JP4271407B2 - Method for producing positive electrode active material for alkaline storage battery - Google Patents
Method for producing positive electrode active material for alkaline storage battery Download PDFInfo
- Publication number
- JP4271407B2 JP4271407B2 JP2002107490A JP2002107490A JP4271407B2 JP 4271407 B2 JP4271407 B2 JP 4271407B2 JP 2002107490 A JP2002107490 A JP 2002107490A JP 2002107490 A JP2002107490 A JP 2002107490A JP 4271407 B2 JP4271407 B2 JP 4271407B2
- Authority
- JP
- Japan
- Prior art keywords
- solution
- nickel hydroxide
- cobalt
- oxyhydroxide
- nickel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、アルカリ蓄電池用正極活物質の製造方法に関する。
【0002】
【従来の技術】
従来、(オキシ)水酸化ニッケルの表面をオキシ水酸化コバルトにて被覆したアルカリ蓄電池用正極活物質を製造するためには、水酸化ニッケル表面をコバルト化合物で被覆する工程、被覆したコバルト化合物をアルカリ酸化する工程およびオキシ化工程の複数の工程を経なければならなかった。
【0003】
【発明が解決しようとする課題】
本発明は、水酸化ニッケル表面をオキシ水酸化コバルトで被覆したアルカリ蓄電池用正極活物質の製造方法を提供することを目的とする。
【0004】
また、本発明は、水酸化ニッケルの一部がオキシ水酸化ニッケルに転換した水酸化ニッケル表面をオキシ水酸化コバルトで被覆したアルカリ蓄電池用正極活物質の製造方法を提供することを目的とする。
以下、本発明を実施の形態に即して詳細に説明する。
【0005】
【課題を解決するための手段】
本発明の製造方法は、水酸化ニッケルを出発原料に一段階の湿式反応で水酸化ニッケル表面をオキシ水酸化コバルトで被覆することを特徴とする。
【0006】
より詳しくは、本発明にかかる水酸化ニッケル表面をオキシ水酸化コバルトで被覆したアルカリ蓄電池用正極活物質の製造方法は、アルカリ金属水酸化物水溶液でpHを10〜13.5に調節した水溶液中に、水酸化ニッケル粒を攪拌しながら添加してスラリーとし、その中に硫酸コバルト溶液および酸化剤溶液を同時に滴下することを特徴とする。
【0007】
本発明にかかる製造方法は、さらに酸化剤溶液を滴下することにより、水酸化ニッケルの一部をオキシ水酸化ニッケルに転換して、オキシ水酸化ニッケル表面をオキシ水酸化コバルトで被覆したアルカリ蓄電池用正極活物質を製造することをも特徴とする。
【0008】
【発明の実施の形態】
以下、本発明にかかる製造方法を実施の形態に即して詳細に説明する。
本発明の製造方法の特徴は、pHを10〜13.5に調節した水溶液中に、水酸化ニッケル粒を攪拌しながら添加してスラリーとし、そこに硫酸コバルト溶液および酸化剤溶液を同時に滴下することを特徴とするものである。
【0009】
本発明で使用される原料である水酸化ニッケル粒には特に制限はなく、アルカリ二次電池用正極活物質として通常利用されている水酸化ニッケル粒であればよい。具体的には、タッピング密度が1.8〜2.4g/ccのもの、比表面積が5〜30m2/gのもの、平均粒径が5〜20μmの範囲のものの使用が好ましい。また、水酸化ニッケル粒には必要に応じて、種々の他の金属を適量含有するものも含まれる。例えば、B、Ca、Mg、Al、Si、Sc、Ti、V、Cr、Mn、Fe、Co、Cu、Zn、Ga、Y、Zr、Nb、Mo、Ru、Sn、Sb、La、Ce、Pr、Nd、Hf、Ta、W及びPbが挙げられる。上記元素のうち、一つを含有してもよいし、二以上を含有していてもよい。
【0010】
水酸化ニッケルの分散量は特に限定されないが、通常、水1Lに対し水酸化ニッケルを1〜30モルの範囲で含有することができる。製造工程における操作性や経済性の点からより好ましくは5〜20モルの範囲である。
【0011】
pHの調節方法は特に制限はないが、アルカリ金属水酸化物水溶液を使用することが好ましい。具体的には、リチウム、ナトリウム、カリウム、ルビジウム、セシウムおよびフランシウムの水酸化物の水溶液が挙げられる。本発明において好ましい範囲のpHは、水酸化ニッケル粒の安定性、使用する酸化反応系、特に酸化剤の種類に依存し、通常は10〜13.5の範囲が好ましい。具体的には酸化剤として次亜塩素酸塩を使用する場合は、pHは13以上を維持することが特に好ましい。
【0012】
また本発明においては攪拌することが好ましいが、その撹拌装置については特に制限はない。本発明に使用する反応槽内溶液において原料たる水酸化ニッケルがスラリー(スラリーとは、攪拌により反応溶液中に水酸化ニッケル粒が分散して懸濁液となった状態をいう。)になり、且つ酸化剤によりその酸化反応が進行するために至適な回転数で攪拌できるものであればよい。具体的にはマリン三枚羽型のものが使用できる。反応における攪拌回転数は特に限定されないが、酸化反応は固体と液体との接触反応であるため、攪拌が遅すぎると水酸化ニッケル粉末が均一に水溶液中に分散せず酸化反応は実質的に進行しにくくなる。また、攪拌が速すぎると次亜塩素酸ナトリウムの分解が進行して、酸化反応効率が低下する。従って、最も有効な攪拌のための回転数を選定することは重要である。
【0013】
本発明で用いるコバルトイオンの供給のために使用する硫酸コバルト溶液とは、反応水溶液中でコバルトイオンを与えるものであればよく、硫酸塩に限定されない。例えば、塩化物や硝酸塩なども好ましく使用可能である。
【0014】
また本発明で使用可能な酸化剤溶液は、反応中に生じる水酸化コバルトをオキシ水酸化コバルトに酸化可能な酸化剤の溶液であればよい。さらには水酸化ニッケル粒の一部をオキシ水酸化ニッケルに酸化可能な酸化物の溶液であればよい。具体的には酸化剤溶液としては、オゾン;過マンガン酸(HMnO4)、MMnO4(Mはアルカリ金属を表す)等で表される過マンガン酸塩;クロム酸(CrO3)、M2Cr2O7、MCrO3Cl(Mはアルカリ金属を表す)、CrO2Cl2等で表されるクロム酸関連化合物;F2、Cl2、Br2、I2のハロゲン;ペルオキソ酸、M2S2O8、M2S2O5(Mはアルカリ金属を表す)、CH3CO3H等で表されるその塩;酸素酸、MClO、MBrO、MIO、MClO3、MBrO3、MIO3、MClO4、MIO4(Mはアルカリ金属を表す)、NaH2IO6、KIO4等で表されるその塩等の溶液のことである。このうち好ましいのは酸素酸である。これらの酸化剤の2種以上を併用してもよい。特に好ましいのは次亜塩素酸である。
【0015】
酸化剤の溶液中の濃度は特に限定されないが、通常、酸化剤の濃度に換算して0.5〜3.0モル/Lが好ましい。製造工程における操作性や経済性の点から、より好ましくは1.5〜2.5モル/Lである。具体的には、硫酸コバルトと次亜塩素酸ナトリウムの仕込み比は、酸化当量比で(次亜塩素酸ナトリウム)/(コバルト)>1.0であることが好ましい。また、水酸化ニッケルをオキシ水酸化ニッケルに酸化するためには酸化剤の量を調節することにより、水酸化ニッケルを任意の程度に酸化してオキシ水酸化ニッケルとすることができる。この場合必要な酸化剤の量は、実際に使用する反応条件に依存し、その条件で加える酸化剤と得られる酸化の程度について相関関係をあらかじめ求めておくことで容易に選択することができる。
【0016】
反応温度は、使用する酸化剤の種類に依存するが、通常30〜70℃の範囲である。特に次亜塩素酸ナトリウム溶液を使用する場合には40〜60℃が好ましい。酸化反応における酸化時間は、酸化剤の種類及び反応温度により異なるが、次亜塩素酸ナトリウム溶液を用いる場合には、3〜8時間、好ましくは3〜5時間が最も有効に反応に作用し、経済性からも有利である。
【0017】
本発明では、滴下する酸化剤溶液と、コバルト化合物溶液とを、添加開始と添加終了が同時になるように、且つ酸化当量比が常に所定の値であるように保持しながら反応溶液に添加することが好ましい。
【0018】
反応終了後は、そのままのpH(即ちpH10〜13.5)で濾過し、水洗後、乾燥する。製品の乾燥は、特に限定されるものではないが、乾燥温度が余り高いと得られた製品が分解し、酸化度が低下するなどの問題が生じる。従って、製品の乾燥は温度を上げず、減圧乾燥としても良いが、通常、20〜120℃、好ましくは40〜80℃で乾燥するのが良い。
【0019】
【実施例】
以下に実施例を掲げて本発明をさらに詳細に説明するが、本発明はこれら実施例のみに限定されるものではない。
目的物の製造にあたって、溶液の攪拌速度は回転数700rpm、その水浴温度は50℃、8モル/Lの水酸化ナトリウム水溶液を添加することによりそのpHを13.0に維持した。
【0020】
(物性の測定方法)
平均粒子径、被覆されたコバルトの量、バルク密度、タッピング密度、酸化度、X線結晶回折パターンは、以下の方法で測定した。平均粒径は、セイシン企業製レーザーマイクロサイザー「PRO7000S」を使用し測定した。被覆されたコバルトの量は、ICP(セイコー電子製SPS7000S)を使用して測定した。バルク密度、タップ密度は、セイシン企業製タップデンサー「KYT−3000」にて、4cmスペーサーを用い200回のタッピング前後の密度を測定した。酸化度は、0.2gの試料を採取、精秤し、これを硫酸−ヨウ化カリウム(1:1)溶液中で完全に溶解させた後、遊離したヨウ素をチオ硫酸ナトリウム溶液で逆滴定し、滴定量から算出した。
X線結晶回折パターンは、X線回折装置(リガク製RINT2200)で測定した。
【0021】
(実施例1)オキシ水酸化コバルトで表面を被覆した水酸化ニッケルの製造
pHセンサー、攪拌機(マリン羽根3枚、攪拌機動力30W、回転数500〜1000rpm(可変))および温度調節器付ヒーターを備えた円筒型反応槽(内径300mm、高さ300mm、有効容積10L)に、水10Lを加え、温度およびpHを上記のとおりに調節した。
次に、攪拌しながらTAP密度1.8〜2.4g/cc且つ平均粒径が5〜20μmの水酸化ニッケル粒を1.0kg投入し、水酸化ニッケルスラリーとした。
【0022】
上記水酸化ニッケルスラリーに、2mol/Lの次亜塩素酸ナトリウム溶液350mlと、1.5mol/Lの硫酸コバルト溶液320mlとを、2時間かけて加え、さらに1時間攪拌した。
このスラリーをブフナーロートを用いて濾過し、送風乾燥器を用いて80℃にて12時間乾燥し、目的の黒色のオキシ水酸化コバルトで表面を被覆した水酸化ニッケルを得た。
【0023】
収率は99%、平均粒径は11μm、被覆されたコバルトの量は2.5重量%、バルク密度は1.4g/cc、タッピング密度は2.0g/cc、電気顕微鏡写真は図1であって、X線回折パターンは図2であった。酸化率は7.3%であった。
【0024】
(実施例2)オキシ水酸化コバルトで表面が被覆され一部をオキシ水酸化ニッケルに転換した水酸化ニッケルの製造
実施例1と同じ条件で、2mol/Lの次亜塩素酸ナトリウム溶液350mlおよび1.5mol/Lの硫酸コバルト溶液320mlを2時間かけて加えた。その後、さらに、2mol/Lの次亜塩素酸ナトリウム溶液150mlを添加することにより、水酸化ニッケルの一部をオキシ水酸化ニッケルに転換した。さらに1時間攪拌し、このスラリーを実施例1と同様に濾過し、脱水し、乾燥して、目的の黒色のオキシ水酸化コバルトで表面を被覆し一部をオキシ水酸化ニッケルに転換した水酸化ニッケルを得た。
【0025】
収率は99%、平均粒径は11μm、被覆されたコバルトの量は2.5重量%、バルク密度は1.4g/cc、タッピング密度は2.0g/cc、オキシ水酸化ニッケルの酸化度は12.5%、X線回折パターンは図3であった。
【0026】
また同様にして、2mol/Lの次亜塩素酸ナトリウム溶液300mlを添加することにより、17.8%の酸化度を有するオキシ水酸化コバルトで表面を被覆し一部をオキシ水酸化ニッケルに転換した水酸化ニッケルを得た。
X線回折パターンは図4であり、その電気顕微鏡写真は図5であった。
【0027】
(実施例3)オキシ水酸化コバルトで表面を被覆したオキシ水酸化ニッケルの製造
実施例1と同じ条件で、2mol/L次亜塩素酸ナトリウム溶液350mlと1.5mol/L硫酸コバルト溶液320mlを2時間かけて加えた。その後、更に、2mol/Lの次亜塩素酸ナトリウム溶液4Lを滴下することにより、水酸化ニッケルをオキシ水酸化ニッケルに酸化した。さらに1時間攪拌して、このスラリーを濾過、脱水、乾燥し、目的の黒色のオキシ水酸化コバルトで表面を被覆したオキシ水酸化ニッケルを得た。
【0028】
収率は99%、平均粒径は11μm、被覆されたコバルトの量は2.5重量%、バルク密度は1.4g/cc、タッピング密度は2.0g/cc、オキシ水酸化ニッケルの酸化度は100%、電気顕微鏡写真は図6であって、X線回折パターンは図7であった。
【0029】
【発明の効果】
本発明にかかるアルカリ蓄電池用正極活物質の製造方法により、水酸化ニッケルを出発原料に簡便な湿式反応で水酸化ニッケル表面をオキシ水酸化コバルトで被覆することができる。
【図面の簡単な説明】
【図1】実施例1で製造された、オキシ水酸化コバルトで表面を被覆した水酸化ニッケルの電子顕微鏡写真である。
【図2】実施例1で製造された、オキシ水酸化コバルトで表面を被覆した水酸化ニッケルのX線結晶回折パターンである。
【図3】実施例2で製造された、12.5%の酸化度を有するオキシ水酸化コバルトで表面が被覆され一部をオキシ水酸化ニッケルに転換した水酸化ニッケルのX線結晶回折パターンである。
【図4】実施例2で製造された、17.8%の酸化度を有するオキシ水酸化コバルトで表面が被覆され一部をオキシ水酸化ニッケルに転換した水酸化ニッケルの電子顕微鏡写真である。
【図5】実施例2で製造された、17.8%の酸化度を有するオキシ水酸化コバルトで表面が被覆され一部をオキシ水酸化ニッケルに転換した水酸化ニッケルのX線結晶回折パターンである。
【図6】実施例3で製造された、オキシ水酸化コバルトで表面を被覆したオキシ水酸化ニッケルの電子顕微鏡写真である。
【図7】実施例3で製造された、オキシ水酸化コバルトで表面を被覆したオキシ水酸化ニッケルのX線結晶回折パターンである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a positive electrode active material for an alkaline storage battery.
[0002]
[Prior art]
Conventionally, in order to produce a positive electrode active material for an alkaline storage battery in which the surface of (oxy) nickel hydroxide is coated with cobalt oxyhydroxide, a step of coating the nickel hydroxide surface with a cobalt compound, It had to go through a plurality of steps, an oxidation step and an oxidation step.
[0003]
[Problems to be solved by the invention]
An object of this invention is to provide the manufacturing method of the positive electrode active material for alkaline storage batteries which coat | covered the nickel hydroxide surface with the cobalt oxyhydroxide.
[0004]
Moreover, an object of this invention is to provide the manufacturing method of the positive electrode active material for alkaline storage batteries which coat | covered the nickel hydroxide surface which a part of nickel hydroxide converted into nickel oxyhydroxide with cobalt oxyhydroxide.
Hereinafter, the present invention will be described in detail according to embodiments.
[0005]
[Means for Solving the Problems]
The production method of the present invention is characterized in that the surface of nickel hydroxide is coated with cobalt oxyhydroxide by a one-step wet reaction using nickel hydroxide as a starting material.
[0006]
More specifically, the method for producing a positive electrode active material for an alkaline storage battery in which the nickel hydroxide surface according to the present invention is coated with cobalt oxyhydroxide is used in an aqueous solution in which the pH is adjusted to 10 to 13.5 with an aqueous alkali metal hydroxide solution. Further, nickel hydroxide particles are added with stirring to form a slurry, and a cobalt sulfate solution and an oxidant solution are simultaneously dropped into the slurry.
[0007]
The production method according to the present invention is for an alkaline storage battery in which a part of nickel hydroxide is converted to nickel oxyhydroxide by dropping an oxidizing agent solution and the surface of nickel oxyhydroxide is coated with cobalt oxyhydroxide. It is also characterized by producing a positive electrode active material.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a manufacturing method according to the present invention will be described in detail with reference to embodiments.
A feature of the production method of the present invention is that nickel hydroxide particles are added to an aqueous solution adjusted to a pH of 10 to 13.5 with stirring to form a slurry, and a cobalt sulfate solution and an oxidant solution are simultaneously added dropwise thereto. It is characterized by this.
[0009]
There is no restriction | limiting in particular in the nickel hydroxide particle | grains which are the raw materials used by this invention, What is necessary is just the nickel hydroxide particle | grains normally utilized as a positive electrode active material for alkaline secondary batteries. Specifically, it is preferable to use one having a tapping density of 1.8 to 2.4 g / cc, a specific surface area of 5 to 30 m 2 / g, and an average particle size of 5 to 20 μm. The nickel hydroxide particles include those containing appropriate amounts of various other metals as required. For example, B, Ca, Mg, Al, Si, Sc, Ti, V, Cr, Mn, Fe, Co, Cu, Zn, Ga, Y, Zr, Nb, Mo, Ru, Sn, Sb, La, Ce, Examples include Pr, Nd, Hf, Ta, W, and Pb. Among the above elements, one may be contained, or two or more may be contained.
[0010]
Although the dispersion amount of nickel hydroxide is not particularly limited, nickel hydroxide can usually be contained in a range of 1 to 30 mol per 1 L of water. More preferably, it is the range of 5-20 mol from the point of operativity in a manufacturing process, or economical efficiency.
[0011]
The method for adjusting the pH is not particularly limited, but it is preferable to use an aqueous alkali metal hydroxide solution. Specific examples include aqueous solutions of lithium, sodium, potassium, rubidium, cesium, and francium hydroxide. The preferred range of pH in the present invention depends on the stability of the nickel hydroxide particles and the oxidation reaction system used, particularly the type of oxidizing agent, and is usually in the range of 10 to 13.5. Specifically, when hypochlorite is used as the oxidizing agent, it is particularly preferable to maintain a pH of 13 or more.
[0012]
In the present invention, stirring is preferred, but the stirring device is not particularly limited. In the reaction vessel solution used in the present invention, nickel hydroxide as a raw material becomes a slurry (a slurry means a state in which nickel hydroxide particles are dispersed in the reaction solution by stirring to form a suspension), And since the oxidation reaction advances with an oxidizing agent, what can stir at the optimal rotation speed should just be used. Specifically, a marine three-blade type can be used. The stirring rotation speed in the reaction is not particularly limited. However, since the oxidation reaction is a contact reaction between a solid and a liquid, if the stirring is too slow, the nickel hydroxide powder is not uniformly dispersed in the aqueous solution and the oxidation reaction substantially proceeds. It becomes difficult to do. On the other hand, if the stirring is too fast, the decomposition of sodium hypochlorite proceeds and the oxidation reaction efficiency decreases. Therefore, it is important to select the rotation speed for the most effective stirring.
[0013]
The cobalt sulfate solution used for supplying cobalt ions used in the present invention is not limited to sulfate as long as it provides cobalt ions in the reaction aqueous solution. For example, chlorides and nitrates can be preferably used.
[0014]
Moreover, the oxidizing agent solution which can be used by this invention should just be a solution of the oxidizing agent which can oxidize the cobalt hydroxide produced during reaction to cobalt oxyhydroxide. Furthermore, any oxide solution capable of oxidizing a part of the nickel hydroxide particles to nickel oxyhydroxide may be used. Specifically, as the oxidizing agent solution, ozone; permanganate represented by permanganic acid (HMnO 4 ), MMnO 4 (M represents an alkali metal), etc .; chromic acid (CrO 3 ), M 2 Cr Chromic acid-related compounds represented by 2 O 7 , MCrO 3 Cl (M represents an alkali metal), CrO 2 Cl 2, etc .; F 2 , Cl 2 , Br 2 , I 2 halogen; Peroxo acid, M 2 S 2 O 8 , M 2 S 2 O 5 (M represents an alkali metal), a salt thereof represented by CH 3 CO 3 H, etc .; oxygen acid, MClO, MBrO, MIO, MClO 3 , MBrO 3 , MIO 3 , It is a solution of a salt thereof represented by MClO 4 , MIO 4 (M represents an alkali metal), NaH 2 IO 6 , KIO 4 or the like. Of these, oxygen acid is preferred. Two or more of these oxidizing agents may be used in combination. Particularly preferred is hypochlorous acid.
[0015]
The concentration of the oxidizing agent in the solution is not particularly limited, but is usually preferably 0.5 to 3.0 mol / L in terms of the oxidizing agent concentration. From the viewpoint of operability and economical efficiency in the production process, it is more preferably 1.5 to 2.5 mol / L. Specifically, the charging ratio of cobalt sulfate and sodium hypochlorite is preferably (sodium hypochlorite) / (cobalt)> 1.0 in terms of oxidation equivalent ratio. In addition, in order to oxidize nickel hydroxide to nickel oxyhydroxide, the nickel hydroxide can be oxidized to an arbitrary degree by adjusting the amount of oxidizing agent to nickel oxyhydroxide. In this case, the amount of oxidant required depends on the reaction conditions actually used, and can be easily selected by obtaining a correlation in advance between the oxidant added under the conditions and the degree of oxidation obtained.
[0016]
The reaction temperature depends on the type of oxidizing agent used, but is usually in the range of 30 to 70 ° C. When using a sodium hypochlorite solution especially, 40-60 degreeC is preferable. The oxidation time in the oxidation reaction varies depending on the kind of the oxidant and the reaction temperature, but when using a sodium hypochlorite solution, 3 to 8 hours, preferably 3 to 5 hours, acts on the reaction most effectively. It is advantageous also from economical efficiency.
[0017]
In the present invention, the dripping oxidant solution and the cobalt compound solution are added to the reaction solution so that the addition starts and ends at the same time and the oxidation equivalent ratio is always kept at a predetermined value. Is preferred.
[0018]
After completion of the reaction, the solution is filtered with the same pH (ie,
[0019]
【Example】
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.
In the production of the target product, the stirring speed of the solution was 700 rpm, the water bath temperature was 50 ° C., and the pH was maintained at 13.0 by adding an 8 mol / L sodium hydroxide aqueous solution.
[0020]
(Measurement method of physical properties)
The average particle diameter, the amount of coated cobalt, the bulk density, the tapping density, the degree of oxidation, and the X-ray crystal diffraction pattern were measured by the following methods. The average particle size was measured using a laser microsizer “PRO7000S” manufactured by Seishin Corporation. The amount of coated cobalt was measured using ICP (SEPS Electronics SPS7000S). The bulk density and the tap density were measured with a tap denser “KYT-3000” manufactured by Seishin Corporation, before and after tapping 200 times using a 4 cm spacer. As for the degree of oxidation, a 0.2 g sample was collected and weighed, and after completely dissolving it in a sulfuric acid-potassium iodide (1: 1) solution, the liberated iodine was back titrated with a sodium thiosulfate solution. Calculated from the titer.
The X-ray crystal diffraction pattern was measured with an X-ray diffractometer (RINT2200 manufactured by Rigaku).
[0021]
(Example 1) Production of nickel hydroxide whose surface was coated with cobalt oxyhydroxide
In a cylindrical reaction tank (
Next, 1.0 kg of nickel hydroxide particles having a TAP density of 1.8 to 2.4 g / cc and an average particle size of 5 to 20 μm were added while stirring to obtain a nickel hydroxide slurry.
[0022]
To the above nickel hydroxide slurry, 350 ml of a 2 mol / L sodium hypochlorite solution and 320 ml of a 1.5 mol / L cobalt sulfate solution were added over 2 hours, and the mixture was further stirred for 1 hour.
This slurry was filtered using a Buchner funnel and dried at 80 ° C. for 12 hours using a blower dryer to obtain nickel hydroxide whose surface was coated with the target black cobalt oxyhydroxide.
[0023]
The yield is 99%, the average particle size is 11 μm, the amount of coated cobalt is 2.5% by weight, the bulk density is 1.4 g / cc, the tapping density is 2.0 g / cc, and the electromicrograph is shown in FIG. The X-ray diffraction pattern was as shown in FIG. The oxidation rate was 7.3%.
[0024]
Example 2 Production of nickel hydroxide having a surface coated with cobalt oxyhydroxide and partially converted to nickel oxyhydroxide 2 mol / L sodium hypochlorite under the same conditions as in Example 1 350 ml of the solution and 320 ml of a 1.5 mol / L cobalt sulfate solution were added over 2 hours. Thereafter, 150 ml of a 2 mol / L sodium hypochlorite solution was added to convert part of the nickel hydroxide into nickel oxyhydroxide. The mixture was further stirred for 1 hour, and the slurry was filtered, dehydrated and dried in the same manner as in Example 1. The surface was covered with the target black cobalt oxyhydroxide, and a portion thereof was converted to nickel oxyhydroxide. Nickel was obtained.
[0025]
Yield 99%, average particle size 11 μm, coated cobalt amount 2.5 wt%, bulk density 1.4 g / cc, tapping density 2.0 g / cc, nickel oxyhydroxide oxidation degree Was 12.5% and the X-ray diffraction pattern was as shown in FIG.
[0026]
Similarly, by adding 300 ml of a 2 mol / L sodium hypochlorite solution, the surface was coated with cobalt oxyhydroxide having an oxidation degree of 17.8%, and a part thereof was converted to nickel oxyhydroxide. Nickel hydroxide was obtained.
The X-ray diffraction pattern is FIG. 4, and the electric micrograph is FIG.
[0027]
Example 3 Production of nickel oxyhydroxide whose surface was coated with cobalt oxyhydroxide 350 ml of 2 mol / L sodium hypochlorite solution and 1.5 mol / L cobalt sulfate under the same conditions as in Example 1. 320 ml of solution was added over 2 hours. Then, nickel hydroxide was oxidized to nickel oxyhydroxide by further dropping 4 L of a 2 mol / L sodium hypochlorite solution. The slurry was further stirred for 1 hour, and this slurry was filtered, dehydrated and dried to obtain nickel oxyhydroxide whose surface was coated with the target black cobalt oxyhydroxide.
[0028]
Yield 99%, average particle size 11 μm, coated cobalt amount 2.5 wt%, bulk density 1.4 g / cc, tapping density 2.0 g / cc, nickel oxyhydroxide oxidation degree Was 100%, the electron micrograph was FIG. 6, and the X-ray diffraction pattern was FIG.
[0029]
【The invention's effect】
With the method for producing a positive electrode active material for an alkaline storage battery according to the present invention, the surface of nickel hydroxide can be coated with cobalt oxyhydroxide by a simple wet reaction using nickel hydroxide as a starting material.
[Brief description of the drawings]
1 is an electron micrograph of nickel hydroxide having a surface coated with cobalt oxyhydroxide produced in Example 1. FIG.
2 is an X-ray crystal diffraction pattern of nickel hydroxide having a surface coated with cobalt oxyhydroxide produced in Example 1. FIG.
FIG. 3 is an X-ray crystal diffraction pattern of nickel hydroxide produced in Example 2 and coated with cobalt oxyhydroxide having a degree of oxidation of 12.5% and partially converted to nickel oxyhydroxide. is there.
4 is an electron micrograph of nickel hydroxide produced in Example 2 and coated with cobalt oxyhydroxide having a degree of oxidation of 17.8% and partially converted to nickel oxyhydroxide. FIG.
FIG. 5 is an X-ray crystal diffraction pattern of nickel hydroxide prepared in Example 2 and coated with cobalt oxyhydroxide having a degree of oxidation of 17.8% and partially converted to nickel oxyhydroxide. is there.
6 is an electron micrograph of nickel oxyhydroxide having a surface coated with cobalt oxyhydroxide produced in Example 3. FIG.
7 is an X-ray crystal diffraction pattern of nickel oxyhydroxide having a surface coated with cobalt oxyhydroxide produced in Example 3. FIG.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002107490A JP4271407B2 (en) | 2002-04-10 | 2002-04-10 | Method for producing positive electrode active material for alkaline storage battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002107490A JP4271407B2 (en) | 2002-04-10 | 2002-04-10 | Method for producing positive electrode active material for alkaline storage battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003303590A JP2003303590A (en) | 2003-10-24 |
JP4271407B2 true JP4271407B2 (en) | 2009-06-03 |
Family
ID=29391499
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002107490A Expired - Fee Related JP4271407B2 (en) | 2002-04-10 | 2002-04-10 | Method for producing positive electrode active material for alkaline storage battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4271407B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4736372B2 (en) | 2004-07-30 | 2011-07-27 | トヨタ自動車株式会社 | Positive electrode active material for alkaline storage battery, positive electrode for alkaline storage battery, and alkaline storage battery |
JP5134213B2 (en) * | 2006-06-13 | 2013-01-30 | 株式会社田中化学研究所 | Cathode active material for alkaline batteries |
JP5188089B2 (en) * | 2007-03-30 | 2013-04-24 | 株式会社田中化学研究所 | Nickel positive electrode active material and method for producing the same |
US8048566B2 (en) * | 2008-02-07 | 2011-11-01 | Powergenix Systems, Inc. | Nickel hydroxide electrode for rechargeable batteries |
JP2011071125A (en) * | 2010-11-10 | 2011-04-07 | Toyota Motor Corp | Manufacturing method of positive electrode active material for alkaline storage battery |
US9337483B2 (en) | 2013-01-14 | 2016-05-10 | Powergenix Systems, Inc. | Pasted nickel hydroxide electrode and additives for rechargeable alkaline batteries |
-
2002
- 2002-04-10 JP JP2002107490A patent/JP4271407B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003303590A (en) | 2003-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103108833B (en) | Mixed metal oxidized hydroxide and method for production | |
JP5678482B2 (en) | Manganese oxide and method for producing the same | |
CN105129870A (en) | Inorganic compounds | |
JP4271407B2 (en) | Method for producing positive electrode active material for alkaline storage battery | |
JP4846309B2 (en) | Method for producing nickel manganese cobalt composite oxide | |
JP4412936B2 (en) | Cobalt oxyhydroxide, method for producing the same, and alkaline storage battery using the same | |
JP4669214B2 (en) | Cobalt oxyhydroxide particles and method for producing the same | |
WO2021235497A1 (en) | Oxygen catalyst, electrode using said oxygen catalyst, and electrochemical measurement method | |
JP4846115B2 (en) | Method for producing nickel oxyhydroxide | |
JP5811233B2 (en) | Manganese oxide and method for producing lithium manganate using the same | |
JP6123391B2 (en) | Trimanganese tetraoxide and method for producing the same | |
JP6186814B2 (en) | Metal-substituted manganese trioxide, method for producing the same, and method for producing lithium manganese composite oxide using the same | |
JPH10188975A (en) | Positive electrode material for silver oxide battery and its manufacture | |
JP5028667B2 (en) | Cathode active material for alkaline battery and alkaline battery | |
JP4652791B2 (en) | Mg solid solution cobalt oxyhydroxide particles and production method thereof | |
US6277305B1 (en) | Cobaltous oxide containing finely-dispersed metallic cobalt, methods of producing the same and use thereof | |
JP5188089B2 (en) | Nickel positive electrode active material and method for producing the same | |
JP2010064910A (en) | Plate-like nickel-containing hydroxide and method for producing the same, and plate-like nickel-containing oxyhydroxide using the hydroxide and method for producing the same | |
JPH10284075A (en) | Manufacture of positive electrode active material for alkaline battery | |
JP5028668B2 (en) | Cathode active material for alkaline battery and alkaline battery | |
JP7412485B1 (en) | Method for producing metal composite hydroxide particles and positive electrode active material for lithium secondary batteries | |
CN104037392B (en) | Particle agglomeration and its manufacture method | |
JP2017178748A (en) | Nickel-manganese-based complex compound and method for producing the same | |
JP2001176508A (en) | Method of preparing oxy nickel hydroxide | |
JP4683741B2 (en) | High density aluminum-containing nickel hydroxide particles and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050215 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080926 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081028 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090217 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090225 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120306 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130306 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130306 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140306 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |