Nothing Special   »   [go: up one dir, main page]

JP4225989B2 - Solid-state image sensor - Google Patents

Solid-state image sensor Download PDF

Info

Publication number
JP4225989B2
JP4225989B2 JP2005208699A JP2005208699A JP4225989B2 JP 4225989 B2 JP4225989 B2 JP 4225989B2 JP 2005208699 A JP2005208699 A JP 2005208699A JP 2005208699 A JP2005208699 A JP 2005208699A JP 4225989 B2 JP4225989 B2 JP 4225989B2
Authority
JP
Japan
Prior art keywords
transfer
drive
solid
potential
transfer unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005208699A
Other languages
Japanese (ja)
Other versions
JP2007027486A (en
Inventor
充 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2005208699A priority Critical patent/JP4225989B2/en
Publication of JP2007027486A publication Critical patent/JP2007027486A/en
Application granted granted Critical
Publication of JP4225989B2 publication Critical patent/JP4225989B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)

Description

本発明は、行方向とこれに直交する列方向に配列された多数の光電変換素子と、前記多数の光電変換素子から読み出された電荷を前記列方向に転送する第一転送部と、前記第二転送部から転送されてきた電荷に応じた信号を出力する出力部とを有する固体撮像素子に関する。   The present invention includes a large number of photoelectric conversion elements arranged in a row direction and a column direction perpendicular thereto, a first transfer unit that transfers charges read from the large number of photoelectric conversion elements in the column direction, The present invention relates to a solid-state imaging device having an output unit that outputs a signal corresponding to the charge transferred from a second transfer unit.

デジタルカメラ等に搭載されるCCD型固体撮像素子は、通常、VCCD(垂直電荷転送素子)と、HCCD(水平電荷転送素子)とを備えている。インターライン型のCCD型固体撮像素子では、多数個の光電変換素子が複数行、複数列に沿って行列状に配設され、個々の光電変換素子列に1つずつVCCDが配置される。多くのCCD型固体撮像素子では、各VCCDが1つのHCCDに電気的に接続される。   A CCD type solid-state imaging device mounted on a digital camera or the like usually includes a VCCD (vertical charge transfer device) and an HCCD (horizontal charge transfer device). In an interline CCD solid-state imaging device, a large number of photoelectric conversion elements are arranged in a matrix along a plurality of rows and columns, and one VCCD is arranged in each photoelectric conversion element column. In many CCD type solid-state imaging devices, each VCCD is electrically connected to one HCCD.

VCCDは、一般に、n型チャネルにおけるn型不純物の濃度が略一定で、n型チャネル上の電気的絶縁膜の厚さも略一定の電荷結合素子(CCD)によって構成される。この電荷結合素子は、通常、3相以上の垂直駆動信号によって駆動される。個々のVCCDでは、1つの電極とこの電極の下に位置するn型チャネルの一領域とによって1つの垂直電荷転送段が構成される。1個の光電変換素子に対しては、2〜4個程度の垂直電荷転送段が配置されるのが一般的である。   The VCCD is generally constituted by a charge coupled device (CCD) in which the concentration of the n-type impurity in the n-type channel is substantially constant and the thickness of the electrical insulating film on the n-type channel is also substantially constant. This charge coupled device is usually driven by vertical drive signals of three or more phases. In each VCCD, one vertical charge transfer stage is constituted by one electrode and a region of the n-type channel located under this electrode. Generally, about 2 to 4 vertical charge transfer stages are arranged for one photoelectric conversion element.

VCCDの転送効率をあげるために、従来では、駆動方式を8相駆動等にすることで、電荷の確実な転送と、光電変換素子からの複雑な電荷読み出しパターンとに対応している。しかし、多相駆動方式に対応するためには、1つの光電変換素子に対して垂直電荷転送段を多く形成する必要があり、その分、電極の数を多くする必要がある。昨今の微細化が進む固体撮像素子において、電極の数を増やすことは、より微細な電極を形成する必要があることを意味し、製造工程数が増えることや、生産歩留まりが落ちること等が問題となる。   In order to increase the transfer efficiency of the VCCD, conventionally, the driving method is set to eight-phase driving or the like to cope with reliable transfer of charges and complicated charge reading patterns from the photoelectric conversion elements. However, in order to support the multi-phase driving method, it is necessary to form many vertical charge transfer stages for one photoelectric conversion element, and accordingly, it is necessary to increase the number of electrodes. Increasing the number of electrodes in solid-state imaging devices that are becoming increasingly miniaturized in this way means that it is necessary to form finer electrodes, resulting in problems such as an increase in the number of manufacturing processes and a decrease in production yield. It becomes.

そこで、従来では、VCCDの電荷転送効率を向上させるために、各垂直電荷転送段に含まれるn型チャネルに濃度勾配等を設けてポテンシャルスロープを形成した素子が提案されている(特許文献1、2参照)。   Therefore, conventionally, in order to improve the charge transfer efficiency of the VCCD, an element in which a potential slope is formed by providing a concentration gradient or the like in an n-type channel included in each vertical charge transfer stage has been proposed (Patent Document 1, Patent Document 1). 2).

特開平9−223787号公報Japanese Patent Laid-Open No. 9-223787 特開平7−74344号公報JP-A-7-74344

特許文献1,2のようにポテンシャルスロープを形成した場合、電荷転送効率を向上させることは可能だが、例えば8相駆動の場合、垂直駆動信号を電極に供給するための端子は8つのままであり、その数を減らすことはできない。   When the potential slope is formed as in Patent Documents 1 and 2, it is possible to improve the charge transfer efficiency. However, for example, in the case of 8-phase driving, there are still 8 terminals for supplying the vertical driving signal to the electrodes. , That number can not be reduced.

本発明は、上記事情に鑑みてなされたものであり、VCCDの電荷転送効率を向上させつつ、端子の数を削減することが可能な固体撮像素子を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a solid-state imaging device capable of reducing the number of terminals while improving the charge transfer efficiency of the VCCD.

本発明の固体撮像素子は、行方向とこれに直交する列方向に配列された多数の光電変換素子と、前記多数の光電変換素子から読み出された電荷を前記列方向に転送する第一転送部と、前記第一転送部から転送されてきた電荷を前記行方向に転送する第二転送部と、前記第二転送部から転送されてきた電荷に応じた信号を出力する出力部とを有する固体撮像素子であって、複数の転送段により構成される前記第一転送部は、駆動信号φV1、φV2、φV3及びφV4により4相駆動され、前記転送段の各々は、電荷の転送方向に隣接して配置された、前記駆動信号の1つが共に供給される2つの駆動電極と、その下方に形成されたチャネル領域とで構成され、前記チャネル領域は、前記第一転送部の全体に亘って不純物濃度が一定であり、前記2つの駆動電極は、電荷の転送方向の上流側に位置する駆動電極のポテンシャルが下流側に位置する駆動電極のポテンシャルよりも高く設定され、
前記光電変換素子の1つに対して前記転送段の2つが接続し、列方向に隣接して配列された2つの前記光電変換素子に接続する合計4つの前記転送段の前記駆動電極に前記駆動信号φV1、φV2、φV3及びφV4のそれぞれを供給して前記第一転送部で電荷を転送するとき、前記4つの転送段の前記チャネル領域のポテンシャルが、転送方向の上流から下流に向かって深くなっている。
The solid-state imaging device according to the present invention includes a large number of photoelectric conversion elements arranged in a row direction and a column direction orthogonal thereto, and a first transfer that transfers charges read from the large number of photoelectric conversion elements in the column direction. Unit, a second transfer unit that transfers the charge transferred from the first transfer unit in the row direction, and an output unit that outputs a signal corresponding to the charge transferred from the second transfer unit The first transfer unit, which is a solid-state imaging device and includes a plurality of transfer stages, is four-phase driven by drive signals φV1, φV2, φV3, and φV4, and each of the transfer stages is adjacent to the charge transfer direction. The two drive electrodes to which one of the drive signals is supplied and a channel region formed below the drive electrode are arranged, and the channel region extends over the entire first transfer unit. The impurity concentration is constant, One of the driving electrodes is set higher than the potential of the drive electrode potential of the driving electrodes located on the upstream side of the transfer direction of charge is located on the downstream side,
Two of the transfer stages are connected to one of the photoelectric conversion elements, and the drive electrodes are connected to the drive electrodes of a total of four transfer stages connected to the two photoelectric conversion elements arranged adjacent in the column direction. When the signals φV1, φV2, φV3, and φV4 are supplied and charges are transferred by the first transfer unit, the potentials of the channel regions of the four transfer stages become deeper from upstream to downstream in the transfer direction. ing.

本発明の固体撮像素子は、前記駆動電極ポテンシャルが、前記転送方向上流から下流に向かって低くなるように傾斜している。 Solid-state imaging device of the invention, the potential of the drive electrode is inclined to become lower toward the downstream from the upstream of the transfer direction.

本発明によれば、VCCDの電荷転送効率を向上させつつ、端子の数を削減することが可能な固体撮像素子を提供することができる。   According to the present invention, it is possible to provide a solid-state imaging device capable of reducing the number of terminals while improving the charge transfer efficiency of the VCCD.

以下、本発明の実施形態について図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の実施形態を説明するための固体撮像素子の概略構成を示す平面図である。
図1に示す固体撮像素子200は、n型シリコン基板100上の行方向とこれに直交する列方向に配列された多数の光電変換素子10と、多数の光電変換素子10の各々から電荷読み出し領域60を介して読み出された電荷を列方向に転送する第一転送部20と、第一転送部20から転送されてきた電荷を行方向に転送する第二転送部40と、第二転送部40から転送されてきた電荷に応じた信号を出力する出力部50とを備える。なお、本明細書においては、第一転送部20によって転送される電荷の移動を1つの流れとみなして、個々の部材等の相対的な位置を、必要に応じて「何々の上流」、「何々の下流」等と称して特定する。
FIG. 1 is a plan view showing a schematic configuration of a solid-state imaging device for explaining an embodiment of the present invention.
A solid-state imaging device 200 illustrated in FIG. 1 includes a large number of photoelectric conversion elements 10 arranged in a row direction on an n-type silicon substrate 100 and a column direction orthogonal thereto, and a charge readout region from each of the large number of photoelectric conversion elements 10. A first transfer unit 20 that transfers the charges read out via 60 in the column direction, a second transfer unit 40 that transfers the charges transferred from the first transfer unit 20 in the row direction, and a second transfer unit And an output unit 50 that outputs a signal corresponding to the electric charge transferred from 40. In the present specification, the movement of the charges transferred by the first transfer unit 20 is regarded as one flow, and the relative positions of the individual members and the like are set to “any upstream”, “ It is specified as “what downstream”.

図2は、図1に示す第一転送部20の概略構成を模式的に示す部分拡大図である。
第一転送部20は、n型不純物の濃度が略一定のn型チャネル20aと、n型チャネル20a上に電気的絶縁膜を介して形成されたポリシリコン等からなる駆動電極V1〜V8とによって構成される。第一転送部20は、隣接する2つの駆動電極と、その下方に形成されたn型チャネル20aの一領域とによって1つの転送段が構成される。図2の例では、駆動電極V1とV2、駆動電極V3とV4、駆動電極V5とV6、駆動電極V7とV8によってそれぞれ転送段が構成され、1つの光電変換素子10に対し、2つの転送段が設けられた構成となっている。
FIG. 2 is a partially enlarged view schematically showing a schematic configuration of the first transfer unit 20 shown in FIG.
The first transfer unit 20 includes an n-type channel 20a having a substantially constant n-type impurity concentration, and drive electrodes V1 to V8 made of polysilicon or the like formed on the n-type channel 20a via an electrical insulating film. Composed. In the first transfer unit 20, one transfer stage is configured by two adjacent drive electrodes and a region of the n-type channel 20a formed therebelow. In the example of FIG. 2, the transfer stages are constituted by the drive electrodes V1 and V2, the drive electrodes V3 and V4, the drive electrodes V5 and V6, and the drive electrodes V7 and V8, respectively, and two transfer stages for one photoelectric conversion element 10. Is provided.

1つの転送段を構成する2つの駆動電極の各々のポテンシャルは、第一転送部20の転送方向上流にある駆動電極(V2,V4,V6,V8)の方が、第一転送部20の転送方向下流にある駆動電極(V1,V3,V5,V7)よりも高くなっている。これは、駆動電極を形成する際のイオンのドーズ量を調整することで実現可能である。例えば、駆動電極(V1,V3,V5,V7)のドーズ量よりも、駆動電極(V2,V4,V6,V8)のドーズ量を多くして形成すれば良い。   The potential of each of the two drive electrodes constituting one transfer stage is such that the drive electrodes (V2, V4, V6, V8) located upstream in the transfer direction of the first transfer unit 20 are transferred by the first transfer unit 20. It is higher than the drive electrodes (V1, V3, V5, V7) located downstream in the direction. This can be realized by adjusting the dose amount of ions when forming the drive electrode. For example, the drive electrodes (V1, V3, V5, V8) may be formed with a larger dose than the drive electrodes (V1, V3, V5, V7).

1つの転送段を構成する2つの駆動電極には同一の駆動信号が供給される。本実施形態の固体撮像素子200では、駆動電極V1,V2には駆動信号φV1が供給され、駆動電極V3,V4には駆動信号φV2が供給され、駆動電極V5,V6には駆動信号φV3が供給され、駆動電極V7,V8には駆動信号φV4が供給されることで、第一転送部20が4相駆動される。   The same drive signal is supplied to the two drive electrodes constituting one transfer stage. In the solid-state imaging device 200 of the present embodiment, a drive signal φV1 is supplied to the drive electrodes V1 and V2, a drive signal φV2 is supplied to the drive electrodes V3 and V4, and a drive signal φV3 is supplied to the drive electrodes V5 and V6. The drive signal VV4 is supplied to the drive electrodes V7 and V8, whereby the first transfer unit 20 is driven in four phases.

第一転送部20の転送動作時、すなわち駆動信号φV1〜φV4供給時の1つの転送段に含まれるn型チャネル20aのポテンシャルは、2つの駆動電極のポテンシャルの違いによって、第一転送部20の転送方向下流側の方が上流側よりも深くなった状態になる。このため、1つの転送段において、自己誘起ドリフトや拡散による電荷の移動に加えて、フリンジ電界ドリフトによる移動も起こるようになり、電荷が転送方向上流から下流へ流れやすくなって、電荷転送効率は向上する。   The potential of the n-type channel 20a included in one transfer stage during the transfer operation of the first transfer unit 20, that is, when the drive signals φV1 to φV4 are supplied depends on the difference in potential between the two drive electrodes. The downstream side in the transfer direction is deeper than the upstream side. For this reason, in one transfer stage, in addition to charge movement due to self-induced drift and diffusion, movement due to fringe electric field drift also occurs, and the charge easily flows from upstream to downstream in the transfer direction. improves.

図3は、本実施形態の固体撮像素子の第一転送部の転送動作時のn型チャネル20aのポテンシャルフローを示す図である。図中のハッチングは電荷を示し、V1〜V8の記号は駆動電極を示す。図3に示すように、1転送段を構成する2つの電極下には転送方向の上流から下流に向かって深い方向に下る階段状のポテンシャルが形成され、駆動信号φV1〜φV4が順次切り替わることで、電荷が転送方向に転送されていく。   FIG. 3 is a diagram illustrating a potential flow of the n-type channel 20a during the transfer operation of the first transfer unit of the solid-state imaging device according to the present embodiment. In the figure, hatching indicates electric charge, and symbols V1 to V8 indicate drive electrodes. As shown in FIG. 3, a step-like potential descending in a deep direction from upstream to downstream in the transfer direction is formed under the two electrodes constituting one transfer stage, and the drive signals φV1 to φV4 are sequentially switched. The charge is transferred in the transfer direction.

このように、本実施形態の固体撮像素子200によれば、ポテンシャルの異なる2つの電極を1組にして転送段を構成しているため、電荷転送時の電荷転送効率を向上させることができ、高速駆動が可能となる。又、この効率の良い電荷転送を、8相駆動する場合と同等の転送容量を確保しながら4相駆動で行うことが可能であるため、駆動信号を供給するための端子の数を8相駆動の場合の半分にすることができるという利点がある。又、n型チャネルに濃度勾配を設けたり、駆動電極下の絶縁膜の厚みを段階的に変えてポテンシャルスロープを形成したりする従来からある方法に比べると、本実施形態の構成は製造が容易であるため、製造コストを抑えることができる。又、本実施形態によれば、高速駆動が可能になるため、動画モード等で用いられる画素混合読み出しを行う際、第一転送部20での転送期間を長くすることなく、画素混合数を多くすることができるといった利点もある。   As described above, according to the solid-state imaging device 200 of the present embodiment, since the transfer stage is configured by combining two electrodes having different potentials, the charge transfer efficiency during charge transfer can be improved. High-speed driving is possible. In addition, since this efficient charge transfer can be performed by four-phase driving while securing a transfer capacity equivalent to that in the case of eight-phase driving, the number of terminals for supplying drive signals is eight-phase driving. The advantage is that it can be halved. In addition, the configuration of this embodiment is easier to manufacture than the conventional method in which a concentration gradient is provided in the n-type channel or the potential slope is formed by changing the thickness of the insulating film under the drive electrode stepwise. Therefore, manufacturing cost can be suppressed. In addition, according to the present embodiment, since high-speed driving is possible, when performing pixel mixture reading used in the moving image mode or the like, the number of pixel mixtures is increased without increasing the transfer period in the first transfer unit 20. There is also an advantage that can be done.

尚、以上の説明では、光電変換素子が正方格子状に配列された構成を例にしたが、図4に示したように、光電変換素子10’が行方向とこれに直交する列方向に多数配列され、行方向に配列された光電変換素子10’からなる多数の光電変換素子行を、その奇数行と偶数行とで、各光電変換素子10’の行方向の配列ピッチの略1/2だけ行方向に互いにずらして配列した、いわゆるハニカム配列であっても、本発明を適用可能である。図4に示す構成の場合には、駆動電極V1とV2、駆動電極V3とV4、駆動電極V5とV6、駆動電極V7とV8によってそれぞれ転送段を構成し、転送方向上流にある駆動電極(V2,V4,V6,V8)のポテンシャルが、第一転送部20の転送方向下流にある駆動電極(V1,V3,V5,V7)のポテンシャルよりも高くなるようにして、各転送段の2つの駆動電極に同一の駆動信号を供給するようにすれば良い。   In the above description, the configuration in which the photoelectric conversion elements are arranged in a square lattice shape is taken as an example. However, as shown in FIG. 4, a large number of photoelectric conversion elements 10 ′ are arranged in the row direction and the column direction orthogonal thereto. A large number of photoelectric conversion element rows composed of the photoelectric conversion elements 10 ′ arranged in the row direction are divided into approximately half of the arrangement pitch of the photoelectric conversion elements 10 ′ in the row direction by the odd and even rows. The present invention can be applied even to a so-called honeycomb arrangement in which the arrangement is shifted from each other only in the row direction. In the case of the configuration shown in FIG. 4, the drive electrodes V1 and V2, the drive electrodes V3 and V4, the drive electrodes V5 and V6, and the drive electrodes V7 and V8 form a transfer stage, respectively. , V4, V6, V8) so that the potential of the drive electrodes (V1, V3, V5, V7) downstream in the transfer direction of the first transfer unit 20 is higher than the potential of the two transfer stages. The same drive signal may be supplied to the electrodes.

又、以上の説明では、2つの駆動電極を1組にして1転送段を構成したが、1転送段を構成する駆動電極は3つ以上でも良い。3つ以上にした場合には、転送方向上流にある駆動電極のポテンシャルが、その駆動電極よりも下流側の隣にある駆動電極のポテンシャルよりも高くなるようにすれば良い。   Further, in the above description, one transfer stage is configured by combining two drive electrodes as one set, but three or more drive electrodes may be included in one transfer stage. When the number is three or more, the potential of the drive electrode upstream in the transfer direction may be higher than the potential of the drive electrode adjacent to the downstream side of the drive electrode.

又、以上の説明では、1転送段を構成する2つの駆動電極の各々のポテンシャルは略一定としたが、特開平11−317513号公報に開示されているような斜め電極を用いて、1つの駆動電極内で、そのポテンシャルが第一転送部20の転送方向上流から下流に向かって低く傾斜しているような構成にしても良い。   In the above description, the potential of each of the two drive electrodes constituting one transfer stage is substantially constant, but one oblique electrode as disclosed in JP-A-11-317513 is used. The drive electrode may be configured such that the potential thereof is inclined downward from the upstream to the downstream in the transfer direction of the first transfer unit 20.

図5は、図2に示す駆動電極V1〜V8の各々のポテンシャルが第一転送部20の転送方向上流から下流に向かって低く傾斜している場合の、第一転送部20の転送動作時のn型チャネル20aのポテンシャルフローを示す図である。ここでは、1転送段を構成する2つの駆動電極のポテンシャルが、その境界において連続するように、ポテンシャルの傾斜を設定しているものとする。   FIG. 5 illustrates a case where the potential of each of the drive electrodes V <b> 1 to V <b> 8 illustrated in FIG. 2 is inclined low from the upstream to the downstream in the transfer direction of the first transfer unit 20 during the transfer operation of the first transfer unit 20. It is a figure which shows the potential flow of the n-type channel 20a. Here, it is assumed that the potential gradient is set so that the potentials of the two drive electrodes constituting one transfer stage are continuous at the boundary.

図5に示すように、1転送段を構成する2つの電極下には転送方向の上流から下流に向かって深い方向に傾斜するポテンシャルスロープが形成され、駆動信号φV1〜φV4が順次切り替わることで、電荷が転送方向に転送されていく。このような構成であっても、上述した効果と同様の効果を得ることができる。斜め電極を用いた場合には、n型チャネル20aのポテンシャルが階段状ではなくスロープ状になるため、電荷転送効率をより向上させることが可能である。   As shown in FIG. 5, a potential slope inclined in the deep direction from upstream to downstream in the transfer direction is formed under the two electrodes constituting one transfer stage, and the drive signals φV1 to φV4 are sequentially switched. Charges are transferred in the transfer direction. Even if it is such a structure, the effect similar to the effect mentioned above can be acquired. When the oblique electrode is used, the potential of the n-type channel 20a becomes a slope shape instead of a step shape, so that the charge transfer efficiency can be further improved.

本発明の実施形態を説明するための固体撮像素子の概略構成を示す平面図The top view which shows schematic structure of the solid-state image sensor for describing embodiment of this invention 図1に示す第一転送部の概略構成を模式的に示す部分拡大図The elements on larger scale which show typically the schematic structure of the 1st transfer part shown in FIG. 本実施形態の固体撮像素子の第一転送部の転送動作時のn型チャネルのポテンシャルフローを示す図The figure which shows the potential flow of an n-type channel at the time of transfer operation | movement of the 1st transfer part of the solid-state image sensor of this embodiment. 本発明の実施形態を説明するための固体撮像素子の他の概略構成を示す平面図The top view which shows the other schematic structure of the solid-state image sensor for describing embodiment of this invention 本実施形態の固体撮像素子の第一転送部の転送動作時のn型チャネルのポテンシャルフローを示す図The figure which shows the potential flow of an n-type channel at the time of transfer operation | movement of the 1st transfer part of the solid-state image sensor of this embodiment.

符号の説明Explanation of symbols

10 光電変換素子
20 第一転送部
20a n型チャネル
40 第二転送部
50 出力部
60 電荷読み出し領域
100 シリコン基板
200 固体撮像素子
V1〜V8 駆動電極
DESCRIPTION OF SYMBOLS 10 Photoelectric conversion element 20 1st transfer part 20a n-type channel 40 2nd transfer part 50 Output part 60 Charge read-out area | region 100 Silicon substrate 200 Solid-state image sensor V1-V8 Drive electrode

Claims (2)

行方向とこれに直交する列方向に配列された多数の光電変換素子と、前記多数の光電変換素子から読み出された電荷を前記列方向に転送する第一転送部と、前記第一転送部から転送されてきた電荷を前記行方向に転送する第二転送部と、前記第二転送部から転送されてきた電荷に応じた信号を出力する出力部とを有する固体撮像素子であって、
複数の転送段により構成される前記第一転送部は、駆動信号φV1、φV2、φV3及びφV4により4相駆動され、
前記転送段の各々は、電荷の転送方向に隣接して配置された、前記駆動信号の1つが共に供給される2つの駆動電極と、その下方に形成されたチャネル領域とで構成され、
前記チャネル領域は、前記第一転送部の全体に亘って不純物濃度が一定であり、
前記2つの駆動電極は、電荷の転送方向の上流側に位置する駆動電極のポテンシャルが下流側に位置する駆動電極のポテンシャルよりも高く設定され、
前記光電変換素子の1つに対して前記転送段の2つが接続し、
列方向に隣接して配列された2つの前記光電変換素子に接続する合計4つの前記転送段の前記駆動電極に前記駆動信号φV1、φV2、φV3及びφV4のそれぞれを供給して前記第一転送部で電荷を転送するとき、前記4つの転送段の前記チャネル領域のポテンシャルが、転送方向の上流から下流に向かって深くなっている固体撮像素子。
A number of photoelectric conversion elements arranged in a row direction and a column direction orthogonal thereto, a first transfer unit that transfers charges read from the plurality of photoelectric conversion elements in the column direction, and the first transfer unit A solid-state imaging device having a second transfer unit that transfers the charge transferred from the second transfer unit in the row direction and an output unit that outputs a signal according to the charge transferred from the second transfer unit,
The first transfer unit composed of a plurality of transfer stages is driven in four phases by drive signals φV1, φV2, φV3 and φV4,
Each of the transfer stages is composed of two drive electrodes arranged adjacent to each other in the charge transfer direction and supplied with one of the drive signals, and a channel region formed below the two drive electrodes .
The channel region has a constant impurity concentration throughout the first transfer part,
The two drive electrodes are set such that the potential of the drive electrode located upstream in the charge transfer direction is higher than the potential of the drive electrode located downstream.
Two of the transfer stages are connected to one of the photoelectric conversion elements,
Each of the drive signals φV1, φV2, φV3, and φV4 is supplied to the drive electrodes of a total of four transfer stages connected to the two photoelectric conversion elements arranged adjacent to each other in the column direction, and the first transfer unit The solid-state imaging device in which the potential of the channel regions of the four transfer stages becomes deeper from the upstream to the downstream in the transfer direction when transferring charges .
請求項1記載の固体撮像素子であって、
前記駆動電極のポテンシャルが、前記転送方向の上流から下流に向かって低くなるように傾斜している固体撮像素子。
The solid-state imaging device according to claim 1,
A solid-state imaging device that is inclined so that the potential of the drive electrode decreases from upstream to downstream in the transfer direction .
JP2005208699A 2005-07-19 2005-07-19 Solid-state image sensor Expired - Fee Related JP4225989B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005208699A JP4225989B2 (en) 2005-07-19 2005-07-19 Solid-state image sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005208699A JP4225989B2 (en) 2005-07-19 2005-07-19 Solid-state image sensor

Publications (2)

Publication Number Publication Date
JP2007027486A JP2007027486A (en) 2007-02-01
JP4225989B2 true JP4225989B2 (en) 2009-02-18

Family

ID=37787846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005208699A Expired - Fee Related JP4225989B2 (en) 2005-07-19 2005-07-19 Solid-state image sensor

Country Status (1)

Country Link
JP (1) JP4225989B2 (en)

Also Published As

Publication number Publication date
JP2007027486A (en) 2007-02-01

Similar Documents

Publication Publication Date Title
US6541805B1 (en) Solid-state image pickup device
JP4092409B2 (en) Solid-state image sensor
WO2018116523A1 (en) Tdi linear image sensor
JP5624380B2 (en) Solid-state imaging device
JP4183635B2 (en) Solid-state imaging device
JP4252685B2 (en) Solid-state imaging device
JP4225989B2 (en) Solid-state image sensor
JP4514912B2 (en) Solid-state imaging device and driving method thereof
JP2007294734A (en) Solid-state imaging element
JP2007027456A (en) Imaging apparatus
JP4214066B2 (en) Solid-state imaging device
JP2004214363A (en) Solid imaging device and digital camera
JP4471677B2 (en) Solid-state imaging device and charge transfer unit
US20070262365A1 (en) Solid-state imaging device and method of driving the same
JP2007134774A (en) Drive method of solid-state imaging element
JP2005268411A (en) Charge transfer device and method for driving the same
JP4666475B2 (en) Solid-state imaging device and driving method of solid-state imaging device
JP2006157624A (en) Solid-state imaging apparatus and method for driving same
JP2007149765A (en) Solid-state imaging element
JP2013042001A (en) Solid state image pickup device
JP2004228157A (en) Solid-state imaging device
JP2004281910A (en) Solid state imaging apparatus and its driving method
WO2011114639A1 (en) Solid-state imaging device, drive method for a solid-state imaging device, and camera
JP2002118250A (en) Solid-state image pick up device
JP2007027978A (en) Solid state image sensor and its driving method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061127

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071109

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071116

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees