JP4216998B2 - Regeneration method of mixed-bed type sugar liquid purification equipment - Google Patents
Regeneration method of mixed-bed type sugar liquid purification equipment Download PDFInfo
- Publication number
- JP4216998B2 JP4216998B2 JP2000364741A JP2000364741A JP4216998B2 JP 4216998 B2 JP4216998 B2 JP 4216998B2 JP 2000364741 A JP2000364741 A JP 2000364741A JP 2000364741 A JP2000364741 A JP 2000364741A JP 4216998 B2 JP4216998 B2 JP 4216998B2
- Authority
- JP
- Japan
- Prior art keywords
- exchange resin
- resin
- cation exchange
- acidic cation
- strongly acidic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Treatment Of Water By Ion Exchange (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、デンプン糖液等の糖液の脱塩、脱色を行う糖液精製装置の再生法に関し、さらに詳述すると、強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂を用いた混床式糖液精製装置のイオン交換樹脂の再生法に関する。
【0002】
【従来の技術】
デンプンを酸又は酵素で加水分解すると、その分解条件によって種々のデンプン糖(デンプンを原料として製造された糖類の総称)が得られる。デンプンの加水分解工程は液化と糖化の2工程に分けられ、デンプンの糖化によってデンプン糖液が得られるが、このデンプン糖液中には様々な不純物が含まれている。そのため、これら不純物除去を目的として、デンプンの糖化工程の後にはデンプン糖液の精製が行われる。
【0003】
デンプン糖液を精製する場合、粉末活性炭濾過、粒状活性炭濾過、骨炭濾過等の精製工程の後処理として、イオン交換処理が行われている。イオン交換処理には、脱色を目的としたイオン交換処理と、脱塩を目的としたイオン交換処理がある。
【0004】
脱塩を目的としたイオン交換処理は、一般に、強酸性カチオン交換樹脂層と弱塩基性アニオン交換樹脂層を用いた複床式の前脱塩システムと、強酸性カチオン交換樹脂とII形強塩基性アニオン交換樹脂を用いた混床式の仕上げ脱塩システムとによって構成され、前脱塩システムで原液中の塩類、色素、その他の不純物の大部分を除去し、仕上げ脱塩システムで仕上げの脱塩、脱色、pH調整を行っている。この脱塩処理は工業的に広く使用されており、高純度の糖液が得られる点で、糖液の精製処理法として優れた方法である。これは、混床層を用いた仕上げ脱塩がうまく働いているためである。また、最近では、II形強塩基性アニオン交換樹脂に代えて、I形強塩基性アニオン交換樹脂を用いて混床を形成することも提案されている。
【0005】
上述の強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂を用いた混床式糖液精製装置(仕上げ脱塩システム)におけるイオン交換樹脂の再生は、従来、次のように行われている。まず、混床塔で糖液処理を終了した後、混床塔内で強酸性カチオン交換樹脂を下層に、強塩基性アニオン交換樹脂を上層に分離する。混合状態の両樹脂の分離は、逆洗によって両樹脂の比重差を利用して行う。そして、下層の強酸性カチオン交換樹脂に塩酸水溶液等の酸再生剤を通薬して強酸性カチオン交換樹脂の再生を行う。同様に、上層の強塩基性アニオン交換樹脂に水酸化ナトリウム水溶液等のアルカリ再生剤を通薬して強塩基性アニオン交換樹脂の再生を行う。一方の樹脂層への通薬時には他方の樹脂層に水を通水し、両樹脂の分離境界面に設置したコレクタより樹脂再生廃液及び上記水を排出する。また、両樹脂層に同時に再生剤を通薬する方法もある。両樹脂を再生した後は、これらを再び混合して混床を形成させる。
【0006】
【発明が解決しようとする課題】
前述したデンプン糖液のイオン交換処理では、後段の濃縮工程での着色や糖の分解を防ぐために、イオン交換処理後の処理糖液のpHが5〜6の範囲内にあることが望ましい。処理糖液のpHを決定するのは、強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂を用いた混床式の仕上げ脱塩システムであり、したがってこの仕上げ脱塩システムでは、処理糖液のpHが最適な範囲となるように強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂の樹脂量の比率を決定している。
【0007】
しかし、強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂を用いた混床式糖液精製装置(仕上げ脱塩システム)は、従来の再生法、すなわち強酸性カチオン交換樹脂に酸再生剤、強塩基性アニオン交換樹脂にアルカリ再生剤をそれぞれ通薬する方法によって再生処理を数サイクル行った場合に処理糖液のpHが酸性側に振れ、処理糖液のpHが5より低くなることがあった。
【0008】
上記現象が生じる理由は必ずしも明らかではないが、強塩基性アニオン交換樹脂は強酸性カチオン交換樹脂に比べて通液により汚染されやすいため、通液及び再生処理を数サイクル行った場合に、強塩基性アニオン交換樹脂によるアニオン交換速度が、強酸性カチオン交換樹脂によるカチオン交換速度に比べて相対的に低下し、その結果、糖液中のカチオンがアニオンに比べて相対的に多くイオン交換されて処理糖液のpHが酸性側に振れるのではないかと推測される。
【0009】
本発明は、前述した事情に鑑みてなされたもので、強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂を充填した混床式糖液精製装置の再生法であって、処理糖液のpHが酸性側に振れるのを防止して、処理糖液のpHを安定させることができる混床式糖液精製装置の再生法を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂を用いた混床式糖液精製装置の再生において、まず、強酸性カチオン交換樹脂及び強塩基性アニオン交換樹脂の両方にアルカリ再生剤を接触させて、強塩基性アニオン交換樹脂を再生するとともに、強酸性カチオン交換樹脂を塩形とした後、強酸性カチオン交換樹脂に該樹脂の総イオン交換容量未満のイオン交換容量に相当する当量の酸再生剤を接触させて強酸性カチオン交換樹脂を再生した場合、処理糖液のpHが酸性側に振れることが防止され、処理糖液のpHが安定することを見出した。
【0011】
本発明は、上記知見に基づいてなされたもので、強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂を充填した混床式糖液精製装置のイオン交換樹脂を再生するに当たり、強酸性カチオン交換樹脂及び強塩基性アニオン交換樹脂にアルカリ再生剤を接触させた後、強酸性カチオン交換樹脂に該樹脂の総イオン交換容量未満のイオン交換容量に相当する当量の酸再生剤を接触させることを特徴とする混床式糖液精製装置の再生法を提供する。
【0012】
前述したように、強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂を用いた混床式糖液精製装置では、通液及び再生処理を数サイクル行った場合にアニオン交換速度がカチオン交換速度に比べて相対的に低下し、その結果、処理糖液のpHが酸性側に振れるのではないかと考えられる。これに対し、本発明のようにアルカリ再生剤で強酸性カチオン交換樹脂を塩形とした後、強酸性カチオン交換樹脂にその総イオン交換容量未満のイオン交換容量に相当する当量の酸再生剤を接触させて強酸性カチオン交換樹脂を再生した場合、再生後には強酸性カチオン交換樹脂中にH形のものと塩形のものが含まれることになる。すなわち、再生後の強酸性カチオン交換樹脂は、一部をH形、残部を塩形とし、意図的に再生率を低下させる。
【0013】
本発明では、上記のように再生率を低下させることにより再生後の強酸性カチオン交換樹脂の脱塩性能を意図的に低下させ、通液及び再生処理を数サイクル行った場合でも、強塩基性アニオン交換樹脂によるアニオン交換速度が強酸性カチオン交換樹脂によるカチオン交換速度に比べて相対的に低下することが防止され、カチオン交換速度とアニオン交換速度のバランスが良くなり、その結果、処理糖液のpHが酸性側に振れることが防止され、処理糖液のpHが安定することができると考えられる。なお、本発明では再生後の強酸性カチオン交換樹脂の脱塩性能は低下するが、混床式処理であるため混床式糖液精製装置からリークするカチオン量は極微量であり、その後の工程に影響を及ぼすものではない。
【0014】
以下、本発明につきさらに詳しく説明する。本発明では、まず、強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂にアルカリ再生剤を通薬する。アルカリ再生剤の種類に限定はないが、水酸化ナトリウム水溶液を好適に用いることができる。また、強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂にアルカリ再生剤を通液する場合、両イオン交換樹脂を分離する前にアルカリ再生剤を通液してもよく、分離した後にアルカリ再生剤を通液してもよいが、通常は分離した後に通液する。
【0015】
本発明では、次に、強酸性カチオン交換樹脂に酸再生剤を通薬する。酸再生剤の種類に限定はないが、塩酸水溶液を好適に用いることができる。また、強酸性カチオン交換樹脂への酸再生剤の通液は、両イオン交換樹脂を分離した状態で行えばよい。
【0016】
この場合、本発明では、強酸性カチオン交換樹脂に該樹脂の総イオン交換容量未満のイオン交換容量に相当する当量の酸再生剤、好ましくは、強酸性カチオン交換樹脂の総イオン交換容量の30〜80%のイオン交換容量に相当する当量の酸再生剤を接触させる。上記数値が30%未満であると塩形の強酸性カチオン交換樹脂が多くなりすぎて強酸性カチオン交換樹脂から塩がリークすることがあり、80%を超えるとH形の強酸性カチオン交換樹脂が多くなりすぎて通薬及び再生処理を数サイクル行った場合に処理糖液のpHが酸性側に振れることがある。
【0017】
本発明を適用する混床式糖液精製装置の強酸性カチオン交換樹脂及び強塩基性アニオン交換樹脂の種類に限定はなく、処理の目的等に応じて適宜選択すればよい。具体的には、アンバーライト(登録商標、以下同じ)200CT、IR120B、IR124、IR118、ダイヤイオン(登録商標、以下同じ)SK1B、SK102、PK208、PK212(以上、強酸性カチオン交換樹脂)、アンバーライトIRA402BL、IRA400、IRA440B、IRA404、IRA900、IRA904、ダイヤイオンSA10A、SA11A、PA306、PA308(以上、I形強塩基性アニオン交換樹脂)、アンバーライトIRA411、IRA410、IRA910、ダイヤイオンSA20、PA418(以上、II形強塩基性アニオン交換樹脂)等を用いることができる。
【0018】
本発明を適用する混床式糖液精製装置は、強酸性カチオン交換樹脂の樹脂量と強塩基性アニオン交換樹脂の樹脂量との比を2:1〜1:4として混床を形成させたものであることが好ましい。これは、処理糖液のpHをより安定させるためである。すなわち、強酸性カチオン交換樹脂の樹脂量が上記範囲より多いと処理糖液のpHが酸性側になりすぎ、強塩基性アニオン交換樹脂の樹脂量が上記範囲より多いと処理糖液のpHがアルカリ側になりすぎる。
【0019】
また、本発明の再生法は、例えば下記糖液精製システム(A)、(B)における混床式糖液精製装置に対して好適に適用できるが、これらに限定されるものではない。
(A)強酸性カチオン交換樹脂を用いたカチオン交換装置と、弱塩基性アニオン交換樹脂を用いたアニオン交換装置と、強酸性カチオン交換樹脂及びI形又はII形の強塩基性アニオン交換樹脂を用いた混床式糖液精製装置とをこの順で設置した糖液精製システム。
(B)強酸性カチオン交換樹脂を用いたカチオン交換装置と、強酸性カチオン交換樹脂及び弱塩基性アニオン交換樹脂を用いた混床式糖液精製装置と、強酸性カチオン交換樹脂及びI形又はII形の強塩基性アニオン交換樹脂を用いた混床式糖液精製装置とをこの順で設置した糖液精製システム。本システムでは、後段の混床式糖液精製装置に本発明を適用する。
【0020】
本発明の再生法は、例えば、デンプン糖液を処理する混床式糖液精製装置の再生法として好適に使用されるが、これに限定されるものではなく、他の混床式糖液精製装置の再生法として使用することができる。
【0021】
【発明の実施の形態】
図1は本発明を適用する混床式糖液精製装置の一例を示す概略構成図である。本例の混床式糖液精製装置2の下部にはイオン交換樹脂(強酸性カチオン交換樹脂及び強塩基性アニオン交換樹脂)を支持するための支持床4が敷設されている。また、塔内の下部には酸再生剤を供給するディストリビュータ6が設置されているとともに、上層の強塩基性アニオン交換樹脂8と下層の強酸性カチオン交換樹脂10との分離境界面12には、強酸性カチオン交換樹脂の再生廃液を排出するコレクタ14が設置されている。さらに、図中16は原糖液導入管、18は処理糖液排出管を示す。
【0022】
本例の混床式糖液精製装置の再生を本発明の再生法によって行う手順は、例えば下記のとおりである。
(1)糖液処理を終了した後、原糖液導入管16から塔内に水を導入し、この水で混床層中の糖液を押し出し、糖液及び水は処理糖液排出管18から排出する。(2)糖液押し出し終了後、ディストリビュータ6から水を導入し、樹脂層を膨張流動させる逆洗を行う。これにより、両イオン交換樹脂をそれらの比重差を利用して分離する。逆洗終了後は両イオン交換樹脂を沈静させる。
(3)その後、原糖液導入管16から塔内にアルカリ再生剤を導入し、上層の強塩基性アニオン交換樹脂8及び下層の強酸性カチオン交換樹脂10にアルカリ再生剤を下向流で一括通薬する。アルカリ再生剤の再生廃液は処理糖液排出管18から排出する。これにより、強塩基性アニオン交換樹脂8を再生するとともに、強酸性カチオン交換樹脂10を塩形にする。なお、ディストリビュータを別途塔上部に設置し、このディストリビュータから塔内にアルカリ再生剤を導入してもよい。
(4)次に、アルカリ再生剤を水で押し出し、必要に応じて樹脂層を水洗した後、ディストリビュータ6より、下層の強酸性カチオン交換樹脂10に塩酸水溶液等の酸再生剤を上向流で通薬する。具体的には、強酸性カチオン交換樹脂10の総イオン交換容量未満、好ましくは総イオン交換容量の30〜80%のイオン交換容量に相当する当量の酸再生剤を通薬する。同時に、上層の強塩基性アニオン交換樹脂8に押さえ水を下向流で通水する。そして、樹脂再生廃液及び押さえ水をコレクタ14から排出する。これにより、強酸性カチオン交換樹脂10の再生が行われる。
(5)次いで、ディストリビュータ6から塔内に水を導入し、この水で強酸性カチオン交換樹脂10中の酸再生剤を押し出す。同時に、上層の強塩基性アニオン交換樹脂8に原糖液導入管16から押さえ水を下向流で通水する。そして、樹脂再生廃液及び押さえ水をコレクタ14から排出する。
(6)塔内に水を適当量入れた状態でディストリビュータ6から樹脂中に空気をバブリングすることにより、再生された両樹脂を再び混合して混床を形成させる。
【0023】
他の再生法としては、糖液処理を終了した後、両イオン交換樹脂の混床層に下部からアルカリ再生剤を上向流で通液して、樹脂層を膨張流動させながら両イオン交換樹脂を分離することにより、強塩基性アニオン交換樹脂を再生するとともに、強酸性カチオン交換樹脂を塩形とし、次いでアルカリ再生剤の流入を停止して両イオン交換樹脂を沈静させた後、樹脂層下部に分離された強酸性カチオン交換樹脂にその総イオン交換容量未満のイオン交換容量に相当する当量の酸再生剤を接触させる方法がある。この方法では前述の(2)及び(3)の工程を同時に行うことができる。
【0024】
【実施例】
以下、実施例により本発明をさらに詳細に説明するが、本発明は下記実施例に限定されるものではない。
【0025】
(実施例)
H形強酸性カチオン交換樹脂(アンバーライトIRA120B)3.5Lを充填したカラム(SC塔)、遊離塩基形弱塩基性アニオン交換樹脂(アンバーライトXE583)5.0Lを充填したカラム(WA塔)、H形強酸性カチオン交換樹脂(アンバーライト200CT)1.0L及びOH形II形強塩基性アニオン交換樹脂(アンバーライト411)2.0Lを混合充填したカラム(MB塔)の3塔をこの順で設置して糖液精製システムを構成した。使用したイオン交換樹脂はいずれも数サイクルの糖液精製処理に使用済みの樹脂である。また、MB塔には中間コレクタを設置した。
【0026】
デンプン糖液200Lを前記SC塔、WA塔、MB塔にこの順で通液した後、MB塔の糖液の押し出し、洗浄、再生を行った。再生は下記手順で行った。
▲1▼まず、上向流の逆洗水により樹脂層を50%展開し、強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂の分離を行った。
▲2▼次に、カラム上部より1.0mol/Lの水酸化ナトリウム水溶液4Lを両樹脂に下向流で一括通薬して、強塩基性アニオン交換樹脂を再生するとともに、強酸性カチオン交換樹脂をNa形とした。
▲3▼水で水酸化ナトリウム水溶液の押し出し及び両樹脂の洗浄を行った後、カラム下部より1mol/Lの塩酸水溶液950mLを強酸性カチオン交換樹脂に上向流で通薬して、強酸性カチオン交換樹脂を再生した。この時、上層の強塩基性アニオン交換樹脂に押さえ水を下向流で通水し、樹脂再生廃液及び押さえ水を中間コレクタから排出した。
▲4▼水による塩酸水溶液の押し出し及び強酸性カチオン交換樹脂の洗浄後、カラム下部より空気を供給して強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂との混合を行い、再び混床層を形成させた。
【0027】
ここで、上記例における強酸性カチオン交換樹脂の総イオン交換容量と酸再生剤使用量について説明する。イオン交換樹脂の総イオン交換容量は、樹脂1L当たり吸着することのできるイオンの当量であり、単位は[eq(当量)/L−樹脂]である。実施例のMB塔で用いた強酸性カチオン交換樹脂アンバーライト200CTは、総イオン交換容量が1.75eq/L−樹脂であるから、樹脂1L当たり一価のイオンであれば1.75mol吸着することができる。実施例で酸再生剤として用いた塩酸(HCl)は一価の酸となるので、1mol/L=1eq/Lとなる。1mol/Lの塩酸を用いてアンバーライト200CTを再生する場合、強酸性カチオン交換樹脂の総イオン交換容量に対する酸再生剤使用量(%)は、下記式(a)のようになる。
[塩酸濃度(eq/L)×塩酸使用量(L)]÷[樹脂量(L)×総交換容量(eq/L)]×100 ・・・(a)
したがって、本実施例の場合を式(a)に当てはめると以下のようになり、本実施例では強酸性カチオン交換樹脂にその総イオン交換容量の54%に相当する当量の酸再生剤を接触させたことになる。
(1eq/L×0.950L)÷(1L×1.75eq/L)×100=54%
【0028】
前述した再生工程が終了した後、デンプン糖液200LをSC塔、WA塔、MB塔にこの順で通液し、樹脂を再生する工程を5サイクル行った。処理糖液のpH及び電気伝導率の5サイクルでの平均値を表1に示した。
【0029】
(比較例)
実施例と同様の糖液精製システムを構成した。そして、デンプン糖液200LをSC塔、WA塔、MB塔にこの順で通液した後、MB塔の糖液の押し出し、洗浄、再生を行った。再生は下記手順により従来方法で行った。
▲1▼まず、上向流の逆洗水により樹脂層を50%展開し、強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂の分離を行った。
▲2▼次に、カラム上部より1.0mol/Lの水酸化ナトリウム水溶液4Lを強塩基性アニオン交換樹脂に下向流で通薬して、強塩基性アニオン交換樹脂を再生した。この時、下層の強酸性カチオン交換樹脂に押さえ水を上向流で通水し、樹脂再生廃液及び押さえ水を中間コレクタから排出した。
▲3▼水で水酸化ナトリウム水溶液の押し出し及び強塩基性アニオン交換樹脂の洗浄を行った後、カラム下部より1mol/Lの塩酸水溶液1.5Lを強酸性カチオン交換樹脂に上向流で通薬して、強酸性カチオン交換樹脂を再生した。この時、上層の強塩基性アニオン交換樹脂に押さえ水を下向流で通水し、樹脂再生廃液及び押さえ水を中間コレクタから排出した。
▲4▼水による塩酸水溶液の押し出し及び強酸性カチオン交換樹脂の洗浄後、カラム下部より空気を供給して強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂との混合を行い、再び混床層を形成させた。
【0030】
上記再生工程が終了した後、デンプン糖液200LをSC塔、WA塔、MB塔にこの順で通液し、樹脂を再生する工程を5サイクル行った。処理糖液のpH及び電気伝導率の5サイクルでの平均値を表1に示した。
【0031】
【表1】
【0032】
表1の結果より、本発明方法で再生を行った実施例は、処理糖液のpHが5〜6の範囲内で安定していることが確認された。これに対し、従来法で再生を行った比較例は、処理糖液のpHが酸性側に振れ、処理糖液のpHが5より低くなるものであった。
【0033】
【発明の効果】
以上のように、本発明に係る混床式糖液精製装置の再生法によれば、強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂を充填した混床式糖液精製装置の処理糖液のpHを安定させることができ、イオン交換処理の後段の濃縮工程での着色や糖の分解を防ぐことが可能である。
【図面の簡単な説明】
【図1】本発明を適用する混床式糖液精製装置の一例を示す概略構成図である。
【符号の説明】
2 混床式糖液精製装置
4 支持床
6 ディストリビュータ
8 強塩基性アニオン交換樹脂
10 強酸性カチオン交換樹脂
12 分離境界面
14 コレクタ
16 原糖液導入管
18 処理糖液排出管[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for regenerating a sugar solution purification apparatus for desalting and decolorizing a sugar solution such as starch sugar solution. More specifically, the present invention relates to a mixed bed type using a strongly acidic cation exchange resin and a strongly basic anion exchange resin. The present invention relates to a method for regenerating an ion exchange resin of a sugar liquid purification apparatus.
[0002]
[Prior art]
When starch is hydrolyzed with an acid or an enzyme, various starch sugars (a general term for sugars produced using starch as a raw material) are obtained depending on the degradation conditions. The starch hydrolysis process is divided into two steps, liquefaction and saccharification, and starch saccharification is obtained by saccharification of starch, and this starch saccharification contains various impurities. Therefore, for the purpose of removing these impurities, the starch sugar solution is purified after the starch saccharification step.
[0003]
When refine | purifying starch sugar liquid, the ion exchange process is performed as post-processing of refinement | purification processes, such as powder activated carbon filtration, granular activated carbon filtration, and bone charcoal filtration. The ion exchange treatment includes an ion exchange treatment for decolorization and an ion exchange treatment for desalting.
[0004]
In general, ion exchange treatment for desalination is carried out by using a multi-bed type pre-desalting system using a strongly acidic cation exchange resin layer and a weakly basic anion exchange resin layer, a strongly acidic cation exchange resin and a type II strong base. A mixed-bed final desalination system using anionic anion exchange resin. The pre-demineralization system removes most of the salts, pigments and other impurities in the stock solution, and the final desalination system removes the final desalting system. Salt, decolorization and pH adjustment are performed. This desalting treatment is widely used industrially and is an excellent method for purifying a sugar solution in that a high-purity sugar solution can be obtained. This is because finishing desalination using a mixed bed layer works well. Recently, it has also been proposed to form a mixed bed using a type I strongly basic anion exchange resin instead of a type II strongly basic anion exchange resin.
[0005]
The regeneration of the ion exchange resin in the mixed-bed type sugar liquid refining apparatus (finishing desalination system) using the above-mentioned strongly acidic cation exchange resin and strongly basic anion exchange resin has been conventionally performed as follows. First, after the sugar solution treatment is completed in the mixed bed tower, the strong acid cation exchange resin is separated into the lower layer and the strong base anion exchange resin is separated into the upper layer in the mixed bed tower. Separation of both resins in the mixed state is performed by backwashing using the difference in specific gravity of both resins. Then, an acid regenerating agent such as an aqueous hydrochloric acid solution is passed through the lower strong acid cation exchange resin to regenerate the strong acid cation exchange resin. Similarly, an alkali regenerator such as an aqueous sodium hydroxide solution is poured into the upper strong base anion exchange resin to regenerate the strong base anion exchange resin. When medicine is passed through one resin layer, water is passed through the other resin layer, and the resin regeneration waste liquid and the water are discharged from a collector installed at the separation boundary surface between the two resins. There is also a method in which a regenerant is poured into both resin layers simultaneously. After regenerating both resins, they are mixed again to form a mixed bed.
[0006]
[Problems to be solved by the invention]
In the ion exchange treatment of the starch sugar solution described above, the pH of the treated sugar solution after the ion exchange treatment is preferably in the range of 5 to 6 in order to prevent coloring and sugar decomposition in the subsequent concentration step. The pH of the treated sugar solution is determined by a mixed-bed final desalination system using a strongly acidic cation exchange resin and a strongly basic anion exchange resin. The ratio of the resin amount of the strongly acidic cation exchange resin and the strongly basic anion exchange resin is determined so that is within the optimum range.
[0007]
However, the mixed bed type sugar liquid refining equipment (finishing desalination system) using a strong acid cation exchange resin and a strong base anion exchange resin is a conventional regeneration method, that is, a strong acid cation exchange resin with an acid regenerant and a strong base. When the regeneration treatment was performed several times by a method in which an alkaline regenerant was passed through each of the functional anion exchange resins, the pH of the treated sugar solution moved to the acidic side, and the pH of the treated sugar solution was sometimes lower than 5.
[0008]
The reason why the above phenomenon occurs is not always clear, but strong base anion exchange resins are more easily contaminated by liquid passage than strong acid cation exchange resins. The anion exchange rate by the cationic anion exchange resin is relatively lower than the cation exchange rate by the strongly acidic cation exchange resin, and as a result, the cation in the sugar solution is relatively ion exchanged compared to the anion. It is presumed that the pH of the sugar solution may move to the acidic side.
[0009]
The present invention has been made in view of the above-described circumstances, and is a regeneration method for a mixed-bed sugar solution purifier filled with a strongly acidic cation exchange resin and a strongly basic anion exchange resin, wherein the pH of the treated sugar solution is An object of the present invention is to provide a method for regenerating a mixed bed type sugar solution refining device that can prevent the acid side from shaking and stabilize the pH of the treated sugar solution.
[0010]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have first developed a strongly acidic cation in the regeneration of a mixed bed type sugar solution purification apparatus using a strongly acidic cation exchange resin and a strongly basic anion exchange resin. An alkali regenerant is brought into contact with both the exchange resin and the strongly basic anion exchange resin to regenerate the strongly basic anion exchange resin, and after making the strongly acidic cation exchange resin into a salt form, When a strongly acidic cation exchange resin is regenerated by contacting an acid regenerating agent equivalent to an ion exchange capacity less than the total ion exchange capacity of the resin, the pH of the processed sugar solution is prevented from shifting to the acidic side, and the processed sugar It was found that the pH of the liquid was stable.
[0011]
The present invention has been made on the basis of the above knowledge, and in regenerating the ion exchange resin of the mixed bed type sugar liquid purification apparatus filled with the strong acid cation exchange resin and the strongly basic anion exchange resin, the strong acid cation exchange resin And an alkali regenerator is brought into contact with the strongly basic anion exchange resin, and then an acid regenerator equivalent to an ion exchange capacity less than the total ion exchange capacity of the resin is brought into contact with the strongly acidic cation exchange resin. Provided is a method for regenerating a mixed-bed sugar solution purifier.
[0012]
As described above, in the mixed bed type sugar liquid refining apparatus using a strongly acidic cation exchange resin and a strongly basic anion exchange resin, the anion exchange rate is higher than the cation exchange rate when several cycles of liquid passing and regeneration treatment are performed. As a result, it is considered that the pH of the treated sugar solution may shift to the acidic side. On the other hand, after making a strongly acidic cation exchange resin into a salt form with an alkali regenerating agent as in the present invention, an acid regenerating agent equivalent to an ion exchange capacity less than the total ion exchange capacity is added to the strongly acidic cation exchange resin. When the strongly acidic cation exchange resin is regenerated by contacting it, the strongly acidic cation exchange resin contains an H-form salt and a salt-form after the regeneration. That is, the strongly acidic cation exchange resin after regeneration is partly in the H form and the remainder in the salt form, and the regeneration rate is intentionally reduced.
[0013]
In the present invention, the desalting performance of the strongly acidic cation exchange resin after regeneration is intentionally reduced by reducing the regeneration rate as described above, and even when several cycles of liquid passing and regeneration treatment are performed, strong basicity is achieved. It is prevented that the anion exchange rate by the anion exchange resin is relatively lower than the cation exchange rate by the strongly acidic cation exchange resin, and the balance between the cation exchange rate and the anion exchange rate is improved. It is considered that the pH is prevented from swinging to the acidic side, and the pH of the treated sugar solution can be stabilized. In the present invention, the desalting performance of the strongly acidic cation exchange resin after regeneration is lowered, but since it is a mixed bed type treatment, the amount of cation leaking from the mixed bed type sugar liquid refining device is extremely small, and the subsequent steps It does not affect.
[0014]
Hereinafter, the present invention will be described in more detail. In the present invention, first, an alkali regenerant is passed through a strongly acidic cation exchange resin and a strongly basic anion exchange resin. Although there is no limitation in the kind of alkali regenerator, sodium hydroxide aqueous solution can be used suitably. In addition, when an alkali regenerator is passed through a strongly acidic cation exchange resin and a strongly basic anion exchange resin, the alkali regenerator may be passed before separating both ion exchange resins, and the alkali regenerator after separation. The liquid may be passed through, but is usually passed after separation.
[0015]
In the present invention, next, an acid regenerant is passed through the strongly acidic cation exchange resin. Although there is no limitation in the kind of acid regenerating agent, hydrochloric acid aqueous solution can be used suitably. Further, the acid regenerating agent may be passed through the strongly acidic cation exchange resin in a state where both ion exchange resins are separated.
[0016]
In this case, in the present invention, an acid regenerant equivalent to an ion exchange capacity less than the total ion exchange capacity of the resin, preferably 30 to 30% of the total ion exchange capacity of the strong acid cation exchange resin is used. An equivalent amount of acid regenerant corresponding to an ion exchange capacity of 80% is contacted. If the above value is less than 30%, the salt-type strongly acidic cation exchange resin may increase so much that the salt may leak from the strong acid cation exchange resin. When the drug passing and the regeneration treatment are performed for several cycles due to excessive increase, the pH of the treated sugar solution may shift to the acidic side.
[0017]
There is no limitation on the type of the strongly acidic cation exchange resin and the strongly basic anion exchange resin in the mixed bed type sugar solution refining apparatus to which the present invention is applied, and it may be appropriately selected according to the purpose of the treatment. Specifically, Amberlite (registered trademark, hereinafter the same) 200CT, IR120B, IR124, IR118, Diaion (registered trademark, the same applies hereinafter) SK1B, SK102, PK208, PK212 (above, strongly acidic cation exchange resin), Amberlite IRA402BL, IRA400, IRA440B, IRA404, IRA900, IRA904, Diaion SA10A, SA11A, PA306, PA308 (above, I-type strongly basic anion exchange resin), Amberlite IRA411, IRA410, IRA910, Diaion SA20, PA418 (above, II type strongly basic anion exchange resin) can be used.
[0018]
In the mixed bed type sugar liquid refining apparatus to which the present invention is applied, the mixed bed is formed by setting the ratio of the resin amount of the strongly acidic cation exchange resin and the resin amount of the strongly basic anion exchange resin to 2: 1 to 1: 4. It is preferable. This is to make the pH of the treated sugar solution more stable. That is, if the amount of the strongly acidic cation exchange resin is larger than the above range, the pH of the treated sugar solution becomes too acidic, and if the amount of the strongly basic anion exchange resin is larger than the above range, the pH of the treated sugar solution becomes alkaline. Too side.
[0019]
In addition, the regeneration method of the present invention can be suitably applied to, for example, the mixed-bed type sugar liquid purification apparatus in the following sugar liquid purification systems (A) and (B), but is not limited thereto.
(A) Using a cation exchange apparatus using a strongly acidic cation exchange resin, an anion exchange apparatus using a weakly basic anion exchange resin, a strong acid cation exchange resin, and a strongly basic anion exchange resin of type I or II A sugar solution refining system in which the mixed-bed sugar solution refining device was installed in this order.
(B) a cation exchange apparatus using a strong acid cation exchange resin, a mixed bed type sugar liquid purification apparatus using a strong acid cation exchange resin and a weakly basic anion exchange resin, a strong acid cation exchange resin and an I form or II A sugar solution purification system in which a mixed bed type sugar solution purification apparatus using a strongly basic anion exchange resin is installed in this order. In the present system, the present invention is applied to a mixed-bed type sugar solution purification apparatus at the subsequent stage.
[0020]
The regeneration method of the present invention is preferably used as, for example, a regeneration method of a mixed bed type sugar solution refining apparatus for processing starch sugar solution, but is not limited thereto, and other mixed bed type sugar solution purification is used. It can be used as a device regeneration method.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a schematic configuration diagram showing an example of a mixed bed type sugar liquid purification apparatus to which the present invention is applied. A support bed 4 for supporting ion exchange resins (strongly acidic cation exchange resin and strong basic anion exchange resin) is laid at the bottom of the mixed bed type sugar
[0022]
The procedure for regenerating the mixed-bed sugar solution purifying apparatus of this example by the regenerating method of the present invention is as follows, for example.
(1) After the sugar solution treatment is completed, water is introduced into the tower from the raw sugar
(3) Thereafter, an alkali regenerant is introduced into the column from the raw sugar
(4) Next, the alkali regenerator is extruded with water, and the resin layer is washed with water if necessary. Then, an acid regenerator such as a hydrochloric acid aqueous solution is applied upward from the distributor 6 to the strongly acidic
(5) Next, water is introduced into the tower from the distributor 6, and the acid regenerant in the strongly acidic
(6) By bubbling air from the distributor 6 into the resin with an appropriate amount of water in the tower, the regenerated both resins are mixed again to form a mixed bed.
[0023]
As another regeneration method, after completion of the sugar solution treatment, an alkali regenerant is passed through the mixed bed layer of both ion exchange resins from the bottom in an upward flow, and both ion exchange resins are expanded and flown through the resin layer. After regenerating the strongly basic anion exchange resin, the strongly acidic cation exchange resin is made into a salt form, and then the inflow of the alkaline regenerant is stopped to calm both ion exchange resins, and then the lower part of the resin layer There is a method in which an acid regenerant equivalent to an ion exchange capacity less than the total ion exchange capacity is brought into contact with the strongly acidic cation exchange resin separated in (1). In this method, the above-described steps (2) and (3) can be performed simultaneously.
[0024]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to the following Example.
[0025]
(Example)
Column (SC tower) packed with 3.5 L of H-form strongly acidic cation exchange resin (Amberlite IRA120B), column (WA tower) packed with 5.0 L of free base form weakly basic anion exchange resin (Amberlite XE583), Three columns of the column (MB column) packed with 1.0 L of H-form strongly acidic cation exchange resin (Amberlite 200CT) and 2.0 L of OH Form II strongly basic anion exchange resin (Amberlite 411) in this order Installed and configured a sugar liquid purification system. The ion exchange resin used is a resin that has been used for several cycles of sugar liquid purification treatment. In addition, an intermediate collector was installed in the MB tower.
[0026]
After 200 L of starch sugar solution was passed through the SC tower, WA tower, and MB tower in this order, the sugar solution in the MB tower was extruded, washed, and regenerated. Regeneration was performed according to the following procedure.
(1) First, 50% of the resin layer was developed by backwash water in an upward flow to separate the strongly acidic cation exchange resin and the strongly basic anion exchange resin.
(2) Next, 4 L of a 1.0 mol / L sodium hydroxide aqueous solution is passed downward through both resins from the top of the column to regenerate the strongly basic anion exchange resin, and at the same time, strongly acidic cation exchange resin Was in Na form.
(3) After extruding an aqueous sodium hydroxide solution with water and washing both resins, 950 mL of a 1 mol / L aqueous hydrochloric acid solution was passed upwardly into the strongly acidic cation exchange resin from the bottom of the column, and the strongly acidic cation The exchange resin was regenerated. At this time, pressing water was passed through the upper strong base anion exchange resin in a downward flow, and the resin regeneration waste liquid and pressing water were discharged from the intermediate collector.
(4) After extruding the aqueous hydrochloric acid solution with water and washing the strongly acidic cation exchange resin, air is supplied from the bottom of the column to mix the strongly acidic cation exchange resin and the strongly basic anion exchange resin, and again the mixed bed layer is formed. Formed.
[0027]
Here, the total ion exchange capacity and the acid regenerant usage amount of the strongly acidic cation exchange resin in the above example will be described. The total ion exchange capacity of the ion exchange resin is the equivalent of ions that can be adsorbed per liter of the resin, and the unit is [eq (equivalent) / L-resin]. The strongly acidic cation exchange resin Amberlite 200CT used in the MB tower of the example has a total ion exchange capacity of 1.75 eq / L-resin, so 1.75 mol of monovalent ions are adsorbed per liter of resin. Can do. Since hydrochloric acid (HCl) used as an acid regenerant in the examples is a monovalent acid, 1 mol / L = 1 eq / L. When Amberlite 200CT is regenerated using 1 mol / L hydrochloric acid, the amount of acid regenerant used (%) with respect to the total ion exchange capacity of the strongly acidic cation exchange resin is represented by the following formula (a).
[Concentration of hydrochloric acid (eq / L) × Amount of hydrochloric acid used (L)] ÷ [Amount of resin (L) × Total exchange capacity (eq / L)] × 100 (a)
Accordingly, when the case of this example is applied to the formula (a), the result is as follows. In this example, an acid regenerant equivalent to 54% of the total ion exchange capacity is brought into contact with the strongly acidic cation exchange resin. That's right.
(1 eq / L × 0.950 L) ÷ (1 L × 1.75 eq / L) × 100 = 54%
[0028]
After the regeneration step described above was completed, 200 L of starch sugar solution was passed through the SC tower, WA tower, and MB tower in this order to regenerate the resin for 5 cycles. Table 1 shows the average values of the pH and electrical conductivity of the treated sugar solution in 5 cycles.
[0029]
(Comparative example)
A sugar solution purification system similar to that of the example was constructed. After 200 L of starch sugar solution was passed through the SC tower, WA tower, and MB tower in this order, the sugar solution in the MB tower was extruded, washed, and regenerated. Regeneration was performed by the conventional method according to the following procedure.
(1) First, 50% of the resin layer was developed by backwash water in an upward flow to separate the strongly acidic cation exchange resin and the strongly basic anion exchange resin.
(2) Next, 4 L of 1.0 mol / L sodium hydroxide aqueous solution was passed through the strong basic anion exchange resin downward from the top of the column to regenerate the strong basic anion exchange resin. At this time, pressurizing water was passed upward through the strongly acidic cation exchange resin in the lower layer, and the resin regeneration waste liquid and pressurizing water were discharged from the intermediate collector.
(3) After extruding the sodium hydroxide aqueous solution with water and washing the strongly basic anion exchange resin, 1.5 L of 1 mol / L hydrochloric acid aqueous solution is passed upwardly into the strongly acidic cation exchange resin from the bottom of the column. Thus, the strongly acidic cation exchange resin was regenerated. At this time, pressing water was passed through the upper strong base anion exchange resin in a downward flow, and the resin regeneration waste liquid and pressing water were discharged from the intermediate collector.
(4) After extruding the aqueous hydrochloric acid solution with water and washing the strongly acidic cation exchange resin, air is supplied from the bottom of the column to mix the strongly acidic cation exchange resin and the strongly basic anion exchange resin, and again the mixed bed layer is formed. Formed.
[0030]
After the regeneration step, the starch sugar solution 200L was passed through the SC tower, WA tower, and MB tower in this order to regenerate the resin for 5 cycles. Table 1 shows the average values of the pH and electrical conductivity of the treated sugar solution in 5 cycles.
[0031]
[Table 1]
[0032]
From the results shown in Table 1, it was confirmed that in the examples where the regeneration was performed by the method of the present invention, the pH of the treated sugar solution was stable within the range of 5-6. On the other hand, in the comparative example in which regeneration was performed by the conventional method, the pH of the treated sugar solution was shifted to the acidic side, and the pH of the treated sugar solution was lower than 5.
[0033]
【The invention's effect】
As described above, according to the regeneration method of the mixed bed type sugar solution purifying apparatus according to the present invention, the treated sugar solution of the mixed bed type sugar solution purifying apparatus filled with the strongly acidic cation exchange resin and the strongly basic anion exchange resin is used. The pH can be stabilized, and it is possible to prevent coloration and sugar decomposition in the subsequent concentration step of the ion exchange treatment.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a schematic configuration diagram showing an example of a mixed bed type sugar liquid purification apparatus to which the present invention is applied.
[Explanation of symbols]
2 Mixed bed type sugar solution refining device 4 Support bed 6
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000364741A JP4216998B2 (en) | 2000-11-30 | 2000-11-30 | Regeneration method of mixed-bed type sugar liquid purification equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000364741A JP4216998B2 (en) | 2000-11-30 | 2000-11-30 | Regeneration method of mixed-bed type sugar liquid purification equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002165600A JP2002165600A (en) | 2002-06-11 |
JP4216998B2 true JP4216998B2 (en) | 2009-01-28 |
Family
ID=18835628
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000364741A Expired - Lifetime JP4216998B2 (en) | 2000-11-30 | 2000-11-30 | Regeneration method of mixed-bed type sugar liquid purification equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4216998B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4593830B2 (en) * | 2001-05-31 | 2010-12-08 | オルガノ株式会社 | Mixed-bed type sugar solution refining device, regenerating method of mixed-bed type sugar solution purifying device, and purification method |
JP2016093110A (en) * | 2014-11-13 | 2016-05-26 | 三菱レイヨンアクア・ソリューションズ株式会社 | Manufacturing method of starch sugar-containing liquid |
-
2000
- 2000-11-30 JP JP2000364741A patent/JP4216998B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2002165600A (en) | 2002-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4210403B2 (en) | Regeneration method of mixed-bed type sugar liquid purification equipment | |
JP6265750B2 (en) | Method and apparatus for purifying sucrose solution | |
JP4216998B2 (en) | Regeneration method of mixed-bed type sugar liquid purification equipment | |
JPH10137751A (en) | Ion exchange method and ion exchange column used for ion exchange method | |
JP4347491B2 (en) | Regeneration method of mixed-bed starch sugar liquid purification equipment | |
JP3765653B2 (en) | Separation method of mixed resin in mixed bed type ion exchange resin tower and regeneration method of mixed bed type sucrose purification device | |
JP4192557B2 (en) | Purification method of sugar solution | |
JP3592452B2 (en) | Mixed-bed sugar liquid purification equipment | |
JP4245745B2 (en) | Mixed bed type sugar liquid purification equipment | |
JP3913379B2 (en) | Regeneration method of mixed bed type ion exchange equipment | |
JP2940651B2 (en) | Pure water production equipment | |
JP4294203B2 (en) | Regeneration method of sugar liquid purification equipment | |
JP3638624B2 (en) | Regeneration method of mixed bed type sucrose solution purification equipment | |
JPH0577400B2 (en) | ||
JP3160435B2 (en) | Pure water production apparatus and method for regenerating the same | |
JP4210408B2 (en) | Regeneration method of strongly acidic cation exchange resin tower of sugar liquid purification equipment | |
JP3352571B2 (en) | Method for regenerating strongly basic anion exchange resin in sucrose liquid purification equipment | |
JP2845489B2 (en) | Regeneration method of mixed-bed sucrose liquid purification equipment | |
JP2742975B2 (en) | Regeneration method of ion exchange device | |
JP3311875B2 (en) | Sugar liquid desalination and purification equipment | |
JPH1170000A (en) | Apparatus for purifying sucrose syrup and regeneration of sucrose syrup purification apparatus | |
JP4756911B2 (en) | Boron recovery method | |
JP2004041054A (en) | Method for purifying sugar solution | |
JP2000184900A (en) | Method and device for purifying starch sugar solution | |
JPS6133625B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070711 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20070711 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080430 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081021 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081107 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4216998 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111114 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121114 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121114 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131114 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |