JP4298825B2 - High corrosion resistance stainless steel - Google Patents
High corrosion resistance stainless steel Download PDFInfo
- Publication number
- JP4298825B2 JP4298825B2 JP31336598A JP31336598A JP4298825B2 JP 4298825 B2 JP4298825 B2 JP 4298825B2 JP 31336598 A JP31336598 A JP 31336598A JP 31336598 A JP31336598 A JP 31336598A JP 4298825 B2 JP4298825 B2 JP 4298825B2
- Authority
- JP
- Japan
- Prior art keywords
- grain boundary
- stainless steel
- corrosion resistance
- concentration
- high corrosion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/10—Nuclear fusion reactors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Other Surface Treatments For Metallic Materials (AREA)
- Heat Treatment Of Steel (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、放射線の影響を受ける環境で使用される高耐食性ステンレス鋼の係り、特に、核融合炉や原子炉などの原子力関係や宇宙環境で使用する高耐食性ステンレス鋼に関する。
【0002】
【従来の技術】
これまで原子炉の構造材料として、耐食性が高いSUS304ステンレス鋼やSUS316ステンレス鋼などが使用されてきた。また、近年では、熱鋭敏化による腐食の観点から、低炭素鋼のSUS304Lステンレス鋼やSUS316Lステンレス鋼が使用されてきている。
【0003】
しかし、放射線環境下、特に、中性子が長期間照射される環境下では、粒界のCrが欠乏し、これに起因する耐食性の低下が粒界割れを生じる原因となる可能性がある。
【0004】
【発明が解決しようとする課題】
原子炉を例に挙げると、日本では最初の原子炉ができてから30年近く経っており、この間、多くの原子力発電所が建設され、今ではおよそ50基の原子炉が稼働し、電力の約30%を担うまでになってきている。
【0005】
原子力発電所は、長く使用できればできるほど、立て替えや新規建設にかかる費用を節約でき、経済的にも非常に有利となる。従つて、原子力発電所の心臓部であり、腐食環境に曝される原子炉の長寿命化は、重要な課題の一つとなっている。
【0006】
本発明の目的は、上記に鑑み放射線環境下でも長期にわたり高い耐食性を維持できるステンレス鋼を提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成する本発明の要旨は次のとおりである。
【0008】
〔1〕 粒界にMoの濃縮層が形成されていることを特徴とする高耐食性ステンレス鋼。
【0009】
〔2〕 熱処理により粒界にMoの濃縮層が形成されていることを特徴とする高耐食性ステンレス鋼。
【0010】
〔3〕 温度550〜800℃で5分以上の熱処理により粒界にMoの濃縮層が形成されていることを特徴とする高耐食性ステンレス鋼。
【0011】
〔4〕 粒界にMoの濃縮層を形成させた材料の機械的特性が、形成前の機械的特性と実質的に同じである前記の高耐食性ステンレス鋼。
【0012】
〔5〕 粒界に形成されたMoの濃縮層の幅が20nm以下である前記の高耐食性ステンレス鋼。
【0013】
〔6〕 粒界にMoやCによる析出物が存在していない前記の高耐食性ステンレス鋼。
【0014】
〔7〕 Moの組成比がSUS316L系ステンレス鋼の規格に定められた範囲内のものである前記の高耐食性ステンレス鋼。
【0015】
【発明の実施の形態】
放射線環境下、特に、中性子照射を受ける環境下でステンレス鋼の耐食性が低下するのは、放射線照射により粒界から耐食性に係るCrが欠乏するためである。
【0016】
従って、放射線照射下での粒界Cr欠乏を抑制するために、ステンレス鋼の粒界にMoを濃縮させる。即ち、Moを組成の一つとして有するステンレス鋼に熱処理を加ることにより、粒界にMoの濃縮層を形成する。熱処理条件は、Moの添加量、温度、時間に依存し、Moの析出物が形成される前の段階で留める。
【0017】
図1に示すように、ステンレス鋼1が高い耐食性を示すのは、表面が不働態被膜であるCr不働態酸化膜2に覆われているためである。通常この被膜が腐食環境下において何らかの原因で破壊しても、ステンレス内部よりCrが補充されて瞬時に再生される。
【0018】
しかし、放射線環境下、特に、中性子照射を長期間受ける環境下では、照射により粒界3からCrが欠乏し、粒界近傍でCrの欠乏層4が形成されると、粒界が表面に到る部分で被膜の破壊が生じた場合、そこでCrの補充がなされず不働態酸化被膜が再生されなくなり、主構成元素であるFeイオン5の溶出が生じ、粒界腐食6を生じる。
【0019】
この現象を図2を用いて原子レベルで説明する。ステンレス鋼1に入射した中性子7は、力スケード8を生じ空孔(V)や格子間原子等の過剰な格子欠陥を生じる。この内、いくつかの空孔(V)と格子間原子の再結合9による消滅が起こり、残りは過剰な格子欠陥として存在する。この状態は熱的に不安定である。
【0020】
格子間原子の多くは粒界に流れ込む前にループ状に結合し、多数の格子間原子型転位ループ10を形成する。空孔(V)は、シンクの粒界3に流れ込む。空孔(V)が拡散し粒界に流れ込むためには、他の原子と位置交換をしなければならないが、粒界ではサイズ効果により、溶媒原子より大きなCr原子が選択的に空孔(V)と位置交換をし、空孔(V)の拡散方向と反対方向に拡散する、いわゆる逆カーケンドール効果が生じ、サイズ効果および逆カーケンドール効果による粒界Crの欠乏11によって、粒界3でCrが欠乏する。
【0021】
ステンレス鋼1が腐食環境に置かれている場合、何らかの原因で表面の不働態被膜が損傷しても、瞬時に新たな被膜が形成されるが、上記のようにCrが欠乏して、12重量%程度以下になったところでは、被膜の再生が容易になされず耐食性の低下を招く。
【0022】
そこで、このような照射下での粒界Cr欠乏を抑制するために、本発明では熱処理により粒界にMoの濃縮層を形成する。Moは耐食性を向上させる元素でありSUS316系のステンレス鋼には2〜3重量%添加されている。
【0023】
しかし、図3に示すように、MoはCrと同様にオーバーサイズ原子なので、照射下でCrと同様に空孔(V)と位置交換をし、サイズ効果および逆カーケンドール効果による粒界Moの欠乏12により粒界から欠乏する方向に動く。
【0024】
粒界における原子数収支は式〔1〕に示すように、
【0025】
【数1】
Jv=JCr+JMo …〔1〕
粒界から流出するCr原子の数JCrと粒界から流出するMo原子の数JMoは、逆カーケンドール効果の原理から、粒界に流れ込む空孔(V)の数Jvに等しいので、粒界におけるMo原子の数が多ければ、相対的に粒界から流出するCr原子の数JCrが減少する。
【0026】
従つて、本発明により粒界にMoの濃縮層を形成すれば、照射による粒界からのCrの欠乏を抑制することができ、その結果、高耐食性を長期にわたり維持することができるステンレス鋼を得ることができる。
【0027】
粒界へのMo濃縮法としては熱処理を用いる。ある濃度Moを添加されたステンレス鋼では、550℃〜800℃の温度で一定時間(5分以上)熱処理を施すと、粒界にMoとFeの金属間化合物であるラーベス相もしくはχ相が析出する。
【0028】
このような析出が生じると耐食性が低下するので、熱処理は析出が生じる前駆段階、粒界にMoが濃縮しているだけの状態に留めるようMo濃度を考慮して温度と時間を調整する。
【0029】
【実施例】
本発明の実施例について以下に説明する。
【0030】
〔実施例 1〕
SUS316Lステンレス鋼の粒界にMoの濃縮層を形成するため、マツフル型の電気炉を用い、上記試料(10mm×10mm×5mmt)を大気中で熱処理を施した。
【0031】
まず、電気炉を650℃まで昇温し、一定時間おいて温度が安定してから上記試料を入れ、1時間経過後、試料を電気炉から取り出し水中で急冷した。
【0032】
上記試料の粒界にMoが濃縮していることを確かめるために、透過型電子顕微鏡用試料に加工し、電界放出型透過電子顕微鏡およびそれに付属しているエネルギー分散型X線分光分析装置により粒界組成を分析した。透過型電子顕微鏡用試料への加工は、次の手順によった。
【0033】
まず、低速精密切断機により、上記熱処理後の試料から厚さ0.5mmの薄板を切り出した。これを機械研磨により厚さを0.2mmまで落とした。その後打ち抜き治具により3mmφの試料を打ち抜いた。このようにして作製した3mmφ×厚さ0.2mmの試料を電解研磨(ツインジェット法)により薄膜化し、透過型電子顕微鏡試料とした。
【0034】
この試料の粒界近傍の濃度分布を、電界放出型透過電子顕微鏡および付属のエネルギー分散型X線分光分析装置を用いて分析した。分析時の電子線プローブの直径はおよそlnmである。分析結果を図4に示す。なお、比較のため熱処理前の試料(未熱処理材)に対しも同様の分析を行つた結果も併せて示す。
【0035】
図から明らかなように、未熱処理材試料に比較し、熱処理材(650℃×1h)の粒界ではMoが顕著に濃縮していた。
【0036】
この時の粒界でのMoの濃度は、粒内のおよそ5重量%に対し、およそ13重量%であり、約260%の濃縮度を有していることが分かる。また、この時の濃縮層の幅は10nm以下と非常に狭かった。なお、透過型電子顕微鏡観察の結果、粒界への析出物の形成は観察されなかった。
【0037】
〔実施例 2〕
粒界Mo濃縮が、中性子照射による粒界Cr欠乏を抑制し、高照射量まで高い耐食性を維持できることを検証するために、中性子照射量に対する粒界濃度変化を計算した。
【0038】
SUS316Lステンレス鋼の場合、耐食性は粒界のCr濃度のみと比較した場合よりも、粒界のCr濃度とMo濃度との和と比較した方が良い相関が得られる。従つて、照射量に対する粒界濃度変化は、Cr濃度とMo濃度との和で行つた。
【0039】
初期の粒界Mo濃度を0重量%、10重量%、15重量%の3種として、照射量を1×1024〜1×1026(n/m2)としたときの、粒界Cr+Mo濃度の変化を照射誘起偏析プログラムにより計算し、その結果を図5に示す。
【0040】
黒丸は、初期に粒界にMoを15重量%濃縮させた場合、白丸は、初期に粒界にMoを10重量%濃縮させた場合で、黒四角は、初期に粒界にMoを濃縮させなかった場合の結果である。
【0041】
いずれの計算条件の場合でも照射量の増加と共に、粒界Cr+Mo濃度は減少した。しかし、初期Mo濃度が高い条件ほど、照射量が増加しても粒界Cr+Mo濃度が高いと云う結果が得られた。前記したように、粒界Cr+Mo濃度は耐食性と良い相関を示すので、初期粒界Cr+Mo濃度が高い方が、照射量の増加に伴う耐食性の低下を抑制する効果が高いことを示している。
【0042】
【発明の効果】
本発明によれば、長期にわたり放射線に曝される環境下で、高い耐食性を従来材よりも長期間保ち続けるステンレス鋼が得られ、これを使用することにより原子炉の長寿命化を図ることが可能でとなり、原子力発電所の立て替えや新規建設の費用を節減できるので、その経済的効果が非常に大きい。
【図面の簡単な説明】
【図1】粒界Cr欠乏による耐食性の低下の様子を説明する模式断面図である。
【図2】照射下での原子の挙動の様子の説明図である。
【図3】粒界Mo濃縮によるCr欠乏の抑制効果の説明図である。
【図4】熱処理による粒界へのMo濃縮結果のグラフである。
【図5】粒界濃度変化に及ぼすMo濃縮量のグラフである。
【符号の説明】
1…ステンレス鋼、2…Cr不働態酸化被膜、3…粒界、4…Cr欠乏層、5…Feイオン、6…粒界腐食、7…中性子、8…カスケード、9…空孔(V)と格子間原子の再結合、10…格子間原子型転位ループ、11…サイズ効果および逆カーケンドール効果による粒界Crの欠乏、12…サイズ効果および逆カーケンドール効果による粒界Moの欠乏。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high corrosion resistance stainless steel used in an environment affected by radiation, and more particularly to a high corrosion resistance stainless steel used in a nuclear environment such as a fusion reactor or a nuclear reactor or in a space environment.
[0002]
[Prior art]
Until now, SUS304 stainless steel, SUS316 stainless steel, and the like, which have high corrosion resistance, have been used as structural materials for nuclear reactors. In recent years, low carbon steel SUS304L stainless steel and SUS316L stainless steel have been used from the viewpoint of corrosion due to thermal sensitization.
[0003]
However, in a radiation environment, particularly in an environment where neutrons are irradiated for a long period of time, Cr at the grain boundary is deficient, and a decrease in corrosion resistance due to this may cause grain boundary cracking.
[0004]
[Problems to be solved by the invention]
Taking nuclear reactors as an example, nearly 30 years have passed since the first nuclear reactor was built in Japan. During this period, many nuclear power plants were built, and now about 50 nuclear reactors are in operation. It has come to bear about 30%.
[0005]
The longer a nuclear power plant can be used, the more it can save on the cost of rebuilding and new construction, and it will be very advantageous from an economic point of view. Therefore, extending the life of nuclear reactors, which are the heart of nuclear power plants and are exposed to corrosive environments, is an important issue.
[0006]
In view of the above, an object of the present invention is to provide a stainless steel that can maintain high corrosion resistance over a long period of time even in a radiation environment.
[0007]
[Means for Solving the Problems]
The gist of the present invention that achieves the above object is as follows.
[0008]
[1] A highly corrosion-resistant stainless steel characterized in that a concentrated layer of Mo is formed at grain boundaries.
[0009]
[2] A highly corrosion-resistant stainless steel in which a concentrated layer of Mo is formed at grain boundaries by heat treatment.
[0010]
[3] A highly corrosion-resistant stainless steel in which a concentrated layer of Mo is formed at grain boundaries by heat treatment at a temperature of 550 to 800 ° C. for 5 minutes or more.
[0011]
[4] The high corrosion resistance stainless steel, wherein the mechanical properties of the material in which the Mo enriched layer is formed at the grain boundaries are substantially the same as the mechanical properties before the formation.
[0012]
[5] The high corrosion resistance stainless steel as described above, wherein the Mo concentrated layer formed at the grain boundary has a width of 20 nm or less.
[0013]
[6] The high corrosion resistance stainless steel as described above, in which precipitates due to Mo and C do not exist at grain boundaries.
[0014]
[7] The high corrosion resistance stainless steel as described above, wherein the Mo composition ratio is within a range defined by the standard of SUS316L stainless steel.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
The reason why the corrosion resistance of stainless steel is reduced in a radiation environment, particularly in an environment where neutron irradiation is applied, is because Cr related to corrosion resistance is deficient from the grain boundary due to irradiation.
[0016]
Therefore, in order to suppress the grain boundary Cr deficiency under irradiation, Mo is concentrated at the grain boundary of stainless steel. That is, by applying heat treatment to stainless steel having Mo as one of its compositions, a Mo concentrated layer is formed at the grain boundaries. The heat treatment conditions depend on the amount of Mo added, the temperature, and the time, and remain at the stage before the Mo precipitate is formed.
[0017]
As shown in FIG. 1, the
[0018]
However, under a radiation environment, particularly in an environment where neutron irradiation is applied for a long time, when the Cr is depleted from the grain boundary 3 due to irradiation and the Cr-depleted layer 4 is formed near the grain boundary, the grain boundary reaches the surface. When the film breaks at the portion where the film is formed, Cr is not replenished and the passive oxide film is not regenerated,
[0019]
This phenomenon will be described at the atomic level with reference to FIG. The neutron 7 incident on the
[0020]
Many of the interstitial atoms are bonded in a loop before flowing into the grain boundary, and a large number of
[0021]
When the
[0022]
Therefore, in order to suppress such grain boundary Cr deficiency under irradiation, in the present invention, a Mo concentrated layer is formed at the grain boundary by heat treatment. Mo is an element that improves the corrosion resistance and is added to the SUS316 stainless steel in an amount of 2 to 3% by weight.
[0023]
However, as shown in FIG. 3, since Mo is an oversized atom like Cr, the position of the grain boundary Mo due to the size effect and the inverse Kirkendall effect is exchanged with the vacancies (V) under irradiation as with Cr. The
[0024]
The atomic number balance at the grain boundary is as shown in equation [1]:
[0025]
[Expression 1]
J v = J Cr + J Mo (1)
The number J Cr of Cr atoms flowing out from the grain boundary and the number J Mo of Mo atoms flowing out of the grain boundary are equal to the number J v of holes (V) flowing into the grain boundary from the principle of the inverse Kirkendall effect. If the number of Mo atoms at the grain boundary is large, the number J Cr of Cr atoms flowing out from the grain boundary is relatively reduced.
[0026]
Therefore, if a Mo enriched layer is formed at the grain boundary according to the present invention, the lack of Cr from the grain boundary due to irradiation can be suppressed, and as a result, a stainless steel that can maintain high corrosion resistance over a long period of time. Obtainable.
[0027]
Heat treatment is used as a method for concentrating Mo to the grain boundaries. In stainless steel to which a certain concentration of Mo is added, Laves phase or χ phase, which is an intermetallic compound of Mo and Fe, precipitates at grain boundaries when heat treatment is performed at a temperature of 550 ° C to 800 ° C for a certain time (more than 5 minutes). To do.
[0028]
When such precipitation occurs, the corrosion resistance is lowered. Therefore, the temperature and time are adjusted in consideration of the Mo concentration so that the heat treatment is kept at the precursor stage where precipitation occurs and Mo is only concentrated at the grain boundary.
[0029]
【Example】
Examples of the present invention will be described below.
[0030]
[Example 1]
In order to form a concentrated layer of Mo at the grain boundaries of SUS316L stainless steel, the sample (10 mm × 10 mm × 5 mmt) was heat-treated in the atmosphere using a pine-full electric furnace.
[0031]
First, the temperature of the electric furnace was raised to 650 ° C., and after the temperature had stabilized for a certain time, the sample was put in. After 1 hour, the sample was taken out of the electric furnace and rapidly cooled in water.
[0032]
In order to confirm that Mo is concentrated in the grain boundary of the above sample, the sample is processed into a transmission electron microscope sample, and the particles are analyzed using a field emission transmission electron microscope and an energy dispersive X-ray spectroscopic analyzer attached thereto. The boundary composition was analyzed. Processing into the transmission electron microscope sample was performed according to the following procedure.
[0033]
First, a thin plate having a thickness of 0.5 mm was cut out from the sample after the heat treatment with a low-speed precision cutting machine. This was mechanically polished to reduce the thickness to 0.2 mm. Thereafter, a 3 mmφ sample was punched with a punching jig. The sample of 3 mmφ × thickness 0.2 mm thus produced was thinned by electrolytic polishing (twin jet method) to obtain a transmission electron microscope sample.
[0034]
The concentration distribution in the vicinity of the grain boundary of this sample was analyzed using a field emission transmission electron microscope and an attached energy dispersive X-ray spectrometer. The diameter of the electron beam probe at the time of analysis is approximately 1 nm. The analysis results are shown in FIG. For comparison, the result of the same analysis is also shown for the sample before heat treatment (unheat-treated material).
[0035]
As is apparent from the figure, Mo was significantly concentrated at the grain boundaries of the heat-treated material (650 ° C. × 1 h) as compared to the unheat-treated material sample.
[0036]
It can be seen that the concentration of Mo at the grain boundary at this time is about 13% by weight with respect to about 5% by weight in the grain, and has a concentration of about 260%. In addition, the width of the concentrated layer at this time was very narrow at 10 nm or less. As a result of observation with a transmission electron microscope, formation of precipitates at the grain boundaries was not observed.
[0037]
Example 2
In order to verify that grain boundary Mo concentration can suppress grain boundary Cr deficiency due to neutron irradiation and maintain high corrosion resistance up to high irradiation dose, the change in grain boundary concentration with respect to neutron irradiation dose was calculated.
[0038]
In the case of SUS316L stainless steel, a better correlation is obtained when comparing the corrosion resistance with the sum of the Cr concentration and the Mo concentration at the grain boundary than when comparing only with the Cr concentration at the grain boundary. Therefore, the change in the grain boundary concentration with respect to the irradiation amount was performed by the sum of the Cr concentration and the Mo concentration.
[0039]
Grain boundary Cr + Mo concentration when the initial grain boundary Mo concentration is three types of 0 wt%, 10 wt%, and 15 wt%, and the irradiation amount is 1 × 10 24 to 1 × 10 26 (n / m 2 ). Is calculated by an irradiation-induced segregation program, and the results are shown in FIG.
[0040]
The black circle is the initial concentration of 15% by weight of Mo at the grain boundary, the white circle is the initial concentration of 10% by weight of Mo at the grain boundary, and the black square is the initial concentration of Mo at the grain boundary. It is a result when there is no.
[0041]
Under any of the calculation conditions, the grain boundary Cr + Mo concentration decreased with increasing dose. However, it was found that the higher the initial Mo concentration, the higher the grain boundary Cr + Mo concentration even when the irradiation amount was increased. As described above, since the grain boundary Cr + Mo concentration shows a good correlation with the corrosion resistance, the higher the initial grain boundary Cr + Mo concentration, the higher the effect of suppressing the decrease in the corrosion resistance accompanying the increase in the dose.
[0042]
【The invention's effect】
According to the present invention, it is possible to obtain stainless steel that keeps high corrosion resistance for a long period of time compared to conventional materials in an environment exposed to radiation over a long period of time. By using this, it is possible to extend the life of a nuclear reactor. The economic effect is very large because it can be done and the cost of renewal and new construction of nuclear power plants can be saved.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a schematic cross-sectional view illustrating how corrosion resistance is reduced due to grain boundary Cr deficiency.
FIG. 2 is an explanatory diagram of the behavior of atoms under irradiation.
FIG. 3 is an explanatory diagram of an effect of suppressing Cr deficiency due to grain boundary Mo concentration.
FIG. 4 is a graph showing a result of Mo concentration to grain boundaries by heat treatment.
FIG. 5 is a graph of the amount of Mo enrichment affecting the change in grain boundary concentration.
[Explanation of symbols]
DESCRIPTION OF
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31336598A JP4298825B2 (en) | 1998-11-04 | 1998-11-04 | High corrosion resistance stainless steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31336598A JP4298825B2 (en) | 1998-11-04 | 1998-11-04 | High corrosion resistance stainless steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000144335A JP2000144335A (en) | 2000-05-26 |
JP4298825B2 true JP4298825B2 (en) | 2009-07-22 |
Family
ID=18040390
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31336598A Expired - Fee Related JP4298825B2 (en) | 1998-11-04 | 1998-11-04 | High corrosion resistance stainless steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4298825B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR112016015486A2 (en) * | 2014-01-17 | 2017-08-08 | Nippon Steel & Sumitomo Metal Corp | IRON AND STEEL PIPE CONTAINING CHROME BASED ON MARTENSITE FOR OIL WELL |
-
1998
- 1998-11-04 JP JP31336598A patent/JP4298825B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000144335A (en) | 2000-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100261666B1 (en) | Composition of zirconium alloy having low corrosion rate and high strength | |
Yang | Precipitate stability in neutron-irradiated Zircaloy-4 | |
JP4099493B2 (en) | Zirconium alloy composition with excellent creep resistance | |
Maury et al. | Copper precipitation in FeCu, FeCuMn, and FeCuNi dilute alloys followed by X-ray absorption spectroscopy | |
JPH0580170A (en) | Fuel assembly | |
KR100284643B1 (en) | Zirconium tin iron alloys for nuclear fuel rods and structural parts for high burnup | |
US7449101B2 (en) | Method of reducing corrosion of metal material | |
KR100261665B1 (en) | Composition of zirconium alloy having high corrosion resistance and high strength | |
JP4298825B2 (en) | High corrosion resistance stainless steel | |
Foster et al. | 316 stainless steel cavity swelling in a PWR | |
Urbanic et al. | Effect of aging and Irradiation on the corrosion of Zr-2.5 Wt% Nb | |
JP4528499B2 (en) | Method for reducing corrosion of reactor structural materials | |
LeSurf | The corrosion behavior of 2.5 Nb zirconium alloy | |
EP1804253A3 (en) | Light water reactor flow channel with reduced susceptibility to deformation and control blade interference under exposure to neutron radiation and corrosion fields | |
Etoh et al. | Irradiation-induced dissolution of precipitates in Zircaloy-2 | |
Motta et al. | In situ studies of phase transformations in zirconium alloys and compounds under irradiation | |
da Silva | Influence of oxide microstructure on corrosion behavior of zirconium-based model alloys | |
CZ62397A3 (en) | Zirconium alloy with tungsten and nickel | |
JP4458579B2 (en) | Reactor material and manufacturing method thereof | |
Jeong et al. | Corrosion of zirconium based fuel cladding alloys in supercritical water | |
Shigenaka et al. | Radiation induced segregation at grain boundary in an austenitic stainless steel under ion irradiation | |
JPS62170470A (en) | Hafnium alloy | |
KR100296952B1 (en) | New zirconium alloys for fuel rod cladding and process for manufacturing thereof | |
JPH0723526B2 (en) | Corrosion-resistant hafnium substrate and method for manufacturing the same | |
Yu | Microstructural Evolution in Commercial Ni-based Alloys under Irradiation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051028 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20070518 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070820 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070828 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071029 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20071205 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20071205 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080129 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090414 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090416 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120424 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120424 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130424 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140424 Year of fee payment: 5 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |