Nothing Special   »   [go: up one dir, main page]

JP4206083B2 - Argon production method using cryogenic air separator - Google Patents

Argon production method using cryogenic air separator Download PDF

Info

Publication number
JP4206083B2
JP4206083B2 JP2005179579A JP2005179579A JP4206083B2 JP 4206083 B2 JP4206083 B2 JP 4206083B2 JP 2005179579 A JP2005179579 A JP 2005179579A JP 2005179579 A JP2005179579 A JP 2005179579A JP 4206083 B2 JP4206083 B2 JP 4206083B2
Authority
JP
Japan
Prior art keywords
argon
crude argon
crude
liquid
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005179579A
Other languages
Japanese (ja)
Other versions
JP2006349322A (en
Inventor
斉 浅岡
泰 富阪
Original Assignee
神鋼エア・ウォーター・クライオプラント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 神鋼エア・ウォーター・クライオプラント株式会社 filed Critical 神鋼エア・ウォーター・クライオプラント株式会社
Priority to JP2005179579A priority Critical patent/JP4206083B2/en
Publication of JP2006349322A publication Critical patent/JP2006349322A/en
Application granted granted Critical
Publication of JP4206083B2 publication Critical patent/JP4206083B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04084Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04096Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of argon or argon enriched stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • F25J3/04206Division of the main heat exchange line in consecutive sections having different functions including a so-called "auxiliary vaporiser" for vaporising and producing a gaseous product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/0423Subcooling of liquid process streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04721Producing pure argon, e.g. recovered from a crude argon column
    • F25J3/04733Producing pure argon, e.g. recovered from a crude argon column using a hybrid system, e.g. using adsorption, permeation or catalytic reaction
    • F25J3/04739Producing pure argon, e.g. recovered from a crude argon column using a hybrid system, e.g. using adsorption, permeation or catalytic reaction in combination with an auxiliary pure argon column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/58Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being argon or crude argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/40One fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/58One fluid being argon or crude argon

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

本発明は、空気を窒素、酸素に分離する深冷空気分離装置によるアルゴン製造方法に係り、より詳しくは、より低コストで効果的に製品液体アルゴンを製造することを可能ならしめる深冷空気分離装置によるアルゴン製造方法に関する。   The present invention relates to an argon production method using a cryogenic air separation device that separates air into nitrogen and oxygen, and more particularly, a cryogenic air separation that makes it possible to produce product liquid argon efficiently at a lower cost. The present invention relates to an argon production method using an apparatus.

先ず、アルゴン製造方法を実施する従来例に係る一般的な深冷空気分離装置を、その模式的系統説明図の図8を参照しながら説明する。即ち、この従来例に係る一般的な深冷空気分離装置は、原料空気を圧縮する原料空気圧縮機51と、この原料空気圧縮機51により圧縮された空気を10〜40℃程度に冷却する予冷ユニット52と、この予冷ユニット52で冷却された原料空気中の二酸化炭素および水分を除去する吸着塔ユニット53と、この吸着塔ユニット53で前処理された空気を液化温度近傍まで冷却する主熱交換器54とを備えている。   First, a general cryogenic air separation apparatus according to a conventional example for carrying out an argon production method will be described with reference to FIG. 8 of a schematic system explanatory view thereof. That is, the general cryogenic air separation apparatus according to this conventional example includes a raw material air compressor 51 that compresses raw material air, and a precooling that cools the air compressed by the raw material air compressor 51 to about 10 to 40 ° C. A unit 52, an adsorption tower unit 53 for removing carbon dioxide and moisture in the raw air cooled by the precooling unit 52, and main heat exchange for cooling the air pretreated by the adsorption tower unit 53 to near the liquefaction temperature. Instrument 54.

さらに、主熱交換器54から送込まれた低温空気中の窒素、酸素等を精留分離する、底部に主凝縮器55cを備えた上塔55aおよび下塔55bからなる複式精留塔55と、上塔55aから導入されたアルゴンを含む蒸気中のアルゴンを濃縮する粗アルゴン塔56と、この粗アルゴン塔56から取り出され、主熱交換器54を経由した粗アルゴンを0.2〜0.4MPaG程度の圧力に圧縮する粗アルゴン圧縮機57を備えている。さらに、粗アルゴン圧縮機57により圧縮された粗アルゴン中の酸素を除去して変成アルゴンにするアルゴン精製装置58と、このアルゴン精製装置58により精製された変成アルゴンを精製する精製アルゴン塔59と、装置全体を低温に維持するための寒冷を発生させる膨張タービン60と、これらに付帯する諸設備を備えている。   Furthermore, a double rectification column 55 comprising an upper column 55a and a lower column 55b each having a main condenser 55c at the bottom for rectifying and separating nitrogen, oxygen and the like in the low-temperature air sent from the main heat exchanger 54; The crude argon tower 56 for concentrating the argon in the vapor containing argon introduced from the upper tower 55a, and the crude argon taken out from the crude argon tower 56 and passing through the main heat exchanger 54 are 0.2-0. A crude argon compressor 57 that compresses to a pressure of about 4 MPaG is provided. Furthermore, an argon purification device 58 that removes oxygen in the crude argon compressed by the crude argon compressor 57 to convert it into modified argon, a purified argon column 59 that purifies the modified argon purified by the argon purification device 58, An expansion turbine 60 that generates cold for maintaining the entire apparatus at a low temperature, and various facilities attached thereto are provided.

上記従来例に係る深冷空気分離装置によれば、通常、下記のようにしてアルゴンが製造される。即ち、空気中に約0.93%含まれているアルゴンは、複式精留塔55の上塔55aの中〜下部における酸素中に濃縮される。この位置から8〜12%程度のアルゴンを含むガスが抜出され、粗アルゴン塔56の底部に供給される。粗アルゴン塔56に供給されたガスは、塔内を上昇する間に流下してくる液と接触してアルゴンが次第に濃縮され、粗アルゴン塔56の頂部では95%以上のアルゴンを含むガス(残部は少量の酸素と窒素である。)となる。このガスの大部分は粗アルゴン凝縮器56aに供給され、凝縮されて粗アルゴン塔56の下部に還流される。残部は、ガス状で抜出されて主熱交換器54で常温まで加温されると共に、粗アルゴン圧縮機57により圧縮されてアルゴン精製装置58に供給される。そして、このアルゴン精製装置58において粗アルゴン中に含まれている酸素が除去される。   According to the cryogenic air separation apparatus according to the conventional example, argon is usually produced as follows. That is, the argon contained in the air in an amount of about 0.93% is concentrated in oxygen in the middle to the lower part of the upper column 55a of the double rectification column 55. A gas containing about 8 to 12% argon is extracted from this position and supplied to the bottom of the crude argon column 56. The gas supplied to the crude argon column 56 comes into contact with the liquid flowing down while rising in the column, and the argon is gradually concentrated. At the top of the crude argon column 56, a gas containing 95% or more of argon (the remainder) Is a small amount of oxygen and nitrogen.) Most of this gas is supplied to the crude argon condenser 56 a, condensed and refluxed to the lower part of the crude argon column 56. The remainder is withdrawn in the form of gas, heated to room temperature in the main heat exchanger 54, compressed by the crude argon compressor 57, and supplied to the argon purifier 58. Then, oxygen contained in the crude argon is removed in the argon purifier 58.

粗アルゴン中に含まれている酸素は、例えば粗アルゴン中に水素を混入して加熱し、触媒により酸素と水素を化学的に酸化反応させ、これにより生成した水分を吸着剤で吸着して除去するといったような除去方法によっている。酸素が除去された変成アルゴンは、変成アルゴン供給ライン63を流れ、再び主熱交換器54を経て冷却され、精製アルゴン塔59の中部に導入される。そして、この精製アルゴン塔59における精留によって残留水素・窒素等が除去され、この精製アルゴン塔59の底部から高純度の製品液体アルゴンとして抜出される。なお、上塔55aの頂部から過冷却器64、主熱交換器54を経由するラインは窒素製品を抜出すGN排出ライン65であり、また上塔55aの下部から主熱交換器54を経由するラインは酸素製品を抜出すGO排出ライン66である。   Oxygen contained in the crude argon is heated by mixing hydrogen in the crude argon, for example, and oxygen and hydrogen are chemically oxidized by the catalyst, and the generated moisture is adsorbed by the adsorbent and removed. It depends on the removal method such as. The modified argon from which oxygen has been removed flows through the modified argon supply line 63, is cooled again through the main heat exchanger 54, and is introduced into the middle of the purified argon column 59. Residual hydrogen, nitrogen, and the like are removed by rectification in the purified argon column 59 and extracted from the bottom of the purified argon column 59 as high-purity product liquid argon. The line passing through the supercooler 64 and the main heat exchanger 54 from the top of the upper tower 55a is a GN discharge line 65 for extracting nitrogen products, and passes through the main heat exchanger 54 from the lower part of the upper tower 55a. The line is a GO discharge line 66 for extracting oxygen products.

ところで、粗アルゴン中の酸素濃度は、粗アルゴン塔内に装備される精留段数に依存する。即ち、装備された精留段数が多くなるほど、粗アルゴン中の酸素濃度は小さくなる。
ひいては、酸素を除去するアルゴン精製装置に供給される水素量も少なくなるため経済的である。しかしながら、粗アルゴン塔の粗アルゴン抜出し口における粗アルゴンの圧力は、粗アルゴン塔に装備された精留段数が多くなるほど低下するため、ついには粗アルゴンを送出するのに十分な圧力が得られなくなる。
Incidentally, the oxygen concentration in the crude argon depends on the number of rectification stages installed in the crude argon column. That is, as the number of equipped rectification stages increases, the oxygen concentration in the crude argon decreases.
As a result, the amount of hydrogen supplied to the argon purifier for removing oxygen is reduced, which is economical. However, since the pressure of the crude argon at the crude argon outlet of the crude argon column decreases as the number of rectification stages equipped in the crude argon column increases, it is finally impossible to obtain a pressure sufficient to send the crude argon. .

ところで、通常の精留皿を用いた粗アルゴン塔で得られる粗アルゴン中の酸素濃度は2〜5%である。そこで、通常の精留皿に代えて、1段当たりの圧力損失がより低い規則充填物を用いて、粗アルゴン塔により多くの精留段数を装備することにより、より低い酸素濃度の粗アルゴンを得るようにしたものがある(例えば、特許文献1参照。)。
特許第2516680号
By the way, the oxygen concentration in the crude argon obtained by the crude argon tower using a normal rectifying dish is 2 to 5%. Therefore, instead of a normal rectifying dish, using a regular packing with a lower pressure loss per stage, and equipped with a larger number of rectifying stages in the crude argon column, crude argon with a lower oxygen concentration can be obtained. There is what was obtained (for example, refer to Patent Document 1).
Japanese Patent No. 2516680

深冷空気分離装置における運転コストの殆どを占めるのは、原料空気圧縮機51の駆動力に係るエネルギー代であって、この原料空気圧縮機の駆動力は、一般に下記のように決まる。即ち、深冷空気分離装置では、複式精留塔55の上塔55aの上部に廃窒素抜出しライン61が設けられており、この廃窒素抜出しライン61で抜出された廃窒素は、主熱交換器54を経て加温される。そして、加温された廃窒素の一部は吸着塔ユニット53の吸着剤再生に活用され、残りは大気中に放出される。従って、上塔55aの廃窒素抜出し位置の圧力を、吸着塔ユニット53、主熱交換器54、および廃窒素抜出しライン61の圧力損失の和に大気圧を加えた圧力に設定したときに、原料空気圧縮機51の所要動力が最小となる。一方、粗アルゴン塔56の粗アルゴン抜出し口56bの圧力は、廃窒素抜出し口の圧力に、上塔55aの廃窒素抜出し口と粗アルゴン塔底部へのガス抜出し口の間に設けられた精留皿の圧力損失を加え、粗アルゴン塔内に設けられた精留皿の圧力損失を差し引いた圧力となる。   An energy cost related to the driving force of the raw material air compressor 51 occupies most of the operating cost in the cryogenic air separation device, and the driving force of the raw material air compressor is generally determined as follows. That is, in the cryogenic air separation apparatus, a waste nitrogen extraction line 61 is provided in the upper part of the upper column 55a of the double rectification column 55, and the waste nitrogen extracted in the waste nitrogen extraction line 61 is subjected to main heat exchange. It is heated through the vessel 54. A part of the heated waste nitrogen is utilized for adsorbent regeneration of the adsorption tower unit 53, and the rest is released into the atmosphere. Therefore, when the pressure at the waste nitrogen extraction position of the upper tower 55a is set to a pressure obtained by adding atmospheric pressure to the sum of the pressure losses of the adsorption tower unit 53, the main heat exchanger 54, and the waste nitrogen extraction line 61, the raw material The required power of the air compressor 51 is minimized. On the other hand, the pressure of the crude argon outlet 56b of the crude argon column 56 is equal to the pressure of the waste nitrogen outlet, and the rectification provided between the waste nitrogen outlet of the upper tower 55a and the gas outlet to the bottom of the crude argon tower. The pressure loss of the dish is added, and the pressure is obtained by subtracting the pressure loss of the rectifying dish provided in the crude argon column.

粗アルゴン塔56内では、主としてアルゴンと酸素の分離のための精留が行われるが、アルゴンと酸素の蒸気圧の圧力差が小さいため、それらの分離には多数の精留段数を必要とする。一方、先に述べた理由により粗アルゴン抜出し口56bにおける圧力は精留段数の増加に比例して降下し、粗アルゴン抜出し口56bでは、大気圧よりも僅かに高い圧力まで低下する。粗アルゴン抜出し口56bに接続された粗アルゴン抜出しライン62を介して抜出された粗アルゴンは、常温まで加温された後、アルゴン精製装置58で必要とされる圧力まで加圧する必要があるが、それは一般的に粗アルゴン圧縮機57により行われている。   In the crude argon column 56, rectification is mainly performed for separation of argon and oxygen. However, since the pressure difference between the vapor pressures of argon and oxygen is small, a large number of rectification stages are required for the separation. . On the other hand, for the reasons described above, the pressure at the crude argon outlet 56b drops in proportion to the increase in the number of rectifying stages, and at the crude argon outlet 56b, it drops to a pressure slightly higher than atmospheric pressure. The crude argon extracted through the crude argon extraction line 62 connected to the crude argon extraction port 56b needs to be heated to room temperature and then pressurized to the pressure required by the argon purifier 58. It is generally performed by a crude argon compressor 57.

従来例に係る深冷空気分離装置により高純度製品液体アルゴンを製造するために、粗アルゴン抜出し口56bから粗アルゴンを抜出すためには、上記のとおり、粗アルゴン抜出し口56bにおける粗アルゴンの圧力を大気圧以上にする必要があるから、粗アルゴン塔における精留段数に制限がある。また、その粗アルゴンを加圧するための粗アルゴン圧縮機57が必要である。   In order to extract crude argon from the crude argon outlet 56b in order to produce high purity product liquid argon by the cryogenic air separator according to the conventional example, the pressure of the crude argon at the crude argon outlet 56b is as described above. Therefore, the number of rectification stages in the crude argon column is limited. Moreover, the rough | crude argon compressor 57 for pressurizing the rough | crude argon is required.

従って、本発明の目的は、粗アルゴン圧縮機等の付帯設備を設けるまでもなく、高圧の粗アルゴンをアルゴン精製装置、精製アルゴン塔に供給することを可能ならしめる深冷空気分離装置によるアルゴン製造方法を提供することである。   Accordingly, an object of the present invention is to produce argon by a cryogenic air separation device that makes it possible to supply high-pressure crude argon to an argon purification device and a purified argon column without providing auxiliary equipment such as a crude argon compressor. Is to provide a method.

発明者等は、粗アルゴン塔の粗アルゴン抜出し口から粗アルゴンを液状で、つまり液体粗アルゴンとして抜出す構成にすれば、粗アルゴン抜出し口における粗アルゴンの圧力が低くても確実に抜出すことができ、また粗アルゴン抜出し口から抜出した液体粗アルゴンを、粗アルゴン抜出し口と主熱交換器との間の高低差に起因する液体粗アルゴンの液頭で加圧することができると考えた。そして、液体粗アルゴンを主熱交換器で蒸発させることができるか否かを検討し、主熱交換器で液体粗アルゴンを蒸発し得ることを知見して、本発明を具現するに至ったものである。   The inventors of the present invention can reliably extract the crude argon from the crude argon extraction port of the crude argon column in a liquid state, that is, as liquid crude argon, even if the pressure of the crude argon is low. Further, it was considered that the liquid crude argon extracted from the crude argon outlet can be pressurized with the liquid crude argon head caused by the difference in height between the crude argon outlet and the main heat exchanger. Then, whether or not the liquid crude argon can be evaporated by the main heat exchanger, and knowing that the liquid crude argon can be evaporated by the main heat exchanger, the present invention has been realized. It is.

上記目的を達成するために、本発明の請求項1に係る深冷空気分離装置によるアルゴン製造方法が採用した手段は、原料空気を圧縮する原料空気圧縮機と、この原料空気圧縮機から出た圧縮空気を10〜40℃程度の温度に冷却する予冷ユニットと、この予冷ユニットで冷却された圧縮空気中の二酸化炭素および水分を除去する吸着塔ユニットと、この吸着塔ユニットで精製された原料空気をその液化近傍の温度まで冷却する主熱交換器と、原料空気中の窒素・酸素を精留分離する複式精留塔と、この複式精留塔の上塔から流入するアルゴンを含む酸素中のアルゴンを濃縮する粗アルゴン塔と、粗アルゴン中の酸素を除去するアルゴン精製装置と、酸素が除去された変成アルゴンから残留水素・窒素等を除去して製品液体アルゴンとする精製アルゴン塔とを備えた深冷空気分離装置により製品液体アルゴンを製造するアルゴン製造方法において、前記粗アルゴン塔から抜出した粗アルゴンを前記アルゴン精製装置に導入するに際して、前記粗アルゴン塔の粗アルゴン抜出し口から液体粗アルゴンを抜出すと共に、粗アルゴン抜出しラインを介して前記主熱交換器に導入して蒸発させ、蒸発した粗アルゴンガスを常温まで加温することを特徴とするものである。 In order to achieve the above object, the means adopted by the argon production method using the cryogenic air separator according to claim 1 of the present invention is a raw material air compressor for compressing raw material air and the raw material air compressor. A pre-cooling unit that cools the compressed air to a temperature of about 10 to 40 ° C., an adsorption tower unit that removes carbon dioxide and moisture in the compressed air cooled by the pre-cooling unit, and a raw material air purified by the adsorption tower unit A main heat exchanger that cools the liquid to a temperature near its liquefaction, a double rectification column that rectifies and separates nitrogen and oxygen in the raw air, and an oxygen-containing oxygen that flows from the upper tower of the double rectification column A crude argon tower for concentrating argon, an argon purification device for removing oxygen in the crude argon, and purification of the product liquid argon by removing residual hydrogen and nitrogen from the modified argon from which oxygen has been removed. In an argon method for manufacturing a product liquid argon by cryogenic air separation apparatus having a argon column, when introducing the crude argon withdrawn from the crude argon column to the argon purification apparatus, withdrawn crude argon of the crude argon column Liquid crude argon is extracted from the mouth, introduced into the main heat exchanger through a crude argon extraction line and evaporated, and the evaporated crude argon gas is heated to room temperature.

また、本発明の請求項2に係る深冷空気分離装置によるアルゴン製造方法が採用した手段は、請求項1に記載の深冷空気分離装置によるアルゴン製造方法において、前記粗アルゴン塔から抜出した液体粗アルゴンを、前記粗アルゴン抜出しラインを介して前記主熱交換器に導入する前に、液体窒素を冷媒として用いる冷却器で過冷却することを特徴とするものである。   Moreover, the means which the argon manufacturing method by the cryogenic air separator which concerns on Claim 2 of this invention employ | adopted is the liquid extracted from the said crude argon tower in the argon manufacturing method by the cryogenic air separator of Claim 1. Before introducing the crude argon into the main heat exchanger via the crude argon extraction line, it is supercooled by a cooler using liquid nitrogen as a refrigerant.

本発明の請求項1に係る深冷空気分離装置によるアルゴン製造方法によれば、粗アルゴン塔の地上より30〜40m程度の位置に設けられている粗アルゴン抜出し口から粗アルゴンを液状で抜出し、抜出した液体粗アルゴンを、この液体粗アルゴンの液頭で加圧することができる。そして、抜出されて加圧された液体粗アルゴンを主熱交換器に導入して蒸発させて、蒸発した高圧の粗アルゴンをアルゴン精製装置で酸素を除去した後、精製アルゴン塔に供給することができる。従って、従来例に係る深冷空気分離装置では必要であった粗アルゴン圧縮機が不要になるから、深冷空気分離装置に係る設備コストおよびランニングコストの低減が可能になる。   According to the argon production method by the cryogenic air separator according to claim 1 of the present invention, crude argon is extracted in liquid form from the crude argon outlet provided at a position of about 30 to 40 m from the ground of the crude argon tower. The liquid crude argon extracted can be pressurized with the liquid head of the liquid crude argon. Then, the liquid crude argon extracted and pressurized is introduced into the main heat exchanger and evaporated, and the evaporated high-pressure crude argon is removed with an argon purifier, and then supplied to the purified argon tower. Can do. Therefore, since the crude argon compressor which was necessary in the cryogenic air separation apparatus according to the conventional example is not necessary, it is possible to reduce the equipment cost and the running cost related to the cryogenic air separation apparatus.

また、本発明の請求項1に係る深冷空気分離装置によるアルゴン製造方法によれば、粗アルゴンを液状で抜出すのであるから、従来例に係る深冷空気分離装置によるアルゴン製造方法に比較して、粗アルゴン抜出し口における粗アルゴンの圧力を低圧にすることができる。従って、粗アルゴン塔に装備することができる精留段数の増加により粗アルゴン中の酸素含有量を低下させることができる。粗アルゴン中の酸素含有量の低下に伴い、アルゴン精製装置に供給する水素量の低減が可能になるため、高純度の製品液体アルゴンの製造コストの低減が可能になる。   Moreover, according to the argon manufacturing method by the cryogenic air separation apparatus which concerns on Claim 1 of this invention, since crude argon is extracted in a liquid state, compared with the argon manufacturing method by the cryogenic air separation apparatus which concerns on a prior art example. Thus, the pressure of the crude argon at the crude argon outlet can be reduced. Therefore, the oxygen content in the crude argon can be reduced by increasing the number of rectification stages that can be equipped in the crude argon column. As the oxygen content in the crude argon decreases, the amount of hydrogen supplied to the argon purification device can be reduced, and thus the production cost of high-purity product liquid argon can be reduced.

本発明の請求項2に係る深冷空気分離装置によるアルゴン製造方法によれば、上記のとおり、粗アルゴン塔の粗アルゴン抜出し口から粗アルゴンを液体粗アルゴンとして抜出せば、この液体粗アルゴンは自身の液頭で加圧されるが、粗アルゴン抜出しライン内を通過している間の入熱によって部分的に気化するとスムーズに加圧することができなくなる。
しかしながら、液体粗アルゴンは液体窒素を冷媒として用いる冷却器で過冷却されて主熱交換器に導入されるのであるから、液体粗アルゴンの気化が防止され、液体粗アルゴンの加圧に支障が生じるようなことがない。
According to the method for producing argon by the cryogenic air separation apparatus according to claim 2 of the present invention, as described above, if crude argon is extracted as liquid crude argon from the crude argon outlet of the crude argon tower, the liquid crude argon is Pressurization is performed with its own liquid head, but if it is partially vaporized by heat input while passing through the crude argon extraction line, it cannot be pressurized smoothly.
However, since the liquid crude argon is supercooled by a cooler using liquid nitrogen as a refrigerant and introduced into the main heat exchanger, vaporization of the liquid crude argon is prevented, and pressurization of the liquid crude argon is hindered. There is no such thing.

以下、本発明の形態1に係り、アルゴン製造方法を実施する深冷空気分離装置を、添付図面を参照しながら説明する。図1は深冷空気分離装置の模式的系統図、図2は図1における主熱交換器の拡大図、図3は粗アルゴン液を蒸発させる主熱交換器内の温度分布説明図である。ところで、図3における縦軸は主熱交換器の低温端から高温端までの軸方向熱交換量(×10cal/h)であり、横軸は主熱交換器の低温端から高温端までの温度分布(℃)である。なお、アルゴン製造方法を実施する深冷空気分離装置によれば、製品窒素、製品酸素を得ることができるが、目的は高純度製品アルゴンを製造することであるから、製品窒素、製品酸素の製造方法についての説明は割愛する。 Hereinafter, a cryogenic air separation apparatus for carrying out an argon production method according to Embodiment 1 of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic system diagram of the cryogenic air separation device, FIG. 2 is an enlarged view of the main heat exchanger in FIG. 1, and FIG. 3 is an explanatory diagram of temperature distribution in the main heat exchanger that evaporates the crude argon liquid. By the way, the vertical axis in FIG. 3 is the axial heat exchange amount (× 10 6 cal / h) from the low temperature end to the high temperature end of the main heat exchanger, and the horizontal axis is from the low temperature end to the high temperature end of the main heat exchanger. Temperature distribution (° C.). In addition, according to the cryogenic air separation apparatus that performs the argon production method, product nitrogen and product oxygen can be obtained, but since the purpose is to produce high-purity product argon, production of product nitrogen and product oxygen I'll omit the explanation of the method.

本発明のアルゴン製造方法を実施する深冷空気分離装置は、図1に示すように、原料空気供給ライン1を備えている。この原料空気供給ライン1には、図示しないフィルタを介して吸引された原料空気を約0.5MPaGまで圧縮する原料空気圧縮機1a、圧縮された圧縮空気を10〜40℃程度に冷却する予冷ユニット1b、冷却された圧縮空気中の二酸化炭素および水分を交互に除去する、並列配設されてなる一対の吸着塔からなる吸着塔ユニット1cが介装されている。そしてこの原料空気供給ライン1から第1原料空気供給ライン3と第2原料空気供給ライン4とが分岐している。   The cryogenic air separation apparatus for carrying out the argon production method of the present invention includes a raw material air supply line 1 as shown in FIG. The raw air supply line 1 includes a raw air compressor 1a for compressing raw air sucked through a filter (not shown) to about 0.5 MPaG, and a precooling unit for cooling the compressed air to about 10 to 40 ° C. 1b, an adsorption tower unit 1c comprising a pair of adsorption towers arranged in parallel to alternately remove carbon dioxide and moisture in the cooled compressed air is interposed. A first raw material air supply line 3 and a second raw material air supply line 4 are branched from the raw material air supply line 1.

前記第1原料空気供給ライン3は、前記主熱交換器2を介して、底部に主凝縮器5cを備えた上塔5aと、下塔5bとからなる複式精留塔5の前記上塔5aの上下方向の中部に連通している。即ち、吸着塔ユニット1cで二酸化炭素および水分が除去された圧縮空気の一部が、この第1原料空気供給ライン3を介して複式精留塔5の上塔5aの上下方向の中部に導入されるようになっている。この第1原料空気供給ライン3の分岐部と主熱交換器2の間に、原料空気を圧縮するブロワ3aと、このブロワ3aで圧縮された原料空気を冷却するクーラ3bとが介装されている。さらに、この第1原料空気供給ライン3の主熱交換器2と上塔5aとの間に膨張タービン3cが設けられており、深冷空気分離装置の主要部を低温に維持するための寒冷を発生した後に、複式精留塔5の上塔5aに供給されるように構成されている。   The first raw material air supply line 3 is connected to the upper column 5a of the double rectifying column 5 including an upper column 5a having a main condenser 5c at the bottom and a lower column 5b via the main heat exchanger 2. It communicates with the middle part of the vertical direction. That is, a part of the compressed air from which carbon dioxide and moisture have been removed by the adsorption tower unit 1c is introduced into the middle in the vertical direction of the upper tower 5a of the double rectification tower 5 through the first raw material air supply line 3. It has become so. Between the branch portion of the first raw material air supply line 3 and the main heat exchanger 2, a blower 3a for compressing the raw material air and a cooler 3b for cooling the raw material air compressed by the blower 3a are interposed. Yes. Further, an expansion turbine 3c is provided between the main heat exchanger 2 and the upper tower 5a of the first raw material air supply line 3, and the cold for maintaining the main part of the deep air separation device at a low temperature. After being generated, the rectifying column 5 is supplied to the upper column 5a.

また、前記第2原料空気供給ライン4は、前記主熱交換器2を介して複式精留塔5の下塔5bの底部に連通している。つまり、吸着塔ユニット1cで二酸化炭素および水分が除去された圧縮空気の残部は第2原料空気供給ライン4を流れ、主熱交換器2で空気の液化温度近傍まで冷却された後、下塔5bの底部に導入されるようになっている。主熱交換器2で冷却されて下塔5bの底部に導入された冷却空気は、この下塔5b内を上昇する間に、流下してくる液体と接触して次第に窒素リッチとなり、下塔5bの頂部では高純度窒素蒸気となる。この高純度窒素蒸気は、上塔5aの底部に設置されている主凝縮器5cに流入し、冷却液化して下塔5bの還流液として供給される。   The second raw material air supply line 4 communicates with the bottom of the lower column 5 b of the double rectification column 5 via the main heat exchanger 2. That is, the remainder of the compressed air from which carbon dioxide and moisture have been removed by the adsorption tower unit 1c flows through the second raw material air supply line 4 and is cooled to the vicinity of the air liquefaction temperature by the main heat exchanger 2, and then the lower tower 5b. It is designed to be introduced at the bottom. The cooling air cooled by the main heat exchanger 2 and introduced into the bottom of the lower tower 5b comes into contact with the flowing liquid and gradually becomes rich in nitrogen while rising in the lower tower 5b. It becomes high-purity nitrogen vapor at the top. This high-purity nitrogen vapor flows into the main condenser 5c installed at the bottom of the upper tower 5a, is cooled and liquefied, and is supplied as the reflux liquid of the lower tower 5b.

一方、複式精留塔5の下塔5b内を流下する液は、流下する間に次第に酸素リッチとなって、下塔5bの底部では酸素濃度が35〜40%程度の酸素リッチの液体空気となる。
この酸素リッチの液体空気は下塔5bの底部から液体空気抜出しライン6を介して抜出され、過冷却器7で冷却された後に2分される。一部の酸素リッチの液体空気は、粗アルゴン塔8内に設けられた粗アルゴン凝縮器8aに供給されて蒸発し、上塔5aの上下方向の中部に供給される。残部の酸素リッチの液体空気は、液体のまま減圧されて上塔5aの上下方向の中部に供給される。
On the other hand, the liquid flowing down in the lower column 5b of the double rectifying column 5 gradually becomes oxygen-rich while flowing down, and at the bottom of the lower column 5b, oxygen-rich liquid air having an oxygen concentration of about 35 to 40% and Become.
This oxygen-rich liquid air is extracted from the bottom of the lower tower 5b through the liquid air extraction line 6, and after being cooled by the supercooler 7, is divided into two. A part of the oxygen-rich liquid air is supplied to a crude argon condenser 8a provided in the crude argon column 8 to evaporate, and is supplied to the middle in the vertical direction of the upper column 5a. The remaining oxygen-rich liquid air is decompressed while being in a liquid state and supplied to the middle part in the vertical direction of the upper tower 5a.

空気中に約0.93%含まれているアルゴンは、複式精留塔5の上塔5aの中部から下部の間の酸素中において8〜12%程度の濃度になるまで濃縮される。そして、複式精留塔5の上塔5aの中部から蒸気抜出しライン5dを介して抜出されたアルゴンを含む蒸気は粗アルゴン塔8の底部に供給される。この粗アルゴン塔8の底部に供給されたアルゴンを含む蒸気は、この粗アルゴン塔8内を上昇する間に、流下してくる液体と接触して次第にアルゴンが濃縮され、この粗アルゴン塔8の頂部では95〜99.8%(残部は少量の酸素と窒素である。)のアルゴンを含む蒸気となる。   Argon contained in the air at about 0.93% is concentrated to a concentration of about 8 to 12% in oxygen between the middle part and the lower part of the upper column 5a of the double rectification column 5. The vapor containing argon extracted from the middle portion of the upper column 5 a of the double rectification column 5 through the vapor extraction line 5 d is supplied to the bottom of the crude argon column 8. While the argon-containing vapor supplied to the bottom of the crude argon column 8 ascends in the crude argon column 8, the vapor comes into contact with the flowing liquid and gradually concentrates the argon. At the top, the steam is 95-99.8% argon (the balance is a small amount of oxygen and nitrogen).

95〜99.8%のアルゴンを含む蒸気は粗アルゴン凝縮器8aに供給され、冷却・凝縮されて液体粗アルゴンとなり、粗アルゴン塔8の下部(粗アルゴン凝縮器8aの下側)に還流する。粗アルゴン塔8の下部に還流した液体粗アルゴンの一部は、粗アルゴン抜出し口8bから主熱交換器2の低温端に連通する粗アルゴン抜出しライン9を介して抜出され、この粗アルゴン抜出しライン9を流れている間に、この液体粗アルゴンの液頭によって加圧される。粗アルゴン抜出し口8bの位置と、主熱交換器2の低温端との間の落差が、例えば30mであると仮定した場合、液体粗アルゴンは約0.42MPaGまで加圧される。約0.42MPaGという液体粗アルゴンの圧力は、その後、主熱交換器2における常温になるまでの蒸発・加温、アルゴン精製装置10における圧力損失、変成アルゴン供給ライン11の圧力損失、精製アルゴン塔12における精留操作による圧力損失等の全てを賄うのに十分な圧力である。   The vapor containing 95 to 99.8% argon is supplied to the crude argon condenser 8a, cooled and condensed into liquid crude argon, and refluxed to the lower part of the crude argon column 8 (below the crude argon condenser 8a). . A part of the liquid crude argon refluxed to the lower part of the crude argon column 8 is extracted from the crude argon extraction port 8b through a crude argon extraction line 9 communicating with the low temperature end of the main heat exchanger 2, and this crude argon extraction is performed. While flowing through line 9, the liquid crude argon head is pressurized. Assuming that the drop between the position of the crude argon outlet 8b and the low temperature end of the main heat exchanger 2 is, for example, 30 m, the liquid crude argon is pressurized to about 0.42 MPaG. The liquid crude argon pressure of about 0.42 MPaG is then evaporated and heated to the normal temperature in the main heat exchanger 2, the pressure loss in the argon purification device 10, the pressure loss in the modified argon supply line 11, the purified argon tower The pressure is sufficient to cover all of the pressure loss and the like due to the rectifying operation in No. 12.

なお、従来の液体アルゴンの一般的な蒸発方法説明図の図4に示すように、加圧された液体アルゴンは、昇圧圧縮機で圧縮した空気、または図示しない圧縮機で圧縮した窒素が供給される液体アルゴン蒸発器32に供給して蒸発させ、そして主熱交換器2を介してアルゴン精製装置10に供給するのが一般的である。ところが、アルゴンの沸点は空気や窒素よりも高温であるため、空気や窒素を用いてアルゴンを蒸発させる場合には、空気や窒素の圧力をより高圧にする必要がある。因みに、アルゴンの圧力と、この圧力の液体アルゴンを蒸発させるのに必要な空気の圧力の概要を、下記表1に示す。

Figure 0004206083
In addition, as shown in FIG. 4 of the general explanatory diagram of the conventional evaporation method of liquid argon, the pressurized liquid argon is supplied with air compressed by a pressurizing compressor or nitrogen compressed by a compressor (not shown). In general, it is supplied to the liquid argon evaporator 32 and evaporated, and then supplied to the argon purification apparatus 10 via the main heat exchanger 2. However, since the boiling point of argon is higher than that of air or nitrogen, when air or nitrogen is used to evaporate argon, it is necessary to increase the pressure of air or nitrogen. Incidentally, an outline of the pressure of argon and the pressure of air necessary for evaporating liquid argon at this pressure is shown in Table 1 below.
Figure 0004206083

上記表1から良く理解されるように、約0.42MPaGまで加圧された液体粗アルゴンを蒸発させるには、1.0MPaG以上の圧力の空気が必要である。しかしながら、本発明のアルゴンの製造に用いる一般的な深冷空気分離装置では、このような高圧の空気は存在しない。従って、このような蒸発方法を採用するためには、約0.5MPaGの原料空気を1.0MPaG以上に圧縮する昇圧圧縮機が必要である。   As well understood from Table 1 above, air with a pressure of 1.0 MPaG or more is required to evaporate liquid crude argon pressurized to about 0.42 MPaG. However, such a high-pressure air does not exist in a general cryogenic air separation apparatus used for producing argon of the present invention. Therefore, in order to employ such an evaporation method, a booster compressor that compresses about 0.5 MPaG of raw material air to 1.0 MPaG or more is necessary.

ところが、本発明の形態1に係る深冷空気分離装置によるアルゴン製造方法では、通常、気体間の熱交換のみに用いられる主熱交換器2に、敢えて液体粗アルゴンを導入することにより高圧空気を用いることなく液体粗アルゴンを蒸発させるものである。これは、主熱交換器2には液体粗アルゴンの50〜200倍程度の原料空気が高温側流体として導入されるようになっており、この原料空気の顕熱を利用することにより、約0.5MPaGの空気で蒸発させることが可能になるからである。   However, in the argon production method using the cryogenic air separation device according to the first embodiment of the present invention, high pressure air is usually introduced by intentionally introducing liquid crude argon into the main heat exchanger 2 used only for heat exchange between gases. Liquid crude argon is evaporated without using it. This is because the raw air, which is about 50 to 200 times larger than the liquid crude argon, is introduced into the main heat exchanger 2 as a high-temperature side fluid. This is because it is possible to evaporate with 5 MPaG of air.

主熱交換器2を流れる各流体は図2に示すとおりであり、液体粗アルゴンを主熱交換器2で蒸発させる場合の、主熱交換器2内の温度分布の一例は、図3に示すとおりである。
各温度レベルにおいて2〜8℃の温度差があり、液体粗アルゴンを十分蒸発させることができる。図3に示す各流体の流量、圧力は下記のとおりである。
(1) 空気A(G.Air) :8,500Nm/h,0.5MPaG
(2) 空気B(T.Air) :1,500Nm/h,0.7MPaG
(3) 窒素(GN) :2,000Nm/h,0.02MPaG
(4) 酸素(GO) :2,000Nm/h,0.03MPaG
(5) 廃窒素(WN) :5,950Nm/h,0.02MPaG
(6) 液体粗アルゴン(Cr.Ar): 50Nm/h,0.3MPaG
(7) 変成アルゴン(Co.Ar) : 50Nm/h,0.2MPaG
Each fluid flowing through the main heat exchanger 2 is as shown in FIG. 2, and an example of the temperature distribution in the main heat exchanger 2 when liquid crude argon is evaporated by the main heat exchanger 2 is shown in FIG. It is as follows.
There is a temperature difference of 2-8 ° C. at each temperature level, and the liquid crude argon can be sufficiently evaporated. The flow rate and pressure of each fluid shown in FIG. 3 are as follows.
(1) Air A (G. Air): 8,500 Nm 3 / h, 0.5 MPaG
(2) Air B (T. Air): 1,500 Nm 3 / h, 0.7 MPaG
(3) Nitrogen (GN): 2,000 Nm 3 / h, 0.02 MPaG
(4) Oxygen (GO): 2,000 Nm 3 / h, 0.03 MPaG
(5) Waste nitrogen (WN): 5,950 Nm 3 / h, 0.02 MPaG
(6) Liquid crude argon (Cr.Ar): 50 Nm 3 / h, 0.3 MPaG
(7) Modified argon (Co.Ar): 50 Nm 3 / h, 0.2 MPaG

粗アルゴン塔8のアルゴン抜出し口8bから抜出されて粗アルゴン抜出しライン9を流れる間に加圧された液体粗アルゴンは、上記条件の各流体が流れている主熱交換器2における熱交換により蒸発して気体粗アルゴンとなる。そして、主熱交換器2により常温になるまで加温された気体粗アルゴンはアルゴン精製装置10に供給され、気体粗アルゴン中の酸素分が除去される。次いで、酸素分が除去された変成アルゴンは、変成アルゴン供給ライン11を流れ、再度主熱交換器2に通されてその液化温度近傍まで冷却され、精製アルゴン塔12の中部に供給される。この精製アルゴン塔12において、供給された変成アルゴンから窒素等が除去され、高純度の製品液体アルゴンとなり、精製アルゴン塔12の底部から抜出されて顧客に払い出される。   The liquid crude argon that has been extracted from the argon outlet 8b of the crude argon column 8 and flows through the crude argon extraction line 9 is subjected to heat exchange in the main heat exchanger 2 in which the fluids of the above conditions are flowing. Evaporates to gaseous crude argon. And the gaseous crude argon heated to the normal temperature by the main heat exchanger 2 is supplied to the argon purification apparatus 10, and the oxygen content in gaseous gaseous argon is removed. Next, the modified argon from which oxygen content has been removed flows through the modified argon supply line 11, is again passed through the main heat exchanger 2, is cooled to the vicinity of its liquefaction temperature, and is supplied to the center of the purified argon column 12. In the purified argon column 12, nitrogen and the like are removed from the supplied modified argon to obtain high-purity product liquid argon, which is extracted from the bottom of the purified argon column 12 and delivered to the customer.

なお、複式精留塔5の上塔5aの頂部から過冷却器7、および主熱交換器2を経由するラインは窒素製品を抜出すGN排出ライン13であり、複式精留塔5の上塔5aの下部から主熱交換器2を経由するラインは酸素製品を抜出すためのGO排出ライン14である。
また、複式精留塔5の上塔5aの上部には、一般的な従来例と同様に、廃窒素抜出しライン15が接続されており、この廃窒素抜出しライン15を介し抜出された廃窒素は、主熱交換器2を経て加温される。そして、加温された廃窒素の一部は吸着塔ユニット1cの吸着剤再生に活用され、残りは大気中に放出される。
The line passing through the supercooler 7 and the main heat exchanger 2 from the top of the upper column 5a of the double rectification column 5 is a GN discharge line 13 for extracting nitrogen products, and the upper column of the double rectification column 5 A line passing through the main heat exchanger 2 from the lower part of 5a is a GO discharge line 14 for extracting an oxygen product.
In addition, a waste nitrogen extraction line 15 is connected to the upper portion of the upper column 5a of the double rectification column 5 in the same manner as in a general conventional example, and the waste nitrogen extracted through the waste nitrogen extraction line 15 is connected. Is heated via the main heat exchanger 2. A part of the heated waste nitrogen is utilized for adsorbent regeneration of the adsorption tower unit 1c, and the rest is released into the atmosphere.

以下、本発明の形態1に係る深冷空気分離装置によるアルゴン製造方法の作用態様を説明する。即ち、本発明の形態1に係る深冷空気分離装置によるアルゴン製造方法の場合には、上記のとおり、粗アルゴン塔8の地上より30〜40m程度の高位置に設けられている粗アルゴン抜出し口8bから粗アルゴンを液体粗アルゴンとして抜出して主熱交換器2に導入するものである。   Hereinafter, an operation mode of the argon production method by the cryogenic air separation device according to the first embodiment of the present invention will be described. That is, in the case of the argon production method using the cryogenic air separation device according to the first embodiment of the present invention, as described above, the crude argon outlet provided at a position about 30 to 40 m above the ground of the crude argon tower 8. Crude argon is extracted from 8b as liquid crude argon and introduced into the main heat exchanger 2.

従って、粗アルゴン抜出し口8bにおける粗アルゴンの圧力が低圧であっても、粗アルゴン抜出し口8bから液体粗アルゴンを確実に抜出すことができ、しかも抜出した液体粗アルゴンを自身の液頭により加圧することができる。そして、抜出されて加圧された液体粗アルゴンを主熱交換器2に導入して蒸発させると共に、常温まで加温してアルゴン精製装置10に導入し、このアルゴン精製装置10で高圧の粗アルゴンガスから酸素を除去した後、精製アルゴン塔12に供給することができる。従って、本発明の形態1に係る深冷空気分離装置によるアルゴン製造方法によれば、従来例に係る深冷空気分離装置では必要であった粗アルゴン圧縮機が不要であるから、深冷空気分離装置に係る設備コストおよびランニングコストの低減が可能になるという優れた効果を得ることができる。   Therefore, even if the pressure of the crude argon at the crude argon outlet 8b is low, the liquid crude argon can be reliably extracted from the crude argon outlet 8b, and the liquid crude argon extracted can be added by its own liquid head. Can be pressed. Then, the liquid crude argon extracted and pressurized is introduced into the main heat exchanger 2 and evaporated, heated to room temperature and introduced into the argon purifier 10. After removing oxygen from the argon gas, it can be supplied to the purified argon column 12. Therefore, according to the method for producing argon by the cryogenic air separation device according to the first embodiment of the present invention, the crude argon compressor that is necessary in the conventional cryogenic air separation device is not required. It is possible to obtain an excellent effect that the equipment cost and running cost related to the apparatus can be reduced.

また、本発明の形態1に係る深冷空気分離装置によるアルゴン製造方法によれば、上記のとおり、粗アルゴンを液体粗アルゴンとして抜出すのであるから、従来例に係る深冷空気分離装置によるアルゴン製造方法に比較して、粗アルゴン抜出し口8bにおける粗アルゴンの圧力を低圧にすることができる。従って、粗アルゴン塔に装備することができる精留段数の増加により粗アルゴン中の酸素含有量を低下させることができる。粗アルゴン中の酸素含有量を低下に伴い、アルゴン精製装置10に供給する水素量の低減が可能になるため、高純度の製品液体アルゴンの製造コストの低減が可能になるという優れた効果を得ることができる。   Moreover, according to the argon manufacturing method by the cryogenic air separator which concerns on form 1 of this invention, since crude argon is extracted as liquid crude argon as above-mentioned, argon by the cryogenic air separator which concerns on a prior art example Compared with the manufacturing method, the pressure of the crude argon at the crude argon outlet 8b can be reduced. Therefore, the oxygen content in the crude argon can be reduced by increasing the number of rectification stages that can be equipped in the crude argon column. As the oxygen content in the crude argon is lowered, the amount of hydrogen supplied to the argon purification apparatus 10 can be reduced, so that it is possible to reduce the production cost of high-purity product liquid argon. be able to.

本発明の形態2に係り、アルゴン製造方法を実施する深冷空気分離装置を、添付図面を参照しながら説明する。図5は深冷空気分離装置の模式的系統図である。なお、本形態2が上記形態1と相違するところは、粗アルゴン抜出しラインに冷却器が介装されたところにあって、それ以外は上記形態1と全く同構成であるから、同一のものに同一符号を付してその相違する点について説明する。   A cryogenic air separation apparatus according to the second embodiment of the present invention that performs an argon production method will be described with reference to the accompanying drawings. FIG. 5 is a schematic system diagram of the cryogenic air separation device. The difference between the present embodiment 2 and the above embodiment 1 is that a cooler is interposed in the crude argon extraction line, and other than that, the configuration is exactly the same as that of the above embodiment 1, so The same reference numerals are assigned and different points will be described.

即ち、本発明の形態2に係る深冷空気分離装置は、粗アルゴン塔8の粗アルゴン抜出し口8bから主熱交換器2を経由してアルゴン精製装置10に連通する粗アルゴン抜出しライン9の前記粗アルゴン抜出し口8bの下流側に液体窒素を冷媒として用いる冷却器16を介装したものである。   That is, the cryogenic air separation apparatus according to the second embodiment of the present invention is configured so that the crude argon extraction line 9 communicates with the argon purification apparatus 10 via the main heat exchanger 2 from the crude argon extraction port 8b of the crude argon column 8. A cooler 16 using liquid nitrogen as a refrigerant is interposed downstream of the crude argon outlet 8b.

従って、本発明の形態2に係る深冷空気分離装置によるアルゴン製造方法によれば、粗アルゴン圧縮機が不要であるから、上記形態1と同様の効果を得ることができるのに加えて後述する効果も得ることができる。即ち、本発明の形態2に係る深冷空気分離装置によるアルゴン製造方法によれば、上記のとおり、粗アルゴン塔8の粗アルゴン抜出し口8bから粗アルゴンを液状で抜出して粗アルゴン液を加圧するが、粗アルゴン抜出しライン9内を通過している間の入熱により部分的に気化するとスムーズに加圧することができなくなる。しかしながら、液状で抜出された液体粗アルゴンは液体窒素を冷媒として用いる冷却器16で過冷却されて主熱交換器2に導入されるのであるから、液体粗アルゴンの気化が防止され、液体粗アルゴンの加圧に支障が生じるようなことがない。   Therefore, according to the argon production method by the cryogenic air separation device according to the second embodiment of the present invention, since a crude argon compressor is unnecessary, the same effect as the first embodiment can be obtained, and in addition, it will be described later. An effect can also be obtained. That is, according to the argon production method using the cryogenic air separation device according to the second embodiment of the present invention, as described above, crude argon is extracted in liquid form from the crude argon extraction port 8b of the crude argon column 8 and the crude argon liquid is pressurized. However, if it is partially vaporized by heat input while passing through the inside of the crude argon extraction line 9, it becomes impossible to pressurize smoothly. However, since the liquid crude argon extracted in a liquid state is supercooled by the cooler 16 using liquid nitrogen as a refrigerant and introduced into the main heat exchanger 2, vaporization of the liquid crude argon is prevented, and the liquid crude argon is prevented. There will be no trouble in pressurizing argon.

ところで、以上の形態1,2においては、深冷空気分離装置によりアルゴンを製造する場合のみを例として説明した。しかしながら、この深冷空気分離装置によれば、アルゴンの製造のみに限らず、アルゴンの製造と並行して酸素製品や窒素製品も製造することができ、またアルゴンが不必要になったときにはアルゴンの製造を停止すると共に、酸素製品や窒素製品を製造することもできる。   By the way, in the above forms 1 and 2, only the case where argon was manufactured with a chilled air separator was explained as an example. However, according to this cryogenic air separation device, not only the production of argon, but also oxygen products and nitrogen products can be produced in parallel with the production of argon. While stopping production, oxygen products and nitrogen products can also be produced.

また、この深冷空気分離装置により製品窒素を製造する場合、本発明の形態3に係る深冷空気分離装置の模式的系統図の図6に示すように、複式精留塔5で精留された窒素の一部を液体窒素として抜出すことができる。より詳しくは、複式精留塔5から一部を液体窒素として液体窒素排出ライン23を介して抜出すと共に、液体窒素ポンプ23aで主熱交換器2に送って蒸発させて気体窒素とする。一方、残りを気体窒素としてGN排出ライン13を介して抜出して主熱交換器2に送って加温すると共に、窒素圧縮機13aで圧縮し、前記気体窒素と合流させて製品窒素供給先に供給する構成にすることにより、窒素圧縮機13aの動力コストを低減することができる。   Further, when product nitrogen is produced by this cryogenic air separation device, it is rectified in the double rectification column 5 as shown in FIG. 6 of the schematic system diagram of the cryogenic air separation device according to Embodiment 3 of the present invention. A part of the nitrogen can be extracted as liquid nitrogen. More specifically, a part of the rectifying column 5 is extracted as liquid nitrogen through the liquid nitrogen discharge line 23, and is sent to the main heat exchanger 2 by the liquid nitrogen pump 23a to be evaporated to form gaseous nitrogen. On the other hand, the remainder is extracted as gaseous nitrogen through the GN discharge line 13, sent to the main heat exchanger 2, heated, compressed by the nitrogen compressor 13 a, merged with the gaseous nitrogen, and supplied to the product nitrogen supply destination By adopting such a configuration, the power cost of the nitrogen compressor 13a can be reduced.

さらに、この深冷空気分離装置により製品酸素を製造する場合、本発明の形態4に係る深冷空気分離装置の模式的系統図の図7に示すように、複式精留塔5で精留された酸素の一部を液体酸素として抜出すことができる。より詳しくは、複式精留塔5から一部を液体酸素として液体酸素排出ライン24を介して抜出すと共に、液体酸素ポンプ24aで主熱交換器2に送って蒸発させて気体酸素とする。一方、残りを気体酸素としてGO排出ライン14を介して抜出して主熱交換器2に送って加温すると共に、酸素圧縮機14aで圧縮し、前記気体酸素と合流させて製品酸素供給先に供給する構成にすることにより、酸素圧縮機14aの動力コストを低減することができる。   Further, when product oxygen is produced by this cryogenic air separator, as shown in FIG. 7 of the schematic system diagram of the cryogenic air separator according to Embodiment 4 of the present invention, the product oxygen is rectified in the double rectification column 5. A part of the oxygen can be extracted as liquid oxygen. More specifically, a part of the rectifying column 5 is extracted as liquid oxygen through the liquid oxygen discharge line 24, and sent to the main heat exchanger 2 by the liquid oxygen pump 24a to be evaporated to be gaseous oxygen. On the other hand, the remainder is extracted as gaseous oxygen through the GO discharge line 14 and sent to the main heat exchanger 2 to be heated, compressed by the oxygen compressor 14a, merged with the gaseous oxygen, and supplied to the product oxygen supply destination. By adopting such a configuration, the power cost of the oxygen compressor 14a can be reduced.

このように、上記形態1乃至4における深冷空気分離装置は何れも具体例にすぎないから、本発明の技術的思想を逸脱しない範囲内における深冷空気分離装置の設計変更等は自由自在である。   As described above, since the cryogenic air separation devices in the above-described forms 1 to 4 are only specific examples, the design of the cryogenic air separation device can be freely changed without departing from the technical idea of the present invention. is there.

本発明の形態1に係り、アルゴン製造方法を実施する深冷空気分離装の模式的系統図である。1 is a schematic system diagram of a cryogenic air separator that performs an argon production method according to Embodiment 1 of the present invention. FIG. 本発明の形態1に係り、アルゴン製造方法を実施する深冷空気分離装の主熱交換器の拡大図である。It is an enlarged view of the main heat exchanger of the cryogenic air separator which concerns on Embodiment 1 of this invention and implements the argon manufacturing method. 本発明の形態1に係り、粗アルゴン液を蒸発させる主熱交換器内の温度分布説明図である。It is temperature distribution explanatory drawing in the main heat exchanger which concerns on Embodiment 1 of this invention and evaporates a rough | crude argon liquid. 従来の液体アルゴンの一般的な蒸発方法説明図である。It is explanatory drawing of the general evaporation method of the conventional liquid argon. 本発明の形態2に係り、アルゴン製造方法を実施する深冷空気分離装置の模式的系統図である。It is a typical systematic diagram of the cryogenic air separation apparatus which concerns on Embodiment 2 of this invention and implements the argon manufacturing method. 本発明の形態3に係り、アルゴン製造方法を実施する深冷空気分離装置の模式的系統図である。It is a typical systematic diagram of the cryogenic air separation apparatus which concerns on Embodiment 3 of this invention and implements the argon manufacturing method. 本発明の形態4に係り、アルゴン製造方法を実施する深冷空気分離装置の模式的系統図である。It is a typical systematic diagram of the cryogenic air separation apparatus which concerns on Embodiment 4 of this invention and implements the argon manufacturing method. アルゴン製造方法を実施する従来例に係る一般的な深冷空気分離装置の模式的系統説明図である。It is a typical system explanatory drawing of the common cryogenic air separation apparatus which concerns on the prior art example which implements an argon manufacturing method.

符号の説明Explanation of symbols

1…原料空気供給ライン,1a…原料空気圧縮機,1b…予冷ユニット,1c…吸着塔ユニット
2…主熱交換器
3…第1原料空気供給ライン,3a…ブロワ,3b…クーラ,3c…膨張タービン
4…第2原料空気供給ライン
5…複式精留塔,5a…上塔,5b…下塔,5c…主凝縮器,5d…蒸気抜出しライン
6…液体空気抜出しライン
7…過冷却器
8…粗アルゴン塔,8a…粗アルゴン凝縮器,8b…粗アルゴン抜出し口
9…粗アルゴン抜出しライン
10…アルゴン精製装置
11…変成アルゴン供給ライン
12…精製アルゴン塔
13…GN排出ライン,13a…窒素圧縮機
14…GO排出ライン,14a…酸素圧縮機
15…廃窒素抜出しライン
16…冷却器
23…液体窒素排出ライン,23a…液体窒素ポンプ
24…液体酸素排出ライン,24a…液体酸素ポンプ
DESCRIPTION OF SYMBOLS 1 ... Raw material air supply line, 1a ... Raw material air compressor, 1b ... Pre-cooling unit, 1c ... Adsorption tower unit 2 ... Main heat exchanger 3 ... First raw material air supply line, 3a ... Blower, 3b ... Cooler, 3c ... Expansion Turbine 4 ... Second raw material air supply line 5 ... Double rectification tower, 5a ... Upper tower, 5b ... Lower tower, 5c ... Main condenser, 5d ... Vapor extraction line 6 ... Liquid air extraction line 7 ... Supercooler 8 ... Rough argon tower, 8a ... Rough argon condenser, 8b ... Rough argon outlet 9 ... Rough argon outlet line 10 ... Argon purification device 11 ... Modified argon supply line 12 ... Purified argon tower 13 ... GN discharge line, 13a ... Nitrogen compressor DESCRIPTION OF SYMBOLS 14 ... GO discharge line, 14a ... Oxygen compressor 15 ... Waste nitrogen extraction line 16 ... Cooler 23 ... Liquid nitrogen discharge line, 23a ... Liquid nitrogen pump 24 ... Liquid oxygen Out of line, 24a ... liquid oxygen pump

Claims (2)

原料空気を圧縮する原料空気圧縮機と、この原料空気圧縮機から出た圧縮空気を10〜40℃程度の温度に冷却する予冷ユニットと、この予冷ユニットで冷却された圧縮空気中の二酸化炭素および水分を除去する吸着塔ユニットと、この吸着塔ユニットで精製された原料空気をその液化近傍の温度まで冷却する主熱交換器と、原料空気中の窒素・酸素を精留分離する複式精留塔と、この複式精留塔の上塔から流入するアルゴンを含む酸素中のアルゴンを濃縮する粗アルゴン塔と、粗アルゴン中の酸素を除去するアルゴン精製装置と、酸素が除去された変成アルゴンから残留水素・窒素等を除去して製品液体アルゴンとする精製アルゴン塔とを備えた深冷空気分離装置により製品液体アルゴンを製造するアルゴン製造方法において、前記粗アルゴン塔から抜出した粗アルゴンを前記アルゴン精製装置に導入するに際して、前記粗アルゴン塔の粗アルゴン抜出し口から液体粗アルゴンを抜出すと共に、粗アルゴン抜出しラインを介して前記主熱交換器に導入して蒸発させ、蒸発した粗アルゴンガスを常温まで加温することを特徴とする深冷空気分離装置によるアルゴン製造方法。 A raw material air compressor that compresses the raw material air, a precooling unit that cools the compressed air discharged from the raw material air compressor to a temperature of about 10 to 40 ° C., carbon dioxide in the compressed air cooled by the precooling unit, and Adsorption tower unit that removes moisture, main heat exchanger that cools the raw air purified by this adsorption tower unit to a temperature near its liquefaction, and a double rectification tower that rectifies and separates nitrogen and oxygen in the raw air And a crude argon tower for concentrating argon in oxygen containing argon flowing in from the upper column of the double rectification tower, an argon purification apparatus for removing oxygen in the crude argon, and a residual from the modified argon from which oxygen has been removed. in an argon method for manufacturing a product liquid argon by cryogenic air separation unit that includes a purification argon column for a product liquid argon to remove hydrogen, nitrogen or the like, the coarse Al When the crude argon extracted from the column is introduced into the argon purifier, liquid crude argon is extracted from the crude argon outlet of the crude argon tower and introduced into the main heat exchanger via the crude argon extraction line. A method for producing argon using a cryogenic air separation apparatus, wherein the evaporated crude argon gas is heated to room temperature. 前記粗アルゴン塔から抜出した液体粗アルゴンを、前記粗アルゴン抜出しラインを介して前記主熱交換器に導入する前に、液体窒素を冷媒として用いる冷却器で過冷却することを特徴とする請求項1に記載の深冷空気分離装置によるアルゴン製造方法。   The liquid crude argon extracted from the crude argon tower is supercooled by a cooler using liquid nitrogen as a refrigerant before being introduced into the main heat exchanger through the crude argon extraction line. 2. A method for producing argon using the cryogenic air separation device according to 1.
JP2005179579A 2005-06-20 2005-06-20 Argon production method using cryogenic air separator Active JP4206083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005179579A JP4206083B2 (en) 2005-06-20 2005-06-20 Argon production method using cryogenic air separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005179579A JP4206083B2 (en) 2005-06-20 2005-06-20 Argon production method using cryogenic air separator

Publications (2)

Publication Number Publication Date
JP2006349322A JP2006349322A (en) 2006-12-28
JP4206083B2 true JP4206083B2 (en) 2009-01-07

Family

ID=37645353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005179579A Active JP4206083B2 (en) 2005-06-20 2005-06-20 Argon production method using cryogenic air separator

Country Status (1)

Country Link
JP (1) JP4206083B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2943773B1 (en) * 2009-03-27 2012-07-20 Air Liquide METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION
CN104034124B (en) * 2014-06-27 2016-05-18 莱芜钢铁集团有限公司 A kind of air-separating plant and fluid-discharge method with pressure
JP6738126B2 (en) * 2015-02-03 2020-08-12 エア・ウォーター・クライオプラント株式会社 Air separation device
JP2016205761A (en) 2015-04-28 2016-12-08 日本パイオニクス株式会社 Pre-processing device of cryogenic gas separation and pre-processing method using the same
CN114646188B (en) * 2022-05-18 2022-08-16 河南心连心深冷能源股份有限公司 Crude argon purifying and liquefying device and purifying method used by separation from air separation system

Also Published As

Publication number Publication date
JP2006349322A (en) 2006-12-28

Similar Documents

Publication Publication Date Title
CN107850388B (en) Method and apparatus for increased argon recovery in a cryogenic air separation unit integrated with a pressure swing adsorption system
CN108027201B (en) method and apparatus for argon removal and argon recovery
US20220325952A1 (en) Method and apparatus for producing product nitrogen gas and product argon
CN111065872B (en) System and method for recovering non-condensable gases such as neon, helium, xenon, and krypton from an air separation unit
US20120131951A1 (en) Air liquefaction separation method and apparatus
CN107850387B (en) Method and apparatus for argon recovery in a cryogenic air separation unit integrated with a pressure swing adsorption system
JPH06207775A (en) Low-temperature air separating method for manufacturing nitrogen having no carbon monoxide
US20200355429A1 (en) Cryogenic distillation method and apparatus for producing pressurized air by means of expander booster in linkage with nitrogen expander for braking
JP2006525487A (en) Method and system for producing pressurized air gas by cryogenic distillation of air
JP6092804B2 (en) Air liquefaction separation method and apparatus
JP2007064617A (en) Method of manufacturing krypton and/or xenon by cryogenic air separation
JP5417054B2 (en) Air separation method and apparatus
US20220074656A1 (en) Apparatus and method for separating air by cryogenic distillation
US9103587B2 (en) Process and apparatus for the separation of air by cryogenic distillation
JP4206083B2 (en) Argon production method using cryogenic air separator
JP5032407B2 (en) Nitrogen production method and apparatus
JP2000329456A (en) Method and device for separating air
KR102120574B1 (en) Method and apparatus for argon recovery in a cryogenic air separation unit integrated with a pressure swing adsorption system
JPH11118351A (en) Manufacturing device for nitrogen and oxygen having ultra-high purity
JP5642923B2 (en) Air separation method
JP4401999B2 (en) Air separation method and air separation device
JP2007147113A (en) Nitrogen production method and apparatus
JP5027173B2 (en) Argon production method and apparatus thereof
JP3297935B2 (en) Method and apparatus for separating high purity argon
JP3082092B2 (en) Oxygen purification method and apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081014

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081017

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4206083

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141024

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250