Nothing Special   »   [go: up one dir, main page]

JP4281368B2 - Abrasion resistant spray coating - Google Patents

Abrasion resistant spray coating Download PDF

Info

Publication number
JP4281368B2
JP4281368B2 JP2003022860A JP2003022860A JP4281368B2 JP 4281368 B2 JP4281368 B2 JP 4281368B2 JP 2003022860 A JP2003022860 A JP 2003022860A JP 2003022860 A JP2003022860 A JP 2003022860A JP 4281368 B2 JP4281368 B2 JP 4281368B2
Authority
JP
Japan
Prior art keywords
powder
spray coating
less
thermal spray
wear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003022860A
Other languages
Japanese (ja)
Other versions
JP2004232035A (en
Inventor
誠 東
彰夫 新見
崇 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP2003022860A priority Critical patent/JP4281368B2/en
Publication of JP2004232035A publication Critical patent/JP2004232035A/en
Application granted granted Critical
Publication of JP4281368B2 publication Critical patent/JP4281368B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)
  • Coating By Spraying Or Casting (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、FeとMoを主成分とする溶射皮膜において軟質相(グラファイト)あるいは硬質相(酸化クロム、炭化クロム)を分散させた多相混合組織を有する溶射皮膜に関するものである。
【0002】
【従来の技術】
従来の技術としては、基材の摺動面に、摩耗層(硬質層)、必要に応じて中間層、さらに擦り合わせ層(軟質層)を形成させた層状の組織構造を有する被膜が知られている。硬質層としては、炭化クロムや酸化クロム等の硬質粒子が埋め込まれたクロム、ニッケル、モリブデンが挙げられ、軟質層としては、モリブデン、アルミニウム、銀、ニッケル等で被覆されたグラファイトからなるものが挙げられている(例えば、特許文献1参照)。また、FeとMoからなるコーティングを溶射する技術も公知である(例えば、特許文献2参照)。
【0003】
【特許文献1】
特表平9−508688号公報
【特許文献2】
特表平11−515057号公報
【0004】
【発明が解決しようとする課題】
上記のように、金属で被覆されたグラファイト粉末を溶射する技術(例えば、特許文献1参照)は知られているが、硬質層の上に金属で被覆されたグラファイトを軟質層として溶射するもので、硬質層、軟質層が完全な層状になった組織構造の被膜であり、耐摩耗性、耐焼付き性、初期なじみ性等といった複合的な性質には改善の余地があるものと考えられる。また、この技術は、本発明の混合組織構造とは異なっている。さらに、材料系が本発明のFe−Mo系とは異なっている。
【0005】
また、上記のように、Fe−Mo系溶射皮膜(例えば、特許文献2参照)は公知であるが、Fe系部分とMoの2相混合組織構造であり、耐摩耗性、耐焼付き性、初期なじみ性等に問題があると考えられる。また、この溶射皮膜は、本発明のFe系部分とMo部分と軟質相部分、あるいはFe系部分とMo部分と硬質相部分といった3相の混合組織構造とは、組織構造が異なっている。
【0006】
摺動部分、特に、エンジンのシリンダボアは、耐摩耗性、耐焼付き性、初期なじみ性等といった複合的な特性が要求される。本発明は上記の諸点に鑑みなされたもので、本発明の目的は、軟質相(グラファイト)を分散させたFe−Mo系溶射皮膜、あるいは硬質相(酸化クロム、炭化クロム)を分散させたFe−Mo系溶射皮膜とすることで、摺動部での耐摩耗性、耐焼付き性、初期なじみ性等といった複合的な特性を向上させるようにした溶射皮膜を提供することにある。
【0007】
【課題を解決するための手段】
上記の目的を達成するために、本発明の耐摩耗溶射皮膜は、Fe及びMoを主成分とし、軟質相としてグラファイトを分散させた溶射皮膜であって、Fe系部分とMo部分と軟質相部分とからなる多相混合組織を有するように構成されている。この場合、Fe系部分、Mo部分、軟質相部分の混合組織状態とし、表面組織状態(摺動面の組織状態)は体積比率でFe系部分30〜80%、Mo10〜60%、軟質相5〜30%の組成範囲とすることが好ましい。
【0008】
また、本発明の耐摩耗溶射皮膜は、Fe及びMoを主成分とし、硬質相として酸化クロム又は炭化クロムを分散させた溶射皮膜であって、Fe系部分とMo部分と硬質相部分とからなる多相混合組織を有することを特徴としている。この場合、Fe系部分、Mo部分、硬質相部分の混合組織状態とし、表面組織状態(摺動面の組織状態)は体積比率でFe系部分30〜80%、Mo10〜60%、硬質相10〜30%の組成範囲とすることが好ましい。
【0009】
軟質相を分散させた溶射皮膜において、表面組織として平面的に見た1つのMoの大きさ(長さ)は10〜100μm、1つの軟質相の大きさ(長さ)は30〜100μmとすることが好ましい。また、硬質相を分散させた溶射皮膜において、表面組織として平面的に見た1つのMoの大きさ(長さ)は10〜100μm、1つの硬質相の大きさ(長さ)は10〜50μmとすることが好ましい。混合組織皮膜の気孔率は体積率で1〜10%とすることが好ましい。また、軟質相を分散させた溶射皮膜において、混合組織皮膜の平均硬さは200〜500HV(ビッカース硬さ)とし、各組織相では、Fe系部分の硬さ400〜800HV、Mo部分の硬さ300〜500HVとすることが好ましい。また、硬質相を分散させた溶射皮膜において、混合組織皮膜の平均硬さは300〜600HVとし、各組織相では、Fe系部分の硬さ400〜800HV、Mo部分の硬さ300〜500HV、硬質相部分の硬さ500〜900HVとすることが好ましい。これらの本発明において、溶射したときの皮膜の膜厚は100〜300μmとすることが好ましい。さらに、溶射後、加工により仕上げたときの膜厚は50〜200μm、表面粗さは算術平均粗さRaで0.1〜0.6μmとすることが好ましい。算術平均粗さRaとは、粗さ曲線からその平均線の方向に基準長さだけ抜き取り、この抜取り部分の平均線の方向にX軸を、縦倍率の方向にY軸を取り、粗さ曲線をy=f(x)で表したときに、下記の数1に示す式によって求められる値をマイクロメートル(μm)で表したものをいう。下記の数1に示す式において、lは基準長さで
ある。
【0010】
【数1】

Figure 0004281368
【0011】
本発明において、溶射に用いる粉末は、Feに対してCが0.40〜1.00wt%、Siが0.15〜0.35wt%、Mnが0.30〜0.90wt%、Pが0.030wt%以下、Sが0.035wt%以下の組成を有する粉末、又は、Feに対してCが0.40〜1.00wt%、Siが1.20〜1.60wt%、Mnが0.50〜0.80wt%、Pが0.025wt%以下、Sが0.025wt%以下、Crが0.50〜0.80wt%の組成を有する粉末、又は、Feに対してCが1.15〜1.25wt%、Siが0.45wt%以下、Mnが0.40wt%以下、Pが0.030wt%以下、Sが0.030wt%以下、Crが3.80〜4.50wt%、Moが4.70〜5.20wt%、Wが5.90〜6.70wt%、Vが2.70〜3.20wt%の組成を有する粉末を、水アトマイズ法又はガスアトマイズ法により処理して作製したFe系粉末とし、粒子径は30〜70μmとすることが好ましい。また、溶射に用いる粉末は、Mo及び不可避的不純物元素(C、O、Si、Fe等)からなる1〜10μmの粉末を造粒焼結して作製したMo粉末とし、粒子径は50〜100μmとすることが好ましい。また、溶射に用いる粉末は、グラファイトをMo又はNiにより膜厚1〜10μmで被覆したグラファイト粉末とし、粒子径は30〜90μmとすることが好ましい。また、溶射に用いる粉末は、1〜10μmの酸化クロム粉末又は炭化クロム粉末と1〜10μmのMo粉末を造粒焼結して作製した酸化クロム粉末又は炭化クロム粉末とし、粒子径は10〜70μmとすることが好ましい。
【0012】
また、本発明においては、皮膜を形成させる基材表面にブラスト処理を行い、粗面化後の表面粗さが算術平均粗さRaで3.0μm以上となる前処理を行うことが好ましい。
また、本発明の耐摩耗溶射皮膜は、大気プラズマ溶射により基材表面に作製することが好ましい。この場合、溶射に用いる粉末を溶射ガンにて供給するに際し、それぞれ別々の供給口から供給するか、全部混合して1つの供給口から供給するか、又は2種類を混合したものと他の1種類とを別々の供給口から供給するようにして作製することが好ましい。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態を説明するが、本発明は下記の実施の形態に何ら限定されるものではなく、適宜変更して実施することが可能なものである。
▲1▼ 本発明は、Fe系部分とMo部分と軟質相部分(グラファイト)といった多相混合組織を有する皮膜とし、耐摩耗性、耐焼付き性に優れた溶射皮膜としたものである。また、本発明は、Fe系部分とMo部分と硬質相部分(酸化クロムあるいは炭化クロム)といった多相混合組織を有する皮膜とし、耐摩耗性、耐焼付き性に優れた溶射皮膜としたものである。なお、酸化クロムには、Cr23、Cr34等があり、炭化クロムには、Cr32、Cr73、Cr236等がある。
【0014】
▲2▼ 溶射皮膜の作製方法
1) 使用する溶射粉末
Fe粉末としては、Feに対して、Cが0.40〜1.00wt%、Siが0.15〜0.35wt%、Mnが0.30〜0.90wt%、Pが0.030wt%以下、Sが0.035wt%以下の組成のもの、あるいは、Fe−C系に、焼戻し軟化抵抗を付与するために、SiやMnを添加したもの、例えば、Feに対して、C:0.40〜1.00wt%、Si:1.20〜1.60wt%、Mn:0.50〜0.80wt%、P:0.025wt%以下、S:0.025wt%以下、Cr:0.50〜0.80wt%の組成のもの、あるいは、合金元素を添加し高温強度、耐摩耗性を向上させたもの、例えば、Feに対して、C:1.15〜1.25wt%、Si:0.45wt%以下、Mn:0.40wt%以下、P:0.030wt%以下、S:0.030wt%以下、Cr:3.80〜4.50wt%、Mo:4.70〜5.20wt%、W:5.90〜6.70wt%、V:2.70〜3.20wt%の組成のものとする。このような組成のFe粉末を水アトマイズ法又はガスアトマイズ法により処理して、溶射に用いる粉末を作製する。粒子径は30〜70μmとする。Mo粉末は、Mo及び不可避的不純物元素(不可避的不純物元素とは、C、O、Si、Fe等である)からなる1〜10μmの粉末を造粒焼結して作製する。粒子径は50〜100μmとする。軟質相を形成する粉末であるグラファイト粉末は、グラファイトをMoあるいはNiで膜厚1〜10μmで被覆した粉末である。粒子径は30〜90μmとする。硬質相を形成する粉末である酸化クロム粉末(あるいは炭化クロム粉末)は、1〜10μmの酸化クロム粉末(あるいは炭化クロム粉末)と1〜10μmのMo粉末の造粒焼結粉末として作製する。粒子径は10〜70μmとする。
【0015】
2) 前処理
溶射の前処理として、Al23研削材を用いて、皮膜を形成させる基材表面にブラスト処理を行い、粗面化後の表面粗さが算術平均粗さRaで3.0μm以上となる処理を行う。
【0016】
3) 溶射粉末供給方法
多相混合組織構造のFe−Mo系皮膜は大気プラズマ溶射法で作製する。Fe系粉末及びMo粉末と、軟質相組成粉末(グラファイト粉末)又は硬質相組成粉末(酸化クロム粉末あるいは炭化クロム粉末)を目標とする組成になるよう調製し、以下のような粉末供給方法により、粉末供給口からプラズマガンに粉末を供給することで溶射皮膜の組成を管理する。
a) 軟質相を分散させたFe−Mo系溶射皮膜
ア) Fe系粉末とMo粉末とグラファイト粉末をそれぞれ別々の供給口から供給する。
イ) Fe系粉末とMo粉末を混合したものと、グラファイト粉末を別々の供給口から供給する。
ウ) Fe系粉末とグラファイト粉末を混合したものと、Mo粉末を別々の供給口から供給する。
エ) Mo粉末とグラファイト粉末を混合したものと、Fe系粉末を別々の供給口から供給する。
オ) Fe系粉末とMo粉末とグラファイト粉末を混合したものを1つの供給口から供給する。
のいずれかの方法で粉末を供給し、皮膜を作製する。
【0017】
b) 硬質相を分散させたFe−Mo系溶射皮膜
ア) Fe系粉末とMo粉末と酸化クロム粉末(あるいは炭化クロム粉末)をそれぞれ別々の供給口から供給する。
イ) Fe系粉末とMo粉末を混合したものと、酸化クロム粉末(あるいは炭化クロム粉末)を別々の供給口から供給する。
ウ) Fe系粉末と酸化クロム粉末(あるいは炭化クロム粉末)を混合したものと、Mo粉末を別々の供給口から供給する。
エ) Mo粉末と酸化クロム粉末(あるいは炭化クロム粉末)を混合したものと、Fe系粉末を別々の供給口から供給する。
オ) Fe系粉末とMo粉末と酸化クロム粉末(あるいは炭化クロム粉末)を混合したものを1つの供給口から供給する。
のいずれかの方法で粉末を供給し、皮膜を作製する。
【0018】
▲3▼ 皮膜の組織構造
a) 軟質相を分散させたFe−Mo系溶射皮膜の組織構造
Fe系部分、Mo部分、軟質相部分の混合組織状態の皮膜とし、摺動面の組織状態(表面組織状態)は、Fe系部分:30〜80%、Mo:10〜60%、軟質相:5〜30%の体積比率の組成範囲とする。表面組織として平面的に見た1つのMoの大きさ(長さ)は10〜100μm、1つの軟質相の大きさ(長さ)は30〜100μmとする。残部がFe系部分である。また、混合組織皮膜の気孔率は、体積率で1〜10%とする。平均硬さは200〜500HVとし、各組織相の硬さは、Fe系部分の硬さが400〜800HV、Mo部分の硬さが300〜500HVとする。溶射皮膜の膜厚は100〜300μmとする。
【0019】
b) 硬質相を分散させたFe−Mo系溶射皮膜の組織構造
Fe系部分、Mo部分、硬質相部分の混合組織状態の皮膜とし、摺動面の組織状態(表面組織状態)は、Fe系部分:30〜80%、Mo:10〜60%、硬質相:10〜30%の体積比率の組成範囲とする。表面組織として平面的に見た1つのMoの大きさ(長さ)は10〜100μm、1つの硬質相の大きさ(長さ)は10〜50μmとする。残部がFe系部分である。また、混合組織皮膜の気孔率は、体積率で1〜10%とする。平均硬さは300〜600HVとし、各組織相の硬さは、Fe系部分の硬さが400〜800HV、Mo部分の硬さが300〜500HV、硬質相部分の硬さが500〜900HVとする。溶射皮膜の膜厚は100〜300μmとする。
【0020】
▲4▼ 皮膜の仕上げ方法
軟質相を分散させたFe−Mo系溶射皮膜、硬質相を分散させたFe−Mo系溶射皮膜どちらも、溶射後、加工(一例として、ホーニング加工)により、膜厚は50〜200μm、表面粗さは算術平均粗さRaで0.1〜0.6μmに仕上げる。
▲5▼ 本発明の溶射皮膜は、様々な摺動部で用いることが可能である。特に、エンジンのシリンダボア内面に適用すること等が有効である。
【0021】
【実施例】
▲1▼ 軟質相を分散させたFe−Mo系溶射皮膜の実施例(実施例1)
1) 溶射皮膜の作製方法と皮膜の組織構造
溶射粉末は下記の表1に示す組成、粒径、作製方法の溶射粉末を用いた。溶射の前処理として、Al23研削材を用いて、皮膜を形成させる基材表面にブラスト処理を行い、表面粗さがRaで3.0μm以上となるようにした。大気プラズマ溶射法を用いて、表2に示す条件で溶射を行い、膜厚が200μmの皮膜を作製した。その後、溶射皮膜を研磨し、膜厚が100μm、皮膜の表面粗さをRa0.07〜0.2μmとした。溶射皮膜の表面組織構造は、図1に示す組織構造(表面組織構造が良く分かるようにするために、本写真は、表面粗さがRa0.05μm以下となるように仕上げてある)であり、皮膜の体積比率は、Fe系部分:60%、Mo組織部分:30%、グラファイト部分:10%である。なお、溶射皮膜の表面組織は、図2に示す断面組織の模式図において、皮膜表面を図2に示すような位置から観察したものである。10は基材、12は溶射皮膜である。
【0022】
【表1】
Figure 0004281368
【0023】
【表2】
Figure 0004281368
【0024】
2) 皮膜の評価方法
往復動摩耗試験機を用いて、表3に示す試験条件で耐焼付き性と耐摩耗性を評価した。耐焼付き性試験を実施する方法の概念図を図4に、耐摩耗性試験を実施する方法の概念図を図5に示す。耐焼付き性は、油膜切れ状態を模擬した潤滑条件での、荷重増加試験により評価した。一方、耐摩耗性は、潤滑油を滴下した潤滑条件での、一定荷重試験により評価した。相手材のピン試験片には、表面がCrめっきとCrN皮膜のもの2種類を用いている。Crめっきの膜厚は100μmで、硬さは1000HVである。CrN皮膜は、アークイオンプレーティング法で作製しており、膜厚は40μmで、硬さは1500HVである。
本実施例の皮膜の比較材として、鋳鉄とCrめっき(相手材)の組合せを用いた。なお、鋳鉄とCrめっきの組合せは、現状材でのシリンダライナとピストンリングの摺動を模擬したものである。鋳鉄の組成は、Fe−3.25C−2.22Si−0.74Mn−0.15P−0.022S−0.14Cr−0.24Cuである。基地が微細なパーライト組織で、片状黒鉛、炭化物が均等に分散した組織構造である。
【0025】
【表3】
Figure 0004281368
【0026】
3) 皮膜の評価結果
表3に示す試験条件で焼付き試験を行った結果を図6に、摩耗試験を行った結果を図7に示す。本実施例の軟質相(グラファイト)を分散させたFe−Mo系溶射皮膜とCrN皮膜(相手材)との組合せは、比較材の鋳鉄とCrめっき(相手材)の組合せの8倍以上の焼付き荷重を示した。また、本実施例の軟質相(グラファイト)を分散させたFe−Mo系溶射皮膜とCrN皮膜(相手材)との組合せでの摩耗試験における摩耗量は、比較材の鋳鉄とCrめっき(相手材)の組合せでの試験における摩耗量の1/6以下であった。
【0027】
▲2▼ 硬質相を分散させたFe−Mo系溶射皮膜の実施例(実施例2)
1) 溶射皮膜の作製方法と皮膜の組織構造
溶射粉末は下記の表4に示す組成、粒径、作製方法の溶射粉末を用いた。溶射の前処理として、Al23研削材を用いて、皮膜を形成させる基材表面にブラスト処理を行い、表面粗さがRaで3.0μm以上となるようにした。大気プラズマ溶射法を用いて、表5に示す条件で溶射を行い、膜厚が200μmの皮膜を作製した。その後、溶射皮膜を研磨し、膜厚が100μm、皮膜の表面粗さをRa0.07〜0.2μmとした。溶射皮膜の表面組織構造は、図3に示す組織構造(表面組織構造が良く分かるようにするために、本写真は、表面粗さがRa0.05μm以下となるように仕上げてある)であり、皮膜の体積比率は、Fe系部分:60%、Mo組織部分:10%、酸化クロム部分:30%である。
【0028】
【表4】
Figure 0004281368
【0029】
【表5】
Figure 0004281368
【0030】
2) 皮膜の評価方法
上述した表3に示す試験条件で耐焼付き性、耐摩耗性を評価した。比較材も同じである。
3) 皮膜の評価結果
表3に示す試験条件で焼付き試験を行った結果を図6に、摩耗試験を行った結果を図7に示す。本実施例の硬質相(酸化クロム)を分散させたFe−Mo系溶射皮膜とCrN皮膜(相手材)との組合せは、比較材の鋳鉄とCrめっき(相手材)の組合せの5倍以上の焼付き荷重を示した。また、本実施例の硬質相(酸化クロム)を分散させたFe−Mo系溶射皮膜とCrN皮膜(相手材)との組合せでの摩耗試験における摩耗量は、摩耗量の測定が不可能なほど微量であった。
【0031】
【発明の効果】
本発明は上記のように構成されているので、つぎのような効果を奏する。
(1) FeとMoを主成分とする溶射皮膜において軟質相(グラファイト)あるいは硬質相(酸化クロム、炭化クロム)を分散させた多相混合組織を有する溶射皮膜とすることで、摺動部での耐摩耗性、耐焼付き性、初期なじみ性等といった複合的な性質を向上させることができる。
(2) 本発明の溶射皮膜は、様々な摺動部で用いることが可能である。特に、エンジンのシリンダボア内面に適用すること等が有効である。
【図面の簡単な説明】
【図1】本発明の実施例1における耐摩耗溶射皮膜(軟質相(グラファイト)を分散させたFe−Mo系溶射皮膜)の表面組織を示す走査型電子顕微鏡で撮影した写真である(倍率100倍)。
【図2】耐摩耗溶射皮膜の断面組織の一例を示す模式図であり、溶射皮膜の表面組織の観察位置を示している。
【図3】本発明の実施例2における耐摩耗溶射皮膜(硬質相(酸化クロム)を分散させたFe−Mo系溶射皮膜)の表面組織を示す走査型電子顕微鏡で撮影した写真である(倍率100倍)。
【図4】本発明の実施例で用いる耐焼付き性を評価するための試験方法を説明する概念図である。
【図5】本発明の実施例で用いる耐摩耗性を評価するための試験方法を説明する概念図である。
【図6】本発明の実施例における耐焼付き性の試験結果を示すグラフである。
【図7】本発明の実施例における耐摩耗性の試験結果を示すグラフである。
【符号の説明】
10 基材
12 溶射皮膜[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thermal spray coating having a multiphase mixed structure in which a soft phase (graphite) or a hard phase (chromium oxide, chromium carbide) is dispersed in a thermal spray coating mainly composed of Fe and Mo.
[0002]
[Prior art]
As a conventional technique, a coating having a layered structure in which a wear layer (hard layer), an intermediate layer, and a rubbing layer (soft layer) are formed on a sliding surface of a base material is known. ing. Examples of the hard layer include chromium, nickel, and molybdenum in which hard particles such as chromium carbide and chromium oxide are embedded. Examples of the soft layer include those made of graphite coated with molybdenum, aluminum, silver, nickel, and the like. (For example, refer to Patent Document 1). Further, a technique for thermally spraying a coating made of Fe and Mo is also known (see, for example, Patent Document 2).
[0003]
[Patent Document 1]
Japanese Patent Publication No. 9-508688 [Patent Document 2]
Japanese National Patent Publication No. 11-515057
[Problems to be solved by the invention]
As described above, a technique for spraying graphite powder coated with metal (for example, refer to Patent Document 1) is known. However, graphite coated with metal on a hard layer is sprayed as a soft layer. It is considered that there is room for improvement in composite properties such as wear resistance, seizure resistance, initial conformability, etc. This technique is also different from the mixed tissue structure of the present invention. Furthermore, the material system is different from the Fe—Mo system of the present invention.
[0005]
Further, as described above, the Fe—Mo-based sprayed coating (for example, see Patent Document 2) is known, but has a two-phase mixed structure structure of Fe-based part and Mo, and has wear resistance, seizure resistance, and initial stage. There seems to be a problem with familiarity. Further, this thermal spray coating has a different structure from the three-phase mixed structure of the present invention, such as the Fe-based part, the Mo part, and the soft phase part, or the Fe-based part, the Mo part, and the hard phase part.
[0006]
Sliding parts, particularly cylinder bores of engines, are required to have a combination of characteristics such as wear resistance, seizure resistance, and initial conformability. The present invention has been made in view of the above points, and an object of the present invention is to provide an Fe—Mo-based thermal spray coating in which a soft phase (graphite) is dispersed, or Fe in which a hard phase (chromium oxide, chromium carbide) is dispersed. The object of the present invention is to provide a sprayed coating in which composite characteristics such as wear resistance, seizure resistance, initial conformability, etc. at the sliding portion are improved by using a Mo-based sprayed coating.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the wear-resistant thermal spray coating of the present invention is a thermal spray coating in which Fe and Mo are the main components and graphite is dispersed as a soft phase, and includes an Fe-based portion, an Mo portion, and a soft phase portion. It is comprised so that it may have the multiphase mixed structure which consists of. In this case, the mixed structure of the Fe-based part, the Mo part, and the soft phase part is used, and the surface texture state (sliding surface texture state) is 30 to 80% Fe-based part, 10 to 60% Mo, and the soft phase 5 by volume ratio. A composition range of ˜30% is preferable.
[0008]
Further, the abrasion-resistant sprayed coating of the present invention is a sprayed coating in which Fe and Mo are main components and chromium oxide or chromium carbide is dispersed as a hard phase, and consists of an Fe-based portion, a Mo portion, and a hard phase portion. It is characterized by having a multiphase mixed structure. In this case, the mixed structure state of the Fe-based part, the Mo part, and the hard phase part is used, and the surface structure state (sliding surface texture state) is Fe-based part 30 to 80%, Mo 10 to 60%, and hard phase 10 in volume ratio. A composition range of ˜30% is preferable.
[0009]
In the thermal spray coating in which the soft phase is dispersed, the size (length) of one Mo viewed in a plane as the surface structure is 10 to 100 μm, and the size (length) of one soft phase is 30 to 100 μm. It is preferable. Further, in the thermal spray coating in which the hard phase is dispersed, the size (length) of one Mo viewed in a plane as the surface structure is 10 to 100 μm, and the size (length) of one hard phase is 10 to 50 μm. It is preferable that The porosity of the mixed tissue film is preferably 1 to 10% by volume. Moreover, in the thermal spray coating in which the soft phase is dispersed, the average hardness of the mixed structure coating is 200 to 500 HV (Vickers hardness), and in each structure phase, the hardness of the Fe-based portion is 400 to 800 HV and the hardness of the Mo portion. 300 to 500 HV is preferable. In the thermal spray coating in which the hard phase is dispersed, the average hardness of the mixed structure film is 300 to 600 HV, and in each structure phase, the hardness of the Fe-based portion is 400 to 800 HV, the hardness of the Mo portion is 300 to 500 HV, The hardness of the phase portion is preferably 500 to 900 HV. In these present inventions, the thickness of the film when sprayed is preferably 100 to 300 μm. Further, after spraying, the film thickness when finished by processing is preferably 50 to 200 μm, and the surface roughness is preferably an arithmetic average roughness Ra of 0.1 to 0.6 μm. Arithmetic average roughness Ra is a roughness curve extracted from the roughness curve by a reference length in the direction of the average line, taking the X axis in the direction of the average line of the extracted portion and the Y axis in the direction of the vertical magnification. When y is expressed as y = f (x), the value obtained by the following equation 1 is expressed in micrometers (μm). In the formula shown below, l is a reference length.
[0010]
[Expression 1]
Figure 0004281368
[0011]
In the present invention, the powder used for thermal spraying is 0.40 to 1.00 wt% of C, 0.15 to 0.35 wt% of Si, 0.30 to 0.90 wt% of Mn, and 0 P of Fe with respect to Fe. 0.030 wt% or less, S having a composition of 0.035 wt% or less, or C with respect to Fe of 0.40 to 1.00 wt%, Si of 1.20 to 1.60 wt%, and Mn of 0.1%. Powder having a composition of 50 to 0.80 wt%, P of 0.025 wt% or less, S of 0.025 wt% or less, Cr of 0.50 to 0.80 wt%, or C with respect to Fe of 1.15 ~ 1.25 wt%, Si 0.45 wt% or less, Mn 0.40 wt% or less, P 0.030 wt% or less, S 0.030 wt% or less, Cr 3.80 to 4.50 wt%, Mo Having a composition of 4.70 to 5.20 wt%, W of 5.90 to 6.70 wt%, and V of 2.70 to 3.20 wt%. An Fe-based powder produced by treatment by a water atomizing method or a gas atomizing method, and a particle diameter of 30 to 70 μm is preferable. The powder used for thermal spraying is Mo powder prepared by granulating and sintering 1-10 μm powder composed of Mo and inevitable impurity elements (C, O, Si, Fe, etc.), and the particle diameter is 50-100 μm. It is preferable that Moreover, it is preferable that the powder used for thermal spraying is the graphite powder which coat | covered the graphite with the film thickness of 1-10 micrometers by Mo or Ni, and makes a particle diameter 30-90 micrometers. The powder used for thermal spraying is chromium oxide powder or chromium carbide powder produced by granulating and sintering 1 to 10 μm chromium oxide powder or chromium carbide powder and 1 to 10 μm Mo powder, and the particle size is 10 to 70 μm. It is preferable that
[0012]
In the present invention, it is preferable to perform a blast treatment on the surface of the substrate on which the film is to be formed, and to perform a pretreatment so that the surface roughness after the roughening becomes an arithmetic average roughness Ra of 3.0 μm or more.
Moreover, it is preferable to produce the abrasion-resistant thermal spray coating of the present invention on the substrate surface by atmospheric plasma spraying. In this case, when supplying the powder used for thermal spraying with a thermal spray gun, each is supplied from a separate supply port, or all are mixed and supplied from one supply port, or a mixture of two types and another 1 It is preferable that the types are prepared so as to be supplied from separate supply ports.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below, but the present invention is not limited to the following embodiments, and can be implemented with appropriate modifications.
(1) The present invention is a coating having a multiphase mixed structure such as an Fe-based portion, a Mo portion, and a soft phase portion (graphite), and is a sprayed coating excellent in wear resistance and seizure resistance. Further, the present invention is a coating having a multiphase mixed structure such as an Fe-based portion, a Mo portion, and a hard phase portion (chromium oxide or chromium carbide), and a sprayed coating having excellent wear resistance and seizure resistance. . Note that chromium oxide includes Cr 2 O 3 and Cr 3 O 4 , and chromium carbide includes Cr 3 C 2 , Cr 7 C 3 , and Cr 23 C 6 .
[0014]
(2) Preparation method of thermal spray coating 1) As the thermal spray powder Fe powder to be used, C is 0.40 to 1.00 wt%, Si is 0.15 to 0.35 wt%, and Mn is 0.00. Si or Mn was added to impart temper softening resistance to a composition of 30 to 0.90 wt%, P of 0.030 wt% or less, and S of 0.035 wt% or less, or Fe-C system. For example, with respect to Fe, C: 0.40 to 1.00 wt%, Si: 1.20 to 1.60 wt%, Mn: 0.50 to 0.80 wt%, P: 0.025 wt% or less, S: 0.025 wt% or less, Cr: 0.50 to 0.80 wt%, or alloy elements added to improve high-temperature strength and wear resistance, for example, Fe with respect to C : 1.15 to 1.25 wt%, Si: 0.45 wt% or less, Mn: 0.40 wt% or less, P:. 30 wt% or less, S: 0.030 wt% or less, Cr: 3.80 to 4.50 wt%, Mo: 4.70 to 5.20 wt%, W: 5.90 to 6.70 wt%, V: 2.70 The composition should be ˜3.20 wt%. The Fe powder having such a composition is processed by a water atomizing method or a gas atomizing method to produce a powder used for thermal spraying. The particle diameter is 30 to 70 μm. The Mo powder is prepared by granulating and sintering a powder of 1 to 10 μm made of Mo and inevitable impurity elements (inevitable impurity elements are C, O, Si, Fe, etc.). The particle diameter is 50-100 μm. The graphite powder, which is a powder that forms a soft phase, is a powder obtained by coating graphite with Mo or Ni to a thickness of 1 to 10 μm. The particle diameter is 30 to 90 μm. The chromium oxide powder (or chromium carbide powder), which is a powder forming a hard phase, is prepared as a granulated sintered powder of 1 to 10 μm chromium oxide powder (or chromium carbide powder) and 1 to 10 μm Mo powder. The particle diameter is 10 to 70 μm.
[0015]
2) As a pretreatment for the pretreatment spraying, the surface of the base material on which the film is to be formed is blasted using an Al 2 O 3 abrasive, and the surface roughness after the roughening is calculated as an arithmetic average roughness Ra. Processing to become 0 μm or more is performed.
[0016]
3) Thermal spray powder supply method An Fe-Mo coating having a multiphase mixed structure is produced by an atmospheric plasma spraying method. Fe-based powder and Mo powder and soft phase composition powder (graphite powder) or hard phase composition powder (chromium oxide powder or chromium carbide powder) are prepared to have a target composition, and by the following powder supply method, The composition of the thermal spray coating is managed by supplying powder to the plasma gun from the powder supply port.
a) Fe-Mo-based thermal sprayed coating in which soft phase is dispersed a) Fe-based powder, Mo powder and graphite powder are supplied from separate supply ports.
B) A mixture of Fe-based powder and Mo powder and graphite powder are supplied from separate supply ports.
C) A mixture of Fe-based powder and graphite powder and Mo powder are supplied from separate supply ports.
D) A mixture of Mo powder and graphite powder and an Fe-based powder are supplied from separate supply ports.
E) A mixture of Fe-based powder, Mo powder and graphite powder is supplied from one supply port.
The powder is supplied by any of the methods to prepare a film.
[0017]
b) Fe-Mo system sprayed coating in which hard phase is dispersed a) Fe system powder, Mo powder and chromium oxide powder (or chromium carbide powder) are supplied from separate supply ports.
B) Supplying a mixture of Fe-based powder and Mo powder and chromium oxide powder (or chromium carbide powder) from separate supply ports.
C) A mixture of Fe-based powder and chromium oxide powder (or chromium carbide powder) and Mo powder are supplied from separate supply ports.
D) A mixture of Mo powder and chromium oxide powder (or chromium carbide powder) and an Fe-based powder are supplied from separate supply ports.
E) A mixture of Fe-based powder, Mo powder, and chromium oxide powder (or chromium carbide powder) is supplied from one supply port.
The powder is supplied by any of the methods to prepare a film.
[0018]
(3) Structure of the film a) Structure of the Fe-Mo-based sprayed coating in which the soft phase is dispersed The film is a mixed structure of the Fe-based part, Mo part and soft-phase part, and the structure of the sliding surface (surface The structure state is set to a composition range of volume ratios of Fe-based portion: 30 to 80%, Mo: 10 to 60%, and soft phase: 5 to 30%. The size (length) of one Mo viewed planarly as a surface structure is 10 to 100 μm, and the size (length) of one soft phase is 30 to 100 μm. The balance is the Fe-based part. Moreover, the porosity of a mixed structure | tissue film | membrane shall be 1-10% by a volume ratio. The average hardness is 200 to 500 HV, and the hardness of each texture phase is 400 to 800 HV for the Fe-based portion and 300 to 500 HV for the Mo portion. The film thickness of the thermal spray coating is 100 to 300 μm.
[0019]
b) Structure of Fe-Mo thermal spray coating in which hard phase is dispersed Fe-part, Mo part, hard phase part mixed-structure film, and sliding structure (surface structure) is Fe-based Part: 30 to 80%, Mo: 10 to 60%, hard phase: 10 to 30% of volume composition range. The size (length) of one Mo viewed in plan as a surface structure is 10 to 100 μm, and the size (length) of one hard phase is 10 to 50 μm. The balance is the Fe-based part. Moreover, the porosity of a mixed structure | tissue film | membrane shall be 1-10% by a volume ratio. The average hardness is 300 to 600 HV, and the hardness of each texture phase is 400 to 800 HV for the Fe-based portion, 300 to 500 HV for the Mo portion, and 500 to 900 HV for the hard phase portion. . The film thickness of the thermal spray coating is 100 to 300 μm.
[0020]
(4) Finishing method of the film Both the Fe-Mo type thermal sprayed film in which the soft phase is dispersed and the Fe-Mo type thermal sprayed film in which the hard phase is dispersed are subjected to processing (for example, honing) as a film thickness after thermal spraying. Is 50 to 200 μm, and the surface roughness is finished with an arithmetic average roughness Ra of 0.1 to 0.6 μm.
(5) The thermal spray coating of the present invention can be used in various sliding portions. In particular, it is effective to apply to the inner surface of the cylinder bore of the engine.
[0021]
【Example】
(1) Example of Fe-Mo-based thermal sprayed coating in which soft phase is dispersed (Example 1)
1) The thermal spray coating of the composition, particle size, and manufacturing method shown in Table 1 below was used as the thermal spray coating preparation method and the coating structure sprayed powder. As a pretreatment for thermal spraying, an Al 2 O 3 abrasive was used to perform a blast treatment on the surface of the base material on which the film was formed so that the surface roughness Ra was 3.0 μm or more. Using an atmospheric plasma spraying method, thermal spraying was performed under the conditions shown in Table 2 to produce a film having a thickness of 200 μm. Thereafter, the sprayed coating was polished, the film thickness was 100 μm, and the surface roughness of the coating was Ra 0.07 to 0.2 μm. The surface texture structure of the thermal spray coating is the texture structure shown in FIG. 1 (this photo is finished so that the surface roughness is Ra 0.05 μm or less in order to make the surface texture structure well understood) The volume ratio of the film is Fe-based part: 60%, Mo structure part: 30%, and graphite part: 10%. In addition, the surface structure of the thermal spray coating is obtained by observing the coating surface from the position shown in FIG. 2 in the schematic diagram of the cross-sectional structure shown in FIG. 10 is a base material, 12 is a thermal spray coating.
[0022]
[Table 1]
Figure 0004281368
[0023]
[Table 2]
Figure 0004281368
[0024]
2) Evaluation method of film Using a reciprocating wear tester, seizure resistance and wear resistance were evaluated under the test conditions shown in Table 3. FIG. 4 is a conceptual diagram of a method for performing a seizure resistance test, and FIG. 5 is a conceptual diagram of a method for performing an abrasion resistance test. The seizure resistance was evaluated by a load increase test under a lubrication condition simulating an oil film breakage state. On the other hand, the wear resistance was evaluated by a constant load test under lubricating conditions in which lubricating oil was dropped. For the pin test piece of the mating material, two types of surfaces having Cr plating and CrN coating are used. The film thickness of the Cr plating is 100 μm and the hardness is 1000 HV. The CrN film is produced by an arc ion plating method, and has a film thickness of 40 μm and a hardness of 1500 HV.
A combination of cast iron and Cr plating (mating material) was used as a comparative material for the coating of this example. The combination of cast iron and Cr plating simulates the sliding of the cylinder liner and piston ring with the current material. The composition of cast iron is Fe-3.25C-2.22Si-0.74Mn-0.15P-0.022S-0.14Cr-0.24Cu. The base is a fine pearlite structure with flake graphite and carbide uniformly dispersed.
[0025]
[Table 3]
Figure 0004281368
[0026]
3) Evaluation results of the film FIG. 6 shows the result of the seizure test under the test conditions shown in Table 3, and FIG. 7 shows the result of the wear test. The combination of the Fe—Mo-based thermal spray coating in which the soft phase (graphite) is dispersed and the CrN coating (counter material) of this example is 8 times more than the combination of the cast iron of the comparative material and the Cr plating (counter material). The attached load is shown. In addition, the wear amount in the wear test in the combination of the Fe—Mo-based thermal sprayed coating in which the soft phase (graphite) is dispersed and the CrN coating (counter material) of this example is as follows. ) And the wear amount in the combination test was 1/6 or less.
[0027]
(2) Example of Fe-Mo type thermal spray coating in which hard phase is dispersed (Example 2)
1) The thermal spraying powder having the composition, particle size, and manufacturing method shown in Table 4 below was used as the thermal spraying coating method and coating structure sprayed powder. As a pretreatment for thermal spraying, an Al 2 O 3 abrasive was used to perform a blast treatment on the surface of the base material on which the film was formed so that the surface roughness Ra was 3.0 μm or more. Using an atmospheric plasma spraying method, thermal spraying was performed under the conditions shown in Table 5 to produce a coating having a thickness of 200 μm. Thereafter, the sprayed coating was polished, the film thickness was 100 μm, and the surface roughness of the coating was Ra 0.07 to 0.2 μm. The surface texture structure of the thermal spray coating is the texture structure shown in FIG. 3 (this photo is finished so that the surface roughness is 0.05 μm or less in order to make the surface texture structure well understood) The volume ratio of the film is Fe-based part: 60%, Mo structure part: 10%, and chromium oxide part: 30%.
[0028]
[Table 4]
Figure 0004281368
[0029]
[Table 5]
Figure 0004281368
[0030]
2) Evaluation method of film The seizure resistance and the abrasion resistance were evaluated under the test conditions shown in Table 3 above. The comparison material is the same.
3) Evaluation results of the film FIG. 6 shows the result of the seizure test under the test conditions shown in Table 3, and FIG. 7 shows the result of the wear test. The combination of the Fe—Mo-based thermal spray coating in which the hard phase (chromium oxide) is dispersed and the CrN coating (counter material) of this example is more than five times the combination of the cast iron of the comparative material and the Cr plating (counter material). The seizure load was shown. Further, the wear amount in the wear test in the combination of the Fe—Mo-based thermal spray coating in which the hard phase (chromium oxide) is dispersed in this example and the CrN coating (the counterpart material) is such that the wear amount cannot be measured. Trace amount.
[0031]
【The invention's effect】
Since this invention is comprised as mentioned above, there exist the following effects.
(1) By forming a thermal spray coating having a multiphase mixed structure in which a soft phase (graphite) or a hard phase (chromium oxide, chromium carbide) is dispersed in a thermal spray coating mainly composed of Fe and Mo, the sliding portion It is possible to improve composite properties such as wear resistance, seizure resistance, and initial conformability.
(2) The thermal spray coating of the present invention can be used in various sliding portions. In particular, it is effective to apply to the inner surface of the cylinder bore of the engine.
[Brief description of the drawings]
1 is a photograph taken with a scanning electron microscope showing the surface structure of an abrasion-resistant sprayed coating (Fe—Mo based sprayed coating in which a soft phase (graphite) is dispersed) in Example 1 of the present invention (magnification 100). Times).
FIG. 2 is a schematic diagram showing an example of a cross-sectional structure of an abrasion-resistant sprayed coating, and shows an observation position of a surface structure of the sprayed coating.
FIG. 3 is a photograph taken with a scanning electron microscope showing the surface structure of an abrasion-resistant sprayed coating (Fe—Mo-based sprayed coating in which a hard phase (chromium oxide) is dispersed) in Example 2 of the present invention (magnification) 100 times).
FIG. 4 is a conceptual diagram illustrating a test method for evaluating seizure resistance used in examples of the present invention.
FIG. 5 is a conceptual diagram illustrating a test method for evaluating wear resistance used in an example of the present invention.
FIG. 6 is a graph showing a seizure resistance test result in an example of the present invention.
FIG. 7 is a graph showing the test results of wear resistance in the examples of the present invention.
[Explanation of symbols]
10 Substrate 12 Thermal spray coating

Claims (14)

Fe及びMoを主成分とし、軟質相としてグラファイトを分散させた溶射皮膜であって、Fe系部分とMo部分と軟質相部分とからなる多相混合組織を有し、溶射に用いる粉末が、Feに対してCが0.40〜1.00wt%、Siが0.15〜0.35wt%、Mnが0.30〜0.90wt%、Pが0.030wt%以下、Sが0.035wt%以下の組成を有する粉末、又は、Feに対してCが0.40〜1.00wt%、Siが1.20〜1.60wt%、Mnが0.50〜0.80wt%、Pが0.025wt%以下、Sが0.025wt%以下、Crが0.50〜0.80wt%の組成を有する粉末、又は、Feに対してCが1.15〜1.25wt%、Siが0.45wt%以下、Mnが0.40wt%以下、Pが0.030wt%以下、Sが0.030wt%以下、Crが3.80〜4.50wt%、Moが4.70〜5.20wt%、Wが5.90〜6.70wt%、Vが2.70〜3.20wt%の組成を有する粉末であり、相手材としてCrN皮膜を有するピストンリングと組み合わせた場合のエンジンのシリンダ内径面に用いるのに適したことを特徴とする耐摩耗溶射皮膜。A thermal spray coating mainly composed of Fe and Mo and dispersed with graphite as a soft phase, having a multiphase mixed structure composed of an Fe-based portion, an Mo portion, and a soft phase portion, and a powder used for thermal spraying is Fe C is 0.40 to 1.00 wt%, Si is 0.15 to 0.35 wt%, Mn is 0.30 to 0.90 wt%, P is 0.030 wt% or less, and S is 0.035 wt% A powder having the following composition, or C: 0.40 to 1.00 wt%, Si: 1.20 to 1.60 wt%, Mn: 0.50 to 0.80 wt%, and P: 0. 025wt% or less, S is 0.025wt% or less, Cr has a composition of 0.50 to 0.80wt%, or C is 1.15 to 1.25wt% and Si is 0.45wt with respect to Fe % Or less, Mn is 0.40 wt% or less, and P is 0.030. t% or less, S is 0.030 wt% or less, Cr is 3.80 to 4.50 wt%, Mo is 4.70 to 5.20 wt%, W is 5.90 to 6.70 wt%, and V is 2.70. powder der having a composition of ~3.20Wt% is, wear thermal spray coating, characterized in that suitable for use in a cylinder inner surface of the engine when combined with a piston ring with a CrN coating the opposite material. Fe系部分、Mo部分及び軟質相部分の混合組織状態とし、表面組織状態が体積比率でFe系部分30〜80%、Mo10〜60%、軟質相5〜30%の組成範囲である請求項1記載の耐摩耗溶射皮膜。  2. A mixed structure state of an Fe-based part, a Mo part and a soft phase part is assumed, and the surface texture state is a composition range of Fe-based part 30 to 80%, Mo 10 to 60% and soft phase 5 to 30% by volume ratio. Abrasion resistant thermal spray coating as described. Fe及びMoを主成分とし、硬質相として酸化クロム又は炭化クロムを分散させた溶射皮膜であって、Fe系部分とMo部分と硬質相部分とからなる多相混合組織を有し、溶射に用いる粉末が、Feに対してCが0.40〜1.00wt%、Siが0.15〜0.35wt%、Mnが0.30〜0.90wt%、Pが0.030wt%以下、Sが0.035wt%以下の組成を有する粉末、又は、Feに対してCが0.40〜1.00wt%、Siが1.20〜1.60wt%、Mnが0.50〜0.80wt%、Pが0.025wt%以下、Sが0.025wt%以下、Crが0.50〜0.80wt%の組成を有する粉末、又は、Feに対してCが1.15〜1.25wt%、Siが0.45wt%以下、Mnが0.40wt%以下、Pが0.030wt%以下、Sが0.030wt%以下、Crが3.80〜4.50wt%、Moが4.70〜5.20wt%、Wが5.90〜6.70wt%、Vが2.70〜3.20wt%の組成を有する粉末であり、相手材としてCrN皮膜を有するピストンリングと組み合わせた場合のエンジンのシリンダ内径面に用いるのに適したことを特徴とする耐摩耗溶射皮膜。A thermal spray coating comprising Fe and Mo as main components and chromium oxide or chromium carbide dispersed as a hard phase, having a multiphase mixed structure comprising an Fe-based portion, an Mo portion and a hard phase portion, and used for thermal spraying The powder is 0.40 to 1.00 wt%, Fe is 0.15 to 0.35 wt%, Mn is 0.30 to 0.90 wt%, P is 0.030 wt% or less, and S is Fe Powder having a composition of 0.035 wt% or less, or C is 0.40 to 1.00 wt%, Si is 1.20 to 1.60 wt%, Mn is 0.50 to 0.80 wt% with respect to Fe, Powder having a composition in which P is 0.025 wt% or less, S is 0.025 wt% or less, and Cr is 0.50 to 0.80 wt%, or C is 1.15 to 1.25 wt% with respect to Fe, Si Is 0.45 wt% or less, Mn is 0.40 wt% or less, P 0.030 wt% or less, S 0.030 wt% or less, Cr 3.80 to 4.50 wt%, Mo 4.70 to 5.20 wt%, W 5.90 to 6.70 wt%, V 2 powder der having a composition of .70~3.20Wt% is, wear thermal spray coating, characterized in that suitable for use in a cylinder inner surface of the engine when combined with a piston ring with a CrN coating the opposite material . Fe系部分、Mo部分及び硬質相部分の混合組織状態とし、表面組織状態が体積比率でFe系部分30〜80%、Mo10〜60%、硬質相10〜30%の組成範囲である請求項3記載の耐摩耗溶射皮膜。  The mixed structure state of the Fe-based part, the Mo part, and the hard phase part is set, and the surface texture state is a composition range of Fe-based part 30 to 80%, Mo 10 to 60%, and hard phase 10 to 30% by volume ratio. Abrasion resistant thermal spray coating as described. 表面組織として平面的に見た1つのMoの大きさが10〜100μmであり、1つの軟質相の大きさが30〜100μmである請求項1又は2記載の耐摩耗溶射皮膜。  The wear-resistant sprayed coating according to claim 1 or 2, wherein the size of one Mo viewed in plan as a surface structure is 10 to 100 µm, and the size of one soft phase is 30 to 100 µm. 表面組織として平面的に見た1つのMoの大きさが10〜100μmであり、1つの硬質相の大きさが10〜50μmである請求項3又は4記載の耐摩耗溶射皮膜。  The wear-resistant thermal spray coating according to claim 3 or 4, wherein the size of one Mo viewed in plan as a surface structure is 10 to 100 µm, and the size of one hard phase is 10 to 50 µm. 混合組織皮膜の気孔率が体積率で1〜10%である請求項1〜6のいずれかに記載の耐摩耗溶射皮膜。  The abrasion resistant thermal spray coating according to any one of claims 1 to 6, wherein the porosity of the mixed structure coating is 1 to 10% by volume. 混合組織皮膜の平均硬さが200〜500HVであり、各組織相では、Fe系部分の硬さが400〜800HV、Mo部分の硬さが300〜500HVである請求項1又は2記載の耐摩耗溶射皮膜。  The average hardness of the mixed tissue film is 200 to 500 HV, and in each tissue phase, the hardness of the Fe-based portion is 400 to 800 HV, and the hardness of the Mo portion is 300 to 500 HV. Thermal spray coating. 混合組織皮膜の平均硬さが300〜600HVであり、各組織相では、Fe系部分の硬さが400〜800HV、Mo部分の硬さが300〜500HV、硬質相部分の硬さが500〜900HVである請求項3又は4記載の耐摩耗溶射皮膜。  The average hardness of the mixed tissue film is 300 to 600 HV. In each tissue phase, the hardness of the Fe-based portion is 400 to 800 HV, the hardness of the Mo portion is 300 to 500 HV, and the hardness of the hard phase portion is 500 to 900 HV. The wear-resistant thermal spray coating according to claim 3 or 4. 溶射後、加工により仕上げたときの膜厚が50〜200μm、表面粗さが算術平均粗さRaで0.1〜0.6μmである請求項1〜9のいずれかに記載の耐摩耗溶射皮膜。  The abrasion-resistant sprayed coating according to any one of claims 1 to 9, wherein after spraying, the film thickness when finished by processing is 50 to 200 µm, and the surface roughness is 0.1 to 0.6 µm in arithmetic mean roughness Ra. . 溶射に用いる粉末は、水アトマイズ法又はガスアトマイズ法により処理して作製したFe系粉末である請求項1〜4のいずれかに記載の耐摩耗溶射皮膜。  The wear-resistant thermal spray coating according to any one of claims 1 to 4, wherein the powder used for thermal spraying is an Fe-based powder produced by treatment by a water atomizing method or a gas atomizing method. 溶射に用いる粉末は、Mo及び不可避的不純物元素からなる1〜10μmの粉末を造粒焼結して作製したMo粉末である請求項1〜4のいずれかに記載の耐摩耗溶射皮膜。  The wear-resistant thermal spray coating according to any one of claims 1 to 4, wherein the powder used for thermal spraying is Mo powder prepared by granulating and sintering 1 to 10 µm powder composed of Mo and inevitable impurity elements. 溶射に用いる粉末は、グラファイトをMo又はNiにより膜厚1〜10μmで被覆したグラファイト粉末である請求項1又は2記載の耐摩耗溶射皮膜。  The wear-resistant thermal spray coating according to claim 1 or 2, wherein the powder used for thermal spraying is a graphite powder obtained by coating graphite with Mo or Ni to a thickness of 1 to 10 µm. 溶射に用いる粉末は、1〜10μmの酸化クロム粉末又は炭化クロム粉末と1〜10μmのMo粉末を造粒焼結して作製した酸化クロム粉末又は炭化クロム粉末である請求項3又は4記載の耐摩耗溶射皮膜。  The powder used for thermal spraying is chromium oxide powder or chromium carbide powder produced by granulating and sintering 1 to 10 µm chromium oxide powder or chromium carbide powder and 1 to 10 µm Mo powder. Wear spray coating.
JP2003022860A 2003-01-30 2003-01-30 Abrasion resistant spray coating Expired - Lifetime JP4281368B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003022860A JP4281368B2 (en) 2003-01-30 2003-01-30 Abrasion resistant spray coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003022860A JP4281368B2 (en) 2003-01-30 2003-01-30 Abrasion resistant spray coating

Publications (2)

Publication Number Publication Date
JP2004232035A JP2004232035A (en) 2004-08-19
JP4281368B2 true JP4281368B2 (en) 2009-06-17

Family

ID=32951821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003022860A Expired - Lifetime JP4281368B2 (en) 2003-01-30 2003-01-30 Abrasion resistant spray coating

Country Status (1)

Country Link
JP (1) JP4281368B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007177760A (en) * 2005-12-28 2007-07-12 Nissan Motor Co Ltd Piston, piston ring and cylinder block for internal combustion engine
JP5229862B2 (en) * 2007-08-29 2013-07-03 独立行政法人産業技術総合研究所 Fe7Mo6 base alloy composed of three phases and manufacturing method thereof
JP5146402B2 (en) 2009-05-19 2013-02-20 トヨタ自動車株式会社 Method for forming carbon particle-containing coating, heat transfer member, power module, and vehicle inverter
JP5826958B1 (en) * 2014-07-29 2015-12-02 株式会社リケン Piston ring for internal combustion engine
KR20160053121A (en) 2014-10-31 2016-05-13 현대자동차주식회사 Coating method for shift fork and shift fork with amorphous coating layer by using the same
JP7435803B2 (en) * 2020-09-02 2024-02-21 日産自動車株式会社 Thermal spray coating and method for producing the spray coating

Also Published As

Publication number Publication date
JP2004232035A (en) 2004-08-19

Similar Documents

Publication Publication Date Title
Yan et al. Microstructure and wear resistance of plasma-sprayed molybdenum coating reinforced by MoSi2 particles
JP5903085B2 (en) Combination of cylinder bore and piston ring
US9194492B2 (en) Piston ring having a thermally sprayed coating and method for producing same
US20110254230A1 (en) Coatings and powders, methods of making same, and uses thereof
JP4790135B2 (en) Wear-resistant sliding member
JPWO2004035852A1 (en) Piston ring, thermal spray coating used therefor, and manufacturing method
JP2003064463A (en) Wear-resistant sprayed coating film on sliding member
JP2003013163A (en) Powder aluminum alloy sliding member and combination of cylinder and piston ring
JP5514187B2 (en) piston ring
JP4281368B2 (en) Abrasion resistant spray coating
RU2635119C2 (en) Wear-resistant coating for piston rings
JP5257756B2 (en) Iron-based thermal spray coating, method for forming the same, and sliding member
JP4247882B2 (en) Abrasion resistant spray coating
JP2005155711A (en) Thermal spray piston ring and manufacturing method thereof
KR101915593B1 (en) Piston ring and manufacturing method thereof
JPH08246944A (en) Cylinder for internal combustion engine and manufacture thereof
JP2004183075A (en) Wear resistant member, and rolling member using it
JP2019100350A (en) Sliding member
JP2004307975A (en) Sliding member
DK201870188A1 (en) Piston ring and manufacturing method therefor
JPS5993865A (en) Sliding member
JPH10183327A (en) Thermally sprayed film layer having fitness to sliding member
WO2023113035A1 (en) Thermal spray coating film, sliding member and piston ring
JP3248938B2 (en) Sliding member
JPH09152035A (en) Piston ring

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060811

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061214

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070329

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090309

R150 Certificate of patent or registration of utility model

Ref document number: 4281368

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150327

Year of fee payment: 6

EXPY Cancellation because of completion of term