Nothing Special   »   [go: up one dir, main page]

JP4219705B2 - Manufacturing method of secondary battery electrode - Google Patents

Manufacturing method of secondary battery electrode Download PDF

Info

Publication number
JP4219705B2
JP4219705B2 JP2003038416A JP2003038416A JP4219705B2 JP 4219705 B2 JP4219705 B2 JP 4219705B2 JP 2003038416 A JP2003038416 A JP 2003038416A JP 2003038416 A JP2003038416 A JP 2003038416A JP 4219705 B2 JP4219705 B2 JP 4219705B2
Authority
JP
Japan
Prior art keywords
electrode
mixture
particulate
core material
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003038416A
Other languages
Japanese (ja)
Other versions
JP2004247249A (en
Inventor
積 大畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2003038416A priority Critical patent/JP4219705B2/en
Publication of JP2004247249A publication Critical patent/JP2004247249A/en
Application granted granted Critical
Publication of JP4219705B2 publication Critical patent/JP4219705B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電極合剤を含むペーストの塗工を行わずに均一な厚さの二次電池用電極を製造する方法に関する。
【0002】
【従来の技術】
従来の電池用電極の製造法においては、電極活物質および結着剤からなる電極合剤を分散媒と混合したペーストを、電極芯材に塗工し、その塗膜を乾燥して塗膜中の分散媒を飛散させ、乾燥後の塗膜をプレスすることにより、電極活物質層が形成されている。
【0003】
しかし、上記のような方法では、塗膜を乾燥して分散媒を飛散させる際に、塗膜が収縮するため、電極活物質層に微細なクラックが生じたり、プレス時に内部応力が発生したりするという問題がある。また、塗膜の収縮が大きいため、電極活物質層の厚さの変動も大きく、均一な厚さの電極を得ることは困難である。さらに、分散媒の飛散を管理する必要があるため、電極の製造コストが高くなるという問題もある。
【0004】
そこで、溶融状態の結着剤と電極活物質を含むペーストをスプレードライ法により粉体化して、芯材に粉体を直接吹き付ける電極活物質層の製造法が提案されている(特許文献1参照)。しかし、この方法では、電極活物質層に微細なクラックが生じたり、プレス時に内部応力が発生したりするという問題は改善されるものの、均一な厚さの電極活物質層を得ることは困難である。電極活物質層の厚さが不均一になると、電極の部位によって放電深度がばらつくため、電池特性が劣化しやすい。しかも、芯材に粉体を直接吹き付ける際に、ペースト中の分散媒が飛散するため、飛散した分散媒の回収等にコストがかかるという問題を払拭することができない。従来のスプレードライ法には、良好なペーストの噴霧状態を得るためには、溶融状態の結着剤を多量にペーストに含める必要があるという問題もあり、高容量な電極を得ることが困難であり、電池の高率放電も困難である。
【0005】
【特許文献1】
特開平11−149918号公報
【0006】
【発明が解決しようとする課題】
本発明は、上記を鑑みたものであり、分散媒の飛散による問題等を改善するとともに、均一な厚さの電極を効率良く得ることを目的とする。
【0007】
【課題を解決するための手段】
すなわち、本発明は、電極芯材および前記電極芯材に担持された電極活物質層からなる二次電池用電極の製造法であって、
(a)少なくとも電極活物質および結着剤を含む球状もしくはほぼ球状であって、乾燥状態の粒子状電極合剤を調製する工程、
(b)前記粒子状電極合剤から、厚さの均一な粉体合剤層もしくは合剤シートを形成する工程、ならびに
(c)前記粉体合剤層もしくは合剤シートを電極芯材と一体化して極板を得る工程、を有し、
工程(b)が、
(i)前記粒子状電極合剤を、乾燥状態のまま電極芯材上に均一な厚さに配することにより、均一な厚さの前記粉体合剤層を得る工程、または、
(ii)前記粒子状電極合剤を、乾燥状態のまま加圧治具に導入してプレスもしくはホットプレスすることにより、均一な厚さの前記合剤シートを得る工程を含む、二次電池用電極の製造法に関する。
ただし、均一な厚さとは、粉体合剤層もしくは合剤シートの部位によって厚さに大きな差がないことを意味し、多少の厚さのばらつきがある場合にも、一見して均一であればよい。粒子状電極合剤は、ほぼ球状であればよく、例えば鶏卵状でもよい。前記粒子状電極合剤には、さらに潤滑剤を含ませることが好ましい。
【0008】
前記工程(a)には、例えば、少なくとも電極活物質、結着剤および分散媒を含むスラリーを調製する工程、ならびに前記スラリーをスプレードライ法により粉体化することにより、前記球状もしくはほぼ球状であって、乾燥状態の粒子状電極合剤を得る工程を適用することができる。
前記工程(a)には、また、少なくとも電極活物質を含む粉体を、乾燥雰囲気中に流動させる工程、ならびに流動している前記粉体に、少なくとも結着剤を含む液を噴霧しながら造粒することにより、前記球状もしくはほぼ球状であって、乾燥状態の粒子状電極合剤を得る工程を適用することができる。
【0009】
前記粒子状電極合剤を、乾燥状態のまま電極芯材上に均一な厚さに配することにより、前記粉体合剤層を得る場合、前記粒子状電極合剤を、乾燥状態のまま前記電極芯材上に載置してから前記電極芯材を振動させる工程を適用することができる。
【0010】
加圧治具を用いて、乾燥状態の前記粒子状電極合剤をプレスもしくはホットプレスすることにより、前記合剤シートを得る場合、前記粒子状電極合剤を、乾燥状態のまま前記加圧治具に導入した後、前記加圧治具を振動させることが好ましい。
【0011】
前記工程(c)には、加圧治具を用いて前記粉体合剤層もしくは合剤シートを電極芯材とともにプレスもしくはホットプレスする工程を適用することができる。
前記工程(c)は、前記粉体合剤層もしくは合剤シートと前記電極芯材とを、それぞれ一方の端部から、所定長さ毎に、もしくは、連続的に、加圧治具に導入することにより、連続的に行うことができる。
【0012】
前記工程(c)においては、電極芯材に電極活物質層の未塗工部を設けて電極芯材の露出部を残すことができる。前記結着剤には、ゴム微粒子からなる結着剤を用いることが好ましい。前記工程(c)の後には、さらに、前記極板を圧延する工程を行うことができる。
【0013】
【発明の実施の形態】
図1を参照しながら本発明について説明する。
本発明においては、少なくとも電極活物質および結着剤を含む球状もしくはほぼ球状の粒子状電極合剤を調製する。球状もしくはほぼ球状の粒子状電極合剤は、流動性が高いため、加圧治具に導入する際に全体が均一に流動することから、厚さの均一な粉体合剤層が得られる。粒子状電極合剤の平均粒径は10〜800μmであることが好ましい。平均粒径が大きすぎると、均一な厚さの電極活物質層を得ることが困難になり、小さすぎると、粒子状電極合剤の流動性が低くなる。
【0014】
球状もしくはほぼ球状の粒子状電極合剤の調製法には特に限定はないが、例えば、スプレードライ法により、粒子状電極合剤を調製することができる。ここで、スプレードライ法は、流動性を有する混合物を造粒するとともに、高速で乾燥する工程からなる。スプレードライ法を採用する場合には、少なくとも電極活物質、結着剤および分散媒を含むスラリーを調製する。スラリーを、図1(a)に示すように、所定の条件で、噴霧ノズル101から高温(例えば100〜120℃)の気体とともに噴霧することにより、所望の粒子状電極合剤102を得ることができる。粒子状電極合剤102は、一旦、受け皿103などの容器に回収する。
【0015】
上述のスプレードライ法の他に、図2に示すような造粒装置を用いて、少なくとも電極活物質を含む粉体を、乾燥雰囲気中に流動させ、流動している粉体に、少なくとも結着剤を含む液を噴霧し、乾燥させながら造粒することによっても粒子状電極合剤を調製することができる。
【0016】
図2の装置の容器1は、下部の円筒状容器、上部の径が大きくなるようにテーパーを付された筒部、および上部の円筒状容器が相互に連結されて構成されている。容器1の下部には、ヒータ付きのガス導入管4が設けてあり、ここから容器内を乾燥雰囲気とするために一定温度に制御された窒素ガスが導入される。容器1の下部には、塵埃の進入を阻止する金属フィルタ5が設けてある。金属フィルタ5の上方には、多数の通気孔を有する造粒プレート6、および造粒プレート上に固定された、中央に衝突ターゲット8を有する攪拌羽根7が回転可能に設けてある。これらの上方の容器壁面には、衝突ターゲット8に向けて圧縮ガスを噴射する一対の圧縮ガス噴射ノズル9が設けられている。容器1の中程には、高圧スプレー3が設けてある。高圧スプレー3は、容器2内の溶液ないし分散液を容器内へ噴霧する。容器1の上方には、バグフィルタ10が設けられている。バグフィルタ10内にはポンプ11から供給される圧縮ガスを噴出させるためのパイプ12が挿入されている。適宜ポンプ11からパイプ12を通じてバグフィルタ10内へ圧縮ガスを噴射することにより、バグフィルタの外面に付着した粉末などを払い落とす。容器の上部にはガス排出管13を有する。
【0017】
この装置により粒子状電極合剤を製造するには、まず、容器1内の造粒プレート6上に予め電極活物質を入れ、高圧スプレー3から結着剤を含む液を噴霧する。容器1内の電極活物質は、ガス導入管4から供給される一定温度の窒素ガスにより容器の上方へ吹き上げられる。ガス導入管4から導入された窒素ガスは、ガス流れ方向を示した矢印a、bにしたがって、金属フィルタ5および造粒プレート6から容器内上方へ吹き上がる。造粒プレート6は、流動風量が外周に向かって大きくなるように開孔した通気スリットを有している。この造粒プレート6を通過したガスによる流動風により、容器1に投入された電極活物質は容器の上方へ流動し、そこで結着剤を含む液が付着され、乾燥される。
【0018】
結着剤が付着されて造粒プレート6の上部に沈降してきた粒子は、回転する造粒プレート6上で造粒される。攪拌羽根7は、高速で回転して、そこに沈降してくる粒子を粉砕する。また、圧縮ガス噴射ノズル9から衝突ターゲット8に向けて間欠的に噴射されるパルスジェットは、流動状態の粒子をジェット粉砕により低次構造の粒子に粉砕する。系内に導入された窒素ガスは、容器内上方に配置されたバグフィルタ10によって、粒子をフィルトレーションし、窒素ガスのみを排出管13より系外に排出する。
【0019】
粒子状電極合剤は、図1(b)に示すように、厚さの均一な粉体合剤層104aもしくは合剤シート104bに形成する。例えば、粒子状電極合剤を電極芯材105の上に均一な厚さに配することにより、粉体合剤層104aを得ることができる。粒子状電極合剤を電極芯材105の上に載置してから電極芯材105を振動させる場合には、粉体合剤層の厚さを極めて均一にすることができる。電極芯材に付与する振動の振動数は、粒子状電極合剤の性状に合わせて適宜選択されるが、2〜1000Hzが好適である。
【0020】
加圧治具を用いて粒子状電極合剤をプレスもしくはホットプレスすることにより、合剤シート104bを得ることもできる。加圧治具の温度は60〜200℃であることが好ましい。加圧治具の温度が高ければ短時間で丈夫な合剤シート104bを得ることができるが、結着剤の融点に対してあまりに高温では、電極合剤が劣化する可能性がある。粒子状電極合剤を加圧治具に導入した後、加圧治具を振動させることにより、合剤シートの厚さを極めて均一にすることができる。加圧治具に付与する振動の振動数は、粒子状電極合剤の性状に合わせて適宜選択されるが、2〜1000Hzが好適である。
【0021】
上述のように、本発明では、一旦、球状もしくはほぼ球状の粒子状電極合剤を調製した後、別工程において粒子状電極合剤を粉体合剤層もしくは合剤シートに成形する。そのため均一な厚さの粉体合剤層もしくは合剤シートを得ることができ、それらから均一な厚さの電極活物質層を効率良く得ることができる。このような方法は、粒子状電極合剤を電極芯材に直接吹き付ける方法とは異なり、加圧治具内に粉体状電極合剤を均一に充填するための振動工程を含めることができる点でも有利である。
【0022】
粉体合剤層104aや合剤シート104bを電極芯材と一体化すれば、均一な厚さの極板106を得ることができる。例えば、加圧治具107a、107bを用いて粉体合剤層もしくは合剤シートを電極芯材とともにプレスもしくはホットプレスすることにより、これらを一体化することができる。この場合にも、加圧治具107a、107bの温度は60〜200℃であることが好ましい。また、得られた極板をさらに圧延することにより、厚さがより均一で電極活物質層108の密度の高い電極を得ることができる。
【0023】
合剤シートと電極芯材とを、それぞれ一方の端部から、所定長さ毎に、もしくは、連続的に、加圧治具に導入することにより、連続的に電極を作製することができる。また、電極芯材を、一方の端部から、所定長さ毎に加圧治具に導入し、逐次その上に粉体合剤層を形成して電極芯材と一体化することにより、連続的に電極を作製することができる。
【0024】
ロール状に巻き取られた幅広の帯状極板を作製してから、その極板を所定形状に切り出して所望の電極を得ることも可能であるが、予め電極の最終形状に芯材を切り出し、その後に電極活物質層を形成することもできる。電極活物質層を担持してから電極芯材を切断する場合には、バリの発生が問題になるが、予め芯材を切断しておく場合、本質的にバリの発生は問題にならない。従って、電池の信頼性は大きく向上する。
【0025】
結着剤には、ゴム微粒子を用いることが好ましい。ゴム微粒子は、電極活物質や導電剤の表面の多くを覆うことがないため、少量でも結着剤としての効果を発揮できるからである。ゴム微粒子は、従来から結着剤として用いられているポリフッ化ビニリデンのようなフッ素樹脂に比べ、電極活物質層の硬度を低くすることから、電池組立工程における極板の捲回時に、電極の破断・亀裂の発生が起こりにくく、極板の製造も容易となる。ゴム微粒子には、例えば、弾性率の高いコアとその表面の粘着性を有するグラフト樹脂部からなるものを用いることができる。ゴム微粒子の粒径は0.1〜0.5μmであることが好ましい。
【0026】
本発明は、電極合剤を含むペーストを電極芯材に塗工する工程を要さないため、ペーストの粘度を調整するために増粘剤を用いる必要がない。従って、増粘効果を有さないゴム微粒子を用いる場合であっても増粘剤と併用する必要はなく、高容量な電極を得ることができる。
【0027】
粒子状電極合剤の調製に用いるスラリー中には、潤滑効果を有する添加剤を加えることが好ましい。このような添加剤を含む粒子状電極合剤であれば、加圧治具内に極めて効率良く、かつ、極めて均一に充填することができ、厚さと合剤密度の均一な電極を得ることが可能である。
【0028】
【実施例】
《実施例1》
(イ)正極
100重量部のLiCoO2に、導電剤としてアセチレンブラックを3重量部、結着剤としてゴム微粒子のエマルジョン(日本ゼオン(株)製のAD624(商品名)の水性エマルジョン)をゴム成分で3重量部、純水を適量添加し、攪拌・混合し、固形分が25重量%の正極スラリーを得た。次いで、正極スラリーをスプレードライ法で造粒するとともに乾燥して、粒径20〜300μm(平均粒径は200μm)の球状の粒子状電極合剤を得た。スプレードライ法では、噴霧ノズル(ノズル径5mmφ)から、正極スラリーと120℃の熱風とを同時に噴霧し、その際に造粒された粒子状正極合剤を、受け皿で回収した。
【0029】
こうして得られた球状の粒子状正極合剤を所定形状の凹状金型に充填し、凸状金型でプレスした。両金型の温度は25℃とし、プレス圧は5KPaとした。その結果、厚さ150μm、幅50mmの帯状の正極合剤シートが得られた。次に、正極合剤シートを、厚さ20μm、幅50mmのアルミニウム箔からなる芯材の両面に配し、プレスして、芯材と一体化した正極活物質層を形成して正極を得た。ここでは、合剤シートと電極芯材とを、それぞれ一方の端部から、所定長さ毎に金型に導入することにより、正極活物質層の形成を連続的に行った。プレスに用いた金型の温度は100℃とし、プレス圧は5KPaとした。正極には、正極活物質層の未塗工部を設け、芯材の一部を露出させた。この露出部には、アルミニウム製正極リードを溶接した。
【0030】
(ロ)負極
平均粒径が約20μmの鱗片状黒鉛100重量部に、結着剤としてゴム微粒子のエマルジョン(日本ゼオン(株)製のBM400B(商品名))をゴム成分で3重量部、純水を適量添加し、攪拌・混合し、固形分が25重量%の負極スラリーを得た。次いで、負極スラリーをスプレードライ法で造粒するとともに乾燥して、粒径20〜300μm(平均粒径は200μm)の球状の粒子状電極合剤を得た。スプレードライ法では、噴霧ノズル(ノズル径5mmφ)から、負極スラリーと120℃の熱風とを同時に噴霧し、その際に造粒された粒子状負極合剤を、受け皿で回収した。
【0031】
こうして得られた粒子状負極合剤を所定形状の凹状金型に充填し、凸状金型でプレスした。両金型の温度は60℃とし、プレス圧は3KPaとした。その結果、厚さ150μm、幅52mmの帯状の負極合剤シートが得られた。次に、負極合剤シートを、厚さ10μm、幅52mmの銅箔からなる芯材の両面に配し、プレスして、芯材と一体化した負極活物質層を形成して負極を得た。ここでは、合剤シートと電極芯材とを、それぞれ一方の端部から、所定長さ毎に金型に導入することにより、負極活物質層の形成を連続的に行った。プレスに用いた金型の温度は150℃とし、プレス圧は3KPaとした。負極には、負極活物質層の未塗工部を設け、芯材の一部を露出させた。この露出部には、ニッケル製負極リードを溶接した。
【0032】
(ハ)非水電解液
非水溶媒として、25体積%のエチレンカーボネートと75体積%のエチルメチルカーボネートとの混合物を用いた。前記非水溶媒に1mol/Lの濃度でLiPF6を溶解した。
【0033】
(二)電池の組み立て
図3に示すような角型リチウムイオン二次電池を組み立てた。
正極と負極とを、厚さ25μmの微多孔性ポリエチレン樹脂製セパレータを介して捲回して、電極群70を構成した。正極と負極には、それぞれアルミニウム製正極リード71およびニッケル製負極リード72を溶接した。電極群の上部にポリエチレン樹脂製の絶縁板73を装着し、電池ケース74内に収容した。正極リードの他端は、所定の安全弁77を有する封口板78の下面にスポット溶接した。負極リードの他端は、封口板の中心部にある端子孔に絶縁材料76を介して挿入されているニッケル製負極端子75の下部と電気的に接続した。電池ケースの開口端部と封口板の周縁部とをレーザで溶接してから、封口板に設けてある注入孔から所定量の非水電解液を注液した。最後に注入孔をアルミニウム製の封栓79で塞ぎ、レーザー溶接で注液孔を密封して、電池を完成させた。
【0034】
《実施例2》
正極合剤シートおよび負極合剤シートを成形する際に、凹状金型内にそれぞれの粒子状電極合剤を充填した後、50Hzの振動を凹状金型に加えたこと以外、実施例1と同様にして、正極および負極を作製し、それらを用いて、実施例1と同様の角型リチウムイオン二次電池を組み立てた。
【0035】
《実施例3》
(イ)正極
実施例1と同様の方法で、球状の粒子状正極合剤を調製した。
所定形状の凹状金型の底面に、厚さ30μm、幅30mmのアルミニウム箔からなる芯材を配し、その上に、厚さがほぼ均一になるように粒子状正極合剤を敷き詰め、粉体合剤層を形成した。前記粉体合剤層を、凸状金型でプレスし、芯材と一体化した厚さ150μm、幅30mmの正極活物質層を形成した。プレスにおける両金型の温度は100℃とし、プレス圧は5KPaとした。その後、芯材を裏返して同様の操作を行い、両面に正極活物質層を有する正極を得た。ここでは、電極芯材を、一方の端部から、所定長さ毎に金型に導入し、逐次その上に粉体合剤層を形成することにより、正極活物質層の形成を連続的に行った。正極には、実施例1と同様に正極活物質層の未塗工部を設け、芯材の一部を露出させた。この露出部には、アルミニウム製正極リードを溶接した。
【0036】
(ロ)負極
実施例1と同様の方法で、球状の粒子状負極合剤を調製した。
所定形状の凹状金型の底面に、厚さ20μm、幅31mmの銅箔からなる芯材を配し、その上に、厚さがほぼ均一になるように粒子状負極合剤を敷き詰め、粉体合剤層を形成した。前記粉体合剤層を、凸状金型でプレスし、芯材と一体化した厚さ150μm、幅31mmの負極活物質層を形成した。プレスにおける両金型の温度は25℃とし、プレス圧は3KPaとした。その後、芯材を裏返して同様の操作を行い、両面に負極活物質層を有する負極を得た。ここでは、電極芯材を、一方の端部から、所定長さ毎に金型に導入し、逐次その上に粉体合剤層を形成することにより、負極活物質層の形成を連続的に行った。負極には、実施例1と同様に負極活物質層の未塗工部を設け、芯材の一部を露出させた。この露出部には、ニッケル製負極リードを溶接した。
上記正極と負極とを用いて、実施例1と同様の角型リチウムイオン二次電池を組み立てた。
【0037】
《実施例4》
正極活物質層および負極活物質層を形成する際に、凹状金型内にそれぞれの粒子状電極合剤を充填した後、50Hzの振動を凹状金型に加えたこと以外、実施例3と同様にして、正極および負極を作製し、それらを用いて、実施例1と同様の角型リチウムイオン二次電池を組み立てた。
【0038】
《実施例5》
正極活物質層および負極活物質層を形成する際に、両金型の温度を150℃とし、プレス圧を5KPaとしたこと以外、実施例3と同様にして正極および負極を作製し、それらを用いて、実施例1と同様の角型リチウムイオン二次電池を組み立てた。
【0039】
《実施例6》
正極スラリーおよび負極スラリーに、潤滑剤としてフッ素変性シリコーンオイル(信越シリコーン(株)製のFL100(商品名))をLiCoO2100重量部あたり1重量部添加したこと以外、実施例1と同様にして正極および負極を作製し、それらを用いて、実施例1と同様の角型リチウムイオン二次電池を組み立てた。
【0040】
《実施例7》
正極スラリーおよび負極スラリーに、潤滑剤として高密度ポリエチレン粉末(住友精化(株)製のHE−3040(商品名)、粒径5〜100μm、平均粒径50μm)をLiCoO2100重量部あたり5重量部添加したこと以外、実施例1と同様にして正極および負極を作製し、それらを用いて、実施例1と同様の角型リチウムイオン二次電池を組み立てた。
【0041】
《実施例8》
得られた正極および負極を、さらに、200KN/mの線圧力でロールプレスして電極活物質層の密度を高めたこと以外、実施例1と同様の角型リチウムイオン二次電池を組み立てた。
【0042】
《実施例9》
得られた正極および負極を、さらに、200KN/mの線圧力でロールプレスして電極活物質層の密度を高めたこと以外、実施例3と同様の角型リチウムイオン二次電池を組み立てた。
【0043】
《実施例10》
(イ)正極
100重量部のLiCoO2および3重量部のアセチレンブラックを、所定の容器内に導入し、LiCoO2とアセチレンブラックの混合物を容器内の100℃の乾燥雰囲気中で流動させた。容器内には、流速1m3/分の乾燥N2により、上昇気流を形成させ、気流によって粉体混合物を攪拌するとともに、乾燥させた。容器の下部には、造粒プレートとその上に堆積する粉体混合物を攪拌する攪拌羽根を設けた。撹拌羽根の回転速度は300rpmとした。そして、流動している粉体混合物に、結着剤としてゴム微粒子のエマルジョン(日本ゼオン(株)製のBM500B(商品名))を噴霧し、乾燥させて、ゴム微粒子を付着させた。ゴム微粒子の噴霧量は、100重量部のLiCoO2あたり3重量部とした。エマルジョンの噴霧速度は10g/分とした。その結果、粒径50〜300μm(平均粒径は200μm)の球状の粒子状正極合剤が得られた。こうして得られた粒子状正極合剤を用いたこと以外、実施例1と同様にして正極を作製した。
【0044】
(ロ)負極
平均粒径が約20μmの鱗片状黒鉛100重量部を、所定の容器内に導入し、鱗片状黒鉛を容器内の100℃の乾燥雰囲気中で流動させた。容器内には、流速1m3/分の乾燥N2により、上昇気流を形成させ、気流によって鱗片状黒鉛を攪拌するとともに、乾燥させた。容器の下部には、造粒プレートとその上に堆積する粒子を攪拌する攪拌羽根を設けた。撹拌羽根の回転速度は300rpmとした。そして、流動している鱗片状黒鉛に、結着剤としてゴム微粒子のエマルジョン(日本ゼオン(株)製のBM400B(商品名))を噴霧し、乾燥させて、ゴム微粒子を付着させた。ゴム微粒子の噴霧量は、100重量部の鱗片状黒鉛あたり2重量部とした。エマルジョンの噴霧速度は10g/分とした。その結果、粒径50〜300μm(平均粒径は200μm)の球状の粒子状負極合剤が得られた。こうして得られた粒子状負極合剤を用いたこと以外、実施例1と同様にして負極を作製した。
こうして得られた正極と負極を用いて、実施例1と同様の角型リチウムイオン二次電池を組み立てた。
【0045】
《比較例1》
特開平11−149918号公報に記載の方法に準じて、電極合剤スラリーのスプレードライを行う際に、電極芯材に直接、電極合剤を吹き付けて粉体合剤層を形成したこと以外、実施例3と同様にして正極と負極を作製した。その際、電極芯材には、所定形状の開口部を有するマスクを配し、できる限り実施例1の電極活物質層に近い形状の電極活物質層を形成した。
こうして得られた正極と負極を用いて、実施例1と同様の角型リチウムイオン二次電池を組み立てた。
【0046】
(v)評価
[極板外観]
実施例1〜10および比較例1の極板の外観を目視で観察し、電極活物質層における微細なクラックの有無を調べた。また、極板の中心線表面粗さを、表面粗さ測定装置(東京精密(株)サーフコム1400型)にて測定した。結果を表1に示す。
【0047】
[電池のサイクル特性]
実施例1〜10および比較例1の電池の充放電サイクルを25℃で繰り返した。充電は、0.7Cの電流値で、電池電圧が4.2Vになるまで行い、次いで電流値が0.05Cになるまで定電圧で充電を続けた。そして、1Cの電流値で、電池電圧が3.0Vになるまで放電した。このサイクルを100回繰り返し、初期容量に対する最後のサイクルで得られた容量の割合(%)を求めた。結果を表1に示す。
【0048】
【表1】

Figure 0004219705
【0049】
【発明の効果】
表1から明らかなように、スプレードライを採用する従来の電極製造法に比べ、本発明の製造法によれば、表面粗さが小さく、微細クラックのない優れた電極を得ることができる。また、本発明の製造法で得られた電極は、均一な厚さの電極活物質層を有することから、サイクル特性に優れた二次電池を与えることが可能となる。しかも、本発明によれば、分散媒の飛散による問題等を改善することができる。
【図面の簡単な説明】
【図1】本発明に係る電極の製造法の一例を示す工程図である。
【図2】粒子状電極合剤の調製に用いる造粒装置の一例の断面概念図である。
【図3】本発明の実施例にかかる角型電池の一部を切り欠いた斜視図である。
【符号の説明】
101 噴霧ノズル
102 粒子状電極合剤
103 受け皿
104a 粉体合剤層
104b 合剤シート
105 電極芯材
106 極板
107a、107b 加圧治具
108 電極活物質層
1 下部円筒状容器
2 溶液または分散液の容器
3 高圧スプレー
4 ガス導入管
5 金属フィルタ
6 造粒プレート
7 撹拌羽根
8 衝突ターゲット
9 圧縮ガス噴射ノズル
10 バグフィルタ
11 ポンプ
12 パイプ
13 ガス排出管
70 電極群
71 アルミニウム製正極リード
72 ニッケル製負極リード
73 ポリエチレン樹脂製の絶縁板
74 電池ケース
75 ニッケル製負極端子
76 絶縁材料
77 安全弁
78 封口板
79 アルミニウム製の封栓[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a secondary battery electrode having a uniform thickness without applying a paste containing an electrode mixture.
[0002]
[Prior art]
In a conventional battery electrode manufacturing method, a paste in which an electrode mixture comprising an electrode active material and a binder is mixed with a dispersion medium is applied to an electrode core material, and the coating film is dried to form The electrode active material layer is formed by scattering the dispersion medium and pressing the dried coating film.
[0003]
However, in the method as described above, when the coating film is dried and the dispersion medium is scattered, the coating film shrinks, so that fine cracks are generated in the electrode active material layer, or internal stress is generated during pressing. There is a problem of doing. Moreover, since the contraction of the coating film is large, the variation in the thickness of the electrode active material layer is large, and it is difficult to obtain an electrode having a uniform thickness. Furthermore, since it is necessary to manage the scattering of the dispersion medium, there is a problem that the manufacturing cost of the electrode is increased.
[0004]
Therefore, a method for producing an electrode active material layer in which a paste containing a binder in a molten state and an electrode active material is pulverized by a spray drying method and the powder is directly sprayed onto the core material has been proposed (see Patent Document 1). ). However, this method can improve the problem that fine cracks are generated in the electrode active material layer or internal stress is generated during pressing, but it is difficult to obtain an electrode active material layer having a uniform thickness. is there. If the thickness of the electrode active material layer is not uniform, the depth of discharge varies depending on the portion of the electrode, so that the battery characteristics are likely to deteriorate. Moreover, since the dispersion medium in the paste scatters when the powder is directly sprayed onto the core material, it is not possible to eliminate the problem that the recovery of the dispersed dispersion medium is costly. The conventional spray drying method has a problem that it is necessary to include a large amount of a binder in a molten state in order to obtain a good paste spray state, and it is difficult to obtain a high-capacity electrode. It is difficult to discharge the battery at a high rate.
[0005]
[Patent Document 1]
JP-A-11-149918
[0006]
[Problems to be solved by the invention]
The present invention has been made in view of the above, and an object of the present invention is to improve a problem caused by scattering of a dispersion medium and to obtain an electrode having a uniform thickness efficiently.
[0007]
[Means for Solving the Problems]
That is, the present invention is a method for producing an electrode for a secondary battery comprising an electrode core material and an electrode active material layer carried on the electrode core material,
(A) Spherical or almost spherical containing at least an electrode active material and a binder And dry A step of preparing a particulate electrode mixture of
(B) a step of forming a powder mixture layer or a mixture sheet having a uniform thickness from the particulate electrode mixture; and
(C) integrating the powder mixture layer or mixture sheet with an electrode core material to obtain an electrode plate,
Step (b) is
(I) The particulate electrode mixture Leave dry A step of obtaining the powder mixture layer having a uniform thickness by providing a uniform thickness on the electrode core, or
(Ii) the particulate electrode mixture, Leave dry Pressure jig Introduce to The present invention relates to a method for producing an electrode for a secondary battery, including a step of obtaining the mixture sheet having a uniform thickness by pressing or hot pressing.
However, the uniform thickness means that there is no great difference in thickness depending on the part of the powder mixture layer or mixture sheet, and even if there is some variation in thickness, it should be uniform at first glance. That's fine. The particulate electrode mixture may be substantially spherical, and may be, for example, an egg shape. It is preferable that the particulate electrode mixture further contains a lubricant.
[0008]
In the step (a), for example, a step of preparing a slurry containing at least an electrode active material, a binder and a dispersion medium, and the slurry is pulverized by a spray drying method, whereby the spherical shape or the almost spherical shape is obtained. And dry The step of obtaining the particulate electrode material mixture can be applied.
The step (a) includes a step of flowing a powder containing at least an electrode active material in a dry atmosphere, and a step of spraying a liquid containing at least a binder on the flowing powder. By granulating, the spherical or almost spherical And dry The step of obtaining the particulate electrode material mixture can be applied.
[0009]
The particulate electrode mixture Leave dry When the powder mixture layer is obtained by arranging the electrode mixture on the electrode core with a uniform thickness, the particulate electrode mixture is Leave dry A step of vibrating the electrode core material after being placed on the electrode core material can be applied.
[0010]
Using a pressure jig , Dry When obtaining the mixture sheet by pressing or hot pressing the particulate electrode mixture, the particulate electrode mixture Leave dry It is preferable that the pressure jig is vibrated after being introduced into the pressure jig.
[0011]
In the step (c), a step of pressing or hot pressing the powder mixture layer or the mixture sheet together with the electrode core material using a pressing jig can be applied.
In the step (c), the powder mixture layer or mixture sheet and the electrode core material are introduced into the pressing jig at predetermined lengths or continuously from one end respectively. By doing so, it can be performed continuously.
[0012]
In the step (c), an uncoated portion of the electrode active material layer can be provided on the electrode core material to leave an exposed portion of the electrode core material. It is preferable to use a binder composed of rubber fine particles as the binder. After the step (c), a step of rolling the electrode plate can be further performed.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described with reference to FIG.
In the present invention, a spherical or nearly spherical particulate electrode mixture containing at least an electrode active material and a binder is prepared. Since the spherical or substantially spherical particulate electrode mixture has high fluidity, the entire mixture flows uniformly when introduced into the pressure jig, and thus a powder mixture layer having a uniform thickness can be obtained. The average particle size of the particulate electrode mixture is preferably 10 to 800 μm. If the average particle size is too large, it will be difficult to obtain an electrode active material layer having a uniform thickness, and if it is too small, the fluidity of the particulate electrode mixture will be low.
[0014]
There is no particular limitation on the method for preparing the spherical or nearly spherical particulate electrode mixture, but the particulate electrode mixture can be prepared by, for example, a spray drying method. Here, the spray drying method comprises a step of granulating a fluid mixture and drying at a high speed. When employing the spray drying method, a slurry containing at least an electrode active material, a binder, and a dispersion medium is prepared. As shown in FIG. 1 (a), the desired particulate electrode mixture 102 can be obtained by spraying the slurry together with a high-temperature (for example, 100 to 120 ° C.) gas from the spray nozzle 101 under predetermined conditions. it can. The particulate electrode mixture 102 is once collected in a container such as the receiving tray 103.
[0015]
In addition to the spray-drying method described above, using a granulator as shown in FIG. 2, at least a powder containing an electrode active material is flowed in a dry atmosphere, and at least bound to the flowing powder. The particulate electrode mixture can also be prepared by spraying a liquid containing the agent and granulating it while drying.
[0016]
The container 1 of the apparatus of FIG. 2 is configured by connecting a lower cylindrical container, a cylindrical portion tapered so that the upper diameter is increased, and an upper cylindrical container. A gas introduction pipe 4 with a heater is provided at the lower part of the container 1, and nitrogen gas controlled to a constant temperature is introduced from here to make the inside of the container a dry atmosphere. A metal filter 5 for preventing dust from entering is provided at the lower portion of the container 1. Above the metal filter 5, a granulating plate 6 having a large number of air holes and a stirring blade 7 fixed on the granulating plate and having a collision target 8 in the center are rotatably provided. A pair of compressed gas injection nozzles 9 for injecting compressed gas toward the collision target 8 are provided on the upper container wall surfaces. A high-pressure spray 3 is provided in the middle of the container 1. The high pressure spray 3 sprays the solution or dispersion in the container 2 into the container. A bag filter 10 is provided above the container 1. A pipe 12 for ejecting the compressed gas supplied from the pump 11 is inserted into the bag filter 10. By appropriately injecting compressed gas from the pump 11 into the bag filter 10 through the pipe 12, the powder adhering to the outer surface of the bag filter is removed. A gas discharge pipe 13 is provided at the upper part of the container.
[0017]
In order to produce a particulate electrode mixture with this apparatus, first, an electrode active material is previously placed on the granulating plate 6 in the container 1, and a liquid containing a binder is sprayed from the high-pressure spray 3. The electrode active material in the container 1 is blown upward of the container by nitrogen gas having a constant temperature supplied from the gas introduction pipe 4. Nitrogen gas introduced from the gas introduction pipe 4 blows up from the metal filter 5 and the granulation plate 6 upward in the container according to arrows a and b indicating the gas flow direction. The granulation plate 6 has a ventilation slit that is opened so that the flow rate of airflow increases toward the outer periphery. The electrode active material charged into the container 1 flows upward of the container by the flowing air by the gas that has passed through the granulating plate 6, where a liquid containing a binder is attached and dried.
[0018]
The particles that have adhered to the binder and have settled on the upper part of the granulating plate 6 are granulated on the rotating granulating plate 6. The stirring blade 7 rotates at high speed and pulverizes particles that settle there. In addition, the pulse jet intermittently injected from the compressed gas injection nozzle 9 toward the collision target 8 pulverizes the particles in a fluid state into low-order structure particles by jet pulverization. The nitrogen gas introduced into the system is filtered by the bag filter 10 disposed in the upper part of the container, and only the nitrogen gas is discharged out of the system through the discharge pipe 13.
[0019]
As shown in FIG. 1B, the particulate electrode mixture is formed on a powder mixture layer 104a or a mixture sheet 104b having a uniform thickness. For example, the powder mixture layer 104 a can be obtained by arranging the particulate electrode mixture on the electrode core material 105 with a uniform thickness. When the electrode core material 105 is vibrated after the particulate electrode mixture is placed on the electrode core material 105, the thickness of the powder mixture layer can be made extremely uniform. The frequency of the vibration applied to the electrode core material is appropriately selected according to the properties of the particulate electrode mixture, and is preferably 2 to 1000 Hz.
[0020]
The mixture sheet 104b can also be obtained by pressing or hot pressing the particulate electrode mixture using a pressure jig. The temperature of the pressing jig is preferably 60 to 200 ° C. If the temperature of the pressurizing jig is high, a strong mixture sheet 104b can be obtained in a short time. However, if the temperature is too high with respect to the melting point of the binder, the electrode mixture may be deteriorated. After introducing the particulate electrode mixture into the pressure jig, the thickness of the mixture sheet can be made extremely uniform by vibrating the pressure jig. The frequency of the vibration applied to the pressing jig is appropriately selected according to the properties of the particulate electrode mixture, and is preferably 2 to 1000 Hz.
[0021]
As described above, in the present invention, after a spherical or nearly spherical particulate electrode mixture is prepared, the particulate electrode mixture is formed into a powder mixture layer or a mixture sheet in a separate step. Therefore, a powder mixture layer or a mixture sheet having a uniform thickness can be obtained, and an electrode active material layer having a uniform thickness can be efficiently obtained therefrom. Such a method is different from the method of spraying the particulate electrode mixture directly on the electrode core material, and can include a vibration step for uniformly filling the powdered electrode mixture in the pressing jig. But it is advantageous.
[0022]
If the powder mixture layer 104a and the mixture sheet 104b are integrated with the electrode core material, the electrode plate 106 having a uniform thickness can be obtained. For example, they can be integrated by pressing or hot pressing the powder mixture layer or mixture sheet together with the electrode core material using the pressurizing jigs 107a and 107b. Also in this case, the temperature of the pressurizing jigs 107a and 107b is preferably 60 to 200 ° C. Further, by rolling the obtained electrode plate further, an electrode having a more uniform thickness and a high density of the electrode active material layer 108 can be obtained.
[0023]
An electrode can be continuously produced by introducing the mixture sheet and the electrode core material from one end portion into the pressure jig every predetermined length or continuously. Moreover, the electrode core material is continuously introduced by introducing it into the pressing jig from one end portion at a predetermined length, and successively forming a powder mixture layer on the electrode jig and integrating it with the electrode core material. Thus, an electrode can be manufactured.
[0024]
It is possible to obtain a desired electrode by cutting the electrode plate into a predetermined shape after producing a wide band electrode plate wound up in a roll shape, but cut out the core material in advance to the final shape of the electrode, Thereafter, an electrode active material layer can also be formed. When the electrode core material is cut after supporting the electrode active material layer, the generation of burrs becomes a problem. However, when the core material is cut in advance, the generation of burrs is essentially not a problem. Therefore, the reliability of the battery is greatly improved.
[0025]
As the binder, it is preferable to use rubber fine particles. This is because the rubber fine particles do not cover most of the surfaces of the electrode active material and the conductive agent, and thus can exert the effect as a binder even in a small amount. The rubber fine particles lower the hardness of the electrode active material layer as compared with a fluororesin such as polyvinylidene fluoride conventionally used as a binder, so that when the electrode plate is wound in the battery assembly process, Breaking and cracking are unlikely to occur, and manufacturing of the electrode plate is facilitated. As the rubber fine particles, for example, those composed of a core having a high elastic modulus and a graft resin part having adhesiveness on the surface thereof can be used. The particle size of the rubber fine particles is preferably 0.1 to 0.5 μm.
[0026]
Since this invention does not require the process of applying the paste containing an electrode mixture to an electrode core material, it is not necessary to use a thickener to adjust the viscosity of the paste. Therefore, even when rubber fine particles having no thickening effect are used, it is not necessary to use them together with a thickening agent, and a high capacity electrode can be obtained.
[0027]
It is preferable to add an additive having a lubricating effect to the slurry used for preparing the particulate electrode mixture. With such a particulate electrode mixture containing an additive, the pressure jig can be filled very efficiently and extremely uniformly, and an electrode having a uniform thickness and mixture density can be obtained. Is possible.
[0028]
【Example】
Example 1
(B) Positive electrode
100 parts by weight of LiCoO 2 In addition, 3 parts by weight of acetylene black as a conductive agent, 3 parts by weight of an emulsion of fine rubber particles (AD624 (trade name) manufactured by Nippon Zeon Co., Ltd.) as a binder, and an appropriate amount of pure water are added. The mixture was stirred and mixed to obtain a positive electrode slurry having a solid content of 25% by weight. Next, the positive electrode slurry was granulated by a spray drying method and dried to obtain a spherical particulate electrode mixture having a particle size of 20 to 300 μm (average particle size is 200 μm). In the spray drying method, positive electrode slurry and hot air at 120 ° C. were sprayed simultaneously from a spray nozzle (nozzle diameter 5 mmφ), and the particulate positive electrode mixture granulated at that time was collected in a tray.
[0029]
The spherical particulate positive electrode mixture thus obtained was filled into a concave mold having a predetermined shape and pressed with a convex mold. The temperature of both molds was 25 ° C., and the press pressure was 5 KPa. As a result, a belt-like positive electrode mixture sheet having a thickness of 150 μm and a width of 50 mm was obtained. Next, the positive electrode mixture sheet was disposed on both sides of a core material made of an aluminum foil having a thickness of 20 μm and a width of 50 mm and pressed to form a positive electrode active material layer integrated with the core material to obtain a positive electrode. . Here, the positive electrode active material layer was continuously formed by introducing the mixture sheet and the electrode core material into the mold at predetermined lengths from one end respectively. The temperature of the mold used for the press was 100 ° C., and the press pressure was 5 KPa. The positive electrode was provided with an uncoated portion of the positive electrode active material layer to expose a part of the core material. An aluminum positive electrode lead was welded to the exposed portion.
[0030]
(B) Negative electrode
Add 100 parts by weight of flaky graphite with an average particle size of about 20 μm, 3 parts by weight of rubber fine particle emulsion (BM400B (trade name) manufactured by Nippon Zeon Co., Ltd.) as a binder, and an appropriate amount of pure water. The mixture was stirred and mixed to obtain a negative electrode slurry having a solid content of 25% by weight. Next, the negative electrode slurry was granulated by a spray drying method and dried to obtain a spherical particulate electrode mixture having a particle size of 20 to 300 μm (average particle size is 200 μm). In the spray drying method, the negative electrode slurry and hot air at 120 ° C. were sprayed simultaneously from a spray nozzle (nozzle diameter 5 mmφ), and the particulate negative electrode mixture granulated at that time was collected in a tray.
[0031]
The particulate negative electrode mixture thus obtained was filled in a concave mold having a predetermined shape and pressed with a convex mold. The temperature of both molds was 60 ° C., and the press pressure was 3 KPa. As a result, a strip-shaped negative electrode mixture sheet having a thickness of 150 μm and a width of 52 mm was obtained. Next, the negative electrode mixture sheet was disposed on both surfaces of a core material made of a copper foil having a thickness of 10 μm and a width of 52 mm, and was pressed to form a negative electrode active material layer integrated with the core material to obtain a negative electrode. . Here, the negative electrode active material layer was continuously formed by introducing the mixture sheet and the electrode core material into the mold at predetermined lengths from one end respectively. The temperature of the mold used for the press was 150 ° C., and the press pressure was 3 KPa. The negative electrode was provided with an uncoated portion of the negative electrode active material layer to expose a part of the core material. A nickel negative electrode lead was welded to the exposed portion.
[0032]
(C) Non-aqueous electrolyte
As a non-aqueous solvent, a mixture of 25% by volume of ethylene carbonate and 75% by volume of ethyl methyl carbonate was used. LiPF at a concentration of 1 mol / L in the non-aqueous solvent 6 Was dissolved.
[0033]
(2) Battery assembly
A prismatic lithium ion secondary battery as shown in FIG. 3 was assembled.
The positive electrode and the negative electrode were wound through a separator made of a microporous polyethylene resin having a thickness of 25 μm to constitute an electrode group 70. An aluminum positive electrode lead 71 and a nickel negative electrode lead 72 were welded to the positive electrode and the negative electrode, respectively. An insulating plate 73 made of polyethylene resin was attached to the upper part of the electrode group and housed in the battery case 74. The other end of the positive electrode lead was spot welded to the lower surface of a sealing plate 78 having a predetermined safety valve 77. The other end of the negative electrode lead was electrically connected to the lower part of the nickel negative electrode terminal 75 inserted through the insulating material 76 into the terminal hole at the center of the sealing plate. The opening end of the battery case and the peripheral edge of the sealing plate were welded by laser, and then a predetermined amount of nonaqueous electrolyte was injected from the injection hole provided in the sealing plate. Finally, the injection hole was closed with an aluminum plug 79, and the liquid injection hole was sealed by laser welding to complete the battery.
[0034]
Example 2
Similar to Example 1 except that when forming the positive electrode mixture sheet and the negative electrode mixture sheet, each of the particulate electrode mixtures was filled in the concave mold, and then 50 Hz vibration was applied to the concave mold. Thus, a positive electrode and a negative electrode were prepared, and a rectangular lithium ion secondary battery similar to that of Example 1 was assembled using them.
[0035]
Example 3
(B) Positive electrode
A spherical particulate positive electrode mixture was prepared in the same manner as in Example 1.
A core material made of aluminum foil with a thickness of 30 μm and a width of 30 mm is arranged on the bottom surface of a concave mold having a predetermined shape, and a particulate positive electrode mixture is laid on top of the core material so that the thickness is almost uniform. A mixture layer was formed. The powder mixture layer was pressed with a convex mold to form a positive electrode active material layer having a thickness of 150 μm and a width of 30 mm integrated with the core material. The temperature of both molds in the press was 100 ° C., and the press pressure was 5 KPa. Then, the core material was turned over and the same operation was performed, and the positive electrode which has a positive electrode active material layer on both surfaces was obtained. Here, the positive electrode active material layer is continuously formed by introducing the electrode core material from one end portion into the mold every predetermined length and successively forming the powder mixture layer thereon. went. As in Example 1, the positive electrode was provided with an uncoated portion of the positive electrode active material layer to expose a part of the core material. An aluminum positive electrode lead was welded to the exposed portion.
[0036]
(B) Negative electrode
A spherical particulate negative electrode mixture was prepared in the same manner as in Example 1.
A core material made of copper foil having a thickness of 20 μm and a width of 31 mm is disposed on the bottom surface of a concave mold having a predetermined shape, and a particulate negative electrode mixture is laid on top of the core material so that the thickness is substantially uniform. A mixture layer was formed. The powder mixture layer was pressed with a convex mold to form a negative electrode active material layer having a thickness of 150 μm and a width of 31 mm integrated with the core material. The temperature of both molds in the press was 25 ° C., and the press pressure was 3 KPa. Then, the core material was turned over and the same operation was performed, and the negative electrode which has a negative electrode active material layer on both surfaces was obtained. Here, the negative electrode active material layer is continuously formed by introducing the electrode core material from one end portion into the mold every predetermined length and successively forming the powder mixture layer thereon. went. The negative electrode was provided with an uncoated portion of the negative electrode active material layer in the same manner as in Example 1 to expose a part of the core material. A nickel negative electrode lead was welded to the exposed portion.
A rectangular lithium ion secondary battery similar to that of Example 1 was assembled using the positive electrode and the negative electrode.
[0037]
Example 4
Same as Example 3 except that when forming the positive electrode active material layer and the negative electrode active material layer, the respective concave electrode molds were filled with the respective particulate electrode mixture, and then 50 Hz vibration was applied to the concave molds. Thus, a positive electrode and a negative electrode were prepared, and a rectangular lithium ion secondary battery similar to that of Example 1 was assembled using them.
[0038]
Example 5
When forming the positive electrode active material layer and the negative electrode active material layer, a positive electrode and a negative electrode were produced in the same manner as in Example 3 except that the temperature of both molds was 150 ° C. and the press pressure was 5 KPa. The same prismatic lithium ion secondary battery as in Example 1 was assembled.
[0039]
Example 6
Fluorine-modified silicone oil (FL100 (trade name) manufactured by Shin-Etsu Silicone Co., Ltd.) as a lubricant is added to the positive electrode slurry and the negative electrode slurry as LiCoO. 2 A positive electrode and a negative electrode were produced in the same manner as in Example 1 except that 1 part by weight was added per 100 parts by weight, and a rectangular lithium ion secondary battery similar to that in Example 1 was assembled using them.
[0040]
Example 7
High-density polyethylene powder (HE-3040 (trade name) manufactured by Sumitomo Seika Co., Ltd., particle size 5 to 100 μm, average particle size 50 μm) as a lubricant is added to the positive electrode slurry and the negative electrode slurry as LiCoO. 2 A positive electrode and a negative electrode were produced in the same manner as in Example 1 except that 5 parts by weight per 100 parts by weight were added, and a prismatic lithium ion secondary battery similar to that in Example 1 was assembled using them.
[0041]
Example 8
A square lithium ion secondary battery similar to that of Example 1 was assembled except that the obtained positive electrode and negative electrode were further roll-pressed at a linear pressure of 200 KN / m to increase the density of the electrode active material layer.
[0042]
Example 9
A square lithium ion secondary battery similar to that of Example 3 was assembled except that the obtained positive electrode and negative electrode were further roll-pressed at a linear pressure of 200 KN / m to increase the density of the electrode active material layer.
[0043]
Example 10
(B) Positive electrode
100 parts by weight of LiCoO 2 And 3 parts by weight of acetylene black are introduced into a predetermined container, and LiCoO 2 And acetylene black were fluidized in a dry atmosphere at 100 ° C. in a container. In the container, a flow rate of 1m Three / Min dry N 2 Thus, an ascending air current was formed, and the powder mixture was stirred by the air current and dried. A stirring blade for stirring the granulation plate and the powder mixture deposited thereon was provided at the lower part of the container. The rotation speed of the stirring blade was 300 rpm. Then, an emulsion of fine rubber particles (BM500B (trade name) manufactured by Nippon Zeon Co., Ltd.) as a binder was sprayed on the flowing powder mixture and dried to adhere the fine rubber particles. The spray amount of the rubber fine particles is 100 parts by weight of LiCoO. 2 3 parts by weight per unit. The spray rate of the emulsion was 10 g / min. As a result, a spherical particulate positive electrode mixture having a particle size of 50 to 300 μm (average particle size of 200 μm) was obtained. A positive electrode was produced in the same manner as in Example 1 except that the particulate positive electrode mixture thus obtained was used.
[0044]
(B) Negative electrode
100 parts by weight of scaly graphite having an average particle diameter of about 20 μm was introduced into a predetermined container, and the scaly graphite was fluidized in a dry atmosphere at 100 ° C. in the container. In the container, a flow rate of 1m Three / Min dry N 2 As a result, an ascending air current was formed, and the flake graphite was stirred and dried by the air current. At the lower part of the container, a granulation plate and a stirring blade for stirring particles deposited thereon were provided. The rotation speed of the stirring blade was 300 rpm. Then, an emulsion of rubber fine particles (BM400B (trade name) manufactured by Nippon Zeon Co., Ltd.) as a binder was sprayed on the flowing flaky graphite and dried to adhere the rubber fine particles. The spray amount of the rubber fine particles was 2 parts by weight per 100 parts by weight of the flaky graphite. The spray rate of the emulsion was 10 g / min. As a result, a spherical particulate negative electrode mixture having a particle size of 50 to 300 μm (average particle size of 200 μm) was obtained. A negative electrode was produced in the same manner as in Example 1 except that the particulate negative electrode mixture thus obtained was used.
A rectangular lithium ion secondary battery similar to that of Example 1 was assembled using the positive electrode and the negative electrode thus obtained.
[0045]
<< Comparative Example 1 >>
According to the method described in JP-A-11-149918, when the electrode mixture slurry is spray-dried, the electrode mixture is directly sprayed on the electrode core material to form a powder mixture layer, A positive electrode and a negative electrode were produced in the same manner as in Example 3. In that case, the electrode core material was provided with a mask having an opening of a predetermined shape, and an electrode active material layer having a shape as close as possible to the electrode active material layer of Example 1 was formed.
A rectangular lithium ion secondary battery similar to that of Example 1 was assembled using the positive electrode and the negative electrode thus obtained.
[0046]
(V) Evaluation
[Plate plate appearance]
The external appearance of the electrode plates of Examples 1 to 10 and Comparative Example 1 was visually observed to examine the presence or absence of fine cracks in the electrode active material layer. Further, the center line surface roughness of the electrode plate was measured with a surface roughness measuring apparatus (Tokyo Seimitsu Co., Ltd. Surfcom 1400 type). The results are shown in Table 1.
[0047]
[Battery cycle characteristics]
The charge / discharge cycles of the batteries of Examples 1 to 10 and Comparative Example 1 were repeated at 25 ° C. Charging was performed at a current value of 0.7 C until the battery voltage reached 4.2 V, and then charging was continued at a constant voltage until the current value reached 0.05 C. And it discharged until the battery voltage became 3.0V with the electric current value of 1C. This cycle was repeated 100 times, and the ratio (%) of the capacity obtained in the last cycle with respect to the initial capacity was determined. The results are shown in Table 1.
[0048]
[Table 1]
Figure 0004219705
[0049]
【The invention's effect】
As is clear from Table 1, according to the production method of the present invention, an excellent electrode having a small surface roughness and no fine cracks can be obtained as compared with the conventional electrode production method employing spray drying. In addition, since the electrode obtained by the production method of the present invention has an electrode active material layer having a uniform thickness, a secondary battery having excellent cycle characteristics can be provided. In addition, according to the present invention, problems due to dispersion of the dispersion medium can be improved.
[Brief description of the drawings]
FIG. 1 is a process chart showing an example of a method for producing an electrode according to the present invention.
FIG. 2 is a conceptual cross-sectional view of an example of a granulating apparatus used for preparing a particulate electrode mixture.
FIG. 3 is a perspective view in which a part of a prismatic battery according to an embodiment of the present invention is cut away.
[Explanation of symbols]
101 Spray nozzle
102 Particulate electrode mixture
103 saucer
104a Powder mix layer
104b Mixture sheet
105 Electrode core material
106 plates
107a, 107b Pressure jig
108 Electrode active material layer
1 Lower cylindrical container
2 Container for solution or dispersion
3 High pressure spray
4 Gas introduction pipe
5 Metal filter
6 Granulation plate
7 Stirring blade
8 Collision target
9 Compressed gas injection nozzle
10 Bug filter
11 Pump
12 pipes
13 Gas exhaust pipe
70 electrodes
71 Aluminum positive lead
72 Nickel negative electrode lead
73 Insulation plate made of polyethylene resin
74 Battery case
75 Nickel negative terminal
76 Insulation material
77 Safety valve
78 Sealing plate
79 Aluminum closure

Claims (11)

電極芯材および前記電極芯材に担持された電極活物質層からなる二次電池用電極の製造法であって、
(a)少なくとも電極活物質および結着剤を含む球状もしくはほぼ球状であって、乾燥状態の粒子状電極合剤を調製する工程、
(b)前記粒子状電極合剤から、厚さの均一な粉体合剤層もしくは合剤シートを形成する工程、ならびに
(c)前記粉体合剤層もしくは合剤シートを電極芯材と一体化して極板を得る工程、を有し、
前記工程(b)が、
(i)前記粒子状電極合剤を、乾燥状態のまま電極芯材上に均一な厚さに配することにより、均一な厚さの前記粉体合剤層を得る工程、または、
(ii)前記粒子状電極合剤を、乾燥状態のまま加圧治具に導入してプレスもしくはホットプレスすることにより、均一な厚さの前記合剤シートを得る工程を含む、二次電池用電極の製造法。
A method for producing an electrode for a secondary battery comprising an electrode core material and an electrode active material layer carried on the electrode core material,
(A) a step of preparing a spherical or almost spherical shape containing at least an electrode active material and a binder , and a dry particulate electrode mixture;
(B) forming a powder mixture layer or mixture sheet having a uniform thickness from the particulate electrode mixture; and (c) integrating the powder mixture layer or mixture sheet with the electrode core material. And obtaining the electrode plate
The step (b)
(I) A step of obtaining the powder mixture layer having a uniform thickness by arranging the particulate electrode mixture in a uniform thickness on the electrode core material in a dry state , or
(Ii) For a secondary battery, including a step of obtaining the mixture sheet having a uniform thickness by introducing the particulate electrode mixture into a pressure jig in a dry state and pressing or hot pressing the mixture. Electrode manufacturing method.
前記工程(a)が、少なくとも電極活物質、結着剤および分散媒を含むスラリーを調製する工程、ならびに前記スラリーをスプレードライ法により粉体化することにより、前記球状もしくはほぼ球状であって、乾燥状態の粒子状電極合剤を得る工程、からなる請求項1記載の二次電池用電極の製造法。The step (a) is a step of preparing a slurry containing at least an electrode active material, a binder and a dispersion medium, and pulverizing the slurry by a spray drying method, so that the spherical shape or almost spherical shape , The method for producing an electrode for a secondary battery according to claim 1, comprising a step of obtaining a particulate electrode mixture in a dry state . 前記工程(a)が、少なくとも電極活物質を含む粉体を、乾燥雰囲気中に流動させる工程、ならびに流動している前記粉体に、少なくとも結着剤を含む液を噴霧しながら造粒することにより、前記球状もしくはほぼ球状であって、乾燥状態の粒子状電極合剤を得る工程、からなる請求項1記載の二次電池用電極の製造法。The step (a) is a step of flowing a powder containing at least an electrode active material in a dry atmosphere, and granulating while spraying a liquid containing at least a binder on the flowing powder. The method for producing an electrode for a secondary battery according to claim 1, comprising the step of obtaining the spherical or substantially spherical and dry particulate electrode mixture. 前記粒子状電極合剤に、さらに潤滑剤を含ませる請求項1記載の二次電池用電極の製造法。  The method for producing an electrode for a secondary battery according to claim 1, further comprising a lubricant in the particulate electrode mixture. 前記粒子状電極合剤を、乾燥状態のまま電極芯材上に均一な厚さに配する工程が、前記粒子状電極合剤を前記電極芯材上に載置してから前記電極芯材を振動させる工程である請求項1記載の二次電池用電極の製造法。The step of disposing the particulate electrode mixture in a uniform thickness on the electrode core material in a dry state is carried out after the particulate electrode mixture is placed on the electrode core material. The method for producing an electrode for a secondary battery according to claim 1, which is a step of vibrating. 前記粒子状電極合剤を、乾燥状態のまま前記加圧治具に導入した後、前記加圧治具を振動させる請求項1記載の二次電池用電極の製造法。The method for producing an electrode for a secondary battery according to claim 1, wherein after the particulate electrode mixture is introduced into the pressure jig in a dry state , the pressure jig is vibrated. 前記工程(c)が、加圧治具を用いて前記粉体合剤層もしくは合剤シートを電極芯材とともにプレスもしくはホットプレスする工程である請求項1記載の二次電池用電極の製造法。  The method for producing an electrode for a secondary battery according to claim 1, wherein the step (c) is a step of pressing or hot pressing the powder mixture layer or the mixture sheet together with an electrode core material using a pressing jig. . 前記工程(c)が、前記粉体合剤層もしくは合剤シートと前記電極芯材とを、それぞれ一方の端部から、所定長さ毎に、もしくは、連続的に、加圧治具に導入することにより、連続的に行われる請求項1記載の二次電池用電極の製造法。  In the step (c), the powder mixture layer or mixture sheet and the electrode core material are introduced into the pressing jig at predetermined lengths or continuously from one end respectively. The manufacturing method of the electrode for secondary batteries of Claim 1 performed by doing continuously. 前記工程(c)において、電極芯材に電極活物質層の未塗工部を設けて電極芯材の露出部を残す請求項1記載の二次電池用電極の製造法。  The method for producing an electrode for a secondary battery according to claim 1, wherein, in the step (c), an uncoated portion of the electrode active material layer is provided on the electrode core material to leave an exposed portion of the electrode core material. 前記結着剤が、ゴム微粒子からなる請求項1記載の二次電池用電極の製造法。  The method for producing an electrode for a secondary battery according to claim 1, wherein the binder comprises rubber fine particles. 前記工程(c)の後、さらに、前記極板を圧延する工程を有する請求項1記載の二次電池用電極の製造法。  The method for producing an electrode for a secondary battery according to claim 1, further comprising a step of rolling the electrode plate after the step (c).
JP2003038416A 2003-02-17 2003-02-17 Manufacturing method of secondary battery electrode Expired - Fee Related JP4219705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003038416A JP4219705B2 (en) 2003-02-17 2003-02-17 Manufacturing method of secondary battery electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003038416A JP4219705B2 (en) 2003-02-17 2003-02-17 Manufacturing method of secondary battery electrode

Publications (2)

Publication Number Publication Date
JP2004247249A JP2004247249A (en) 2004-09-02
JP4219705B2 true JP4219705B2 (en) 2009-02-04

Family

ID=33022955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003038416A Expired - Fee Related JP4219705B2 (en) 2003-02-17 2003-02-17 Manufacturing method of secondary battery electrode

Country Status (1)

Country Link
JP (1) JP4219705B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011099503A1 (en) 2010-02-09 2011-08-18 三菱重工業株式会社 Apparatus for production of electrode material
WO2013018862A1 (en) * 2011-08-04 2013-02-07 日本ゼオン株式会社 Composite particles for electrochemical element electrode, electrochemical element electrode material, electrochemical element electrode, and electrochemical element
JP2013062202A (en) * 2011-09-15 2013-04-04 Nippon Zeon Co Ltd Electrode molding device and electrode molding method
US8703664B2 (en) 2009-06-16 2014-04-22 Yushiro Chemical Industry Co., Ltd. Metal rolling oil composition
KR20150132082A (en) 2013-03-14 2015-11-25 제온 코포레이션 Method for manufacturing composite particles for electrochemical element electrode
KR20160114044A (en) 2014-01-29 2016-10-04 제온 코포레이션 Liquid adhesive coating for coating collector
US9685658B2 (en) 2011-07-15 2017-06-20 Zeon Corporation Composite particles for electrochemical device electrode, material for electrochemical device electrode, and electrochemical device electrode
US11081699B2 (en) 2014-05-20 2021-08-03 Zeon Corporation Method for manufacturing electrochemical device electrode
WO2022172118A1 (en) * 2021-02-12 2022-08-18 株式会社半導体エネルギー研究所 Method for manufacturing electrode

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4150331B2 (en) * 2003-12-25 2008-09-17 Tdk株式会社 Electrode and electrochemical element, electrode manufacturing method and electrochemical element manufacturing method
US7754382B2 (en) 2003-07-30 2010-07-13 Tdk Corporation Electrochemical capacitor having at least one electrode including composite particles
KR100570677B1 (en) * 2003-09-26 2006-04-12 삼성에스디아이 주식회사 Rechargeable lithium battery
JP5311706B2 (en) * 2005-04-25 2013-10-09 日本ゼオン株式会社 Method for producing composite particle for electrochemical device electrode
WO2006115272A1 (en) * 2005-04-26 2006-11-02 Zeon Corporation Composite particles for electrochemical element electrode
JP4839669B2 (en) * 2005-04-28 2011-12-21 日本ゼオン株式会社 Composite particles for electrochemical device electrodes
JP4840358B2 (en) * 2005-04-28 2011-12-21 日本ゼオン株式会社 Electrochemical element electrode
CN102522220A (en) * 2005-05-26 2012-06-27 日本瑞翁株式会社 Electrode material for electrochemical element and composite particle
WO2007032374A1 (en) * 2005-09-16 2007-03-22 Zeon Corporation Composite particle for electrochemical device electrode, method for producing same, electrochemical device electrode material, and electrochemical device electrode
JP2013041819A (en) * 2011-07-15 2013-02-28 Nippon Zeon Co Ltd Composite particle for electrochemical element negative electrode, electrochemical element negative electrode material, and electrochemical element negative electrode
JP2013041821A (en) * 2011-07-20 2013-02-28 Nippon Zeon Co Ltd Composite particle for electrochemical element positive electrode, electrochemical element positive electrode material, and electrochemical element positive electrode
JP2013051203A (en) * 2011-08-04 2013-03-14 Nippon Zeon Co Ltd Composite particle for electrochemical element electrode, electrochemical element electrode material, electrochemical element electrode, and electrochemical element
JP5891884B2 (en) * 2012-03-21 2016-03-23 凸版印刷株式会社 Method for producing electrode for non-aqueous electrolyte secondary battery
JP5919929B2 (en) * 2012-03-21 2016-05-18 凸版印刷株式会社 Method for producing electrode for lithium ion secondary battery
JP6102085B2 (en) * 2012-05-30 2017-03-29 日本ゼオン株式会社 Composite particle for secondary battery electrode and method for producing the same, secondary battery electrode material, secondary battery electrode
JP6284020B2 (en) * 2014-04-07 2018-02-28 トヨタ自動車株式会社 Electrode sheet manufacturing method
KR102343370B1 (en) * 2014-07-22 2021-12-23 니폰 제온 가부시키가이샤 Composite particles for electrochemical element electrode, electrochemical element electrode, electrochemical element, production method for composite particles for electrochemical element electrode, and production method for electrochemical element electrode
JP2016051586A (en) 2014-08-29 2016-04-11 トヨタ自動車株式会社 Manufacturing method of electrode for lithium ion secondary battery
US20170317378A1 (en) 2014-11-21 2017-11-02 Zeon Corporation Composite particles for electrochemical device electrode
CN108232195B (en) * 2016-12-13 2021-08-31 上海硅酸盐研究所中试基地 Pole piece forming method of water-based ion battery based on polytetrafluoroethylene binder
CN108615849B (en) * 2016-12-13 2021-05-07 上海硅酸盐研究所中试基地 Mass production method of water-based ion battery pole piece with porous ceramic structure
JP6760882B2 (en) * 2017-04-25 2020-09-23 トヨタ自動車株式会社 Method for manufacturing electrodes for lithium-ion secondary batteries
JP6931464B2 (en) * 2018-01-25 2021-09-08 トヨタ自動車株式会社 Method of manufacturing the electrode body
CN113422006B (en) * 2021-08-25 2022-02-18 蜂巢能源科技有限公司 Positive pole piece, preparation method thereof and lithium ion battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8703664B2 (en) 2009-06-16 2014-04-22 Yushiro Chemical Industry Co., Ltd. Metal rolling oil composition
WO2011099503A1 (en) 2010-02-09 2011-08-18 三菱重工業株式会社 Apparatus for production of electrode material
US9685658B2 (en) 2011-07-15 2017-06-20 Zeon Corporation Composite particles for electrochemical device electrode, material for electrochemical device electrode, and electrochemical device electrode
WO2013018862A1 (en) * 2011-08-04 2013-02-07 日本ゼオン株式会社 Composite particles for electrochemical element electrode, electrochemical element electrode material, electrochemical element electrode, and electrochemical element
JP2013062202A (en) * 2011-09-15 2013-04-04 Nippon Zeon Co Ltd Electrode molding device and electrode molding method
KR20150132082A (en) 2013-03-14 2015-11-25 제온 코포레이션 Method for manufacturing composite particles for electrochemical element electrode
KR20160114044A (en) 2014-01-29 2016-10-04 제온 코포레이션 Liquid adhesive coating for coating collector
US11081699B2 (en) 2014-05-20 2021-08-03 Zeon Corporation Method for manufacturing electrochemical device electrode
WO2022172118A1 (en) * 2021-02-12 2022-08-18 株式会社半導体エネルギー研究所 Method for manufacturing electrode

Also Published As

Publication number Publication date
JP2004247249A (en) 2004-09-02

Similar Documents

Publication Publication Date Title
JP4219705B2 (en) Manufacturing method of secondary battery electrode
JP7154222B2 (en) Encapsulated anode active material particles, lithium secondary battery containing same, and manufacturing method
JP6142884B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP4778034B2 (en) Method for producing non-aqueous secondary battery
CN100541872C (en) The battery lead plate of spirally-wound non-aqueous secondary battery and use thereof
JP2020517055A (en) Encapsulated cathode active material particles, lithium secondary battery containing the same, and manufacturing method
JP2020507904A (en) Method of manufacturing lithium secondary battery with protected high capacity anode active material
CN107968190B (en) Method for manufacturing negative electrode, method for manufacturing secondary battery, and secondary battery
US20160254533A1 (en) Making lithium secondary battery electrodes using an atmospheric plasma
JP2016025060A (en) Method for manufacturing electrode sheet for lithium ion secondary battery
DK200200615A (en) Lithium metal dispersion in secondary battery nodes
JP3373751B2 (en) Secondary battery and manufacturing method thereof
JP2015118871A (en) Negative electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP2005190689A (en) Sealed type battery
JPH11149918A (en) Manufacture of battery electrode
JP2011192506A (en) Electrode plate for nonaqueous secondary battery, and nonaqueous secondary battery using the same
JP2007324074A (en) Electrode plate for nonaqueous secondary battery, its manufacturing method, and nonaqueous secondary battery using this
EP4053932A1 (en) Secondary battery electrode and method for producing the electrode
US20220278315A1 (en) Secondary battery electrode and method for producing the electrode
JP5454106B2 (en) Battery electrode paste, battery electrode paste manufacturing method and electrode plate manufacturing method
JP7145501B2 (en) METHOD FOR MANUFACTURING ELECTRODE FOR SECONDARY BATTERY
JPH08167411A (en) Nickel electrode and its manufacture
CN115207287A (en) Method for producing electrode for secondary battery and wet powder
JP2022158239A (en) Wet powder and manufacturing method of non-aqueous electrolyte secondary battery including electrode made of wet powder
JP6883259B2 (en) Negative electrode and secondary battery manufacturing method, and secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080321

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees