JP4269277B2 - Test method and test apparatus for heat-resistant tubular member - Google Patents
Test method and test apparatus for heat-resistant tubular member Download PDFInfo
- Publication number
- JP4269277B2 JP4269277B2 JP2004022240A JP2004022240A JP4269277B2 JP 4269277 B2 JP4269277 B2 JP 4269277B2 JP 2004022240 A JP2004022240 A JP 2004022240A JP 2004022240 A JP2004022240 A JP 2004022240A JP 4269277 B2 JP4269277 B2 JP 4269277B2
- Authority
- JP
- Japan
- Prior art keywords
- heat
- supply path
- gas
- tubular member
- oxygen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000012360 testing method Methods 0.000 title claims description 255
- 238000010998 test method Methods 0.000 title claims description 32
- 239000007789 gas Substances 0.000 claims description 139
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 123
- 239000001301 oxygen Substances 0.000 claims description 123
- 229910052760 oxygen Inorganic materials 0.000 claims description 123
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 111
- 229910001882 dioxygen Inorganic materials 0.000 claims description 111
- 238000002485 combustion reaction Methods 0.000 claims description 83
- 239000011261 inert gas Substances 0.000 claims description 78
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 41
- 239000000567 combustion gas Substances 0.000 claims description 41
- 229910001873 dinitrogen Inorganic materials 0.000 claims description 41
- 239000000446 fuel Substances 0.000 claims description 39
- 230000006835 compression Effects 0.000 claims description 11
- 238000007906 compression Methods 0.000 claims description 11
- 238000011144 upstream manufacturing Methods 0.000 claims description 10
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 6
- 238000001514 detection method Methods 0.000 claims description 5
- 229910052786 argon Inorganic materials 0.000 claims description 4
- 230000001590 oxidative effect Effects 0.000 description 54
- 238000010438 heat treatment Methods 0.000 description 41
- 238000011156 evaluation Methods 0.000 description 39
- 239000003502 gasoline Substances 0.000 description 37
- 238000001816 cooling Methods 0.000 description 32
- 239000003915 liquefied petroleum gas Substances 0.000 description 17
- 238000010586 diagram Methods 0.000 description 16
- 230000003647 oxidation Effects 0.000 description 16
- 238000007254 oxidation reaction Methods 0.000 description 16
- 238000011161 development Methods 0.000 description 7
- 238000005259 measurement Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 230000001105 regulatory effect Effects 0.000 description 5
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical group CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 4
- 239000000498 cooling water Substances 0.000 description 4
- 238000005336 cracking Methods 0.000 description 4
- 230000007812 deficiency Effects 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 238000009413 insulation Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 230000000881 depressing effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- 239000001294 propane Substances 0.000 description 2
- 239000010425 asbestos Substances 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 230000009970 fire resistant effect Effects 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 239000003779 heat-resistant material Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000003137 locomotive effect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052895 riebeckite Inorganic materials 0.000 description 1
Landscapes
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
Description
本発明は耐熱管状部材、特に自動車の内燃機関に用いられる排気系機器等の耐熱性、耐久性等を評価試験するのに適した耐熱管状部材の試験方法および試験装置に関する。 The present invention relates to a test method and a test apparatus for a heat-resistant tubular member, particularly a heat-resistant tubular member suitable for evaluating and testing the heat resistance, durability and the like of an exhaust system device used in an internal combustion engine of an automobile.
従来、自動車の内燃機関で新しいエンジンを開発する場合には、それに付随して用いられる排気系機器の評価も行っており、例えば排気マニホルド、タービンハウジング、触媒ケース、排気パイプ、およびマフラーなどの耐熱管状部材の耐熱性、耐久性等の指標となる耐酸化性、耐熱き裂性、耐熱変形性等の評価試験は、完成したエンジンに取り付けて行われていた。従って、エンジンが完成した後でないと耐熱管状部材の評価試験ができず、エンジンの開発期間が著しく長期化する傾向があった。 Conventionally, when developing a new engine for an internal combustion engine of an automobile, exhaust system equipment used for the development is also evaluated. For example, heat resistance such as an exhaust manifold, a turbine housing, a catalyst case, an exhaust pipe, and a muffler. Evaluation tests such as oxidation resistance, heat crack resistance, and heat deformation resistance, which are indicators of heat resistance and durability of the tubular member, have been performed by attaching to a completed engine. Therefore, the evaluation test of the heat-resistant tubular member can be performed only after the engine is completed, and the development period of the engine tends to be significantly prolonged.
そこで、本出願人らは、エンジンの完成を待つことなく、耐熱管状部材のみを対象にして、耐熱管状部材を実際のエンジンに取り付けたときとほぼ同じ状態の排気ガスに曝されるように、燃焼室から出る燃焼ガスの温度や圧力を調節することにより、耐熱管状部材の耐熱性や断熱性の指標となる耐熱き裂性、耐熱変形性等を評価できる試験装置を開発した。この試験装置は、少なくとも1つの管状部を有する耐熱管状部材の管状部に接続される燃焼室と、この燃焼室の上流側に連通する室部と、この室部内に挿入されたバーナと、このバーナに接続された空気路および燃料供給路と、室部の内壁に開口する排気増圧空気路とを有する耐熱管状部材の試験装置である(例えば、特許文献1参照。)。 Therefore, the present applicants, without waiting for the completion of the engine, only for the heat-resistant tubular member, so that the heat-resistant tubular member is exposed to the exhaust gas in substantially the same state as when attached to the actual engine, By adjusting the temperature and pressure of the combustion gas coming out of the combustion chamber, we have developed a test device that can evaluate the heat cracking resistance and heat distortion resistance, which are indicators of heat resistance and heat insulation of the heat resistant tubular member. The test apparatus includes a combustion chamber connected to a tubular portion of a heat-resistant tubular member having at least one tubular portion, a chamber communicating with the upstream side of the combustion chamber, a burner inserted into the chamber, This is a test apparatus for a heat-resistant tubular member having an air passage and a fuel supply passage connected to a burner, and an exhaust pressure-increasing air passage opening in the inner wall of the chamber (see, for example, Patent Document 1).
一般に、実機のエンジンでは、ディーゼルエンジンやガソリンエンジンなどエンジンの種別によって排出される排気ガスの成分や温度等が相違し、これらの相違が耐熱管状部材の耐熱性、耐久性、断熱性等に大きな影響を及ぼしている。 Generally, in actual engines, the components and temperature of exhaust gas exhausted differ depending on the type of engine such as diesel engine or gasoline engine, and these differences are significant in the heat resistance, durability, heat insulation, etc. of heat resistant tubular members. It has an influence.
例えば、ディーゼルエンジンでは、シリンダに空気を吸入し、ピストンが上死点に到達するところで、空気を元の容積の1/15〜1/23に高圧縮して500〜700℃とし、このときに軽油を霧状に噴射して自己発火させ、爆発を起こさせて動力を得ているが、排出される排気ガス中には燃焼しきれなかった酸素が過剰に残存し、排気ガスは酸素含有量が容量比で5%以上の酸化性のガスとなる。このためディーゼルエンジンに用いられる耐熱管状部材においては、排気ガスの通路となる内壁が、高温の酸化性のガスにより酸化性雰囲気に曝されるので内壁の酸化が進行しやすい。 For example, in a diesel engine, air is sucked into a cylinder, and when the piston reaches top dead center, the air is compressed to 1 / 15-1 / 23 of the original volume to 500-700 ° C. Light oil is sprayed in the form of a mist to self-ignite and explode to obtain motive power, but the exhaust gas that is not combusted remains in the exhaust gas, and the exhaust gas has an oxygen content. Becomes an oxidizing gas having a volume ratio of 5% or more. For this reason, in the heat-resistant tubular member used for a diesel engine, the inner wall that becomes the passage of the exhaust gas is exposed to an oxidizing atmosphere by a high-temperature oxidizing gas, so that the inner wall is easily oxidized.
図10は、耐熱管状部材の管状部11への酸化膜形成から貫通き裂発生までの模式断面図である。図10で、管状部11内の雰囲気Aが酸化性雰囲気であると、(a)管状部11の表面11a(内壁の表面)に酸化膜12が形成し、(b)酸化膜12にき裂13が発生し、(c)このき裂13が表面11aから管状部11の材料内部に進展し、(d)さらにき裂13が成長して、管状部11の裏面11b(外気と接する表面)まで達する貫通き裂14となり、排気ガスの洩れ等により耐熱管状部材としての機能を損なう。 FIG. 10 is a schematic cross-sectional view from the formation of an oxide film on the tubular portion 11 of the heat-resistant tubular member to the occurrence of a through crack. In FIG. 10, when the atmosphere A in the tubular portion 11 is an oxidizing atmosphere, (a) an oxide film 12 is formed on the surface 11 a (inner wall surface) of the tubular portion 11, and (b) a crack is formed in the oxide film 12. 13 is generated, (c) the crack 13 propagates from the surface 11a into the material of the tubular portion 11, (d) the crack 13 grows further, and the back surface 11b of the tubular portion 11 (surface in contact with the outside air) It becomes a through crack 14 that reaches the point, and the function as a heat-resistant tubular member is impaired due to leakage of exhaust gas or the like.
このように、ディーゼルエンジンに用いられる耐熱管状部材では、排気ガスの通路となる内壁において、その内壁の表面(図10の表面11aに相当)に酸化性雰囲気に起因して形成した酸化膜にき裂が発生し、これが進展して内壁から裏面(図10の裏面11bに相当)までの貫通き裂となりやすい。そして、この内壁の酸化が耐熱管状部材の耐熱性、耐久性等の指標となる耐酸化性、耐熱き裂性等に大きな影響を及ぼしている。 As described above, in the heat-resistant tubular member used for the diesel engine, the oxide film formed on the inner wall surface (corresponding to the surface 11a in FIG. 10) on the inner wall serving as the exhaust gas passage is caused by the oxidizing atmosphere. A crack is generated and this progresses and tends to be a through crack from the inner wall to the back surface (corresponding to the back surface 11b in FIG. 10). The oxidation of the inner wall has a great influence on the oxidation resistance, heat cracking resistance and the like, which are indicators of the heat resistance and durability of the heat resistant tubular member.
一方、ガソリンエンジンでは、シリンダ内に吸入した空気とガソリンを混合し、圧縮し、点火プラグから火花を散らすことで爆発させて動力を得ている。ガソリンエンジンでは、爆発の際にガソリンが殆ど完全燃焼するので、排出される排気ガス中には酸素の残存が殆どないか極めて少なく、排気ガスは非酸化性のガスとなる。このためガソリンエンジンに用いられる耐熱管状部材では、排気ガスの通路となる内壁は、非酸化性雰囲気に曝されるので内壁の酸化がき裂に及ぼす影響は軽微である。 On the other hand, in a gasoline engine, the air sucked into a cylinder and gasoline are mixed, compressed, and sparked from a spark plug to explode to obtain power. In a gasoline engine, gasoline is almost completely combusted at the time of explosion, so there is little or very little oxygen remaining in the exhaust gas discharged, and the exhaust gas becomes a non-oxidizing gas. For this reason, in the heat-resistant tubular member used in a gasoline engine, the inner wall serving as an exhaust gas passage is exposed to a non-oxidizing atmosphere, so that the influence of the oxidation of the inner wall on the crack is minimal.
むしろガソリンエンジンでは、近年の環境問題の高まりから、低燃費化、低排出ガス化への要求が強く、これにともない排気ガス温度が1000℃を超えるエンジンの開発が進んでいる。一般的に耐熱材料は、1000℃付近からこれを越える温度に曝されると急激な酸化傾向を示すことが経験的に知られている。このためガソリンエンジン用の耐熱管状部材においては、1000℃付近からそれ以上の高温の排気ガスに曝されて耐熱管状部材が加熱された際に、その内壁からではなく、外気に曝される表面において、空気中の酸素成分による酸化と、これによって生じた酸化膜にき裂が発生し、これが進展して貫通き裂にいたることが問題視されつつある。 Rather, gasoline engines are increasingly demanded for lower fuel consumption and lower exhaust gas due to the recent increase in environmental problems, and the development of engines with exhaust gas temperatures exceeding 1000 ° C. is progressing accordingly. It is empirically known that heat-resistant materials generally exhibit a rapid oxidation tendency when exposed to temperatures exceeding about 1000 ° C. For this reason, in a heat-resistant tubular member for a gasoline engine, when the heat-resistant tubular member is heated by being exposed to a high-temperature exhaust gas from about 1000 ° C. or higher, not on its inner wall but on the surface exposed to the outside air. It has been regarded as a problem that oxidation is caused by oxygen components in the air, and cracks are generated in the oxide film generated by the oxidation, and the cracks propagate to cracks.
ガソリンエンジン用の耐熱管状部材での酸化膜形成から貫通き裂にいたるメカニズムは、前述の図10において、表面11aを管状部11の外気と接する表面に、裏面11bを管状部11の内壁の表面に読み替えれば、酸化とき裂の起点が表裏で相違するのみで、ディーゼルエンジンでのメカニズムと類似している。このように、ガソリンエンジンに用いられる耐熱管状部材では、1000℃付近からそれ以上の高温の排気ガスに曝されて加熱された状態での、外気に曝される表面からの酸化が耐熱管状部材の耐熱性、耐久性等の指標となる耐酸化性、耐熱き裂性等に大きな影響を及ぼしている。 The mechanism from the formation of an oxide film to a through crack in a heat resistant tubular member for a gasoline engine is as follows. In FIG. 10 described above, the surface 11a is the surface in contact with the outside air of the tubular portion 11, and the back surface 11b is the surface of the inner wall of the tubular portion 11. In other words, it is similar to the mechanism of a diesel engine, except that the starting point of oxidation and crack is different between the front and back sides. As described above, in the heat resistant tubular member used in the gasoline engine, the oxidation from the surface exposed to the outside air in the heated state exposed to the exhaust gas of about 1000 ° C. or higher is heated. It has a great influence on oxidation resistance, heat cracking resistance and the like, which are indicators of heat resistance and durability.
耐熱管状部材の評価試験においては、上述したディーゼルエンジンやガソリンエンジンなどエンジンの種別による排気ガス成分、温度等の相違による耐熱管状部材の耐熱性、耐久性、断熱性等への影響を考慮した評価試験が必要となる。耐熱管状部材の評価試験の1つである完成したエンジン実機を用いた台上耐久評価試験(通称、エンジンダイナモ試験、またはエンジンベンチテストと呼ばれる)においては、エンジン実機を用いて、実際の内燃機関としての燃焼を直接再現した評価試験ができるので、エンジンの種別による評価試験結果への影響は少ない。しかし、エンジンダイナモ試験では、前述したとおり、エンジンの完成を待たねばならず、エンジンの開発期間の長期化を解決できない。 In the evaluation test of the heat-resistant tubular member, an evaluation considering the influence on the heat resistance, durability, heat insulating property, etc. of the heat-resistant tubular member due to the difference in exhaust gas component, temperature, etc. depending on the type of engine such as the diesel engine and gasoline engine described above. A test is required. In an on-board durability evaluation test (commonly called an engine dynamo test or an engine bench test) using a completed actual engine, which is one of evaluation tests for heat-resistant tubular members, an actual internal combustion engine is used by using the actual engine. Since the evaluation test that directly reproduces the combustion of the engine can be performed, the influence of the type of engine on the evaluation test result is small. However, in the engine dynamo test, as described above, it is necessary to wait for the completion of the engine, and it is impossible to solve the prolonged development period of the engine.
一方、特許文献1に開示の耐熱管状部材の試験装置では、エンジンの完成を待つことなくその耐熱性や断熱性等を評価できるものの、実機のエンジンと比較した場合、エンジンの種別毎に次のような問題があった。 On the other hand, although the heat resistance tubular member testing apparatus disclosed in Patent Document 1 can evaluate its heat resistance and heat insulation properties without waiting for completion of the engine, the following is different for each engine type when compared with an actual engine. There was a problem like this.
1)ディーゼルエンジン用の耐熱管状部材の評価試験の問題点
特許文献1に開示の試験装置では、燃料の燃焼用空気を送給するための一次空気路のほかに、室部の内壁に開口する排気増圧空気路から増圧した空気を送給している。このため、燃焼ガス(実際のエンジンでの排気ガスに相当)中には燃焼に消費された酸素のほかに空気中の過剰な酸素成分が送給され、酸化性の燃焼ガスによって耐熱管状部材の管状部内の雰囲気(以下、試験雰囲気という)は酸化性雰囲気となっているので、ディーゼルエンジン用の耐熱管状部材の評価試験として一見適切と考えられる。しかしながら、該試験装置では、排気増圧空気路の空気流を調節することで、燃焼ガスの圧力を実際のエンジンの排気圧に対応させて耐熱管状部材の温度が実際と等しくなるように調節し、これにより圧力と温度とを実際のエンジンの排気ガスにほぼ等しい状態で評価試験することを目的に排気増圧空気路から増圧空気を送給しているにすぎない。このため酸化性の燃焼ガスは発生するものの、試験雰囲気中の酸素含有量を制御することができず、また燃焼条件により増圧空気の流量が異なるため、試験雰囲気中の酸素含有量が安定しないなど、試験雰囲気について実際のディーゼルエンジンでの評価試験条件を再現できないという問題があった。
1) Problems in Evaluation Test of Heat-Resistant Tubular Member for Diesel Engine In the test apparatus disclosed in Patent Document 1, an opening is made in the inner wall of the chamber in addition to the primary air passage for supplying fuel combustion air. The increased pressure air is supplied from the exhaust pressure increasing air passage. For this reason, in the combustion gas (equivalent to exhaust gas in an actual engine), in addition to oxygen consumed for combustion, excess oxygen components in the air are supplied, and the oxidizing combustion gas causes the heat-resistant tubular member to Since the atmosphere in the tubular portion (hereinafter referred to as a test atmosphere) is an oxidizing atmosphere, it is considered appropriate at first glance as an evaluation test of a heat-resistant tubular member for a diesel engine. However, in this test apparatus, the pressure of the combustion gas is adjusted to correspond to the actual engine exhaust pressure so that the temperature of the heat-resistant tubular member becomes equal to the actual temperature by adjusting the air flow in the exhaust pressure-increasing air passage. Thus, the pressure-increased air is merely supplied from the exhaust pressure-increasing air passage for the purpose of evaluating and testing the pressure and temperature in a state substantially equal to the exhaust gas of the actual engine. For this reason, although oxidizing combustion gas is generated, the oxygen content in the test atmosphere cannot be controlled, and the oxygen content in the test atmosphere is not stable because the flow rate of the pressurized air varies depending on the combustion conditions. For example, there was a problem that the evaluation test conditions in an actual diesel engine could not be reproduced for the test atmosphere.
特に近年、ディーゼルエンジンにおいても環境規制が厳しくなり、希薄な燃料で高出力と低燃費を得るためのエンジンの開発が進められ、これにともない排気ガスは、その温度が上昇するとともに、酸素含有量の多い、すなわちより酸化性の強いガスとなり、耐熱管状部材に及ぼす酸化の影響が増大している。このため実際のディーゼルエンジンでの評価試験結果と、特許文献1に開示の試験装置での評価試験結果とが異なるケースが増えつつあった。 In recent years, environmental regulations for diesel engines have become stricter, and the development of engines to achieve high output and low fuel consumption with lean fuel has been promoted. As a result, the exhaust gas has increased its temperature and oxygen content. As a result, the gas is more oxidizable and more oxidizable, and the influence of oxidation on the heat-resistant tubular member is increasing. For this reason, the case where the evaluation test result in an actual diesel engine differs from the evaluation test result in the test apparatus disclosed in Patent Document 1 is increasing.
2)ガソリンエンジン用の耐熱管状部材の評価試験の問題点
前述したように、実際のガソリンエンジンでは、排気ガスの通路となる耐熱管状部材の内壁は、非酸化性雰囲気に曝されるので内壁の酸化がき裂に及ぼす影響は軽微である。このことは、実際のガソリンエンジンでの評価試験結果と特許文献1に開示の試験装置での評価試験結果とを比較すると、両者は発生するき裂の位置は良く一致するもののき裂の様相が異なり、特許文献1の試験装置ではき裂の発生程度がより大きく(悪く)現れることからも確認された。特に、排気ガスが1000℃付近からそれ以上の高温となる条件での試験結果では両者の相違が顕著になっていた。これは、実際のガソリンエンジンでは排気ガスが非酸化性なのに対し、該試験装置では燃焼ガスの圧力と温度とを実際のエンジンの排気ガスにほぼ等しい状態にすることを目的に過剰な空気中を送給しているので、未燃焼の酸素成分の残留により燃焼ガスが酸化性となっており、両者の排出されるガス成分の相違から、該試験装置では実際のガソリンエンジンに較べてより厳しく過酷な試験結果を生じたものと考えられた。
2) Problems in evaluation test of heat-resistant tubular member for gasoline engine As described above, in an actual gasoline engine, the inner wall of the heat-resistant tubular member serving as an exhaust gas passage is exposed to a non-oxidizing atmosphere. The effect of oxidation on the crack is minor. This is because, when comparing the evaluation test result with an actual gasoline engine and the evaluation test result with the test apparatus disclosed in Patent Document 1, the cracks appear to be in the same position although the positions of the generated cracks are in good agreement. In contrast, it was also confirmed from the fact that the degree of occurrence of cracks appears larger (bad) in the test apparatus of Patent Document 1. In particular, the difference between the two was prominent in the test results under conditions where the exhaust gas was heated from around 1000 ° C. to a higher temperature. This is because the exhaust gas is non-oxidizing in an actual gasoline engine, whereas in the test device, the pressure and temperature of the combustion gas are set to be almost equal to the exhaust gas of the actual engine in order to remove excess air. Since the fuel gas is delivered, the combustion gas becomes oxidizable due to the residual unburned oxygen component. Due to the difference in the gas components emitted from the two, the test device is more severe and harsh than the actual gasoline engine. It was thought that the test result was produced.
上述したように、特許文献1に開示の試験装置は、燃焼ガスの圧力と温度とを実際のエンジンの排気ガスにほぼ等しい状態として評価試験することを主目的としてなされた発明であり、試験装置としての基本的な機能は十分備えているものの、ディーゼルエンジンやガソリンエンジンなどエンジンの種別によって排出される排気ガスの成分が相違し、加えて排気ガスの温度が高温になると、試験雰囲気の影響から耐熱管状部材のき裂発生等の再現性に問題が生じてきており、このままでは耐熱管状部材の耐熱性、耐久性等の評価試験として実際のエンジンでの評価試験と同等の適切な結果を得ることが困難になりつつあった。 As described above, the test apparatus disclosed in Patent Document 1 is an invention whose main purpose is to evaluate and test the pressure and temperature of the combustion gas as being substantially equal to the exhaust gas of the actual engine. However, if the exhaust gas components differ depending on the type of engine, such as diesel engine or gasoline engine, and the exhaust gas temperature becomes high, the influence of the test atmosphere There has been a problem in the reproducibility of cracks in heat-resistant tubular members, and as it is, as a test for evaluating the heat resistance and durability of heat-resistant tubular members, an appropriate result equivalent to an evaluation test in an actual engine is obtained. It was becoming difficult.
本発明は、上記課題に鑑みてなされたもので、エンジンの完成を待つことなく、エンジンの種別に関係なくディーゼルエンジンまたはガソリンエンジンに用いられる耐熱管状部材の耐熱性、耐久性等を的確に評価試験できる試験方法および試験装置を得ることにある。 The present invention has been made in view of the above problems, and accurately evaluates heat resistance, durability, etc. of a heat-resistant tubular member used in a diesel engine or a gasoline engine regardless of the type of the engine without waiting for completion of the engine. It is to obtain a test method and a test apparatus that can be tested.
本発明者らは、実機のディーゼルエンジン、ガソリンエンジンなどエンジンの種別による排気ガスの成分や温度等の相違と、耐熱管状部材の耐熱性、耐久性等の指標となる耐酸化性、耐熱き裂性、耐熱変形性等の特性との関係について鋭意研究した。その結果、実際の各種エンジンでの評価試験結果を特許文献1に開示の耐熱管状部材の試験装置で再現するには、実際のエンジンで耐熱管状部材が曝される雰囲気を該試験装置の試験雰囲気で再現することが不可欠で、このためには試験雰囲気中の酸素含有量を各種エンジンに対応した所望する任意の含有量とし、これを安定して維持する必要があることに着目し、燃焼に必要な空気のほかに、過剰空気、酸素ガス、不活性ガスを直接燃焼ガス中に混入させれば良いという知見を得て、本発明に想到した。 The inventors of the present invention describe differences in exhaust gas components and temperatures depending on the type of engine such as actual diesel engines and gasoline engines, as well as oxidation resistance and heat cracking, which are indicators of heat resistance and durability of heat resistant tubular members. The research on the relationship with properties such as heat resistance and heat distortion resistance. As a result, in order to reproduce the evaluation test results in various actual engines with the heat resistant tubular member testing apparatus disclosed in Patent Document 1, the atmosphere in which the heat resistant tubular member is exposed in the actual engine is the test atmosphere of the test apparatus. In order to achieve this, it is necessary to set the oxygen content in the test atmosphere to any desired content corresponding to various engines, and to maintain it stably. In addition to the necessary air, the inventors have obtained the knowledge that excess air, oxygen gas, and inert gas may be directly mixed into the combustion gas, and have arrived at the present invention.
すなわち、本発明の耐熱管状部材の試験方法は、耐熱管状部材の管状部内に、燃料を酸素で燃焼させて高温の燃焼ガスを流し、前記耐熱管状部材を加熱する試験方法であって、前記耐熱管状部材の管状部に接続する少なくとも1つの燃焼室と、前記燃焼室の上流側に連通する室部と、前記室部内に挿入されたバーナと、前記バーナに接続された燃料供給路および燃焼空気供給路と、前記室部に接続する気体供給路と、前記気体供給路に接続する流量調節手段を備えた過剰空気供給路と、さらに前記気体供給路または前記室部の少なくとも1つに接続する流量調節手段を備えた酸素ガス供給路、不活性ガス供給路の何れか1つ以上とを有する試験装置を使用し、前記管状部を燃焼室に接続した状態で前記燃料供給路から送給される燃料を、前記燃焼空気供給路から送給される空気で燃焼させ、得られた燃焼ガスを前記燃焼室内に導入するとともに、前記気体供給路または前記室部の少なくとも1つより前記燃焼室内に、少なくとも酸素ガス、不活性ガスの何れか1つ以上を送給し、その際前記耐熱管状部材の管状部内の雰囲気(試験雰囲気)が実際の排気ガスに曝された雰囲気となるように前記過剰空気、前記酸素ガス、前記不活性ガスの何れか1つ以上の気体流量を前記流量調節手段で調節することを特徴とする。 That is, the test method for a heat-resistant tubular member of the present invention is a test method for heating the heat-resistant tubular member by flowing a high-temperature combustion gas by burning fuel with oxygen in the tubular portion of the heat-resistant tubular member. At least one combustion chamber connected to the tubular portion of the tubular member, a chamber portion communicating with the upstream side of the combustion chamber, a burner inserted into the chamber portion, a fuel supply path and combustion air connected to the burner A supply path, a gas supply path connected to the chamber, an excess air supply path provided with a flow rate adjusting means connected to the gas supply path, and further connected to at least one of the gas supply path or the chamber Using a test apparatus having at least one of an oxygen gas supply path and an inert gas supply path provided with a flow rate adjusting means, the pipe is fed from the fuel supply path in a state where the tubular portion is connected to the combustion chamber. The fuel Burned with air fed from burnt air supply passage, is introduced and the resulting combustion gases into the combustion chamber, at least than one said combustion chamber of the gas supply channel or the chamber, at least oxygen gas, Any one or more of inert gases are fed, and at that time , the excess air and the oxygen gas so that the atmosphere (test atmosphere) in the tubular portion of the heat-resistant tubular member becomes an atmosphere exposed to the actual exhaust gas. The gas flow rate of any one or more of the inert gases is adjusted by the flow rate adjusting means.
本発明の対象とする耐熱管状部材としては、排気マニホルド、タービンハウジング、触媒ケース、排気パイプ、マフラー、タービンハウジング一体排気マニホルド、および触媒ケース一体排気マニホルドなどがあり、排気ガスが流れる少なくとも1つの管状部を有する。この管状部内に、燃料を酸素で燃焼させて高温の燃焼ガスとして流し、耐熱管状部材を加熱する。さらに、燃料の燃焼に必要な酸素に加え、少なくとも酸素ガス、不活性ガスの何れか1つ以上を、その流量を調節して送給することで、試験雰囲気中の酸素含有量を各種エンジンに対応した所望する任意の値(含有量)に設定して、これを安定して維持することができる。この結果、耐熱管状部材の管状部内の試験雰囲気を、酸化性雰囲気から非酸化性雰囲気まで自在に制御することが可能となり、実際の排気ガスに曝された雰囲気と等しい状態となって、耐熱管状部材の耐熱性、耐久性等を的確に評価試験できる。なお、過剰な空気および酸素ガスは、試験雰囲気を酸化性として実際のエンジン(特にディーゼルエンジン)の排気ガスの雰囲気にほぼ等しい状態とするために、また、不活性ガスは、試験雰囲気を非酸化性として実際のエンジン(特にガソリンエンジン)の排気ガスにほぼ等しい状態とするために送給するものである。なお、本発明での流量調節手段を備えた過剰空気供給路、酸素ガス供給路、不活性ガス供給路とは、各気体の供給路上に流量調節手段を配設した供給路のほかに、供給路の始点となる各気体の供給源に流量調節手段を備えた供給路、あるいは供給源に気体の送給量を直接調節する流量調節手段を備えた供給路を含む。 Examples of the heat-resistant tubular member targeted by the present invention include an exhaust manifold, a turbine housing, a catalyst case, an exhaust pipe, a muffler, a turbine housing integrated exhaust manifold, a catalyst case integrated exhaust manifold, and the like, and at least one tubular in which exhaust gas flows Part. In this tubular part, a fuel is burned with oxygen, and it flows as high temperature combustion gas, and heat-resistant tubular member is heated. Furthermore, in addition to the oxygen required for fuel combustion, at least one of oxygen gas and inert gas is fed at a regulated flow rate , so that the oxygen content in the test atmosphere can be supplied to various engines. This can be stably maintained by setting the corresponding desired value (content). As a result, the test atmosphere in the tubular portion of the heat-resistant tubular member can be freely controlled from an oxidizing atmosphere to a non-oxidizing atmosphere, and is in a state equal to the atmosphere exposed to the actual exhaust gas. It is possible to accurately evaluate and test the heat resistance and durability of the member. Excess air and oxygen gas make the test atmosphere oxidizing and make it almost equal to the exhaust gas atmosphere of the actual engine (especially diesel engine), and inert gas non-oxidize the test atmosphere. In order to make the exhaust gas of an actual engine (especially a gasoline engine) almost equal to the exhaust gas, it is fed. The excess air supply path, the oxygen gas supply path, and the inert gas supply path provided with the flow rate adjusting means in the present invention are the supply paths other than the supply path in which the flow rate adjusting means is arranged on each gas supply path. It includes a supply path provided with a flow rate adjusting means at each gas supply source serving as a starting point of the path, or a supply path provided with a flow rate adjusting means for directly adjusting a gas supply amount to the supply source.
また、本発明の耐熱管状部材の試験方法においては、前記燃焼室内に、燃焼に必要な空気のほかに、過剰空気、酸素ガス、不活性ガスのうち少なくとも1つ以上を送給し、燃焼ガスの圧力を大気圧以上に増圧することが好ましい。燃焼ガスの圧力を増圧することで、燃料を安定して燃焼させることができるとともに、実際のエンジンの排気圧に対応させることが可能となり、また耐熱管状部材の温度を実際と等しくなるように調節できる。これにより雰囲気のほか、圧力と温度とを実際のエンジンの排気ガスにほぼ等しい状態で評価試験することができる。なお、燃焼ガスの圧力は大気圧の1.1倍以上の圧力に増圧することが望ましい。 In the test method for a heat-resistant tubular member of the present invention, in addition to air necessary for combustion, at least one of excess air, oxygen gas, and inert gas is fed into the combustion chamber, and the combustion gas It is preferable to increase the pressure at or above atmospheric pressure. By increasing the pressure of the combustion gas, the fuel can be burned stably, it is possible to correspond to the actual exhaust pressure of the engine, and the temperature of the heat-resistant tubular member is adjusted to be equal to the actual temperature it can. As a result, in addition to the atmosphere, an evaluation test can be performed in a state where the pressure and temperature are substantially equal to the actual engine exhaust gas. It is desirable that the pressure of the combustion gas be increased to a pressure 1.1 times or higher than the atmospheric pressure.
また、本発明の耐熱管状部材の試験方法においては、前記耐熱管状部材の管状部内に配設した酸素センサと、コントロールユニットと、前記過剰空気供給路、前記酸素ガス供給路、前記不活性ガス供給路の何れか1つ以上に配設した流量調節手段とを備え、前記酸素センサで測定した酸素含有量の検出信号を前記コントロールユニットに入力し、前記コントロールユニットで目標の酸素含有量と実測した酸素含有量とを比較して酸素含有量の過不足を補正するに必要な前記流量調節手段の調節量を演算し、前記流量調節手段に調節量の制御信号を出力し、前記流量調節手段を作動させて前記耐熱管状部材の管状部内の雰囲気(試験雰囲気)中の酸素含有量を所定の容量比となるように調節することが好ましい。上記構成での試験方法によれば、耐熱管状部材の管状部内の酸素含有量の測定結果にもとづいて流量調節手段を調節して、過剰空気、酸素ガス、不活性ガスの送給量を調節できるので、試験雰囲気中の酸素含有量のフィードバック制御が可能となり、その酸素含有量が所定の容量比となるように、より正確に安定して維持することができる。また同時に、過剰空気、酸素ガス、不活性ガスの送給量を調節することで燃焼ガスの圧力も制御できる。 In the test method for a heat-resistant tubular member of the present invention, the oxygen sensor disposed in the tubular portion of the heat-resistant tubular member, a control unit, the excess air supply path, the oxygen gas supply path, and the inert gas supply A flow rate adjusting means disposed in any one or more of the paths, and a detection signal of the oxygen content measured by the oxygen sensor is input to the control unit, and the target oxygen content is measured by the control unit. Comparing the oxygen content and calculating the adjustment amount of the flow rate adjustment means necessary to correct the excess or deficiency of the oxygen content, outputting a control signal of the adjustment amount to the flow rate adjustment means, the flow rate adjustment means It is preferable that the oxygen content in the atmosphere (test atmosphere) in the tubular portion of the heat-resistant tubular member is adjusted so as to be a predetermined volume ratio by operating. According to the test method in the above configuration, the flow rate adjusting means can be adjusted based on the measurement result of the oxygen content in the tubular portion of the heat-resistant tubular member to adjust the supply amount of excess air, oxygen gas, and inert gas. Therefore, feedback control of the oxygen content in the test atmosphere is possible, and the oxygen content can be maintained more accurately and stably so that the oxygen content becomes a predetermined capacity ratio. At the same time, the pressure of the combustion gas can be controlled by adjusting the supply amount of excess air, oxygen gas, and inert gas.
さらに、本発明の耐熱管状部材の試験方法においては、前記耐熱管状部材の管状部内の雰囲気(試験雰囲気)中の酸素含有量を容量比で0.01%以上21%未満の任意の値とすることがよい。試験雰囲気中の酸素含有量を容量比で0.01%以上21%未満の所望する任意の値に設定することで、ディーゼルエンジン、ガソリンエンジンを問わず、殆どのエンジンに対応する排気ガスの成分を再現することが可能となる。例えば、ディーゼルエンジンにおいては、排気ガス中の酸素含有量が容量比で5%以上の酸化性のガスとなることから、本発明の試験方法においては、試験雰囲気中の酸素含有量を容量比で5%以上、望ましくは10%以上、より望ましくは10%以上21%未満、さらに望ましくは10%以上19%以下に設定することで、実際のディーゼルエンジンの排気ガスと同等の酸化性雰囲気として耐熱管状部材を評価試験できる。一方、ガソリンエンジンを再現する場合は、試験雰囲気中の酸素含有量を5%未満、望ましくは3%以下、より望ましくは1%以下に設定することで、実際のガソリンエンジンの排気ガスと同等の非酸化性雰囲気として耐熱管状部材を評価試験できる。 Furthermore, in the heat resistant tubular member testing method of the present invention, the oxygen content in the atmosphere (test atmosphere) in the tubular portion of the heat resistant tubular member is set to an arbitrary value of 0.01% or more and less than 21% by volume ratio. It is good. By setting the oxygen content in the test atmosphere to a desired value of 0.01% or more and less than 21% by volume ratio, exhaust gas components that are compatible with most engines, regardless of diesel engine or gasoline engine Can be reproduced. For example, in a diesel engine, the oxygen content in the exhaust gas is an oxidizing gas having a volume ratio of 5% or more. Therefore, in the test method of the present invention, the oxygen content in the test atmosphere is determined by the volume ratio. 5% or more, preferably 10% or more, more preferably 10% or more and less than 21%, and even more preferably 10% or more and 19% or less, and heat resistance as an oxidizing atmosphere equivalent to the exhaust gas of an actual diesel engine Tubular members can be evaluated. On the other hand, when reproducing a gasoline engine, the oxygen content in the test atmosphere is set to less than 5%, desirably 3% or less, more desirably 1% or less, which is equivalent to the exhaust gas of an actual gasoline engine. The heat resistant tubular member can be evaluated and tested as a non-oxidizing atmosphere.
次に、本発明の耐熱管状部材の試験装置は、耐熱管状部材の管状部内に、燃料を酸素で燃焼させて高温の燃焼ガスを流し、前記耐熱管状部材を加熱する試験装置であって、前記耐熱管状部材の管状部に接続する少なくとも1つの燃焼室と、前記燃焼室の上流側に連通する室部と、前記室部内に挿入されたバーナと、前記バーナに接続された燃料供給路および燃焼空気供給路と、前記室部に接続する気体供給路と、前記気体供給路に接続する流量調節手段を備えた過剰空気供給路と、さらに前記気体供給路または前記室部の少なくとも1つに接続する流量調節手段を備えた酸素ガス供給路、不活性ガス供給路の何れか1つ以上とを有することを特徴とする。
Next, a test apparatus for a heat-resistant tubular member according to the present invention is a test apparatus that heats the heat-resistant tubular member by flowing a high-temperature combustion gas by burning fuel with oxygen into a tubular portion of the heat-resistant tubular member. At least one combustion chamber connected to the tubular portion of the heat-resistant tubular member, a chamber portion communicating with the upstream side of the combustion chamber, a burner inserted into the chamber portion, a fuel supply path connected to the burner, and combustion Connected to at least one of the air supply path, the gas supply path connected to the chamber, the excess air supply path provided with the flow rate adjusting means connected to the gas supply path, and the gas supply path or the chamber And at least one of an oxygen gas supply path and an inert gas supply path provided with a flow rate adjusting means .
なお、燃料供給路はその始点を燃料となる例えば液化石油ガス(以下、LPGという)等のガス源に、燃焼空気供給路および過剰空気供給路はその始点を空気を送給する空気圧縮手段に、酸素ガス供給路はその始点を酸素ガスを送給する酸素供給源に、不活性ガス供給路はその始点を不活性ガスを送給する不活性ガス供給源にそれぞれ接続する。バーナとしては、例えば元混合式、または先混合式のガスバーナー、またはオイルバーナー等種々のタイプのものを使用することができる。流量調節手段としては、各気体の供給路である過剰空気供給路、酸素ガス供給路、不活性ガス供給路の配管上に配設した弁やバルブなどのほかに、各気体の供給源である空気圧縮手段、酸素供給源、不活性ガス供給源に備えられた弁やバルブなど、あるいは各気体の供給源に気体を吐出する機関である例えばブロワー、コンプレッサー、ポンプ等を備えていればその回転数や等を調節することで直接気体の送給量を調節する機構など、要するに気体の流量調整が可能なものであれば、如何なる手段を使用してもよい。弁やバルブを使用する場合は電磁バルブまたはマスフローコントローラが好適である。また気体を吐出する機関を調節する場合はインバータ等を接続して機関の回転数等を調節してもよい。 The fuel supply path is the starting point for a gas source such as liquefied petroleum gas (hereinafter referred to as LPG) as fuel, and the combustion air supply path and the excess air supply path are the air compression means for supplying air to the starting point. The oxygen gas supply path has its start point connected to an oxygen supply source for supplying oxygen gas, and the inert gas supply path has its start point connected to an inert gas supply source for supplying inert gas. As the burner, various types such as a premixed or premixed gas burner or an oil burner can be used. In addition to valves and valves disposed on the piping of the excess air supply path, oxygen gas supply path, and inert gas supply path that are the supply paths for each gas, the flow rate adjusting means is a supply source for each gas. Rotation of air compression means, oxygen supply source, valves and valves provided in an inert gas supply source, or an engine that discharges gas to each gas supply source such as a blower, compressor, pump, etc. Any means may be used as long as the gas flow rate can be adjusted, such as a mechanism for directly adjusting the gas supply amount by adjusting the number or the like. When a valve or a valve is used, an electromagnetic valve or a mass flow controller is preferable. When adjusting the engine that discharges gas, an inverter or the like may be connected to adjust the engine speed or the like.
過剰空気、酸素ガス、不活性ガスの送給量の調節は、流量調節手段である弁やバルブ、または気体を吐出する機関を手動で操作して、あるいは機械的、電気的に作動させて、バルブや弁の開度、または気体を吐出する機関の回転数等を調節することで行うことができる。また、試験雰囲気中の酸素含有量のフィードバック制御での流量調節手段の調節量とは、流量調節手段である弁やバルブの開度、または気体を吐出する機関の回転数等の調節量を指す。上記構成からなる試験装置により、試験雰囲気を自在に制御することが可能となり、前述した本発明の耐熱管状部材の試験方法を達成することができる。 Adjustment of the supply amount of excess air, oxygen gas, and inert gas can be performed by manually operating a valve or valve that is a flow rate adjusting means, or an engine that discharges gas, or by mechanically or electrically operating it. This can be done by adjusting the valve, the opening of the valve, or the rotational speed of the engine that discharges the gas. Further, the adjustment amount of the flow rate adjusting means in the feedback control of the oxygen content in the test atmosphere refers to an adjustment amount such as the opening of a valve or valve that is the flow rate adjusting means, or the rotational speed of the engine that discharges gas. . With the test apparatus having the above-described configuration, the test atmosphere can be freely controlled, and the heat-resistant tubular member test method of the present invention described above can be achieved.
そして、前記過剰空気供給路の始点に増圧した空気を送給する空気圧縮手段を、また前記酸素ガス供給路の始点に増圧した酸素ガスを送給する酸素供給源および/または前記不活性ガス供給路の始点に増圧した不活性ガスを送給する不活性ガス供給源を備えることが好ましい。増圧した空気を送給する空気圧縮手段を、また増圧した酸素ガスを送給する酸素供給源を備えれば、試験雰囲気を酸化性雰囲気にするとともに、加えて排気圧を上昇して実際のエンジンの排気ガスにほぼ等しい状態にできる。このためには過剰な空気および/または酸素ガスを大量に送給できるものが好ましく、空気圧縮手段としては吐出圧力0.15MPa以上の増圧空気を送給できるブロワーまたはコンプレッサーが望ましく、また酸素供給源としては純度95%以上の酸素ガスを送給できるものが好ましく酸素ガスボンベを備えることが好適である。 And an air compression means for supplying the increased pressure air to the start point of the excess air supply path, an oxygen supply source for supplying the increased pressure oxygen gas to the start point of the oxygen gas supply path, and / or the inertness. It is preferable to provide an inert gas supply source that feeds the increased inert gas to the starting point of the gas supply path. If an air compression means for supplying the increased pressure air and an oxygen supply source for supplying the increased pressure oxygen gas are provided, the test atmosphere is changed to an oxidizing atmosphere and the exhaust pressure is increased to increase the actual pressure. The engine exhaust gas can be almost equal to the exhaust gas. For this purpose, those capable of supplying a large amount of excess air and / or oxygen gas are preferable. As the air compression means, a blower or a compressor capable of supplying pressurized air having a discharge pressure of 0.15 MPa or more is desirable, and oxygen supply The source is preferably one that can supply oxygen gas having a purity of 95% or more, and is preferably equipped with an oxygen gas cylinder.
燃料をプロパンが主成分であるLPGとした場合、プロパンの燃焼反応式は、C3H8+5O2→4CO2+5H2Oで示される。従って、LPGの容量1モルに対して完全燃焼に必要な酸素容量は5モルとなる。この完全燃焼に必要な酸素を燃焼空気供給路から送給するのに加え、空気圧縮手段から過剰空気供給路を介して増圧した過剰な空気を、および/または酸素供給源から酸素ガス供給路を介して増圧した酸素ガスを送給することで、試験雰囲気中の酸素含有量を所定の容量比に設定して試験雰囲気を酸化性雰囲気にするとともに、排気圧を上昇して実際のエンジンの排気ガスにほぼ等しい状態とすることができる。試験雰囲気中の酸素含有量を特に正確に制御する必要がある場合は、流量調節の容易さから、空気圧縮手段よりも酸素ガスボンベを用いた酸素供給源を備えることが好ましく、酸素供給源のみを単独に、あるいは酸素供給源と空気圧縮手段とを組み合わせて備えることが望ましい。 When the fuel is LPG whose main component is propane, the combustion reaction formula of propane is represented by C 3 H 8 + 5O 2 → 4CO 2 + 5H 2 O. Therefore, the oxygen capacity required for complete combustion is 5 moles per 1 mole of LPG. In addition to supplying oxygen necessary for complete combustion from the combustion air supply path, excess air increased in pressure from the air compression means via the excess air supply path and / or from the oxygen supply source to the oxygen gas supply path The oxygen gas in the test atmosphere is set to a predetermined volume ratio to make the test atmosphere an oxidizing atmosphere and the exhaust pressure is increased to increase the actual engine The exhaust gas can be almost equal to the exhaust gas. When it is necessary to control the oxygen content in the test atmosphere particularly accurately, it is preferable to provide an oxygen supply source using an oxygen gas cylinder rather than an air compression means in order to easily adjust the flow rate. It is desirable to provide an oxygen source and a combination of air compression means alone or in combination.
また、増圧した不活性ガスを送給する不活性ガス供給源を備えれば、試験雰囲気を非酸化性雰囲気にするとともに、加えて排気圧を上昇して実際のエンジンの排気ガスにほぼ等しい状態とすることができる。不活性ガス供給源としては純度95%以上の窒素ガスまたはアルゴンガスを送給できるものが好ましく窒素ガスボンベまたはアルゴンガスボンベを備えることが好ましい。不活性ガス供給源としては比較的廉価な窒素ガスボンベの使用が好適である。燃焼に必要な酸素を燃焼空気供給路から送給しても、増圧した窒素ガス等の不活性ガスを送給すれば試験雰囲気中の酸素含有量を所定の容量比に設定して、試験雰囲気を非酸化性雰囲気として、さらに排気圧を上昇することができる。 In addition, if an inert gas supply source for supplying the increased inert gas is provided, the test atmosphere is made non-oxidizing atmosphere, and the exhaust pressure is increased to substantially equal the actual engine exhaust gas. State. As the inert gas supply source, those capable of supplying nitrogen gas or argon gas having a purity of 95% or more are preferable, and a nitrogen gas cylinder or an argon gas cylinder is preferably provided. As an inert gas supply source, it is preferable to use a relatively inexpensive nitrogen gas cylinder. Even if oxygen necessary for combustion is supplied from the combustion air supply path, if an inert gas such as nitrogen gas with increased pressure is supplied, the oxygen content in the test atmosphere is set to a predetermined volume ratio, and the test is performed. The exhaust pressure can be further increased by making the atmosphere a non-oxidizing atmosphere.
また、本発明の耐熱管状部材の試験装置においては、前記耐熱管状部材の管状部内に配設した酸素センサと、コントロールユニットと、前記過剰空気供給路、前記酸素ガス供給路、前記不活性ガス供給路の何れか1つ以上に配設した流量調節手段とを備えることが好ましい。本発明の試験装置を上記の構成とすることで、試験雰囲気中の酸素含有量のフィードバック制御が可能となり、試験雰囲気中の酸素含有量を所定の容量比となるように、より正確に安定して維持する本発明の試験方法を達成することが可能となる。 Further, in the heat resistant tubular member testing apparatus of the present invention, an oxygen sensor disposed in the tubular portion of the heat resistant tubular member, a control unit, the excess air supply path, the oxygen gas supply path, and the inert gas supply. It is preferable to provide a flow rate adjusting means disposed in any one or more of the paths. By adopting the above-described configuration of the test apparatus of the present invention, feedback control of the oxygen content in the test atmosphere is possible, and the oxygen content in the test atmosphere is more accurately stabilized so as to have a predetermined volume ratio. It is possible to achieve the test method of the present invention that is maintained.
本発明によれば、ディーゼルエンジン用の耐熱管状部材が曝される酸化性の排気ガスの雰囲気での評価試験、またはガソリンエンジン用の耐熱管状部材が曝される非酸化性の排気ガスの雰囲気での評価試験を行うことが可能となり、実際のエンジンの完成を待つことなく、耐熱管状部材のみを対象として、エンジンの種別に関係なくディーゼルエンジンまたはガソリンエンジンに用いられる耐熱管状部材の耐熱性、耐久性等を的確に評価試験できる試験方法および試験装置が得られる。 According to the present invention, an evaluation test in an oxidizing exhaust gas atmosphere to which a heat resistant tubular member for a diesel engine is exposed, or a non-oxidizing exhaust gas atmosphere to which a heat resistant tubular member for a gasoline engine is exposed. The heat resistance and durability of heat-resistant tubular members used in diesel engines and gasoline engines are considered only for heat-resistant tubular members, regardless of the type of engine, without waiting for the completion of the actual engine. It is possible to obtain a test method and a test apparatus capable of accurately evaluating and testing the properties.
そして、本発明の耐熱管状部材の試験方法および試験装置を用いることにより、エンジンの完成に先行して事前に評価試験を実施できるので、耐熱管状部材の開発期間短縮と、エンジン実機での評価試験の費用削減が図れるとともに、評価試験結果を、耐熱管状部材の材質、形状、寸法などの適切な選定、設計に役立てて耐熱性、耐久性等に優れた耐熱管状部材を得ることが容易となる。 By using the heat resistant tubular member test method and test apparatus of the present invention, an evaluation test can be performed in advance prior to completion of the engine. It is easy to obtain a heat-resistant tubular member with excellent heat resistance and durability by using the evaluation test results for appropriate selection and design of the material, shape, dimensions, etc. of the heat-resistant tubular member. .
次に、発明の実施の形態を詳細に説明する。
(実施の形態1)
図1は、実施の形態1での耐熱管状部材が排気マニホルド10の場合の試験装置であり、(a)は平面図、(b)は主要部の概略断面図を示す。また、図2は、図1の試験装置での、複数(図2では例示として3個)の燃焼室ごとの燃料供給路31、燃焼空気供給路32および酸素ガス/不活性ガス供給路33ほかの回路図を示す。
Next, embodiments of the invention will be described in detail.
(Embodiment 1)
FIG. 1 shows a test apparatus in the case where the heat-resistant tubular member in Embodiment 1 is an exhaust manifold 10. FIG. 1A is a plan view, and FIG. 1B is a schematic cross-sectional view of a main part. 2 shows a fuel supply path 31, a combustion air supply path 32, an oxygen gas / inert gas supply path 33, etc. for each of a plurality of (three as an example in FIG. 2) combustion chambers in the test apparatus of FIG. The circuit diagram of is shown.
図1および図2で、排気マニホルド10の試験装置は、排気マニホルド10の管状部11の燃焼ガスの入口41に接続する冷却ブロック21の燃焼ガス路21aを介し各々接続する燃焼室22と、燃焼室22の上流側に連通する室部23と、室部23内に挿入して燃焼ガスを発生する元混合式のバーナ24と、バーナ24に接続する燃料供給路31および燃焼空気供給路32と、室部23に接続する気体供給路35と、気体供給路35に接続して過剰な空気を送給する過剰空気供給路35aと、酸素ガスおよび/または不活性ガスを送給する酸素ガス/不活性ガス供給路33とを備えている。 1 and 2, the test apparatus for the exhaust manifold 10 includes a combustion chamber 22 connected to each other via a combustion gas passage 21a of a cooling block 21 connected to a combustion gas inlet 41 of the tubular portion 11 of the exhaust manifold 10, and combustion. A chamber portion 23 communicating with the upstream side of the chamber 22, an original mixing burner 24 inserted into the chamber portion 23 to generate combustion gas, a fuel supply path 31 and a combustion air supply path 32 connected to the burner 24; , A gas supply path 35 connected to the chamber 23, an excess air supply path 35a connected to the gas supply path 35 for supplying excess air, and oxygen gas / for supplying an inert gas / And an inert gas supply path 33.
また、燃焼空気供給路32と過剰空気供給路35aはその上流側で合流し、その始点には吐出圧力0.15MPa以上の増圧空気を送給できる空気圧縮手段としてブロワー36を接続している。また、酸素ガス/不活性ガス供給路33はその上流側で、酸素ガス供給路33aと、不活性ガス供給路33bに分岐し、各々の始点には純度95%以上の酸素ガスを送給できる酸素供給源として酸素ガスボンベ34aと、純度95%以上の不活性ガスを送給できる不活性ガス供給源として例えば窒素ガスを送給できる窒素ガスボンベ34bをそれぞれ接続している。また、燃料供給路31はその始点を燃料となるガス源としてLPG31aに接続している。 Further, the combustion air supply path 32 and the excess air supply path 35a merge at the upstream side thereof, and a blower 36 is connected to the start point as air compression means capable of supplying pressurized air having a discharge pressure of 0.15 MPa or more. . Further, the oxygen gas / inert gas supply path 33 is branched into an oxygen gas supply path 33a and an inert gas supply path 33b on the upstream side thereof, and oxygen gas having a purity of 95% or more can be supplied to each starting point. An oxygen gas cylinder 34a is connected as an oxygen supply source, and a nitrogen gas cylinder 34b that can supply, for example, nitrogen gas is connected as an inert gas supply source capable of supplying an inert gas having a purity of 95% or more. Further, the fuel supply path 31 is connected to the LPG 31a with its starting point as a gas source for fuel.
また、酸素ガス/不活性ガス供給路33、過剰空気供給路35a、燃料供給路31および燃焼空気供給路32には、各供給経路上に流量調節手段である流量調整弁44a、44b、42a、および42bをそれぞれ配設して、各流量調整弁により酸素ガス、不活性ガス、過剰空気、LPG31a、および燃焼用空気の送給量をそれぞれ調節できるようにしている。 Further, the oxygen gas / inert gas supply path 33, the excess air supply path 35a, the fuel supply path 31 and the combustion air supply path 32 include flow rate adjusting valves 44a, 44b, 42a, which are flow rate adjusting means, on each supply path. And 42b, respectively, so that the flow rates of oxygen gas, inert gas, excess air, LPG 31a, and combustion air can be adjusted by the respective flow rate adjustment valves.
また、室部23の内壁23aとバーナ24との間には隙間23bを設けて、気体供給路35および酸素ガス/不活性ガス供給路33から、過剰空気、あるいは酸素ガスおよび/または不活性ガスが燃焼室22に流入できるようにしている。この構成により、過剰空気、酸素ガス、不活性ガスは、バーナ24の周囲の隙間23bを通って燃焼室22内に入り、そこで燃焼ガスと混合するので、燃焼条件に影響を与えることがない。 Further, a gap 23b is provided between the inner wall 23a of the chamber 23 and the burner 24, and excess air or oxygen gas and / or inert gas is supplied from the gas supply path 35 and the oxygen gas / inert gas supply path 33. Can flow into the combustion chamber 22. With this configuration, excess air, oxygen gas, and inert gas enter the combustion chamber 22 through the gap 23b around the burner 24 and mix with the combustion gas there, so that the combustion conditions are not affected.
また、冷却ブロック21には冷却水の流入口21bおよび排出口21cを形成して冷却水21dを循環させ、燃焼ガス路21aを冷却し保護している。また、燃焼室22および室部23はそれぞれ耐火性のセラミック管22aと、燃焼室保護管22bと、空気層からなる断熱部22cとで形成されている。 Further, a cooling water inlet 21b and a discharge port 21c are formed in the cooling block 21, and the cooling water 21d is circulated to cool and protect the combustion gas passage 21a. The combustion chamber 22 and the chamber portion 23 are each formed of a fire-resistant ceramic tube 22a, a combustion chamber protection tube 22b, and a heat insulating portion 22c made of an air layer.
また、排気マニホルド10の管状部11内に配設した試験雰囲気中の酸素含有量を容量比で測定する酸素センサ(酸素濃度計)43と、プログラム式温度制御器(図示せず)およびコンピュータ(図示せず)を内蔵したコントロールユニット46とを備え、酸素センサ43と、コントロールユニット46と、流量調整弁44a、44bとは制御信号の入出力が可能なように接続されている。 In addition, an oxygen sensor (oxygen concentration meter) 43 that measures the oxygen content in the test atmosphere disposed in the tubular portion 11 of the exhaust manifold 10 by a volume ratio, a programmable temperature controller (not shown), and a computer ( The oxygen sensor 43, the control unit 46, and the flow rate adjusting valves 44a and 44b are connected so that control signals can be input and output.
以上のように構成した試験装置を用い、排気マニホルド10の耐熱性、耐久性等を以下のようにして試験する。なお、実施の形態1では、図1および図2に示す試験装置を用いて、ディーゼルエンジン用排気マニホルドの場合の試験方法について説明する。ディーゼルエンジン用の排気マニホルドは酸化性雰囲気の排気ガスに曝されている。 Using the test apparatus configured as described above, the heat resistance and durability of the exhaust manifold 10 are tested as follows. In the first embodiment, a test method in the case of an exhaust manifold for a diesel engine will be described using the test apparatus shown in FIGS. Exhaust manifolds for diesel engines are exposed to exhaust gases in an oxidizing atmosphere.
まず、排気マニホルド10の管状部11の入口41を冷却ブロック21の燃焼ガス路21aと一致するように取り付け、燃料供給路31よりLPG31aを、また燃焼空気供給路32より空気(大気)をそれぞれバーナ24に送給し、点火することにより燃焼室22内で燃焼させる。これによりバーナ24から出た炎は燃焼室22内に噴出し、それにともなう高温の燃焼ガスは冷却ブロック21の燃焼ガス路21aを通って排気マニホルド10の管状部11へと流れる。このとき、管状部11を流れる試験雰囲気は、その酸素含有量が容量比で5%以上の酸化性雰囲気になっている。燃焼ガスの増圧のために、ブロワー36に連接した過剰空気供給路35aを経由して気体供給路35を通して、過剰空気を燃焼室22に隙間23bを介して送給する。この過剰空気の送給により、試験雰囲気は酸素含有量が容量比で約10%前後の酸化性雰囲気になっている。 First, the inlet 41 of the tubular portion 11 of the exhaust manifold 10 is attached so as to coincide with the combustion gas path 21a of the cooling block 21, and the LPG 31a is burned from the fuel supply path 31 and the air (atmosphere) is burned from the combustion air supply path 32, respectively. It is burned in the combustion chamber 22 by being fed to 24 and ignited. As a result, the flame emitted from the burner 24 is jetted into the combustion chamber 22, and the high-temperature combustion gas accompanying the flame flows through the combustion gas passage 21 a of the cooling block 21 to the tubular portion 11 of the exhaust manifold 10. At this time, the test atmosphere flowing through the tubular portion 11 is an oxidizing atmosphere having an oxygen content of 5% or more by volume ratio. In order to increase the pressure of the combustion gas, excess air is supplied to the combustion chamber 22 via the gap 23b through the gas supply path 35 via the excess air supply path 35a connected to the blower 36. By supplying this excess air, the test atmosphere is an oxidizing atmosphere having an oxygen content of about 10% by volume.
その際、試験雰囲気中の酸素含有量を酸素センサ43にて測定し、酸素含有量が所望する任意の目標値に到達していなければ、酸素ガスボンベ34aのバルブを調節し、過剰空気供給路35aに設けている流量調整弁44bと酸素ガス/不活性ガス供給路33に設けている流量調整弁44aにより燃焼ガスの圧力を調節しながら、過剰空気供給路35aを通して過剰空気と、酸素ガス/不活性ガス供給路33を通して酸素ガスを送給し、酸素含有量が目標値を超えていれば、窒素ガスボンベ34bのバルブを調節し、過剰空気供給路35aに設けている流量調整弁44bと酸素ガス/不活性ガス供給路33に設けている流量調整弁44aにより燃焼ガスの圧力を調節しながら、酸素ガス/不活性ガス供給路33を通して窒素ガスを送給することにより、試験雰囲気中の酸素含有量を所望する任意の値に設定して、これを安定して維持することができる。このように、流量調整弁44a、44bを調節することにより、試験雰囲気が所定の酸化性雰囲気となるように制御できる。 At that time, the oxygen content in the test atmosphere is measured by the oxygen sensor 43, and if the oxygen content does not reach the desired target value, the valve of the oxygen gas cylinder 34a is adjusted and the excess air supply passage 35a is adjusted. While adjusting the pressure of the combustion gas with the flow rate adjusting valve 44b provided in the oxygen gas / inert gas supply path 33 and the flow rate adjusting valve 44a provided in the oxygen gas / inert gas supply path 33, excess air and oxygen gas / inert gas are passed through the excess air supply path 35a. If oxygen gas is supplied through the active gas supply path 33 and the oxygen content exceeds the target value, the valve of the nitrogen gas cylinder 34b is adjusted, and the flow rate adjustment valve 44b provided in the excess air supply path 35a and the oxygen gas / Nitrogen gas is fed through the oxygen gas / inert gas supply path 33 while adjusting the pressure of the combustion gas by the flow rate adjusting valve 44a provided in the inert gas supply path 33. Accordingly, by setting an arbitrary value to the desired oxygen content in the test atmosphere, which can be stably maintained. As described above, the test atmosphere can be controlled to be a predetermined oxidizing atmosphere by adjusting the flow rate adjusting valves 44a and 44b.
なお、試験雰囲気中の酸素含有量をより正確に調節するには、流量調整弁44a、44bの調節に加えて、燃料供給路31上の流量調整弁42aによりLPG31aの送給量を、および/または燃焼空気供給路32上の流量調整弁42bにより燃焼用空気の送給量を調節することが好ましい。 In order to adjust the oxygen content in the test atmosphere more accurately, in addition to adjusting the flow rate adjusting valves 44a and 44b, the flow rate adjusting valve 42a on the fuel supply path 31 can be used to adjust the amount of LPG 31a to be fed and / or Alternatively, it is preferable to adjust the amount of combustion air supplied by the flow rate adjustment valve 42 b on the combustion air supply path 32.
上述した試験方法は、酸素センサ43の酸素含有量の測定結果にもとづいて、酸素ガスボンベ34aおよび窒素ガスボンベ34bそれぞれのバルブの調節と、流量調整弁44a、44bの調節を何れも、実際の評価試験に先立って事前に手動で操作して設定を行う場合を想定して説明したが、フィードバック制御を用いて流量調整弁44a、44bを作動して過剰空気、酸素ガス、窒素ガスの送給量を調節することもできる。 The above-described test method is based on the measurement result of the oxygen content of the oxygen sensor 43, and the actual evaluation test includes adjusting the valves of the oxygen gas cylinder 34a and the nitrogen gas cylinder 34b and adjusting the flow rate adjusting valves 44a and 44b. However, the flow rate adjusting valves 44a and 44b are operated using feedback control to control the supply amount of excess air, oxygen gas, and nitrogen gas. It can also be adjusted.
フィードバック制御は、酸素ガスボンベ34aおよび窒素ガスボンベ34bのそれぞれのバルブを開放したうえで、酸素センサ43で測定した酸素含有量の検出信号をコントロールユニット46に入力し、コントロールユニット46で目標の酸素含有量と実測した酸素含有量とを比較して、酸素含有量の過不足を補正するに必要な流量調整弁の調節量である例えば開度を演算して流量調整弁44a、44bに弁の開度を調節する制御信号を出力し、流量調整弁44a、44bを機械的、電気的に作動して過剰空気、酸素ガス、窒素ガスの送給量を調節する。これにより試験雰囲気中の酸素含有量が所望する任意の値になるようにフィードバック制御するので、酸素含有量をより正確これを安定して維持することができ、試験雰囲気が所定の酸化性雰囲気となるように制御できる。 In the feedback control, the oxygen gas cylinder 34a and the nitrogen gas cylinder 34b are opened, and a detection signal of the oxygen content measured by the oxygen sensor 43 is input to the control unit 46, and the target oxygen content is detected by the control unit 46. Is compared with the actually measured oxygen content, for example, an opening degree that is an adjustment amount of the flow rate adjustment valve necessary to correct the excess or deficiency of the oxygen content is calculated, and the opening degree of the valve is added to the flow rate adjustment valves 44a and 44b. A control signal for adjusting the flow rate is output, and the flow rate adjusting valves 44a and 44b are mechanically and electrically operated to adjust the supply amounts of excess air, oxygen gas, and nitrogen gas. As a result, feedback control is performed so that the oxygen content in the test atmosphere becomes a desired value, so that the oxygen content can be maintained more accurately and stably. Can be controlled.
なお、試験雰囲気中の酸素含有量をより正確に調節するには、フィードバック制御による流量調整弁44a、44bの調節に加えて、コントロールユニット46から演算結果にもとづく制御信号を流量調整弁42a、42bにも出力して、それぞれLPG31a、および/または燃焼用空気の送給量を調節すれば、試験雰囲気中の酸素含有量をさらに正確に安定して維持することができるので好ましい。 In order to adjust the oxygen content in the test atmosphere more accurately, in addition to adjusting the flow rate adjusting valves 44a and 44b by feedback control, a control signal based on the calculation result is sent from the control unit 46 to the flow rate adjusting valves 42a and 42b. Is also preferable to adjust the supply amount of LPG 31a and / or combustion air, respectively, because the oxygen content in the test atmosphere can be more accurately and stably maintained.
また、排気マニホルド10の管状部11の燃焼ガスの入口41に試験雰囲気の温度を測定する温度センサ41aを、管状部11の外気と接する表面11aに排気マニホルド10の表面の温度分布を測定する複数の温度センサ41bを設け、温度センサ41a、41bで測定した試験雰囲気の温度および排気マニホルド10の表面温度の検出信号をコントロールユニット46に入力し、コントロールユニット46で目標の温度と実測した温度とを比較して温度の過不足を補正するに必要な流量調整弁の調節量である例えば開度を演算し、流量調整弁42a、42b、44bに弁の開度を調節する制御信号を出力し、流量調整弁42a、42b、44bを作動して燃料、燃焼に必要な空気、および過剰空気の送給量を調節すれば、試験雰囲気の温度を1000℃以上の高温まで昇温可能となり、試験雰囲気の温度が実際のディーゼルエンジンの排気ガスにほぼ等しい状態となるように制御できる。なお温度センサ41a、41bとしては熱電対を使用できる。 Further, a temperature sensor 41a that measures the temperature of the test atmosphere at the combustion gas inlet 41 of the tubular portion 11 of the exhaust manifold 10 and a plurality of surfaces that measure the temperature distribution of the surface of the exhaust manifold 10 on the surface 11a that contacts the outside air of the tubular portion 11 are provided. Temperature sensor 41b, and the detection signal of the temperature of the test atmosphere and the surface temperature of the exhaust manifold 10 measured by the temperature sensors 41a and 41b are input to the control unit 46, and the target temperature and the actually measured temperature are obtained by the control unit 46. For example, an opening degree that is an adjustment amount of the flow rate adjustment valve necessary for correcting the excess or deficiency of the temperature is calculated, and a control signal for adjusting the opening degree of the valve is output to the flow rate adjustment valves 42a, 42b, 44b, If the flow rate regulating valves 42a, 42b, 44b are operated to adjust the amount of fuel, air necessary for combustion, and excess air, the temperature of the test atmosphere The enabling raised to a high temperature of at least 1000 ° C., it can be controlled to be substantially equal state exhaust gas temperature of the test atmosphere actual diesel engine. Thermocouples can be used as the temperature sensors 41a and 41b.
実施の形態1の試験方法および試験装置の効果を確認するため、試験雰囲気中の酸素含有量の目標値を容量比で16%に設定し、試験開始(バーナ24点火)から約10分間の試験雰囲気中の酸素含有量を測定した。その結果、酸素センサ43で実測された酸素含有量は、手動で調節した場合で15.5〜16.7%、フィードバック制御した場合で15.9〜16.3%であった。手動で調節した場合はフィードバック制御した場合に比較して目標値からのばらつきが若干大きいものの、酸素含有量の実測値は目標値とほぼ一致し、試験雰囲気を所定の酸化性雰囲気としてディーゼルエンジン用の排気マニホルドの評価試験を実施するのに適切なものであることが確認された。また、流量調整弁44a、44bにより過剰空気と酸素ガスの送給量を調節することで、試験雰囲気中に最大で約100%まで酸素を含有量できることが確認され、ディーゼルエンジンの酸化性の排気ガスを再現するに十分な機能を備えていることを確認した。 In order to confirm the effect of the test method and test apparatus of the first embodiment, the target value of the oxygen content in the test atmosphere is set to 16% by volume ratio, and the test is performed for about 10 minutes from the start of the test (burner 24 ignition). The oxygen content in the atmosphere was measured. As a result, the oxygen content actually measured by the oxygen sensor 43 was 15.5 to 16.7% when manually adjusted, and 15.9 to 16.3% when feedback control was performed. When adjusted manually, the variation from the target value is slightly larger than when feedback control is performed. However, the actual measured oxygen content is almost the same as the target value, and the test atmosphere is used as a predetermined oxidizing atmosphere for diesel engines. This was confirmed to be appropriate for conducting an exhaust manifold evaluation test. In addition, it is confirmed that oxygen can be contained in the test atmosphere up to about 100% by adjusting the supply amounts of excess air and oxygen gas by the flow rate adjusting valves 44a and 44b. It was confirmed that it has sufficient functions to reproduce the gas.
以上により、試験装置を所定の酸化性雰囲気に調整した後、バーナ24を点火してLPG31aを燃焼させ、試験雰囲気の温度を例えば室温付近から約1000℃近くの高温まで昇温させ、その温度を所定時間保持後に、LPG31aの送給を少なく、または停止して再度室温付近に戻すことを繰り返すことで、実際のディーゼルエンジンと同じように排気マニホルド10に加熱・冷却の熱サイクルを加える。冷却時は、試験雰囲気の温度が低く酸化の影響は軽微なので酸素ガスと窒素ガスの節約のため、その送給を停止してもよい。 As described above, after adjusting the test apparatus to a predetermined oxidizing atmosphere, the burner 24 is ignited to burn the LPG 31a, and the temperature of the test atmosphere is raised from, for example, near room temperature to a high temperature of about 1000 ° C. After holding for a predetermined time, the supply of the LPG 31a is reduced or stopped and returned to near room temperature again, so that a heating / cooling thermal cycle is applied to the exhaust manifold 10 in the same manner as in an actual diesel engine. At the time of cooling, the temperature of the test atmosphere is low and the influence of oxidation is slight, so the supply may be stopped to save oxygen gas and nitrogen gas.
図7は、実施の形態1の試験方法および試験装置を用いた熱サイクル試験後の、排気マニホルド10の管状部11の顕微鏡組織写真である。図7に示すように、管状部11の内壁の表面11aの酸化膜12から、き裂13が多数発生し、これが成長、管状部11の材料内部にも進展して、外気と接する表面となる裏面11bまでの貫通き裂14となっている。 7 is a micrograph of the tubular portion 11 of the exhaust manifold 10 after the thermal cycle test using the test method and test apparatus of the first embodiment. As shown in FIG. 7, many cracks 13 are generated from the oxide film 12 on the surface 11 a of the inner wall of the tubular portion 11, which grows and propagates inside the material of the tubular portion 11 to become a surface in contact with the outside air. It is a penetration crack 14 up to the back surface 11b.
実施の形態1の試験方法および試験装置を用いれば、ディーゼルエンジンの完成に先行して事前に、排気マニホルドのみを対象に実際のディーゼルエンジンの排気ガスと同等の酸化性雰囲気で排気マニホルドの耐熱性、耐久性等を的確に評価試験できるので、排気マニホルドの開発期間短縮と、ディーゼルエンジン実機での評価試験の費用削減が図れるとともに、評価試験結果を、例えば酸化膜の形成を少なくし、またき裂や貫通き裂などの発生を少なくするように排気マニホルドの材質、形状、寸法などの適切な選定、設計に役立てて耐熱性、耐久性等に優れた排気マニホルドを得ることが容易となる。 If the test method and test apparatus of the first embodiment are used, the heat resistance of the exhaust manifold in an oxidizing atmosphere equivalent to the exhaust gas of an actual diesel engine is intended only for the exhaust manifold prior to completion of the diesel engine. Therefore, it is possible to accurately evaluate the durability, etc., so that the development period of the exhaust manifold can be shortened and the cost of the evaluation test with a diesel engine can be reduced, and the evaluation test results can be reduced, for example, by forming less oxide film. It becomes easy to obtain an exhaust manifold excellent in heat resistance, durability, etc. by making use of appropriate selection and design of the material, shape, dimensions, etc. of the exhaust manifold so as to reduce the occurrence of cracks and penetration cracks.
(実施の形態2)
実施の形態2は、ガソリンエンジン用排気マニホルドの場合の試験方法である。ガソリンエンジン用の排気マニホルドは非酸化性雰囲気の排気ガスに曝されている。なお、試験装置は図1および図2に示す実施の形態1と同一の構成のものを使用できるのでその説明は省略する。
(Embodiment 2)
The second embodiment is a test method in the case of an exhaust manifold for a gasoline engine. Exhaust manifolds for gasoline engines are exposed to exhaust gases in a non-oxidizing atmosphere. Since the test apparatus having the same configuration as that of the first embodiment shown in FIGS. 1 and 2 can be used, the description thereof is omitted.
まず、排気マニホルド10の管状部11の入口41を冷却ブロック21の燃焼ガス路21aと一致するように取り付け、燃料供給路31よりLPG31aを、また燃焼空気供給路32より空気(大気)をそれぞれバーナ24に送給し、点火することにより燃焼室22内で燃焼させる。これによりバーナから出た炎は燃焼室22内に噴出し、それにともなう高温の燃焼ガスは冷却ブロック21の燃焼ガス路21aを通って排気マニホルド10の管状部11へと流れる。このとき、管状部11を流れる試験雰囲気は、その酸素含有量が容量比で5%以上の酸化性雰囲気になっている。 First, the inlet 41 of the tubular portion 11 of the exhaust manifold 10 is attached so as to coincide with the combustion gas path 21a of the cooling block 21, and the LPG 31a is burned from the fuel supply path 31 and the air (atmosphere) is burned from the combustion air supply path 32, respectively. It is burned in the combustion chamber 22 by being fed to 24 and ignited. As a result, the flame emitted from the burner is jetted into the combustion chamber 22, and the high-temperature combustion gas accompanying the flame flows through the combustion gas passage 21 a of the cooling block 21 to the tubular portion 11 of the exhaust manifold 10. At this time, the test atmosphere flowing through the tubular portion 11 is an oxidizing atmosphere having an oxygen content of 5% or more by volume ratio.
次に、燃焼ガスの増圧には酸化を助長する過剰空気ではなく、窒素ガスを用いることとし、具体的には酸素ガスボンベ34aのバルブと過剰空気供給路35aに設けている流量調整弁44bとを何れも閉鎖し、窒素ガスボンベ34bのバルブを開放し、流量調整弁44aを調節して酸素ガス/不活性ガス供給路33を通して純度95%以上の窒素ガスを燃焼室22に隙間23bを介して送給し、窒素ガスの圧力で燃焼ガスの圧力を調節しながら試験雰囲気中の酸素含有量を低減し、所定の非酸化性雰囲気とする。 Next, nitrogen gas is used to increase the pressure of the combustion gas instead of excess air that promotes oxidation. Specifically, the valve of the oxygen gas cylinder 34a and the flow rate adjustment valve 44b provided in the excess air supply path 35a Are closed, the valve of the nitrogen gas cylinder 34b is opened, the flow rate adjusting valve 44a is adjusted, and nitrogen gas having a purity of 95% or more is passed through the oxygen gas / inert gas supply passage 33 to the combustion chamber 22 through the gap 23b. The oxygen content in the test atmosphere is reduced while adjusting the pressure of the combustion gas with the pressure of nitrogen gas, and a predetermined non-oxidizing atmosphere is obtained.
一般的な、ガソリンエンジンの排気ガスは、5%未満の若干の酸素を含有しているので、これを再現するには窒素ガスボンベ34bのバルブを開放したうえで、過剰空気供給路35aの流量調整弁44bまたは酸素ガスボンベ34aバルブを開放し、試験雰囲気中の酸素含有量を酸素センサ43にて測定しながら、流量調節手段である流量調整弁44a、44bを調節して、窒素ガスの送給量のほかに過剰空気または酸素ガスの送給量を調節することで、試験雰囲気中の酸素含有量を所望する任意の値に設定でき、これを安定して維持して試験雰囲気を所定の非酸化性雰囲気となるようにする。なお、実施の形態2においても実施の形態1と同様、流量調整弁44a、44bの調節を事前に手動で操作して設定してもよいし、酸素センサ43と、コントロールユニット46と、流量調整弁44a、44bとを連動して試験雰囲気のフィードバック制御で行ってもよい。 Since the exhaust gas of a general gasoline engine contains a little oxygen of less than 5%, in order to reproduce this, the valve of the nitrogen gas cylinder 34b is opened and the flow rate of the excess air supply passage 35a is adjusted. While the valve 44b or the oxygen gas cylinder 34a is opened and the oxygen content in the test atmosphere is measured by the oxygen sensor 43, the flow rate adjusting valves 44a and 44b, which are flow rate adjusting means, are adjusted to supply nitrogen gas. In addition to the above, by adjusting the supply amount of excess air or oxygen gas, the oxygen content in the test atmosphere can be set to any desired value, and this can be stably maintained to maintain the test atmosphere in a predetermined non-oxidized state. Try to have a sex atmosphere. In the second embodiment, similarly to the first embodiment, the adjustment of the flow rate adjustment valves 44a and 44b may be set by manually operating in advance, or the oxygen sensor 43, the control unit 46, and the flow rate adjustment. It may be performed by feedback control of the test atmosphere in conjunction with the valves 44a and 44b.
なお、試験雰囲気中の酸素含有量をより正確に調節するには、燃料供給路31上の流量調整弁42aによりLPG31aの送給量および/または燃焼空気供給路32上の流量調整弁42bにより燃焼用空気の送給量も調節することが好ましい。 In order to more accurately adjust the oxygen content in the test atmosphere, the flow rate adjusting valve 42a on the fuel supply path 31 and the LPG 31a feed rate and / or the flow rate adjusting valve 42b on the combustion air supply path 32 burns. It is preferable to adjust the supply amount of the working air.
実施の形態2の試験方法および試験装置の効果を確認するため、試験雰囲気中の酸素含有量の目標値を容量比で0%に設定し、試験開始(バーナ24点火)から約10分間の試験雰囲気中の酸素含有量を測定した。この際、過剰空気供給路35aの流量調整弁44bと酸素ガスボンベ34aのバルブとを何れも閉鎖して過剰空気と酸素ガスの送給は行わず、窒素ガスボンベ34bのバルブを開放し、酸素ガス/不活性ガス供給路33の流量調整弁44aを手動で設定して窒素ガスの送給量が目標値になるように調節した。 In order to confirm the effect of the test method and test apparatus of the second embodiment, the target value of the oxygen content in the test atmosphere is set to 0% by volume ratio, and the test is performed for about 10 minutes from the start of the test (burner 24 ignition). The oxygen content in the atmosphere was measured. At this time, both the flow rate adjustment valve 44b of the excess air supply passage 35a and the valve of the oxygen gas cylinder 34a are closed, the excess air and oxygen gas are not supplied, the valve of the nitrogen gas cylinder 34b is opened, and the oxygen gas / The flow rate adjustment valve 44a of the inert gas supply path 33 was manually set to adjust the nitrogen gas supply amount to a target value.
図8に実施の形態2での試験雰囲気中の酸素含有量の測定結果を示す。なお、比較のため特許文献1に開示の従来の試験装置での酸素含有量の測定結果(破線)もあわせて示す。図8から、試験雰囲気の制御を行っていない従来の試験装置では試験雰囲気中の酸素含有量は約10%前後の9.2〜10.7%で推移しており、実際のガソリンエンジンと比較して酸素が過剰な酸化性雰囲気であることが明らかである。一方、実施の形態2の試験方法および試験装置によれば、酸素含有量は試験開始後約30秒以内にほぼ0%となり、その後試験終了まで0〜1.0%で推移し、安定して酸素含有量を維持でき試験雰囲気中の酸素含有量がほぼ0%の非酸化性雰囲気を得られることが確認された。 FIG. 8 shows the measurement results of the oxygen content in the test atmosphere in the second embodiment. For comparison, the measurement result (broken line) of the oxygen content in the conventional test apparatus disclosed in Patent Document 1 is also shown. From FIG. 8, the oxygen content in the test atmosphere in the conventional test equipment that does not control the test atmosphere has been around 9.2 to 10.7%, which is about 10%, which is compared with the actual gasoline engine. It is clear that oxygen is an excessive oxidizing atmosphere. On the other hand, according to the test method and the test apparatus of the second embodiment, the oxygen content becomes almost 0% within about 30 seconds after the start of the test, and thereafter changes from 0 to 1.0% until the end of the test. It was confirmed that a non-oxidizing atmosphere in which the oxygen content can be maintained and the oxygen content in the test atmosphere is approximately 0% can be obtained.
フィードバック制御を用いて同様に酸素含有量の測定をしたところ、手動で調節した場合と同様、酸素含有量は試験開始後約30秒以内にほぼ0%となり、その後試験終了まで0〜0.4%で推移し、手動で調節した場合に比較して、より正確に安定して酸素含有量を維持できることが確認された。 Similarly, when the oxygen content was measured using feedback control, the oxygen content was almost 0% within about 30 seconds after the start of the test, and then 0 to 0.4 until the end of the test. It was confirmed that the oxygen content can be maintained more accurately and stably than in the case of manual adjustment.
手動で調節した場合とフィードバック制御した場合の何れも目標の酸素含有量0%に対し、極微量な酸素が検出されることがあり、またこれがばらつくのは燃焼空気供給路32から送給される空気中の酸素成分のうち、燃料の燃焼時に消費されなかった残留する微量な酸素と、窒素ガスボンベ34b中に含まれる不純物としての微量な酸素とが試験雰囲気中に存在し、これが燃焼状態や送給量の変動によってばらつくためと推定される。しかし、この程度の誤差は実際のガソリンエンジンでも発生していると考えられ、耐熱管状部材の評価試験への影響は殆どないものと判断している。なお、手動で調節した場合とフィードバック制御した場合の何れの場合も、試験雰囲気の温度は試験開始後約30秒以内に1000℃を超え、実際のガソリンエンジンの排気ガスとほぼ等しい状態を再現できた。 In both cases of manual adjustment and feedback control, a very small amount of oxygen may be detected with respect to the target oxygen content of 0%, and this is distributed from the combustion air supply path 32. Among the oxygen components in the air, the trace amount of oxygen that was not consumed during the combustion of the fuel and the trace amount of oxygen as impurities contained in the nitrogen gas cylinder 34b exist in the test atmosphere. It is estimated that it varies due to fluctuations in salary. However, this level of error is considered to have occurred even in an actual gasoline engine, and it is judged that there is almost no influence on the evaluation test of the heat-resistant tubular member. In both cases of manual adjustment and feedback control, the temperature of the test atmosphere exceeded 1000 ° C within about 30 seconds after the start of the test, and it was possible to reproduce a state almost equal to the exhaust gas of an actual gasoline engine. It was.
実施の形態2の試験方法および試験装置によれば、試験雰囲気中の酸素含有量の目標値と実測値とがほぼ一致し、試験雰囲気を所定の非酸化性雰囲気としてガソリンエンジンの排気ガスを再現するに十分な機能を備え、以って排気マニホルドの評価試験を実施するのに適切なものであることが確認された。 According to the test method and the test apparatus of the second embodiment, the target value of the oxygen content in the test atmosphere and the actual measurement value substantially coincide, and the exhaust gas of the gasoline engine is reproduced with the test atmosphere as a predetermined non-oxidizing atmosphere. Therefore, it has been confirmed that it has sufficient functions and is suitable for performing an exhaust manifold evaluation test.
以上により、試験装置を所定の非酸化性雰囲気に調整した後、バーナ24を点火してLPG31aを燃焼させ、試験雰囲気の温度を例えば室温付近から約1000℃近くの高温まで昇温させ、その温度を所定時間保持後に、LPG31aの送給を少なく、または停止して再度室温付近に戻すことを繰り返すことで、実際のガソリンエンジンと同じように排気マニホルド10に加熱・冷却の熱サイクルを加える。冷却時は、試験雰囲気の温度が低く酸化の影響は軽微なので酸素ガスと窒素ガスの節約のため、その送給を停止してもよい。 As described above, after adjusting the test apparatus to a predetermined non-oxidizing atmosphere, the burner 24 is ignited to burn the LPG 31a, and the temperature of the test atmosphere is increased from, for example, near room temperature to a high temperature of about 1000 ° C. Is held for a predetermined time, and the LPG 31a feed is reduced or stopped and returned to near room temperature again, so that a heating / cooling thermal cycle is applied to the exhaust manifold 10 in the same manner as in an actual gasoline engine. At the time of cooling, the temperature of the test atmosphere is low and the influence of oxidation is slight, so the supply may be stopped to save oxygen gas and nitrogen gas.
実施の形態2の試験方法および試験装置を用いれば、ガソリンエンジンの完成に先行して事前に、排気マニホルドのみを対象に実際のガソリンエンジンの排気ガスと同等の非酸化性雰囲気で排気マニホルドの耐熱性、耐久性等を的確に評価試験できるので、排気マニホルドの開発期間短縮と、ガソリンエンジン実機での評価試験の費用削減が図れるとともに、評価試験結果を、例えば酸化膜の形成を少なくし、またき裂や貫通き裂などの発生を少なくするように排気マニホルドの材質、形状、寸法などの適切な選定、設計に役立てて耐熱性、耐久性等に優れた排気マニホルドを得ることが容易となる。 If the test method and test apparatus of the second embodiment are used, the heat resistance of the exhaust manifold in a non-oxidizing atmosphere equivalent to the exhaust gas of an actual gasoline engine is intended only for the exhaust manifold prior to completion of the gasoline engine. As a result, the development period of the exhaust manifold can be shortened and the cost of the evaluation test on the actual gasoline engine can be reduced, and the evaluation test results can be reduced, for example, by forming less oxide film. Appropriate selection and design of the exhaust manifold material, shape, dimensions, etc. to reduce the occurrence of cracks and through cracks, etc. makes it easy to obtain an exhaust manifold with excellent heat resistance and durability. .
(実施の形態3)
図3は、実施の形態3での耐熱管状部材の試験装置の模式断面図である。実施の形態3の試験装置は、酸素ガス/不活性ガス供給路33を気体供給路35とは別に室部23に直接接続している以外は、図1および図2に示す実施の形態1とほぼ同じ構成としている。
実施の形態3の試験装置は、酸素ガス/不活性ガス供給路33と気体供給路35とを、それぞれ個別に室部23に接続しているので、酸素ガス/不活性ガス供給路33から送給される酸素ガスおよび/または窒素ガスと、過剰空気供給路35aを経由して気体供給路35から送給される過剰空気とが干渉することがなく、送給される各気体の送給量がより安定するので、試験雰囲気中の酸素含有量をより安定して維持することができる。
(Embodiment 3)
FIG. 3 is a schematic cross-sectional view of the heat-resistant tubular member testing apparatus according to the third embodiment. The test apparatus of the third embodiment is the same as that of the first embodiment shown in FIGS. 1 and 2 except that the oxygen gas / inert gas supply path 33 is directly connected to the chamber 23 separately from the gas supply path 35. The configuration is almost the same.
In the test apparatus according to the third embodiment, the oxygen gas / inert gas supply path 33 and the gas supply path 35 are individually connected to the chamber 23, and therefore the oxygen gas / inert gas supply path 33 is fed from the oxygen gas / inert gas supply path 33. Supply amount of each gas to be supplied without interference between oxygen gas and / or nitrogen gas to be supplied and excess air supplied from the gas supply path 35 via the excess air supply path 35a Is more stable, so that the oxygen content in the test atmosphere can be more stably maintained.
実施の形態3によっても、実施の形態1または実施の形態2と同様に、試験雰囲気を、酸素ガスボンベ34aのバルブを開放して、酸素ガス/不活性ガス供給路33から燃焼室22に酸素ガスを送給し、流量調整弁44a、44bを調節することにより酸化性雰囲気として、あるいは窒素ガスボンベ34bのバルブを開放して、酸素ガス/不活性ガス供給路33から燃焼室22に窒素ガスを送給し、流量調整弁44a、44bを調節することにより非酸化性雰囲気として、試験雰囲気を酸化性雰囲気から非酸化性雰囲気まで自在に制御することが可能となり、エンジンの完成を待つことなく、耐熱管状部材のみを対象に実際のエンジンの排気ガスと同等の雰囲気で耐熱管状部材の耐熱性、耐久性等を的確に評価試験できる。 Also in the third embodiment, as in the first or second embodiment, the test atmosphere is changed to the oxygen gas from the oxygen gas / inert gas supply path 33 to the combustion chamber 22 by opening the valve of the oxygen gas cylinder 34a. The nitrogen gas is sent from the oxygen gas / inert gas supply path 33 to the combustion chamber 22 by adjusting the flow rate adjusting valves 44a and 44b to make the oxidizing atmosphere or opening the nitrogen gas cylinder 34b. By adjusting the flow rate adjusting valves 44a and 44b, the test atmosphere can be freely controlled from an oxidizing atmosphere to a non-oxidizing atmosphere, and heat resistance can be achieved without waiting for the completion of the engine. It is possible to accurately evaluate and test the heat resistance and durability of the heat-resistant tubular member in an atmosphere equivalent to the exhaust gas of an actual engine only for the tubular member.
(実施の形態4)
図4は、実施の形態4での耐熱管状部材の試験装置の模式断面図である。実施の形態4の試験装置は、酸素ガスボンベ34aおよび窒素ガスボンベ34bを備えず、酸素ガス/不活性ガス供給路33と気体供給路35を一つにして室部23に接続し、また酸素ガス/不活性ガス供給路33の流量調整弁44aと気体供給路35の流量調整弁44bを一つにした以外は、図1および図2に示す実施の形態1とほぼ同じ構成としている。
(Embodiment 4)
FIG. 4 is a schematic cross-sectional view of a heat resistant tubular member testing apparatus according to the fourth embodiment. The test apparatus of the fourth embodiment does not include the oxygen gas cylinder 34a and the nitrogen gas cylinder 34b, connects the oxygen gas / inert gas supply path 33 and the gas supply path 35 to the chamber 23, and connects the oxygen gas / The configuration is almost the same as that of the first embodiment shown in FIGS. 1 and 2 except that the flow rate adjustment valve 44a of the inert gas supply path 33 and the flow rate adjustment valve 44b of the gas supply path 35 are made one.
実施の形態4の試験装置は、酸素ガスボンベ34aおよび窒素ガスボンベ34bが不要で、酸素ガス/不活性ガス供給路33とこれに配設する流量調整弁44aを省略できるので、試験装置を安価に製作でき、構成がシンプルなので試験装置の保守管理も容易となるほか、高価な酸素ガスや窒素ガスを使用しないので評価試験にかかる費用を低減できる。 The test apparatus according to the fourth embodiment does not require the oxygen gas cylinder 34a and the nitrogen gas cylinder 34b, and the oxygen gas / inert gas supply path 33 and the flow rate adjusting valve 44a disposed in the oxygen gas cylinder 34a can be omitted. In addition, since the configuration is simple, the maintenance of the test apparatus is easy, and the cost for the evaluation test can be reduced because expensive oxygen gas and nitrogen gas are not used.
実施の形態4によっても、実施の形態1または実施の形態3と同様に、ブロワー36に連接した過剰空気供給路35aを経由して気体供給路35から燃焼室22に過剰空気を送給し、流量調整弁44bを調節することにより、燃焼ガスを増圧するとともに、試験雰囲気中の酸素含有量を増加して酸化性雰囲気とすることができ、専らディーゼルエンジン用の耐熱管状部材の試験装置として使用可能であり、ディーゼルエンジンの完成を待つことなく、耐熱管状部材のみを対象に実際のディーゼルエンジンの排気ガスと同等の酸化性雰囲気で耐熱管状部材の耐熱性、耐久性等を的確に評価試験できる。 Also in the fourth embodiment, as in the first or third embodiment, excess air is supplied from the gas supply path 35 to the combustion chamber 22 via the excess air supply path 35a connected to the blower 36. By adjusting the flow rate adjusting valve 44b, the pressure of the combustion gas can be increased and the oxygen content in the test atmosphere can be increased to make an oxidizing atmosphere, which is used exclusively as a test apparatus for heat-resistant tubular members for diesel engines. It is possible to accurately evaluate and test the heat resistance, durability, etc. of heat-resistant tubular members in an oxidizing atmosphere equivalent to the exhaust gas of actual diesel engines only for heat-resistant tubular members, without waiting for the completion of the diesel engine .
(実施の形態5)
図5は、実施の形態5での耐熱管状部材の試験装置の模式断面図である。実施の形態5の試験装置は、実施の形態1での酸素ガス/不活性ガス供給路33の上流側で合流している酸素ガス供給路33aと不活性ガス供給路33bとを分離し、酸素ガス供給路33aの下流側の回路はそのままで、不活性ガス供給路33bを気体供給路35とは別に室部23に直接接続し、酸素ガス供給路33aおよび不活性ガス供給路33bにそれぞれ配設した流量調整弁45a、45bとを備えている以外は、図1および図2に示す実施の形態1とほぼ同じ構成としている。
(Embodiment 5)
FIG. 5 is a schematic cross-sectional view of the heat-resistant tubular member testing apparatus according to the fifth embodiment. The test apparatus of the fifth embodiment separates the oxygen gas supply path 33a and the inert gas supply path 33b, which are merged on the upstream side of the oxygen gas / inert gas supply path 33 in the first embodiment, The inert gas supply path 33b is directly connected to the chamber 23 separately from the gas supply path 35, and the downstream side circuit of the gas supply path 33a is left as it is, and the oxygen gas supply path 33a and the inert gas supply path 33b are respectively connected. The configuration is almost the same as that of the first embodiment shown in FIGS. 1 and 2 except that the flow rate adjusting valves 45a and 45b are provided.
実施の形態5の試験装置は、酸素ガス供給路33aと不活性ガス供給路33bとを分離し、不活性ガス供給路33bと気体供給路35とを、それぞれ個別に室部23に接続しているので、不活性ガス供給路33bから送給される窒素ガスと、酸素ガス供給路33aから送給される酸素ガスとが干渉することがなく送給される各気体の送給量がより安定し、また酸素ガス供給路33aおよび不活性ガス供給路33bにそれぞれ流量調整弁45a、45bを備えているので酸素ガスおよび窒素ガスの送給量をより正確に制御できるので、試験雰囲気中の酸素含有量をより正確に安定して維持することができる。 In the test apparatus of the fifth embodiment, the oxygen gas supply path 33a and the inert gas supply path 33b are separated, and the inert gas supply path 33b and the gas supply path 35 are individually connected to the chamber 23. Therefore, the supply amount of each gas supplied without interference between the nitrogen gas supplied from the inert gas supply path 33b and the oxygen gas supplied from the oxygen gas supply path 33a is more stable. In addition, since the oxygen gas supply passage 33a and the inert gas supply passage 33b are provided with flow rate adjusting valves 45a and 45b, respectively, the oxygen gas and nitrogen gas supply amounts can be controlled more accurately, so that oxygen in the test atmosphere can be controlled. The content can be maintained more accurately and stably.
実施の形態5によっても、実施の形態1または実施の形態2と同様に、試験雰囲気を、酸素ガスボンベ34aのバルブを開放して、酸素ガス供給路33aを経由して気体供給路35から燃焼室22に酸素ガスを送給し、流量調整弁45a、44bを調節することにより酸化性雰囲気として、あるいは窒素ガスボンベ34bのバルブを開放して、不活性ガス供給路33bから燃焼室22に窒素ガスを送給し、流量調整弁45b、44bを調節することにより非酸化性雰囲気として、試験雰囲気を酸化性雰囲気から非酸化性雰囲気まで自在に制御することが可能となり、エンジンの完成を待つことなく、耐熱管状部材のみを対象に実際のエンジンの排気ガスと同等の雰囲気で耐熱管状部材の耐熱性、耐久性等を的確に評価試験できる。 Also in the fifth embodiment, as in the first or second embodiment, the test atmosphere is opened from the gas supply path 35 via the oxygen gas supply path 33a by opening the valve of the oxygen gas cylinder 34a. 22 is supplied with oxygen gas, and the flow rate adjusting valves 45a and 44b are adjusted to create an oxidizing atmosphere, or the nitrogen gas cylinder 34b is opened to supply nitrogen gas from the inert gas supply passage 33b to the combustion chamber 22. It is possible to freely control the test atmosphere from an oxidizing atmosphere to a non-oxidizing atmosphere as a non-oxidizing atmosphere by adjusting the flow rate adjusting valves 45b and 44b, and without waiting for the completion of the engine, It is possible to accurately evaluate and test the heat resistance and durability of the heat resistant tubular member only in the heat resistant tubular member in an atmosphere equivalent to the exhaust gas of an actual engine.
(実施の形態6)
図6は、実施の形態6での耐熱管状部材の試験装置の模式断面図である。実施の形態6の試験装置は、実施の形態5での気体供給路35の上流側で合流している酸素ガス供給路33aと過剰空気供給路35aとを分離し、過剰空気供給路35aの下流側の回路はそのままで、酸素ガス供給路33aを気体供給路35とは別に室部23に直接接続した以外は、図5に示す実施の形態5とほぼ同じ構成としている。
(Embodiment 6)
FIG. 6 is a schematic cross-sectional view of a heat-resistant tubular member test apparatus according to the sixth embodiment. The test apparatus according to the sixth embodiment separates the oxygen gas supply path 33a and the excess air supply path 35a that merge together on the upstream side of the gas supply path 35 according to the fifth embodiment, and downstream of the excess air supply path 35a. The circuit on the side is the same as that in the fifth embodiment shown in FIG. 5 except that the oxygen gas supply path 33a is directly connected to the chamber 23 separately from the gas supply path 35.
実施の形態6の試験装置は、酸素ガス供給路33aと、不活性ガス供給路33bと、気体供給路35とがそれぞれ個別に室部23に接続しているので、酸素ガス供給路33aから送給される酸素ガスと、不活性ガス供給路33bから送給される窒素ガスと、過剰空気供給路35aを経由して気体供給路35から送給される過剰空気とが干渉することがなく送給される各気体の送給量がより一層安定し、また、酸素ガス供給路33a、不活性ガス供給路33bおよび過剰空気供給路35aにそれぞれ配設された流量調整弁45a、45b、44bにより、酸素ガス、窒素ガスおよび過剰空気の送給量をそれぞれ個別により正確に制御できるので、試験雰囲気中の酸素含有量をより一層正確に安定して維持することができる。 In the test apparatus according to the sixth embodiment, the oxygen gas supply path 33a, the inert gas supply path 33b, and the gas supply path 35 are individually connected to the chamber 23, so that the gas is supplied from the oxygen gas supply path 33a. The oxygen gas supplied, the nitrogen gas supplied from the inert gas supply path 33b, and the excess air supplied from the gas supply path 35 via the excess air supply path 35a are sent without interference. The supply amount of each gas to be supplied is further stabilized, and the flow rate adjusting valves 45a, 45b, and 44b provided in the oxygen gas supply path 33a, the inert gas supply path 33b, and the excess air supply path 35a, respectively. Since the oxygen gas, the nitrogen gas and the excess air can be individually and accurately controlled, the oxygen content in the test atmosphere can be maintained more accurately and stably.
実施の形態6によっても、実施の形態1または実施の形態2と同様に、試験雰囲気を、酸素ガスボンベ34aのバルブを開放して、酸素ガス供給路33aから燃焼室22に酸素ガスを送給し、流量調整弁45a、44bを調節することにより酸化性雰囲気として、あるいは窒素ガスボンベ34bのバルブを開放して、不活性ガス供給路33bから燃焼室22に窒素ガスを送給し、流量調整弁45b、44bを調節することにより非酸化性雰囲気として、試験雰囲気を酸化性雰囲気から非酸化性雰囲気まで自在に制御することが可能となり、エンジンの完成を待つことなく、耐熱管状部材のみを対象に実際のエンジンの排気ガスと同等の雰囲気で耐熱管状部材の耐熱性、耐久性等を的確に評価試験できる。 Also in the sixth embodiment, as in the first or second embodiment, the test atmosphere is set to open the valve of the oxygen gas cylinder 34a, and oxygen gas is supplied from the oxygen gas supply path 33a to the combustion chamber 22. By adjusting the flow rate adjusting valves 45a and 44b, an oxidizing atmosphere is created or the valve of the nitrogen gas cylinder 34b is opened, and nitrogen gas is supplied from the inert gas supply passage 33b to the combustion chamber 22, and the flow rate adjusting valve 45b. By adjusting 44b, the test atmosphere can be freely controlled from the oxidizing atmosphere to the non-oxidizing atmosphere as a non-oxidizing atmosphere, and only the heat-resistant tubular member is actually targeted without waiting for the completion of the engine. The heat resistance, durability, etc. of the heat resistant tubular member can be accurately evaluated and tested in an atmosphere equivalent to the engine exhaust gas.
(実施の形態7)
次に、本発明の耐熱管状部材の試験方法および試験装置を用いて、耐熱管状部材に加熱・冷却の熱サイクルを加える実施の形態について説明する。図9は、耐熱管状部材を評価試験する際の熱サイクルの時間−温度線図であり、(a)は自動車の始動、運転、停止を想定した線図、(b)は自動車の始動、運転、停止に加え、後述するアウトバーン走行などを想定した線図を示す。図9で71は耐熱管状部材の管状部の入口での試験雰囲気の時間−温度線図を、72は耐熱管状部材の管状部の外気と接する表面の時間−温度線図を示す。
(Embodiment 7)
Next, an embodiment in which a heat cycle of heating / cooling is applied to the heat-resistant tubular member using the heat-resistant tubular member testing method and test apparatus of the present invention will be described. FIG. 9 is a time-temperature diagram of a thermal cycle when the heat-resistant tubular member is subjected to an evaluation test. (A) is a diagram assuming start, operation, and stop of the automobile, and (b) is start and operation of the automobile. In addition to the stop, a diagram that assumes an autobahn traveling, which will be described later, is shown. In FIG. 9, 71 is a time-temperature diagram of the test atmosphere at the inlet of the tubular portion of the heat-resistant tubular member, and 72 is a time-temperature diagram of the surface in contact with the outside air of the tubular portion of the heat-resistant tubular member.
まず、図9(a)は自動車の始動、運転、停止を想定した熱サイクルの一例で、耐熱管状部材の管状部の入口での試験雰囲気の温度を所定の加熱温度t1になるまで昇温した後、この温度t1を所定時間保持することで耐熱管状部材を加熱する加熱工程Hと、次いで試験雰囲気の温度を常温付近まで降下して耐熱管状部材を冷却する冷却工程Cと、を順次繰り返すことで試験雰囲気の熱サイクルR1をつくりだし、耐熱管状部材に加熱・冷却の熱サイクルを加える試験方法である。図9(a)では試験条件として、試験雰囲気の加熱温度t1を1000℃、t1の保持時間を約8分、加熱工程H10分、冷却工程C10分の1サイクルを20分として、試験雰囲気の熱サイクルR1を500サイクル(図示せず)とした場合を例示した。この試験条件での耐熱管状部材の管状部の外気と接する表面の加熱温度t2は約800であった。耐熱管状部材の評価試験は、通常は図9(a)に示す線図のように、自動車の実車での始動、運転、停止を想定した実際のエンジンの稼動状態を模して、試験雰囲気の温度を昇温降下させて熱サイクルを与えることで、耐熱管状部材に加熱・冷却の熱サイクルを加えて実施される。 First, FIG. 9 (a) is an example of a thermal cycle that assumes start, operation, and stop of an automobile. The temperature of the test atmosphere at the entrance of the tubular portion of the heat-resistant tubular member is increased to a predetermined heating temperature t1. Thereafter, a heating step H for heating the heat-resistant tubular member by holding the temperature t1 for a predetermined time, and then a cooling step C for cooling the heat-resistant tubular member by lowering the temperature of the test atmosphere to near normal temperature are sequentially repeated. In this test method, a heat cycle R1 in a test atmosphere is created and a heat cycle of heating and cooling is applied to the heat-resistant tubular member. In FIG. 9 (a), as test conditions, the heating temperature t1 of the test atmosphere is 1000 ° C., the holding time of t1 is about 8 minutes, the heating process H10 minutes, and the cooling process C1 / 10 cycle is 20 minutes. The case where the cycle R1 is 500 cycles (not shown) is illustrated. Under the test conditions, the heating temperature t2 of the surface of the tubular portion of the heat-resistant tubular member in contact with the outside air was about 800. As shown in the diagram of FIG. 9A, the evaluation test of the heat-resistant tubular member is usually performed by imitating the actual operating state of the engine assuming the actual start, operation, and stop of the automobile. By applying a heat cycle by raising and lowering the temperature, the heat resistant tubular member is subjected to a heating / cooling heat cycle.
また、本発明の耐熱管状部材の試験方法および試験装置を用いれば、耐熱管状部材に特殊な加熱・冷却の熱サイクルを加えることもできる。例えば欧州のアウトバーンなどでは、時速100km以上、さらには時速200km以上となる高速で自動車を走行させる際には、アクセルを全開して瞬間的に加速することで先行する自動車を追い越し、追い越した後は減速して、追い越す前の速度に戻すという操作を繰り返し行って走行する場合がある。高速走行中にさらにアクセルを踏み加速する走行の場合は、単に一定の速度で高速走行する場合と比較して、耐熱管状部材により高い熱的、機械的な負荷が加わり、この高い負荷が耐熱管状部材の耐熱性、耐久性等に影響を及ぼすと考えられる。そこで自動車の始動、運転、停止に加え、例えばアウトバーン走行など高速走行中にさらにアクセルを踏み加速後、減速する走行を想定した耐熱管状部材の評価試験での熱サイクルの一例を示したのが図9(b)の熱サイクルの時間−温度線図である。 Moreover, if the heat resistant tubular member test method and test apparatus of the present invention are used, a special heating / cooling heat cycle can be applied to the heat resistant tubular member. For example, in European autobahns, when driving a car at a high speed of 100 km / h or higher and 200 km / h or higher, the accelerator is fully opened and the vehicle is accelerated instantaneously to overtake the preceding car. There are cases where the vehicle travels repeatedly by decelerating and returning to the speed before passing. In the case of traveling that accelerates by further depressing the accelerator during high-speed traveling, compared to simply traveling at high speed at a constant speed, a higher thermal and mechanical load is applied to the heat-resistant tubular member. This is considered to affect the heat resistance and durability of the member. Therefore, in addition to starting, driving, and stopping the automobile, an example of a heat cycle in an evaluation test of a heat-resistant tubular member assuming that the vehicle further decelerates after depressing the accelerator during high-speed traveling such as autobahn traveling is shown in the figure. It is a time-temperature diagram of the thermal cycle of 9 (b).
図9(b)は、前述の図9(a)と同様に、試験雰囲気の温度を所定の加熱温度t1になるまで昇温する加熱工程Hと、試験雰囲気の温度を常温付近まで降下して耐熱管状部材を冷却する冷却工程Cと、を順次繰り返して試験雰囲気の熱サイクルR1をつくりだし、耐熱管状部材に加熱・冷却の熱サイクルを加て、実車での始動、運転、停止を想定して実際のエンジンの稼動状態を模している。さらに図9(b)では、加熱工程Hにおいて試験雰囲気の温度を加熱温度t1まで昇温した後、試験雰囲気の温度を加熱温度t1から所定の温度幅t3で上昇下降を複数回繰り返す熱サイクルR2を与えている。これにより、加熱工程H中に、耐熱管状部材が複数回繰り返し加熱・冷却される特殊な熱サイクルを加えている。図9(b)では試験条件として、試験雰囲気の加熱温度t1を1000℃、熱サイクルR2での上昇下降の温度幅t3が50℃以上となる繰り返し回数を7回、加熱工程H10分、冷却工程C10分の1サイクルを20分として、試験雰囲気の熱サイクルR1を500サイクル(図示せず)とした場合を例示した。この試験条件での耐熱管状部材の管状部の外気と接する表面の加熱温度t2は、約800〜810℃の範囲で、試験雰囲気の熱サイクルR2に対応して上昇下降を複数回繰り返すことが確認された。 FIG. 9B shows a heating step H in which the temperature of the test atmosphere is raised to the predetermined heating temperature t1 and the temperature of the test atmosphere is lowered to near room temperature, as in FIG. 9A. The cooling process C for cooling the heat-resistant tubular member is sequentially repeated to create a heat cycle R1 of the test atmosphere, and the heat-resistant tubular member is subjected to heating / cooling heat cycle, assuming start-up, operation, and stop in an actual vehicle. Simulates the actual operating state of the engine. Further, in FIG. 9B, after the temperature of the test atmosphere is raised to the heating temperature t1 in the heating step H, the temperature of the test atmosphere is increased and lowered from the heating temperature t1 by a predetermined temperature width t3 a plurality of times. Is given. Thereby, during the heating process H, a special heat cycle in which the heat-resistant tubular member is repeatedly heated and cooled a plurality of times is added. In FIG. 9B, as test conditions, the heating temperature t1 of the test atmosphere is 1000 ° C., the number of repetitions in which the temperature range t3 of the rise and fall in the thermal cycle R2 is 50 ° C. or more is 7 times, the heating step H10 minutes, the cooling step The case where the cycle of C1 / 10 was 20 minutes and the thermal cycle R1 of the test atmosphere was 500 cycles (not shown) was illustrated. It has been confirmed that the heating temperature t2 of the surface of the tubular portion of the heat-resistant tubular member in contact with the outside air under the test conditions is repeatedly increased and decreased several times corresponding to the thermal cycle R2 of the test atmosphere in the range of about 800 to 810 ° C. It was done.
試験雰囲気の熱サイクルR2をつくりだすには、加熱工程Hで試験雰囲気の加熱温度t1に到達後、燃料の送給量を加熱温度t1を保持する送給量からわずかに増加した後、加熱温度t1を保持する送給量にもどすことを複数回繰り返せばよい。図9(b)に示す線図のように、試験雰囲気の温度を所定の加熱温度t1まで昇温した後、その加熱温度t1からさらに所定の温度幅t3で上昇下降を複数回繰り返す熱サイクルR2を与えることで、実車の始動、運転、停止に加え、例えばアウトバーン走行など高速走行中にさらにアクセルを踏み加速後、減速する走行を想定した実際のエンジンの稼動状態を模して、耐熱管状部材に加熱・冷却の特殊な熱サイクルを加えることができる。 In order to create the heat cycle R2 of the test atmosphere, after the heating temperature t1 of the test atmosphere is reached in the heating step H, the fuel supply amount is slightly increased from the supply amount holding the heating temperature t1, and then the heating temperature t1. It is sufficient to repeat the return to the feeding amount that holds the number of times. As shown in the diagram of FIG. 9B, after the temperature of the test atmosphere is raised to a predetermined heating temperature t1, the heat cycle R2 is repeated a plurality of times from the heating temperature t1 at a predetermined temperature width t3. In addition to starting, driving, and stopping the actual vehicle, the heat-resistant tubular member simulates the actual operating state of the engine, assuming that the vehicle decelerates after accelerating by further depressing the accelerator during high-speed driving such as outburning. A special heat cycle of heating / cooling can be added.
なお、図9(a)、(b)での試験雰囲気の加熱温度t1までの昇温、温度幅t3での上昇下降、室温付近までの降下等、試験雰囲気の温度を制御し、加えて試験雰囲気の熱サイクルR1、R2を与えるには、実施の形態1で述べたように、耐熱管状部材の管状部に設けた温度センサ41a、41bで測定した試験雰囲気の温度、および耐熱管状部材の表面温度の検出信号をコントロールユニット46に入力し、コントロールユニット46で目標の温度と実測した温度とを比較して温度の過不足を補正するに必要な流量調整弁の調節量である例えば開度を演算し、流量調整弁42a、42b、44bに弁の開度を調節する制御信号を出力し、流量調整弁42a、42b、44bを作動して燃料、燃焼に必要な空気、および過剰空気の送給量を調節することで、試験雰囲気の加熱温度t1、温度幅t3、冷却工程Cでの降下温度等を制御でき、またコントロールユニット46に内蔵したプログラム式温度制御器およびコンピュータに加熱温度t1、温度幅t3、冷却工程Cでの降下温度等の目標温度、その保持時間、および試験雰囲気温度の上昇下降の繰り返し回数等を評価試験に先立ち事前にプログラムし、評価試験でこれを実行させれば試験雰囲気の熱サイクルR1、R2を与えることができる。 In addition, the temperature of the test atmosphere is controlled in addition to the test atmosphere heating in FIG. 9 (a), (b) up to the heating temperature t1, the rise / fall in the temperature range t3, the drop to near room temperature, etc. In order to provide the thermal cycles R1 and R2 of the atmosphere, as described in the first embodiment, the temperature of the test atmosphere measured by the temperature sensors 41a and 41b provided in the tubular portion of the heat resistant tubular member, and the surface of the heat resistant tubular member A temperature detection signal is input to the control unit 46, and the control unit 46 compares the target temperature with the actually measured temperature, and corrects the excess or deficiency of the temperature. And outputs a control signal for adjusting the opening degree of the valve to the flow rate adjusting valves 42a, 42b, 44b, and operates the flow rate adjusting valves 42a, 42b, 44b to send fuel, air necessary for combustion, and excess air. Salary As a result, the heating temperature t1, the temperature width t3, the temperature drop in the cooling process C, and the like can be controlled, and the heating temperature t1 and the temperature width t3 can be controlled by a programmable temperature controller and a computer built in the control unit 46. Before the evaluation test, the target temperature such as the temperature drop in the cooling process C, the holding time thereof, the number of repetitions of the rise and fall of the test atmosphere temperature, etc. are programmed in advance prior to the evaluation test. Thermal cycles R1, R2 can be provided.
また、試験雰囲気の加熱温度t1、温度幅t3は、実際のエンジンから排出される排気ガスの温度に対応する必要があるが、カーメーカ毎のエンジンの種別や設計・仕様、あるいは実際の走行速度等によって異なるので、耐熱管状部材の供給先の要望等に応じて適宜決定する。一般的には時速100km以上でエンジンから排出される排気ガスは800℃以上に達しており、また高速走行中に先行する自動車を追い越すためにアクセルを全開して瞬間的に加速すると、さらに30℃以上高温の排気ガスが排出されるといわれている。従って加熱温度t1は800℃以上とし、温度幅t3は30℃以上とすることが好ましい。 Further, the heating temperature t1 and the temperature range t3 in the test atmosphere need to correspond to the exhaust gas temperature exhausted from the actual engine, but the type, design / specification of the engine for each car manufacturer, the actual traveling speed, etc. Therefore, it is appropriately determined according to the demand of the supply destination of the heat-resistant tubular member. Generally, exhaust gas exhausted from the engine at a speed of 100 km / h or higher reaches 800 ° C. or higher, and when the accelerator is fully opened and momentarily accelerated to overtake the preceding car during high speed driving, the exhaust gas is further 30 ° C. It is said that hot exhaust gas is exhausted. Therefore, the heating temperature t1 is preferably 800 ° C. or higher, and the temperature width t3 is preferably 30 ° C. or higher.
本発明の耐熱管状部材の試験方法および試験装置を用いて、自動車の始動、運転、停止を想定した熱サイクルのほか、アウトバーン走行などを想定した特殊な熱サイクルを与えることで、実車走行でのエンジンの稼動状態を再現して耐熱管状部材の評価試験ができる。実施の形態7では図9(a)、(b)の2種類の加熱・冷却の熱サイクルのパターンを示したが、これはあくまで例示にすぎず、本発明の耐熱管状部材の試験方法および試験装置を用いて、これ以外に自動車の様々な走行状態を想定した排気ガス温度にもとづく加熱・冷却の熱サイクルのパターンを再現できることはいうまでもない。例えば、エンジン性能評価のためのカーメーカ毎の規格や自動車業界の規格、あるいは排気ガスや燃費に関する各国の法規制での規格等で規定された走行パターンを再現して、耐熱管状部材の耐熱性、耐久性等を評価試験することも可能である。しかも本発明によれば、試験雰囲気中の酸素含有量を任意に調節して酸化性から非酸化性までの排気ガスの雰囲気を再現し、実際のエンジンの完成を待つことなく、耐熱管状部材のみを対象として、エンジンの種別に関係なくディーゼルエンジンまたはガソリンエンジンに用いられる耐熱管状部材の耐熱性、耐久性等を的確に評価試験できる。 Using the heat-resistant tubular member test method and test apparatus of the present invention, in addition to a thermal cycle that assumes the start, operation, and stop of an automobile, a special thermal cycle that assumes an autobahn run, etc. It is possible to perform an evaluation test of the heat-resistant tubular member by reproducing the operating state of the engine. Although the two types of heating / cooling thermal cycle patterns shown in FIGS. 9A and 9B are shown in the seventh embodiment, this is merely an example, and the test method and test for the heat-resistant tubular member of the present invention. Needless to say, the apparatus can reproduce a heating / cooling thermal cycle pattern based on the exhaust gas temperature assuming various driving conditions of the automobile. For example, the heat resistance of heat-resistant tubular members can be reproduced by reproducing the driving pattern defined by the standards for each car manufacturer for engine performance evaluation, the standards of the automobile industry, or the standards of the laws and regulations of each country regarding exhaust gas and fuel consumption. It is also possible to evaluate durability and the like. Moreover, according to the present invention, the oxygen content in the test atmosphere is arbitrarily adjusted to reproduce the atmosphere of the exhaust gas from oxidizing to non-oxidizing, and only the heat-resistant tubular member is obtained without waiting for the completion of the actual engine. As a target, regardless of the type of engine, it is possible to accurately evaluate and test the heat resistance, durability, and the like of a heat-resistant tubular member used in a diesel engine or a gasoline engine.
上述した、実施の形態1から実施の形態7での流量調整弁の「調節」とは、具体的には例えば弁の開度の割合を0%(閉鎖)〜100%(全開放)まで変化させることを、また酸素ガスボンベおよび窒素ガスボンベのバルブと各流量調整弁の「開放」とは、具体的には例えばバルブまたは弁の開度の割合を0%(閉鎖)を含まず、0%を超え(僅かに気体が流れる状態)、100%(全開放)まで変化させることをいう。 The above-mentioned “adjustment” of the flow regulating valve in the first to seventh embodiments specifically refers to, for example, changing the valve opening ratio from 0% (closed) to 100% (fully opened). In addition, the term “open” of the oxygen gas cylinder and nitrogen gas cylinder valves and the respective flow rate regulating valves specifically means that, for example, the valve or the opening ratio of the valve does not include 0% (closed), but 0%. It means exceeding (in a state where gas slightly flows) and changing to 100% (fully open).
以上、発明の実施の形態により本発明の耐熱管状部材の試験方法および試験装置を説明したが、本発明は上記実施の形態に限定されることなく本発明の技術的思想の範囲内において種々の変形が可能であり、それらも本発明の範囲内に含まれるものであることはいうまでもない。 As mentioned above, although the test method and test apparatus of the heat-resistant tubular member of the present invention have been described according to the embodiments of the present invention, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the technical idea of the present invention. It goes without saying that variations are possible and are within the scope of the present invention.
例えば、流量調整弁を各気体の供給路上に複数配設したり、各気体の供給路上に増圧機、整流器、サージタンクなどを配設したり、供給路の各気体の合流点に混合器を配設したりするなど、通常気体の流量や圧力を調整するために用いられる手段を付加すれば、より正確できめ細かに試験雰囲気を調節、制御することが可能となる。 For example, a plurality of flow regulating valves are arranged on each gas supply path, a pressure booster, a rectifier, a surge tank, etc. are arranged on each gas supply path, or a mixer is installed at the confluence of each gas on the supply path. If a means usually used for adjusting the flow rate and pressure of gas, such as disposing, is added, the test atmosphere can be adjusted and controlled more precisely and finely.
また、空気圧縮手段、酸素供給源、不活性ガス供給源としては、試験装置に専用のものでなく、事業所内で共通に使用するコンプレッサーエア、酸素ガス、および不活性ガスの何れかの供給源があればその配管に接続してもよい。また、冷却ブロック21は例えばエンジンのシリンダーヘッドのような部材であるが、耐熱管状部材の種類によっては冷却ブロック21がない場合も考えられる。また、冷却ブロック21内には冷却水21dを循環させ、燃焼器20の断熱部22c内は空気層としているが、冷却ブロック21内および断熱部22c内には高温耐熱材であるレンガ、石綿、各種セラミック材料などを挿入してもよい。 In addition, the air compression means, oxygen supply source, and inert gas supply source are not dedicated to the test apparatus, but are supplied from any one of compressor air, oxygen gas, and inert gas commonly used in the office. If there is, it may be connected to the pipe. The cooling block 21 is a member such as a cylinder head of an engine, for example. However, depending on the type of the heat-resistant tubular member, there may be a case where the cooling block 21 is not provided. Further, the cooling water 21d is circulated in the cooling block 21, and the heat insulating portion 22c of the combustor 20 is an air layer. However, in the cooling block 21 and the heat insulating portion 22c, bricks, asbestos, Various ceramic materials may be inserted.
また、本発明の耐熱管状部材の試験方法および試験装置は、自動車の内燃機関に限らず、鉄道用の機関車、建設機械、船舶、産業用や発電用のディーゼル機関など各種の内燃機関に用いられる排気系機器等の評価試験にも使用できることはいうまでもない。 The heat-resistant tubular member test method and test apparatus of the present invention are not limited to automobile internal combustion engines, but are used in various internal combustion engines such as railway locomotives, construction machinery, ships, industrial and power generation diesel engines. It goes without saying that it can also be used for evaluation tests of exhaust system equipment and the like.
10:排気マニホルド(耐熱管状部材)
11:管状部
11a:表面
11b:裏面
12:酸化膜
13:き裂
14:貫通き裂
A:雰囲気
20:燃焼器
21:冷却ブロック
21a:燃焼ガス路
21b:流入口
21c:排出口
21d:冷却水
22:燃焼室
22a:セラミック管
22b:燃焼室保護管
22c:断熱部
23:室部
23a:内壁
23b:隙間
24:バーナ
31:燃料供給路
31a:LPG(液化石油ガス)
32:燃焼空気供給路
33:酸素ガス/不活性ガス供給路
33a:酸素ガス供給路
33b:不活性ガス供給路
34a:酸素ガスボンベ
34b:窒素ガスボンベ
35:気体供給路
35a:過剰空気供給路
36:ブロワー
41:燃焼ガスの入口
41a、41b:温度センサ
42a、42b:流量調整弁
43:酸素センサ(酸素濃度計)
44a、44b、45a、45b:流量調整弁
46:コントロールユニット
71:試験雰囲気の時間−温度線図
72:耐熱管状部材の時間−温度線図
H:加熱工程
C:冷却工程
R1、R2:試験雰囲気の熱サイクル
t1:試験雰囲気の加熱温度
t2:耐熱管状部材の表面の加熱温度
t3:温度幅
10: Exhaust manifold (heat resistant tubular member)
11: Tubular part 11a: Front surface 11b: Back surface 12: Oxide film 13: Crack 14: Through crack A: Atmosphere 20: Combustor 21: Cooling block 21a: Combustion gas path 21b: Inlet 21c: Outlet 21d: Cooling Water 22: Combustion chamber 22a: Ceramic tube 22b: Combustion chamber protection tube 22c: Heat insulation portion 23: Chamber portion 23a: Inner wall 23b: Gap 24: Burner 31: Fuel supply path 31a: LPG (liquefied petroleum gas)
32: Combustion air supply path 33: Oxygen gas / inert gas supply path 33a: Oxygen gas supply path 33b: Inert gas supply path 34a: Oxygen gas cylinder 34b: Nitrogen gas cylinder 35: Gas supply path 35a: Excess air supply path 36: Blower 41: Combustion gas inlet 41a, 41b: Temperature sensor 42a, 42b: Flow rate adjusting valve 43: Oxygen sensor (oxygen concentration meter)
44a, 44b, 45a, 45b: Flow rate adjusting valve 46: Control unit 71: Time-temperature diagram of test atmosphere 72: Time-temperature diagram of heat-resistant tubular member H: Heating step C: Cooling step R1, R2: Test atmosphere T1: Heating temperature of test atmosphere t2: Heating temperature of heat-resistant tubular member surface t3: Temperature range
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004022240A JP4269277B2 (en) | 2004-01-29 | 2004-01-29 | Test method and test apparatus for heat-resistant tubular member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004022240A JP4269277B2 (en) | 2004-01-29 | 2004-01-29 | Test method and test apparatus for heat-resistant tubular member |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005214812A JP2005214812A (en) | 2005-08-11 |
JP4269277B2 true JP4269277B2 (en) | 2009-05-27 |
Family
ID=34905640
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004022240A Expired - Lifetime JP4269277B2 (en) | 2004-01-29 | 2004-01-29 | Test method and test apparatus for heat-resistant tubular member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4269277B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102338695A (en) * | 2011-06-09 | 2012-02-01 | 上海宝钢工业检测公司 | Calibration system of direct-combustion burner of industrial furnace and method |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007218141A (en) * | 2006-02-15 | 2007-08-30 | Denso Corp | Durability evaluation device |
KR101147594B1 (en) * | 2009-11-27 | 2012-05-23 | 한국표준과학연구원 | Method and system for nondestructive testing using compression heat |
CN110455547B (en) * | 2019-09-23 | 2024-02-13 | 楼蓝科技(江苏)有限公司 | High-temperature and high-pressure test system for power machinery combustion chamber test |
CN112179649A (en) * | 2020-09-29 | 2021-01-05 | 东风商用车有限公司 | High-temperature durability test device and method for exhaust brake valve of commercial vehicle |
-
2004
- 2004-01-29 JP JP2004022240A patent/JP4269277B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102338695A (en) * | 2011-06-09 | 2012-02-01 | 上海宝钢工业检测公司 | Calibration system of direct-combustion burner of industrial furnace and method |
CN102338695B (en) * | 2011-06-09 | 2015-11-25 | 宝钢工业炉工程技术有限公司 | The calibration system of direct-combustion burner of industrial furnace and method |
Also Published As
Publication number | Publication date |
---|---|
JP2005214812A (en) | 2005-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9593633B1 (en) | Combustion pre-chamber and method for operating same | |
JP6262616B2 (en) | Gas turbine combustor | |
JP4979615B2 (en) | Combustor and fuel supply method for combustor | |
JP2007507640A (en) | Method and apparatus for controlling the combustibility of a gas fueled internal combustion engine | |
JP3814247B2 (en) | Premixed forced ignition gas engine | |
SG184920A1 (en) | Gas cutting method, gas cutting machine, and cutting tip | |
US6865879B2 (en) | Method and device for determining the fuel quantity for a burner in the exhaust-gas system of an internal combustion engine | |
JP4191586B2 (en) | Combustion control method and combustion control apparatus for gas engine | |
JP4269277B2 (en) | Test method and test apparatus for heat-resistant tubular member | |
JP5826095B2 (en) | Sub-chamber gas engine operating method and sub-chamber gas engine | |
JP2009203883A (en) | Failure cause estimating method and device for internal combustion engine | |
JP4765830B2 (en) | Gas fuel internal combustion engine | |
JP5045575B2 (en) | Combustion control device for internal combustion engine | |
JP4292926B2 (en) | Tubular flame burner | |
US8678813B2 (en) | Method for producing a stream of hot combustion exhaust gases at a settable temperature, apparatus for carrying out the method and use of the combustion exhaust gases for the targeted ageing of catalysts | |
US20160348569A1 (en) | Combustion Pre-Chamber and Method for Operating Same | |
JP3865494B2 (en) | Compression ignition engine | |
JP2010217008A (en) | Exhaust gas generator, exhaust gas generating method, and ceramic structure evaluating apparatus | |
JP2009133284A (en) | Combustion diagnostic method and combustion diagnostic device of internal combustion engine | |
CN118234930A (en) | Method for operating an internal combustion engine and internal combustion engine | |
US20090320814A1 (en) | System and method for controlling an internal combustion engine using flame speed measurement | |
JP2006132478A (en) | Pilot-ignition type gas engine provided with scavenging device for auxiliary combustion chamber | |
WO2018070125A1 (en) | Gas engine system | |
US6729142B2 (en) | Thermal turbomachine and process for igniting the thermal turbomachine | |
WO2024202162A1 (en) | Gas engine and method for starting gas engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061212 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080922 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081031 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081226 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090130 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090212 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120306 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4269277 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130306 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130306 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140306 Year of fee payment: 5 |
|
EXPY | Cancellation because of completion of term |