when film formation was performed under the same conditions as in Example 1, the obtained film had a transmittance including the substrate of 85% in the visible region and 86% in the near infrared region (the transmittance of the film itself was The specific resistance was as high as 8.5 × 10 −3 Ωcm, but 87% in the visible region and 94% in the near infrared region. In particular, the specific resistance of the transparent conductive film obtained in the state where arcing occurred at 850 W was as high as 1.3 × 10 −2 Ωcm.
(比較例9)
原料粉末として、酸化アルミニウムを用いず、酸化亜鉛と酸化ガリウムを用い、その配合比を、(Al+Ga)/(Zn+Al+Ga)原子数比(すなわちGa/(Zn+Ga)原子数比)で0.3原子%とした以外は実施例1と同様の手順、条件で、ボールミルとビーズミルによる混合・粉砕処理を行い、成形、焼成を行って、従来の酸化物焼結体(GZO)を製造した。
得られた酸化物焼結体の評価を実施例1と同様に行った。得られた酸化物焼結体の端材を粉砕し、粉末X線回折測定を実施し、生成相の同定を行ったところ、六方晶のウルツ鉱構造をとる酸化亜鉛結晶相とスピネル型構造の結晶相に起因する回折ピークが確認され、酸化アルミニウム相や酸化ガリウム相に起因する回折ピークは検出されなかった。得られた酸化物焼結体の端材を粉砕してICP発光分光分析法による組成を分析したところ、(Al+Ga)/(Zn+Al+Ga)原子数比(すなわちGa/(Zn+Ga)原子数比)が0.3原子%であり、ほぼ配合組成と同じであることを確認した。また、酸化物焼結体の体積抵抗率は0.03Ωcmであり、また密度は4.7g/cm3で、平均結晶粒径は6μm、最大空孔径は2μmであった。
酸化物焼結体の端材をFIB加工により薄片化し、エネルギー分散型蛍光X線分析装置(EDX)搭載の透過型電子顕微鏡(TEM)で観察した。酸化物焼結体は、電子線回折から、ウルツ鉱型構造の母相の中にスピネル結晶相が分散していることが確認された。EDXによる局所組成分析を行うと、ウルツ鉱型構造の母相はアルミニウムが含まれた酸化亜鉛であり、スピネル相はZn−Ga−O相であることがわかった。50個のスピネル相に対してEDX組成分析を行ったところ、全てほぼZnGa2O3に近い組成であった。つまり、本発明で規定したスピネル相の組成がAl/(Al+Ga)原子数比が10〜90原子%の範囲を逸脱したスピネル相である。
実施例1と同様の条件で成膜を行ったところ、得られた膜は、基板を含めた透過率が可視域では85%(膜自体の透過率で87%)であり、比抵抗は2.5×10−3Ωcmと低抵抗の透明導電膜を得ることができた。基板を含めた近赤外域の透過率は84%(膜自体の透過率で92%)であった。
さらに実施例1と同様の方法、条件でスパッタリングターゲットを作製し、同様の方法、条件で、アーキングの発生、パーティクルの発生状況を評価した。連続スパッタリングを行うとパーティクルの発生も多く、アーキングは10分間で3回ほど発生した。パーティクルの発生要因は、酸化物焼結体中にZnGa2O3に近い組成のスピネル相が含まれていたからと思われる。アーキングの要因はパーティクルによるものと思われる。アーキングの発生した状況で得られた透明導電膜の比抵抗は1.7×10−2Ωcmと高かった。このような酸化物焼結体は、透明導電膜の量産用のターゲットとしては使うことはできない。
(Comparative Example 9)
As the raw material powder, zinc oxide and gallium oxide are used without using aluminum oxide, and the compounding ratio is 0.3 atomic% in terms of (Al + Ga) / (Zn + Al + Ga) atomic number ratio (that is, Ga / (Zn + Ga) atomic number ratio). A conventional oxide sintered body (GZO) was manufactured by performing mixing and pulverization treatment with a ball mill and a bead mill under the same procedures and conditions as in Example 1, except that the molding and firing were performed.
The obtained oxide sintered body was evaluated in the same manner as in Example 1. The milled end of the obtained oxide sintered body was pulverized, powder X-ray diffraction measurement was performed, and the formation phase was identified. A diffraction peak attributed to the crystal phase was confirmed, and a diffraction peak attributed to the aluminum oxide phase or the gallium oxide phase was not detected. When the milled chip of the obtained oxide sintered body was pulverized and the composition was analyzed by ICP emission spectroscopy, the (Al + Ga) / (Zn + Al + Ga) atomic ratio (that is, Ga / (Zn + Ga) atomic ratio) was 0. .3 atomic%, confirming that it was almost the same as the composition. The volume resistivity of the oxide sintered body was 0.03 Ωcm, the density was 4.7 g / cm 3 , the average crystal grain size was 6 μm, and the maximum pore size was 2 μm.
The end material of the oxide sintered body was sliced by FIB processing and observed with a transmission electron microscope (TEM) mounted on an energy dispersive X-ray fluorescence spectrometer (EDX). In the oxide sintered body, it was confirmed by electron beam diffraction that the spinel crystal phase was dispersed in the parent phase of the wurtzite structure. When local composition analysis was performed by EDX, it was found that the parent phase of the wurtzite structure was zinc oxide containing aluminum, and the spinel phase was a Zn—Ga—O phase. When the EDX composition analysis was performed on 50 spinel phases, all the compositions were almost similar to ZnGa 2 O 3 . That is, the composition of the spinel phase defined in the present invention is a spinel phase in which the Al / (Al + Ga) atomic ratio is outside the range of 10 to 90 atomic%.
When film formation was performed under the same conditions as in Example 1, the obtained film had a transmittance including the substrate of 85% in the visible region (87% as the transmittance of the film itself), and a specific resistance of 2 A transparent conductive film having a low resistance of 5 × 10 −3 Ωcm could be obtained. The transmittance in the near infrared region including the substrate was 84% (the transmittance of the film itself was 92%).
Furthermore, a sputtering target was produced under the same method and conditions as in Example 1, and the occurrence of arcing and the generation of particles were evaluated under the same methods and conditions. When continuous sputtering was performed, many particles were generated, and arcing occurred about 3 times in 10 minutes. The cause of the generation of particles seems to be that the oxide sintered body contained a spinel phase having a composition close to that of ZnGa 2 O 3 . The arcing factor is probably due to particles. The specific resistance of the transparent conductive film obtained in the state where arcing occurred was as high as 1.7 × 10 −2 Ωcm. Such an oxide sintered body cannot be used as a target for mass production of a transparent conductive film.
(比較例10)
酸化アルミニウムの原料粉末に粒径10μmのものを用い、原料粉末の混合・粉砕処理にビーズミル処理を行わずにボールミル処理のみを行った以外は実施例1と同じ方法、条件で、亜鉛およびアルミニウムおよびガリウムを含有する酸化物焼結体を製造した。すなわち、酸化亜鉛粉末と酸化ガリウム粉末の種類や、原料粉末の配合比、ボールミル条件、成形体の作製条件、焼成条件は、実施例1と同じ方法・条件である。
実施例1と同様に焼成前の成形体を用いて、混合原料粉末のAl/(Al+Ga)原子数比の均一性を評価したところ、標準偏差σは45原子%であり、焼成前の時点でAlとGa間の均一性は実施例と比べて劣っていた。得られた酸化物焼結体の評価を実施例1と同様に行った。得られた酸化物焼結体の端材を粉砕し、粉末X線回折測定を実施し、生成相の同定を行ったところ、六方晶のウルツ鉱構造をとる酸化亜鉛結晶相とスピネル型構造の結晶相に起因する回折ピークのほか、酸化アルミニウム結晶相に起因する回折ピークも確認された。得られた酸化物焼結体の端材を粉砕してICP発光分光分析法による組成を分析したところ、(Al+Ga)/(Zn+Al+Ga)原子数比が5.3原子%であり、Al/(Al+Ga)原子数比も含めて、ほぼ配合組成と同じであることを確認した。また、酸化物焼結体の体積抵抗率は0.3Ωcmであり、また密度は4.4g/cm3で、平均結晶粒径は6μm、最大空孔径は3μmであった。
酸化物焼結体の端材をFIB加工により薄片化し、エネルギー分散型蛍光X線分析装置(EDX)搭載の透過型電子顕微鏡(TEM)で観察した。酸化物焼結体は、電子線回折から、ウルツ鉱型構造の母相の中にスピネル結晶相が分散していることが確認された。EDXによる局所組成分析を行うと、ウルツ鉱型構造の母相はアルミニウムとガリウムが含まれた酸化亜鉛であり、スピネル相はZn−Al−Ga−O相であることがわかった。50個のスピネル相に対してEDX組成分析を行い、Al/(Al+Ga)原子数比を測定したところ、26〜100原子%であり、Al/(Al+Ga)原子数比が10〜90原子%の範囲を逸脱しスピネル相が存在した。特にZnAl2O4の組成に近いスピネル相の存在もみられた。
実施例1と同様の方法、条件でスパッタリングターゲットを作製し、同様の条件で成膜を行ったところ、比抵抗8.5×10−4Ωcmで基板を含めた可視透過率が85%以上の透明導電膜を得ることができた。
また、実施例1と全く同様の方法、条件で、アーキングの発生、パーティクルの発生状況を評価した。パーティクルは発生しなかったが、アーキングは10分間で520回発生した。アーキングの原因は酸化物焼結体中に含まれる絶縁性の酸化アルミニウム相とAl/(Al+Ga)原子数比が90原子%以上の高抵抗のスピネル相が含まれていたためである。このように高い直流電力を投入してアーキングが発生しやすい酸化物焼結体は、透明導電膜の量産用のターゲットとしては使うことはできない。
ターゲットへの直流投入電力を850Wにあげて同様に成膜した場合は、上述のような導電性や透過率の高い透明導電膜は得られなかった。これは、成膜中に発生するアーキングが原因であり、膜損傷を受けて欠陥のある膜しか得られず、実施例のような組織が緻密で良質の膜を形成していない。よって、高効率の太陽電池の透明電極として利用することができない。
(Comparative Example 10)
The same method and conditions as in Example 1 except that a raw material powder of aluminum oxide having a particle size of 10 μm was used, and only the ball mill treatment was performed without mixing the bead mill treatment for the raw material powder mixing and pulverization treatment. An oxide sintered body containing gallium was manufactured. That is, the types of zinc oxide powder and gallium oxide powder, the blending ratio of the raw material powder, the ball mill conditions, the forming conditions of the molded body, and the firing conditions are the same methods and conditions as in Example 1.
When the uniformity of the Al / (Al + Ga) atomic number ratio of the mixed raw material powder was evaluated using the molded body before firing in the same manner as in Example 1, the standard deviation σ was 45 atomic%. The uniformity between Al and Ga was inferior to the examples. The obtained oxide sintered body was evaluated in the same manner as in Example 1. The milled end of the obtained oxide sintered body was pulverized, powder X-ray diffraction measurement was performed, and the formation phase was identified. As a result, a zinc oxide crystal phase having a hexagonal wurtzite structure and a spinel structure were obtained. In addition to the diffraction peak attributed to the crystal phase, a diffraction peak attributed to the aluminum oxide crystal phase was also confirmed. The milled end of the obtained oxide sintered body was pulverized and analyzed for composition by ICP emission spectroscopy. As a result, the (Al + Ga) / (Zn + Al + Ga) atomic ratio was 5.3 atomic%, and Al / (Al + Ga) ) It was confirmed that the composition was almost the same, including the atomic ratio. The volume resistivity of the oxide sintered body was 0.3 Ωcm, the density was 4.4 g / cm 3 , the average crystal grain size was 6 μm, and the maximum pore size was 3 μm.
The end material of the oxide sintered body was sliced by FIB processing and observed with a transmission electron microscope (TEM) mounted on an energy dispersive X-ray fluorescence spectrometer (EDX). In the oxide sintered body, it was confirmed by electron beam diffraction that the spinel crystal phase was dispersed in the parent phase of the wurtzite structure. When local composition analysis was performed by EDX, it was found that the parent phase of the wurtzite structure was zinc oxide containing aluminum and gallium, and the spinel phase was a Zn—Al—Ga—O phase. EDX composition analysis was performed on 50 spinel phases, and the Al / (Al + Ga) atomic number ratio was measured to be 26 to 100 atomic%, and the Al / (Al + Ga) atomic number ratio was 10 to 90 atomic%. Out of range, there was a spinel phase. In particular, the presence of a spinel phase close to the composition of ZnAl 2 O 4 was also observed.
When a sputtering target was prepared under the same method and conditions as in Example 1 and film formation was performed under the same conditions, the visible transmittance including the substrate was 85% or more with a specific resistance of 8.5 × 10 −4 Ωcm. A transparent conductive film could be obtained.
Further, the occurrence of arcing and the occurrence of particles were evaluated under the same method and conditions as in Example 1. No particles were generated, but arcing occurred 520 times in 10 minutes. The cause of arcing is that an insulating aluminum oxide phase contained in the oxide sintered body and a high resistance spinel phase having an Al / (Al + Ga) atomic ratio of 90 atomic% or more were contained. Thus, the oxide sintered compact which is easy to generate | occur | produce arcing by supplying high direct-current power cannot be used as a target for mass production of a transparent conductive film.
When the film was formed in the same manner by increasing the DC input power to the target to 850 W, a transparent conductive film having high conductivity and high transmittance as described above could not be obtained. This is due to arcing that occurs during film formation, and only a defective film is obtained due to film damage, and the structure as in the example does not form a dense and high-quality film. Therefore, it cannot be used as a transparent electrode of a highly efficient solar cell.
(比較例11)
酸化ガリウムの原料粉末に粒径10μmのものを用い、原料粉末の混合・粉砕処理にビーズミル処理を行わずにボールミル処理のみを行った以外は実施例1と同じ方法、条件で、亜鉛およびアルミニウムおよびガリウムを含有する酸化物焼結体を製造した。すなわち、酸化亜鉛粉末と酸化アルミニウム粉末の種類や、原料粉末の配合比、ボールミル条件、成形体の作製条件、焼成条件は、実施例1と同じ方法・条件である。実施例1と同様に焼成前の成形体を用いて、混合原料粉末のAl/(Al+Ga)原子数比の均一性を評価したところ、標準偏差σは42原子%であり、焼成前の時点でAlとGa間の均一性は実施例と比べて劣っていた。
得られた酸化物焼結体の評価を実施例1と同様に行った。得られた酸化物焼結体の端材を粉砕し、粉末X線回折測定を実施し、生成相の同定を行ったところ、六方晶のウルツ鉱構造をとる酸化亜鉛結晶相とスピネル型構造の結晶相に起因する回折ピークのほか、酸化ガリウム結晶相に起因する回折ピークも確認された。得られた酸化物焼結体の端材を粉砕してICP発光分光分析法による組成を分析したところ、(Al+Ga)/(Zn+Al+Ga)原子数比が5.3原子%であり、Al/(Al+Ga)原子数比も含めて、ほぼ配合組成と同じであることを確認した。また、酸化物焼結体の体積抵抗率は0.09Ωcmであり、また密度は5.0g/cm3で、平均結晶粒径は6μm、最大空孔径は2μmであった。
酸化物焼結体の端材をFIB加工により薄片化し、エネルギー分散型蛍光X線分析装置(EDX)搭載の透過型電子顕微鏡(TEM)で観察した。酸化物焼結体は、電子線回折から、ウルツ鉱型構造の母相の中にスピネル結晶相が分散していることが確認された。EDXによる局所組成分析を行うと、ウルツ鉱型構造の母相はアルミニウムとガリウムが含まれた酸化亜鉛であり、スピネル相はZn−Al−Ga−O相であることがわかった。50個のスピネル相に対してEDX組成分析を行い、Al/(Al+Ga)原子数比を測定したところ、0〜75原子%であり、Al/(Al+Ga)原子数比が10〜90原子%の範囲を逸脱しスピネル相が存在した。特にZnGa2O4の組成に近いスピネル相の存在もみられた。
実施例1と同様の方法、条件でスパッタリングターゲットを作製し、同様の条件で成膜を行ったところ、比抵抗6.9×10−4Ωcmで基板を含めた可視透過率が85%以上の透明導電膜を得ることができた。
また、実施例1と全く同様の方法、条件で、アーキングの発生、パーティクルの発生状況を評価した。パーティクルも発生しなかった。しかし、アーキングは10分間で260回発生した。アーキングの原因は酸化物焼結体中に含まれる絶縁性の酸化ガリウム相とパーティクルに起因する。またパーティクルの発生はAl/(Al+Ga)原子数比が10原子%以下の高抵抗のスピネル相が含まれていたためと思われる。このように、高い直流電力を投入してアーキングが発生しやすく、連続スパッタリング成膜時にパーティクルが発生しやすい。
ターゲットへの直流投入電力を850Wにあげて同様に成膜を行うと、上述のような導電性や透過率の高い透明導電膜は得られなかった。これは、成膜中に発生するアーキングが原因であり、膜損傷を受けて欠陥のある膜しか得られず、実施例のような組織が緻密で良質の膜を形成していない。よって、高効率の太陽電池の透明電極として利用することができない。
このような酸化物焼結体は、透明導電膜の量産用のターゲットとしては使うことはできない。
(Comparative Example 11)
The same method and conditions as in Example 1 except that a gallium oxide raw material powder having a particle size of 10 μm was used, and the raw material powder was mixed and pulverized without using a bead mill treatment, and with the same method and conditions as in Example 1. An oxide sintered body containing gallium was manufactured. That is, the types of zinc oxide powder and aluminum oxide powder, the blending ratio of the raw material powders, the ball mill conditions, the production conditions of the molded body, and the firing conditions are the same methods and conditions as in Example 1. When the uniformity of the Al / (Al + Ga) atomic number ratio of the mixed raw material powder was evaluated using the compact before firing in the same manner as in Example 1, the standard deviation σ was 42 atomic%. The uniformity between Al and Ga was inferior to the examples.
The obtained oxide sintered body was evaluated in the same manner as in Example 1. The milled end of the obtained oxide sintered body was pulverized, powder X-ray diffraction measurement was performed, and the formation phase was identified. As a result, a zinc oxide crystal phase having a hexagonal wurtzite structure and a spinel structure were obtained. In addition to the diffraction peak attributed to the crystal phase, a diffraction peak attributed to the gallium oxide crystal phase was also confirmed. The milled end of the obtained oxide sintered body was pulverized and analyzed for composition by ICP emission spectroscopy. As a result, the (Al + Ga) / (Zn + Al + Ga) atomic ratio was 5.3 atomic%, and Al / (Al + Ga) ) It was confirmed that the composition was almost the same, including the atomic ratio. The volume resistivity of the oxide sintered body was 0.09 Ωcm, the density was 5.0 g / cm 3 , the average crystal grain size was 6 μm, and the maximum pore size was 2 μm.
The end material of the oxide sintered body was sliced by FIB processing and observed with a transmission electron microscope (TEM) mounted on an energy dispersive X-ray fluorescence spectrometer (EDX). In the oxide sintered body, it was confirmed by electron beam diffraction that the spinel crystal phase was dispersed in the parent phase of the wurtzite structure. When local composition analysis was performed by EDX, it was found that the parent phase of the wurtzite structure was zinc oxide containing aluminum and gallium, and the spinel phase was a Zn—Al—Ga—O phase. The EDX composition analysis was performed on 50 spinel phases, and the Al / (Al + Ga) atomic ratio was measured. As a result, it was 0 to 75 atomic%, and the Al / (Al + Ga) atomic ratio was 10 to 90 atomic%. Out of range, there was a spinel phase. In particular, the presence of a spinel phase close to the composition of ZnGa 2 O 4 was also observed.
When a sputtering target was prepared under the same method and conditions as in Example 1 and film formation was performed under the same conditions, the visible transmittance including the substrate was 85% or more with a specific resistance of 6.9 × 10 −4 Ωcm. A transparent conductive film could be obtained.
Further, the occurrence of arcing and the occurrence of particles were evaluated under the same method and conditions as in Example 1. No particles were generated. However, arcing occurred 260 times in 10 minutes. The cause of arcing is due to the insulating gallium oxide phase and particles contained in the oxide sintered body. The generation of particles seems to be because a high resistance spinel phase having an Al / (Al + Ga) atomic ratio of 10 atomic% or less was included. In this way, arcing is likely to occur by applying high DC power, and particles are likely to be generated during continuous sputtering film formation.
When a film was formed in the same manner by increasing the DC input power to the target to 850 W, a transparent conductive film having high conductivity and high transmittance as described above could not be obtained. This is due to arcing that occurs during film formation, and only a defective film is obtained due to film damage, and the structure as in the example does not form a dense and high-quality film. Therefore, it cannot be used as a transparent electrode of a highly efficient solar cell.
Such an oxide sintered body cannot be used as a target for mass production of a transparent conductive film.
(比較例12)
平均粒径が1μm以下の酸化亜鉛粉末、酸化アルミニウム粉末、酸化ガリウム粉末を用い、これらの混合比率が、原料の配合比は、Al/(Al+Ga)原子数比で26.9原子%、(Al+Ga)/(Zn+Al+Ga)原子数比で6.1原子%となるように樹脂製ポットに入れてボールミルによる湿式混合した。この湿式ボールミル混合には、硬質ジルコニア製ボールを用い、バインダーとしてポリビニルアルコールを全原料粉末量に対して1重量%添加して、18時間混合した。混合後のスラリーを取り出して、乾燥して造粒した。造粒物を、冷間静水圧プレスで3ton/cm2の圧力で成形した。
実施例1と同様に焼成前の成形体を用いて、混合原料粉末のAl/(Al+Ga)原子数比の均一性を評価したところ、標準偏差σは46原子%であり、焼成前の時点でAlとGa間の均一性は実施例と比べて劣っていた。
次に成形体を以下の手順で焼成した。大気雰囲気中で1000℃までを1℃/分、1000〜1400℃を3℃/分の速度で昇温し、焼結温度である1400℃にて5時間保持して焼結させた。
得られた酸化物焼結体の評価を実施例1と同様に行った。得られた酸化物焼結体の端材を粉砕し、粉末X線回折測定を実施し、生成相の同定を行ったところ、六方晶のウルツ鉱構造をとる酸化亜鉛結晶相とスピネル型構造の結晶相に起因する回折ピークのほか、酸化ガリウム結晶相に起因する回折ピークも確認された。得られた酸化物焼結体の端材を粉砕してICP発光分光分析法による組成を分析したところ、(Al+Ga)/(Zn+Al+Ga)原子数比が6.0原子%であり、Al/(Al+Ga)原子数比も含めて、ほぼ配合組成と同じであることを確認した。
酸化物焼結体の端材をFIB加工により薄片化し、エネルギー分散型蛍光X線分析装置(EDX)搭載の透過型電子顕微鏡(TEM)で観察した。酸化物焼結体は、電子線回折から、ウルツ鉱型構造の母相の中にスピネル結晶相が分散していることが確認された。EDXによる局所組成分析を行うと、ウルツ鉱型構造の母相はアルミニウムとガリウムが含まれた酸化亜鉛であり、スピネル相はZn−Al−Ga−O相であることがわかった。50個のスピネル相に対してEDX組成分析を行い、Al/(Al+Ga)原子数比を測定したところ、3〜61原子%であり、Al/(Al+Ga)原子数比が10〜90原子%の範囲を逸脱しスピネル相が存在した。特にZnGa2O4の組成に近いスピネル相の存在もみられた。
実施例1と同様の方法、条件でスパッタリングターゲットを作製し、同様の条件で成膜を行ったところ、比抵抗8.5×10−4Ωcmで基板を含めた可視透過率が85%以上の透明導電膜を得ることができた。
また、実施例1と全く同様の方法、条件で、アーキングの発生、パーティクルの発生状況を評価した。パーティクルは発生しやすく、アーキングは10分間で2回発生した。またパーティクルの発生はAl/(Al+Ga)原子数比が10原子%以下の高抵抗のスピネル相が含まれていたためと思われ、このパーティクルが原因でアーキングが発生したものと思われる。このように、高い直流電力を投入してアーキングが発生しやすく、連続スパッタリング成膜時にパーティクルが発生しやすい。ターゲットへの直流投入電力を850Wにあげて同様に成膜を行うと、上述のような導電性や透過率の高い透明導電膜は得られなかった。これは、成膜中に発生するアーキングが原因であり、欠陥のある膜しか得られなかったからである。よって、実施例のような組織が緻密で良質の膜が得られず、高効率の太陽電池の透明電極として利用することができない。またこのような酸化物焼結体は、透明導電膜の量産用のターゲットとしては使うことはできない。
(Comparative Example 12)
Zinc oxide powder, aluminum oxide powder, and gallium oxide powder having an average particle size of 1 μm or less were used. The mixing ratio of these materials was 26.9 atomic% in terms of the Al / (Al + Ga) atomic ratio, (Al + Ga). ) / (Zn + Al + Ga) atomic ratio was 6.1 atomic%, and the mixture was placed in a resin pot and wet mixed by a ball mill. In this wet ball mill mixing, hard zirconia balls were used, and 1% by weight of polyvinyl alcohol was added as a binder to the total amount of raw material powder and mixed for 18 hours. The mixed slurry was taken out, dried and granulated. The granulated product was molded with a cold isostatic press at a pressure of 3 ton / cm 2 .
When the uniformity of the Al / (Al + Ga) atomic number ratio of the mixed raw material powder was evaluated using the compact before firing in the same manner as in Example 1, the standard deviation σ was 46 atomic%. The uniformity between Al and Ga was inferior to the examples.
Next, the molded body was fired by the following procedure. The temperature was raised to 1000 ° C. at a rate of 1 ° C./min and 1000 to 1400 ° C. at a rate of 3 ° C./min in an air atmosphere, and the sintering temperature was held at 1400 ° C. for 5 hours for sintering.
The obtained oxide sintered body was evaluated in the same manner as in Example 1. The milled end of the obtained oxide sintered body was pulverized, powder X-ray diffraction measurement was performed, and the formation phase was identified. As a result, a zinc oxide crystal phase having a hexagonal wurtzite structure and a spinel structure were obtained. In addition to the diffraction peak attributed to the crystal phase, a diffraction peak attributed to the gallium oxide crystal phase was also confirmed. The milled end of the obtained oxide sintered body was pulverized and analyzed for composition by ICP emission spectroscopy. As a result, the (Al + Ga) / (Zn + Al + Ga) atomic ratio was 6.0 atomic%, and Al / (Al + Ga) ) It was confirmed that the composition was almost the same as the composition, including the atomic ratio.
The end material of the oxide sintered body was sliced by FIB processing and observed with a transmission electron microscope (TEM) mounted on an energy dispersive X-ray fluorescence spectrometer (EDX). In the oxide sintered body, it was confirmed by electron beam diffraction that the spinel crystal phase was dispersed in the parent phase of the wurtzite structure. When local composition analysis was performed by EDX, it was found that the parent phase of the wurtzite structure was zinc oxide containing aluminum and gallium, and the spinel phase was a Zn—Al—Ga—O phase. The EDX composition analysis was performed on 50 spinel phases, and the Al / (Al + Ga) atomic ratio was measured to be 3 to 61 atomic%, and the Al / (Al + Ga) atomic ratio was 10 to 90 atomic%. Out of range, there was a spinel phase. In particular, the presence of a spinel phase close to the composition of ZnGa 2 O 4 was also observed.
When a sputtering target was prepared under the same method and conditions as in Example 1 and film formation was performed under the same conditions, the visible transmittance including the substrate was 85% or more with a specific resistance of 8.5 × 10 −4 Ωcm. A transparent conductive film could be obtained.
Further, the occurrence of arcing and the occurrence of particles were evaluated under the same method and conditions as in Example 1. Particles were easily generated, and arcing occurred twice in 10 minutes. The generation of particles is considered to be due to the inclusion of a high resistance spinel phase having an Al / (Al + Ga) atomic ratio of 10 atomic% or less, and it is considered that arcing occurred due to the particles. In this way, arcing is likely to occur by applying high DC power, and particles are likely to be generated during continuous sputtering film formation. When a film was formed in the same manner by increasing the DC input power to the target to 850 W, a transparent conductive film having high conductivity and high transmittance as described above could not be obtained. This is because arcing that occurs during film formation is the cause, and only defective films can be obtained. Therefore, a fine film having a dense structure as in the example cannot be obtained, and it cannot be used as a transparent electrode of a highly efficient solar cell. In addition, such an oxide sintered body cannot be used as a target for mass production of a transparent conductive film.
(比較例13)
平均粒径が1μm以下の酸化亜鉛粉末、酸化アルミニウム粉末、酸化ガリウム粉末を用い、これらの混合比率が、原料の配合比は、Al/(Al+Ga)原子数比で52.5原子%、(Al+Ga)/(Zn+Al+Ga)原子数比で6.2原子%となるように樹脂製ポットに入れてボールミルによる湿式混合した。この湿式ボールミル混合には、硬質ジルコニア製ボールを用い、バインダーとしてポリビニルアルコールを全原料粉末量に対して1重量%添加して、18時間混合した。混合後のスラリーを取り出して、乾燥して造粒した。造粒物を、冷間静水圧プレスで3ton/cm2の圧力で成形した。実施例1と同様に焼成前の成形体を用いて、混合原料粉末のAl/(Al+Ga)原子数比の均一性を評価したところ、標準偏差σは43原子%であり、焼成前の時点でAlとGa間の均一性は実施例と比べて劣っていた。
次に成形体を以下の手順で焼成した。大気雰囲気中で1000℃までを1℃/分、1000〜1400℃を3℃/分の速度で昇温し、焼結温度である1400℃にて5時間保持して焼結させた。
得られた酸化物焼結体の評価を実施例1と同様に行った。得られた酸化物焼結体の端材を粉砕し、粉末X線回折測定を実施し、生成相の同定を行ったところ、六方晶のウルツ鉱構造をとる酸化亜鉛結晶相とスピネル型構造の結晶相に起因する回折ピークのほか、酸化ガリウム結晶相に起因する回折ピークも確認された。得られた酸化物焼結体の端材を粉砕してICP発光分光分析法による組成を分析したところ、(Al+Ga)/(Zn+Al+Ga)原子数比が6.2原子%であり、Al/(Al+Ga)原子数比も含めて、ほぼ配合組成と同じであることを確認した。
酸化物焼結体の端材をFIB加工により薄片化し、エネルギー分散型蛍光X線分析装置(EDX)搭載の透過型電子顕微鏡(TEM)で観察した。酸化物焼結体は、電子線回折から、ウルツ鉱型構造の母相の中にスピネル結晶相が分散していることが確認された。EDXによる局所組成分析を行うと、ウルツ鉱型構造の母相はアルミニウムとガリウムが含まれた酸化亜鉛であり、スピネル相はZn−Al−Ga−O相であることがわかった。50個のスピネル相に対してEDX組成分析を行い、Al/(Al+Ga)原子数比を測定したところ、6〜85原子%であり、Al/(Al+Ga)原子数比が10〜90原子%の範囲を逸脱しスピネル相が存在した。特にZnGa2O4の組成に近いスピネル相の存在もみられた。
実施例1と同様の方法、条件でスパッタリングターゲットを作製し、同様の条件で成膜を行ったところ、比抵抗9.8×10−4Ωcmで基板を含めた可視透過率が85%以上の透明導電膜を得ることができた。
また、実施例1と全く同様の方法、条件で、アーキングの発生、パーティクルの発生状況を評価した。パーティクルは発生しやすく、アーキングは10分間で2回発生した。またパーティクルの発生はAl/(Al+Ga)原子数比が10原子%以下の高抵抗のスピネル相が含まれていたためと思われ、このパーティクルが原因でアーキングが発生したものと思われる。このように、高い直流電力を投入してアーキングが発生しやく、連続スパッタリング成膜時にパーティクルが発生しやすい。ターゲットへの直流投入電力を850Wにあげて同様に成膜を行うと、上述のような導電性や透過率の高い透明導電膜は得られなかった。これは、成膜中に発生するアーキングが原因であり、膜損傷を受けて欠陥のある膜しか得られず、実施例のような組織が緻密で良質の膜を形成していない。よって、高効率の太陽電池の透明電極として利用することができない。よってこのような酸化物焼結体は、透明導電膜の量産用のターゲットとしては使うことはできない。
(Comparative Example 13)
A zinc oxide powder, an aluminum oxide powder, or a gallium oxide powder having an average particle size of 1 μm or less was used. The mixing ratio of these materials was 52.5 atomic% in terms of the Al / (Al + Ga) atomic ratio, (Al + Ga). ) / (Zn + Al + Ga) atomic ratio was 6.2 atomic%, and the mixture was placed in a resin pot and wet mixed by a ball mill. In this wet ball mill mixing, hard zirconia balls were used, and 1% by weight of polyvinyl alcohol was added as a binder to the total amount of raw material powder and mixed for 18 hours. The mixed slurry was taken out, dried and granulated. The granulated product was molded with a cold isostatic press at a pressure of 3 ton / cm 2 . When the uniformity of the Al / (Al + Ga) atomic number ratio of the mixed raw material powder was evaluated using the molded body before firing in the same manner as in Example 1, the standard deviation σ was 43 atomic%. The uniformity between Al and Ga was inferior to the examples.
Next, the molded body was fired by the following procedure. The temperature was raised to 1000 ° C. at a rate of 1 ° C./min and 1000 to 1400 ° C. at a rate of 3 ° C./min in an air atmosphere, and the sintering temperature was held at 1400 ° C. for 5 hours for sintering.
The obtained oxide sintered body was evaluated in the same manner as in Example 1. The milled end of the obtained oxide sintered body was pulverized, powder X-ray diffraction measurement was performed, and the formation phase was identified. As a result, a zinc oxide crystal phase having a hexagonal wurtzite structure and a spinel structure were obtained. In addition to the diffraction peak attributed to the crystal phase, a diffraction peak attributed to the gallium oxide crystal phase was also confirmed. The milled end material of the obtained oxide sintered body was pulverized and analyzed for composition by ICP emission spectroscopy. As a result, the (Al + Ga) / (Zn + Al + Ga) atomic ratio was 6.2 atomic%, and Al / (Al + Ga) ) It was confirmed that the composition was almost the same, including the atomic ratio.
The end material of the oxide sintered body was sliced by FIB processing and observed with a transmission electron microscope (TEM) mounted on an energy dispersive X-ray fluorescence spectrometer (EDX). In the oxide sintered body, it was confirmed by electron beam diffraction that the spinel crystal phase was dispersed in the parent phase of the wurtzite structure. When local composition analysis was performed by EDX, it was found that the parent phase of the wurtzite structure was zinc oxide containing aluminum and gallium, and the spinel phase was a Zn—Al—Ga—O phase. EDX composition analysis was performed on 50 spinel phases, and the Al / (Al + Ga) atomic ratio was measured. As a result, it was 6 to 85 atomic%, and the Al / (Al + Ga) atomic ratio was 10 to 90 atomic%. Out of range, there was a spinel phase. In particular, the presence of a spinel phase close to the composition of ZnGa 2 O 4 was also observed.
When a sputtering target was prepared under the same method and conditions as in Example 1 and film formation was performed under the same conditions, the visible transmittance including the substrate with a specific resistance of 9.8 × 10 −4 Ωcm was 85% or more. A transparent conductive film could be obtained.
Further, the occurrence of arcing and the occurrence of particles were evaluated under the same method and conditions as in Example 1. Particles were easily generated, and arcing occurred twice in 10 minutes. The generation of particles is considered to be due to the inclusion of a high resistance spinel phase having an Al / (Al + Ga) atomic ratio of 10 atomic% or less, and it is considered that arcing occurred due to the particles. In this way, arcing is likely to occur when high DC power is applied, and particles are likely to be generated during continuous sputtering film formation. When a film was formed in the same manner by increasing the DC input power to the target to 850 W, a transparent conductive film having high conductivity and high transmittance as described above could not be obtained. This is due to arcing that occurs during film formation, and only a defective film is obtained due to film damage, and the structure as in the example does not form a dense and high-quality film. Therefore, it cannot be used as a transparent electrode of a highly efficient solar cell. Therefore, such an oxide sintered body cannot be used as a target for mass production of a transparent conductive film.
<放電電流―放電電圧特性の実験>
実施例1、2と比較例1、6、7の酸化物焼結体のターゲットを用いて、一定のスパッタ条件における放電時の電流―電圧を調べた。直径152mmΦの上記の酸化物焼結体から作製したターゲットに対して、ターゲット−基板間距離を60mmに固定した。5×10−5Pa以下まで真空排気後、純Arガスを導入し、ガス圧を0.6Paとし、直流電力500Wを印加して直流プラズマを発生させた。その時の、放電電圧と放電電流を測定した結果を表2に示した。
<Discharge current-discharge voltage characteristics experiment>
Using the oxide sintered compact targets of Examples 1 and 2 and Comparative Examples 1, 6, and 7, the current-voltage during discharge under constant sputtering conditions was examined. The target-substrate distance was fixed to 60 mm with respect to the target produced from said oxide sintered compact of diameter 152mm (PHI). After evacuating to 5 × 10 −5 Pa or less, pure Ar gas was introduced, the gas pressure was set to 0.6 Pa, and direct current power of 500 W was applied to generate direct current plasma. The results of measuring the discharge voltage and discharge current at that time are shown in Table 2.
表2に示すように、実施例1,2の酸化物焼結体を用いた場合、比較例1,6,7の酸化物焼結体を用いたときと比べて、同一の直流電力投入時の放電電圧が低く、放電電流が高い。すなわち、実施例1,2の酸化物焼結体を用いると、放電インピーダンスが低く、実施例1,2の酸化物焼結体表面から電子が放出しやすい。これは、酸化物焼結体中におけるスピネル相の組成の違いに起因しており、アルミニウム酸亜鉛スピネル相やガリウム酸亜鉛スピネル相よりも、Zn−Al−Ga―O系のスピネル相の方で導電性が高くて放電時に電子を放出しやすくインピーダンスを低くしているものと思われる。また実施例1,2と比較例1との比較から、Zn−Al−Ga―O系のスピネル相のAlとGaの均一性が良い方が、よりインピーダンスを低くしているといえる。放電電圧が低いとアーキングが発生しにくいのは言うまでもない。 As shown in Table 2, when the oxide sintered bodies of Examples 1 and 2 were used, compared to when the oxide sintered bodies of Comparative Examples 1, 6, and 7 were used, the same DC power was applied. The discharge voltage is low and the discharge current is high. That is, when the oxide sintered bodies of Examples 1 and 2 are used, the discharge impedance is low, and electrons are easily emitted from the surface of the oxide sintered bodies of Examples 1 and 2. This is due to the difference in the composition of the spinel phase in the oxide sintered body, and in the Zn-Al-Ga-O-based spinel phase rather than the zinc aluminate spinel phase and the zinc gallate spinel phase. It is considered that the conductivity is high and electrons are likely to be emitted during discharge, thereby reducing the impedance. From comparison between Examples 1 and 2 and Comparative Example 1, it can be said that the better the uniformity of the Zn-Al-Ga-O spinel phase Al and Ga, the lower the impedance. Needless to say, arcing is unlikely to occur when the discharge voltage is low.
また、酸化亜鉛系の酸化物ターゲットを用いてマグネトロンスパッタリング成膜を行うと、ターゲット表面のエロージョン部(Arイオンが多く照射されてターゲット表面がほれるところ)から発生する焼結体中の酸素の陰イオンが放電電圧で加速されて基板上の薄膜に衝突する。放電電圧が高いほど、その衝撃は大きく、薄膜にダメージを与える。反対にターゲット中心は非エロージョン部であり、その直上に配置した基板上の薄膜には、酸素の陰イオンの衝撃によるダメージはほとんど無い。ターゲット中心の非エロージョン部の直上部に堆積した膜の比抵抗(ρs)とエロージョン部中心の直上部に堆積した膜の比抵抗(ρe)を測定し、その変化率(ρe/ρs)を調べた。その結果を表2に記した。変化率(ρe/ρs)は、放電電圧の低かった実施例1,2の酸化物焼結体を用いた方が小さかった。 In addition, when magnetron sputtering film formation is performed using a zinc oxide-based oxide target, the shadow of oxygen in the sintered body generated from the erosion part of the target surface (where the target surface is irradiated with a lot of Ar ions). Ions are accelerated by the discharge voltage and collide with the thin film on the substrate. The higher the discharge voltage, the greater the impact and damage the thin film. On the contrary, the center of the target is a non-erosion portion, and the thin film on the substrate disposed immediately above the target is hardly damaged by the impact of oxygen anions. The specific resistance (ρ s ) of the film deposited immediately above the non-erosion portion at the center of the target and the specific resistance (ρ e ) of the film deposited immediately above the center of the erosion portion are measured, and the rate of change (ρ e / ρ s ) was examined. The results are shown in Table 2. The rate of change (ρ e / ρ s ) was smaller when the oxide sintered bodies of Examples 1 and 2 having a low discharge voltage were used.
量産時に大型の基板上に透明導電膜を成膜する場合は、基板全体に均一な膜が成膜できるよう、ターゲット上を基板は通過移動しながら成膜することが多い。そのときには非エロージョン部直上で成膜された膜とエロージョン部の直上で成膜された膜が積層される。よって、エロージョン部直上で堆積される膜の比抵抗がなるべく低い方がよい。本発明の酸化物焼結体から作製したターゲットは、従来よりも放電電圧が低く、エロージョン部から堆積した高抵抗膜の比抵抗が比較的低いため、通過成膜の時には低抵抗の膜を作製することができる。よって本発明の酸化物焼結体は、量産時の通過成膜にも低抵抗膜を得ることができる工業的に有用なターゲットを得ることができる。 When a transparent conductive film is formed on a large substrate during mass production, the substrate is often formed while the substrate passes and moves on the target so that a uniform film can be formed on the entire substrate. At that time, a film formed immediately above the non-erosion portion and a film formed immediately above the erosion portion are laminated. Therefore, the specific resistance of the film deposited immediately above the erosion part should be as low as possible. The target produced from the oxide sintered body of the present invention has a lower discharge voltage than the conventional one, and the resistivity of the high resistance film deposited from the erosion part is relatively low. can do. Therefore, the oxide sintered body of the present invention can provide an industrially useful target capable of obtaining a low resistance film even in pass film formation during mass production.
(実施例10)
本発明の一実施例である図2に示すような構造の太陽電池を以下の手順で作製した。ガラス基板(12)上に直流マグネトロンスパッタ法で、実施例1の透明電極膜(11)を、実施例1と同じ成膜条件で500nm程度の厚さに形成した。
その上に直流マグネトロンスパッタ法で、ZnOターゲットを使用し、スパッタガスとしてArを用い、窓層(10)としてZnO薄膜を膜厚150nm程度の厚さに形成した。その上にヘテロpn接合を形成するため、半導体中間層(9)としてCdS薄膜を溶液析出法で、CdI2、NH4Cl2、NH3、チオ尿素の混合溶液を用いて、50nm程度の厚さに形成した。その上にp型半導体の光吸収層(8)としてCuInSe2薄膜を真空蒸着法で2〜3μmの厚さに形成した。その上に裏側金属電極(7)としてAu膜を真空蒸着法で1μm程度の厚さに形成した。
AM1.5(100mW/cm2)の照射光を透明電極膜側から照射して、この太陽電池の特性を調べたところ、変換効率は14%であった。
(Example 10)
A solar cell having a structure as shown in FIG. 2, which is an embodiment of the present invention, was produced by the following procedure. On the glass substrate (12), the transparent electrode film (11) of Example 1 was formed to a thickness of about 500 nm under the same film forming conditions as in Example 1 by direct current magnetron sputtering.
A ZnO target was used thereon, a ZnO target was used, Ar was used as the sputtering gas, and a ZnO thin film having a thickness of about 150 nm was formed as the window layer (10). In order to form a hetero pn junction thereon, a CdS thin film is deposited as a semiconductor intermediate layer (9) by a solution deposition method, and a mixed solution of CdI 2 , NH 4 Cl 2 , NH 3 , and thiourea is used. Formed. On top of this, a CuInSe 2 thin film was formed to a thickness of 2 to 3 μm by vacuum deposition as a p-type semiconductor light absorption layer (8). An Au film was formed thereon as a back metal electrode (7) to a thickness of about 1 μm by vacuum deposition.
When the characteristics of this solar cell were examined by irradiating irradiation light of AM1.5 (100 mW / cm 2 ) from the transparent electrode film side, the conversion efficiency was 14%.
(実施例11)
透明電極膜に実施例4の膜を用いた以外は、実施例10と同様の手順、同様の方法で図2の構造の太陽電池を作製した。実施例10と同様の条件、同様の方法で太陽電池のAM1.5(100mW/cm2)の照射光に対する特性を調べたところ、変換効率は13.5%であった。
Example 11
A solar cell having the structure shown in FIG. 2 was produced by the same procedure and the same method as in Example 10 except that the film of Example 4 was used as the transparent electrode film. When the characteristics of the solar cell with respect to irradiation light of AM 1.5 (100 mW / cm 2 ) were examined under the same conditions and in the same manner as in Example 10, the conversion efficiency was 13.5%.
(実施例12)
実施例10、実施例11では、実施例1および実施例4の膜を用いて太陽電池の特性を調べた例を示したが、実施例2、3、5〜9の他の膜を用いて作製した図2の構造の太陽電池も同様に変換効率は高く、12%以上であった。
Example 12
In Example 10 and Example 11, the example which investigated the characteristic of the solar cell using the film | membrane of Example 1 and Example 4 was shown, However, The other film | membrane of Examples 2, 3, and 5-9 was used. The produced solar cell having the structure shown in FIG. 2 also had a high conversion efficiency of 12% or more.
(比較例14)
透明電極膜にITO膜を用いた以外は実施例8と同様の条件、手順で、図2の構造の太陽電池を作製した。ITO膜は、直径152mm、厚み5mmの大きさのITO焼結体ターゲット(10wt%SnO2添加品)を用いて、ターゲット−基板間距離を60mmに固定した。5×10−5Pa以下まで真空排気後、5%のO2ガスを混合した純Arガスを導入し、ガス圧を0.3Paとし、直流電力200Wを印加して直流プラズマを発生させ、基板非加熱で、直流スパッタ成膜を行った。
同様の条件で太陽電池の特性を調べたところ、変換効率は5%であり本発明の実施例10〜12の太陽電池と較べて極めて低かった。また、成膜時のスパッタガス中の酸素量を0〜10%まで変化させて作製した同じ組成のITO膜を透明電極膜に用いて、同様に特性を調べたところ、変換効率は7%以下であった。
(Comparative Example 14)
A solar cell having the structure of FIG. 2 was produced under the same conditions and procedures as in Example 8 except that an ITO film was used as the transparent electrode film. The ITO film was fixed at a target-substrate distance of 60 mm by using an ITO sintered body target (10 wt% SnO 2 added product) having a diameter of 152 mm and a thickness of 5 mm. After evacuating to 5 × 10 −5 Pa or less, pure Ar gas mixed with 5% O 2 gas is introduced, the gas pressure is set to 0.3 Pa, and DC power is applied to generate DC plasma. DC sputtering film formation was performed without heating.
When the characteristics of the solar cell were examined under the same conditions, the conversion efficiency was 5%, which was extremely low as compared with the solar cells of Examples 10 to 12 of the present invention. In addition, when an ITO film having the same composition produced by changing the amount of oxygen in the sputtering gas during film formation from 0 to 10% was used as a transparent electrode film, the characteristics were examined in the same manner, and the conversion efficiency was 7% or less. Met.
(比較例15)
透明電極膜に比較例7のガリウムドープ酸化亜鉛膜を用いた以外は実施例10と同様の条件、手順で、図2の構造の太陽電池を作製した。
同様の条件で特性を調べたところ、変換効率は7%であり、本発明の実施例8〜10の太陽電池と較べて低かった。また、成膜時のスパッタガス中の酸素量を0〜10%まで変化させて作製した比較例7と同じ組成のガリウムドープ酸化亜鉛膜を酸化物透明電極膜に用いて、同様に特性を調べたところ、変換効率は7.5%以下であり、本発明の実施例8〜10よりも高い変換効率のものは得られなかった。
(Comparative Example 15)
A solar cell having the structure of FIG. 2 was produced under the same conditions and procedure as in Example 10 except that the gallium-doped zinc oxide film of Comparative Example 7 was used as the transparent electrode film.
When the characteristics were examined under the same conditions, the conversion efficiency was 7%, which was lower than that of the solar cells of Examples 8 to 10 of the present invention. Further, using a gallium-doped zinc oxide film having the same composition as that of Comparative Example 7 produced by changing the amount of oxygen in the sputtering gas during film formation from 0 to 10%, the characteristics were similarly examined. As a result, the conversion efficiency was 7.5% or less, and a conversion efficiency higher than that of Examples 8 to 10 of the present invention was not obtained.
(実施例13)
本発明の一実施例である図3に示すような構造の太陽電池を以下の手順で作製した。ガラス基板(12)上に下部電極(13)であるMo電極を直流マグネトロンスパッタ法で1〜2μmの厚さに作製した。その後、所定領域にp型半導体の光吸収層(8)としてCuInSe2薄膜を真空蒸着法で2〜3μmの厚さに形成した。その上にヘテロpn接合を形成するため、半導体の中間層(9)であるCdS薄膜を溶液析出法で、CdI2、NH4Cl2、NH3、およびチオ尿素の混合溶液を用いて、50nm程度の厚さに形成した。その上に直流マグネトロンスパッタ法で、ZnOターゲットを使用し、スパッタガスとしてArを用い、窓層(10)として導電率がCdS薄膜と同程度のZnO薄膜を膜厚が150nm程度の厚さに形成した。さらにその上に同じく直流マグネトロンスパッタ法で、実施例1(本発明)の酸化亜鉛系の透明電極膜(11)を実施例1と同様の条件で500nm程度厚さに形成した。
この太陽電池のAM1.5(100mW/cm2)の照射光をガラス基板側から照射して特性を調べたところ、変換効率は14.5%であった。
(Example 13)
A solar cell having a structure as shown in FIG. 3, which is an example of the present invention, was produced by the following procedure. A Mo electrode as a lower electrode (13) was produced on a glass substrate (12) to a thickness of 1 to 2 μm by a direct current magnetron sputtering method. Thereafter, a CuInSe 2 thin film was formed in a predetermined region as a p-type semiconductor light absorption layer (8) to a thickness of 2 to 3 μm by vacuum deposition. In order to form a hetero pn junction thereon, a CdS thin film, which is a semiconductor intermediate layer (9), is deposited by a solution deposition method using a mixed solution of CdI 2 , NH 4 Cl 2 , NH 3 , and thiourea to a thickness of 50 nm. It was formed to a thickness of about. On top of that, a ZnO target is formed by direct current magnetron sputtering, Ar is used as the sputtering gas, and a ZnO thin film having a conductivity similar to that of the CdS thin film is formed as the window layer (10) to a thickness of about 150 nm. did. Further, a zinc oxide-based transparent electrode film (11) of Example 1 (the present invention) was formed to a thickness of about 500 nm under the same conditions as in Example 1 by the same DC magnetron sputtering method.
When the solar cell was irradiated with AM1.5 (100 mW / cm 2 ) irradiation light from the glass substrate side and the characteristics were examined, the conversion efficiency was 14.5%.
(実施例14)
透明電極膜に実施例4の酸化亜鉛系の透明電極膜を用いた以外は実施例10と同様の条件、手順で図3の構造である本発明の太陽電池を作製し、同様の条件で特性を調べたところ、変換効率は14%であった。
(Example 14)
The solar cell of the present invention having the structure of FIG. 3 was produced under the same conditions and procedures as in Example 10 except that the transparent electrode film of Example 4 was used as the transparent electrode film, and the characteristics were obtained under the same conditions. As a result, the conversion efficiency was 14%.
(実施例15)
実施例13、実施例14では、実施例1および実施例4の膜を用いて図3の構造の太陽電池について特性を調べた例を示したが、実施例2、3、5〜9の他の膜を用いて作製した太陽電池も同様に変換効率は高く、13%以上であった。
(Example 15)
In Examples 13 and 14, an example was shown in which the characteristics of the solar cell having the structure of FIG. 3 were examined using the films of Examples 1 and 4. Similarly, the solar cell produced using this film had a high conversion efficiency of 13% or more.
(比較例16)
透明電極膜に従来のITO膜を用いた以外は実施例13と同様の条件、手順で、図3の構造の太陽電池を作製し、同様の条件で太陽電池の特性を調べた。ITO膜の組成、成膜条件は、比較例14と同じである。
同様に太陽電池特性を調べた結果、変換効率は6%であり本発明の実施例13〜15の太陽電池と較べて極めて低かった。また、成膜時のスパッタガス中の酸素量を0〜10%まで変化させた以外は同じ条件で作製した同じ組成のITO膜を透明電極膜に用いて、同様に特性を調べたところ、変換効率は8.5%以下であった。
(Comparative Example 16)
A solar cell having the structure of FIG. 3 was produced under the same conditions and procedure as in Example 13 except that a conventional ITO film was used as the transparent electrode film, and the characteristics of the solar cell were examined under the same conditions. The composition of the ITO film and the film forming conditions are the same as in Comparative Example 14.
Similarly, as a result of examining the solar cell characteristics, the conversion efficiency was 6%, which was extremely low as compared with the solar cells of Examples 13 to 15 of the present invention. Moreover, when the ITO film of the same composition produced on the same conditions except having changed the oxygen amount in the sputtering gas at the time of film-forming to 0 to 10% was used for the transparent electrode film, the characteristic was investigated similarly, and conversion was carried out. The efficiency was 8.5% or less.
(比較例17)
透明電極膜に比較例7のガリウムドープ酸化亜鉛膜を用いた以外は実施例13と同様の条件、手順で、図3の構造の太陽電池を作製した。
同様の条件で特性を調べたところ、変換効率は8%であり、本発明の実施例13〜15の太陽電池と較べて低かった。また、成膜時のスパッタガス中の酸素量を0〜10%まで変化させて作製した比較例7と同じ組成のガリウムドープ酸化亜鉛膜を酸化物透明電極膜に用いて、同様に特性を調べた。その結果、いずれも変換効率は8%以下であり、本発明の実施例13〜15よりも変換効率が低かった。
(Comparative Example 17)
A solar cell having the structure of FIG. 3 was produced under the same conditions and procedure as in Example 13 except that the gallium-doped zinc oxide film of Comparative Example 7 was used as the transparent electrode film.
When the characteristics were examined under the same conditions, the conversion efficiency was 8%, which was lower than that of the solar cells of Examples 13 to 15 of the present invention. Further, using a gallium-doped zinc oxide film having the same composition as that of Comparative Example 7 produced by changing the amount of oxygen in the sputtering gas during film formation from 0 to 10%, the characteristics were similarly examined. It was. As a result, all had a conversion efficiency of 8% or less, which was lower than those of Examples 13 to 15 of the present invention.
実施例10〜15は、光吸収層にCuInSe2薄膜を用いた太陽電池の例を示したが、光吸収層にCuInS2、CuGaSe2、Cu(In,Ga)Se2、Cu(In,Ga)(S,Se)2、CdTeの薄膜を用いても同じ結果であり、本発明の透明電極膜を用いた方が、従来の透明電極膜を用いた場合よりも、明らかに高い変換効率の太陽電池を製造できることがわかった。
Examples 10 to 15, an example of a solar cell using the CuInSe 2 thin film in the light-absorbing layer, CuInS 2 in the light-absorbing layer, CuGaSe 2, Cu (In, Ga)
以上のように、本実施例で得られた太陽電池の特性は、従来の構成で得られる太陽電池の特性よりはるかに優れている。このことは、本発明の透明電極膜が、可視光だけでなく赤外線の透過率も高いため、太陽光エネルギーを高効率に電気エネルギーに変換できたからであると考えられる。 As described above, the characteristics of the solar cell obtained in this example are far superior to the characteristics of the solar cell obtained with the conventional configuration. This is considered to be because the transparent electrode film of the present invention has high transmittance of not only visible light but also infrared rays, and thus solar energy can be converted into electric energy with high efficiency.
1 ガラス基板
2 表側(受光部側)透明電極膜
3 p型アモルファスシリコン膜
4 不純物を含まないアモルファスシリコン膜
5 n型アモルファスシリコン膜
6 裏側透明電極膜
7 裏側金属電極
8 光吸収層
9 半導体の中間層
10 窓層
11 酸化物透明電極膜
12 ガラス基板
13 下部電極
DESCRIPTION OF
Claims (25)
(1)酸化物焼結体中のアルミニウム及びガリウムの含有量が、(Al+Ga)/(Zn+Al+Ga)原子数比で0.3〜6.5原子%、かつ、アルミニウムの含有量が、Al/(Al+Ga)原子数比で30〜70原子%であり、
(2)スピネル型酸化物相中のアルミニウムの含有量が、Al/(Al+Ga)原子数比で10〜90原子%であることを特徴とする酸化物焼結体。 An oxide sintered body containing zinc oxide, aluminum and gallium, and substantially composed of a crystal phase of a wurtzite type zinc oxide phase and a spinel type oxide phase,
(1) The content of aluminum and gallium in the oxide sintered body is 0.3 to 6.5 atomic% in terms of (Al + Ga) / (Zn + Al + Ga) atomic ratio, and the aluminum content is Al / ( Al + Ga) atomic ratio is 30-70 atomic%,
(2) The oxide sintered body, wherein the content of aluminum in the spinel type oxide phase is 10 to 90 atomic% in terms of Al / (Al + Ga) atomic ratio.
スラリー中の原料粉末を、Al/(Al+Ga)原子数比の標準偏差が25原子%以下となるに十分な条件下に均一に粉砕・混合することを特徴とする請求項1〜3のいずれかに記載の酸化物焼結体の製造方法。 After adding and mixing gallium oxide powder and aluminum oxide powder to the zinc oxide powder as the raw material powder, the slurry obtained by mixing the raw material powder with the aqueous medium is then pulverized and mixed. A method for producing an oxide sintered body in which a mixture is molded and then the molded body is fired,
The raw material powder in the slurry is uniformly pulverized and mixed under conditions sufficient for the standard deviation of the Al / (Al + Ga) atomic ratio to be 25 atomic% or less. The manufacturing method of oxide sinter described in 2.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007233826A JP4231967B2 (en) | 2006-10-06 | 2007-09-10 | Oxide sintered body, method for producing the same, transparent conductive film, and solar cell obtained using the same |
CN2007101638363A CN101164966B (en) | 2006-10-06 | 2007-09-30 | Oxide sintering body, its manufacturing method, transparent conductive film, and solar energy cell obtained by using the same |
KR1020070099442A KR101136953B1 (en) | 2006-10-06 | 2007-10-02 | Oxide Sintered Body, Manufacturing Method Therefor, Transparent Conductive Film, and Solar Cell Using The Same |
DE102007047146A DE102007047146A1 (en) | 2006-10-06 | 2007-10-02 | Sintered oxide used in the production of a target, a transparent electrically conducting membrane and a solar cell comprises crystalline phases consisting of a zinc oxide phase of the wurtzite type and an oxide phase of the spinel type |
TW096137005A TWI389869B (en) | 2006-10-06 | 2007-10-03 | Oxide sintering body, method for producing the same, transparency conductive film and solar battery obtained by using it |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006275313 | 2006-10-06 | ||
JP2007233826A JP4231967B2 (en) | 2006-10-06 | 2007-09-10 | Oxide sintered body, method for producing the same, transparent conductive film, and solar cell obtained using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008110911A JP2008110911A (en) | 2008-05-15 |
JP4231967B2 true JP4231967B2 (en) | 2009-03-04 |
Family
ID=39154876
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007233826A Expired - Fee Related JP4231967B2 (en) | 2006-10-06 | 2007-09-10 | Oxide sintered body, method for producing the same, transparent conductive film, and solar cell obtained using the same |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP4231967B2 (en) |
KR (1) | KR101136953B1 (en) |
CN (1) | CN101164966B (en) |
DE (1) | DE102007047146A1 (en) |
TW (1) | TWI389869B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014148189A1 (en) * | 2013-03-19 | 2014-09-25 | 住友金属鉱山株式会社 | Zinc oxide-based sintered object, process for producing same, sputtering target, and transparent conductive film |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5003600B2 (en) * | 2008-06-13 | 2012-08-15 | 住友金属鉱山株式会社 | Oxide sintered body, target, transparent conductive film obtained using the same, and conductive laminate |
JP5093502B2 (en) * | 2008-07-28 | 2012-12-12 | 住友金属鉱山株式会社 | Thin film solar cell and surface electrode for thin film solar cell |
JP5093503B2 (en) * | 2008-07-28 | 2012-12-12 | 住友金属鉱山株式会社 | Thin film solar cell and surface electrode for thin film solar cell |
JP5056651B2 (en) * | 2008-07-28 | 2012-10-24 | 住友金属鉱山株式会社 | Thin film solar cell and surface electrode for thin film solar cell |
JP5727130B2 (en) * | 2008-08-18 | 2015-06-03 | 東ソー株式会社 | Composite oxide sintered body and use thereof |
JP5581527B2 (en) | 2008-09-30 | 2014-09-03 | エルジー・ケム・リミテッド | Transparent conductive film, manufacturing method thereof, transparent electrode and solar cell |
JP5621764B2 (en) * | 2009-03-13 | 2014-11-12 | 住友金属鉱山株式会社 | Transparent conductive film, transparent conductive film laminate, manufacturing method thereof, and silicon-based thin film solar cell |
KR20100115193A (en) * | 2009-04-17 | 2010-10-27 | 엘지디스플레이 주식회사 | Method of fabricating the same |
TWI395336B (en) * | 2009-06-09 | 2013-05-01 | Nat Univ Chung Hsing | Optoelectronic semiconductors, conductors, insulators and their design methods with multiple high entropy alloy oxides |
JP5418105B2 (en) * | 2009-09-18 | 2014-02-19 | 東ソー株式会社 | Composite oxide sintered body, oxide transparent conductive film, and manufacturing method thereof |
JP5333144B2 (en) * | 2009-10-14 | 2013-11-06 | 住友金属鉱山株式会社 | Sintered body target for thin film manufacturing and its manufacturing method |
JP4875135B2 (en) * | 2009-11-18 | 2012-02-15 | 出光興産株式会社 | In-Ga-Zn-O-based sputtering target |
JP4843083B2 (en) * | 2009-11-19 | 2011-12-21 | 出光興産株式会社 | In-Ga-Zn-based oxide sputtering target |
EP2361887A1 (en) * | 2010-02-25 | 2011-08-31 | Corning Incorporated | A process for manufacturing a doped or non-doped zno material and said material |
FR2956924B1 (en) * | 2010-03-01 | 2012-03-23 | Saint Gobain | PHOTOVOLTAIC CELL INCORPORATING A NEW TCO LAYER |
JP2011222687A (en) * | 2010-04-08 | 2011-11-04 | Tosoh Corp | Solar cell |
CN101845615A (en) * | 2010-05-26 | 2010-09-29 | 广东志成冠军集团有限公司 | Method for preparing single crystal transparent ZnO film by adopting RF (Radio Frequency) magnetron sputtering |
KR101091361B1 (en) * | 2010-07-30 | 2011-12-07 | 엘지이노텍 주식회사 | Solar cell apparatus and method of fabricating the same |
US8883555B2 (en) | 2010-08-25 | 2014-11-11 | Semiconductor Energy Laboratory Co., Ltd. | Electronic device, manufacturing method of electronic device, and sputtering target |
JP5445395B2 (en) * | 2010-08-25 | 2014-03-19 | 住友金属鉱山株式会社 | Method for producing transparent conductive film and method for producing thin film solar cell |
JP5533448B2 (en) | 2010-08-30 | 2014-06-25 | 住友金属鉱山株式会社 | Transparent conductive film laminate and manufacturing method thereof, thin film solar cell and manufacturing method thereof |
CN105914241B (en) * | 2010-09-22 | 2018-07-24 | 第一太阳能有限公司 | Photovoltaic devices and the method for forming photovoltaic devices |
JP5740992B2 (en) * | 2011-01-14 | 2015-07-01 | 東ソー株式会社 | Oxide sintered body, target comprising the same, and transparent conductive film |
CN107419225B (en) | 2011-06-08 | 2020-08-04 | 株式会社半导体能源研究所 | Sputtering target, method for manufacturing sputtering target, and method for forming thin film |
WO2013022057A1 (en) * | 2011-08-11 | 2013-02-14 | 日本電気硝子株式会社 | Transparent conductive material, substrate having transparent conductive layer, and method for producing substrate having transparent conductive layer |
JP6042679B2 (en) * | 2012-09-26 | 2016-12-14 | シャープ株式会社 | Photoelectric conversion element and method for producing photoelectric conversion element |
JP2014095099A (en) * | 2012-11-07 | 2014-05-22 | Sumitomo Metal Mining Co Ltd | Transparent conductive film laminate, method of producing transparent conductive film laminate, thin-film solar cell and method of producing thin-film solar cell |
CN103526169A (en) * | 2013-09-23 | 2014-01-22 | 中国科学院电工研究所 | Preparation method of aluminum-doped zinc oxide (AZO) transparent conducting film |
JP6218536B2 (en) * | 2013-09-30 | 2017-10-25 | Hoya株式会社 | Optical element and manufacturing method thereof |
WO2015178430A1 (en) * | 2014-05-23 | 2015-11-26 | 住友金属鉱山株式会社 | Sintered oxide, sputtering target, and oxide semiconductor thin-film obtained using same |
EP4249236A3 (en) * | 2014-09-08 | 2023-11-15 | MCT Holdings LTD | Silicate coatings |
WO2016136855A1 (en) * | 2015-02-27 | 2016-09-01 | Jx金属株式会社 | Oxide sintered compact, oxide sputtering target, and oxide thin film |
CN117362037B (en) * | 2023-10-16 | 2024-07-05 | 潍坊卓宇新材料科技有限公司 | Cadmium sulfide target piece processing technology and split processing die |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2851773B2 (en) * | 1993-09-09 | 1999-01-27 | 京セラ株式会社 | Oxide catalyst material for removing nitrogen oxides and method for removing nitrogen oxides |
FR2718371B1 (en) * | 1994-04-08 | 1996-05-03 | Rhone Poulenc Chimie | Reduction catalysts for nitrogen oxides based on spinels. |
JPH10306367A (en) | 1997-05-06 | 1998-11-17 | Sumitomo Metal Mining Co Ltd | Zno-ga2o3 sintered body for sputtering target and its production |
JP2001521993A (en) * | 1997-11-03 | 2001-11-13 | シーメンス アクチエンゲゼルシヤフト | Products, especially structural members of gas turbines with ceramic insulation layers |
KR100596017B1 (en) | 2004-04-29 | 2006-07-03 | 장민수 | transparent conductive film and their manufacturing method |
KR20050109846A (en) * | 2004-05-17 | 2005-11-22 | 주식회사 케이티 | Method for fabricating a transparent thin film and target for the transparent thin film |
KR20060095534A (en) * | 2006-06-24 | 2006-08-31 | 김상문 | Conductive material and evaporating target thereof |
-
2007
- 2007-09-10 JP JP2007233826A patent/JP4231967B2/en not_active Expired - Fee Related
- 2007-09-30 CN CN2007101638363A patent/CN101164966B/en not_active Expired - Fee Related
- 2007-10-02 KR KR1020070099442A patent/KR101136953B1/en active IP Right Grant
- 2007-10-02 DE DE102007047146A patent/DE102007047146A1/en not_active Ceased
- 2007-10-03 TW TW096137005A patent/TWI389869B/en not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014148189A1 (en) * | 2013-03-19 | 2014-09-25 | 住友金属鉱山株式会社 | Zinc oxide-based sintered object, process for producing same, sputtering target, and transparent conductive film |
Also Published As
Publication number | Publication date |
---|---|
CN101164966B (en) | 2013-07-24 |
JP2008110911A (en) | 2008-05-15 |
DE102007047146A1 (en) | 2008-04-10 |
TWI389869B (en) | 2013-03-21 |
KR20080031785A (en) | 2008-04-11 |
TW200833632A (en) | 2008-08-16 |
KR101136953B1 (en) | 2012-04-23 |
CN101164966A (en) | 2008-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4231967B2 (en) | Oxide sintered body, method for producing the same, transparent conductive film, and solar cell obtained using the same | |
KR101759700B1 (en) | Oxide evaporation material, transparent conducting film, and solar cell | |
JP3906766B2 (en) | Oxide sintered body | |
US8383019B2 (en) | Sputtering target, transparent conductive film and transparent electrode | |
TWI402862B (en) | Oxide sintered body, manufacturing method therefor, manufacturing method for transparent conductive film using the same, and resultant transparent conductive film | |
JP5339100B2 (en) | Zn-Si-O-based oxide sintered body, method for producing the same, sputtering target, and tablet for vapor deposition | |
KR101789347B1 (en) | Transparent conductive films | |
KR101841314B1 (en) | Sintered oxide material, method for manufacturing same, sputtering target, oxide transparent electrically conductive film, method for manufacturing same, and solar cell | |
JP5381744B2 (en) | Oxide evaporation material, evaporation thin film, and solar cell | |
KR20150097478A (en) | Zinc oxide-based transparent conductive film | |
JP2004123479A (en) | Oxide sintered compact and sputtering target | |
EP2921467B1 (en) | Oxide sinter, sputtering target using same, and oxide film | |
JP5505642B2 (en) | Oxide deposition material | |
KR20150039753A (en) | Oxide Sintered Body and Tablet Obtained by Processing Same | |
JP5761253B2 (en) | Zn-Si-O-based oxide sintered body, method for producing the same, sputtering target, and tablet for vapor deposition | |
JP2012148937A (en) | Electrically conductive composite oxide, zinc oxide type sintered body, method for manufacturing it and target | |
JP5545448B2 (en) | Sputtering target | |
JP2012025990A (en) | Oxide evaporation material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080130 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081111 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081124 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111219 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4231967 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121219 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131219 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |