Nothing Special   »   [go: up one dir, main page]

JP4265875B2 - Manufacturing method of surface emitting semiconductor laser - Google Patents

Manufacturing method of surface emitting semiconductor laser Download PDF

Info

Publication number
JP4265875B2
JP4265875B2 JP2001158785A JP2001158785A JP4265875B2 JP 4265875 B2 JP4265875 B2 JP 4265875B2 JP 2001158785 A JP2001158785 A JP 2001158785A JP 2001158785 A JP2001158785 A JP 2001158785A JP 4265875 B2 JP4265875 B2 JP 4265875B2
Authority
JP
Japan
Prior art keywords
layer
light
surface emitting
laser
gaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001158785A
Other languages
Japanese (ja)
Other versions
JP2002353568A (en
JP2002353568A5 (en
Inventor
正彦 近藤
健 北谷
真 工藤
Original Assignee
日本オプネクスト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本オプネクスト株式会社 filed Critical 日本オプネクスト株式会社
Priority to JP2001158785A priority Critical patent/JP4265875B2/en
Priority to US10/154,822 priority patent/US6782032B2/en
Publication of JP2002353568A publication Critical patent/JP2002353568A/en
Publication of JP2002353568A5 publication Critical patent/JP2002353568A5/ja
Application granted granted Critical
Publication of JP4265875B2 publication Critical patent/JP4265875B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/16Semiconductor lasers with special structural design to influence the modes, e.g. specific multimode
    • H01S2301/166Single transverse or lateral mode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02251Out-coupling of light using optical fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0421Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/06226Modulation at ultra-high frequencies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • H01S5/18311Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement using selective oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18341Intra-cavity contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18358Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] containing spacer layers to adjust the phase of the light wave in the cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18361Structure of the reflectors, e.g. hybrid mirrors
    • H01S5/18369Structure of the reflectors, e.g. hybrid mirrors based on dielectric materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/305Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure
    • H01S5/3054Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure p-doping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/3235Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength longer than 1000 nm, e.g. InP-based 1300 nm and 1500 nm lasers
    • H01S5/32358Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength longer than 1000 nm, e.g. InP-based 1300 nm and 1500 nm lasers containing very small amounts, usually less than 1%, of an additional III or V compound to decrease the bandgap strongly in a non-linear way by the bowing effect
    • H01S5/32366(In)GaAs with small amount of N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34306Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength longer than 1000nm, e.g. InP based 1300 and 1500nm lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Semiconductor Lasers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、基板結晶上に光を発生する活性層と前記活性層から発生した光からレーザ光を得るために前記活性層の上下を挟んだ共振器構造をもち、前記基板結晶と垂直に光を発生する面発光半導体レーザの製造方法に関するものである。
【0002】
【従来の技術】
近年の情報伝送の急速な高速化が求められている。そのため、伝送速度が10Gb/s以上の光通信の開発が行われている。通常、光通信には、半導体レーザ、受光素子及びそれらの駆動回路等を組み込んだ光モジュールが用いられる。
【0003】
上記光モジュールを使用し、伝送速度が10Gb/sを超える光通信システムとしてとして、図9に示すようなシステムが知られている。光モジュール907は、光モジュールを動作させる外部回路908に従って、半導体レーザ901から信号光を送信する。また、相手の光モジュールから送信された光信号を、受光素子駆動回路906で駆動される受光素子905によって受信する。全ての光信号は、光ファイバー909を通して高速で伝送される。
【0004】
半導体レーザ901としては、ガリウムインジウム燐砒素(GaInPAs)系の半導体材料を活性層に用いた端面発光型のレーザが主として用いられている。一般に、GaInPAs系レーザは、素子温度が上昇した時に、しきい値電流が大きく増大するという欠点をもつ。そのため、温度安定用のぺルチェ素子904を組み込んだり、半導体レーザ901からの光出力変動をモニター用の受光素子903で常に計測してレーザ駆動回路902にフィードバックするオートパワーコントロール(APC)回路を組み込む必要がある。
【0005】
そのため、光モジュール907を構成する部品数が多く、また、駆動回路が複雑でサイズも大型であり、光モジュール自体のコストの増大を余儀無くされている。
【0006】
それに対して、高速光モジュールに適した光源として、面発光レーザが注目を集めている。面発光レーザは、光を発生する活性層と、活性層の微少領域に電流を注入するための電流狭窄層及び当該活性層を上下に挟むように配置された一組の反射鏡からなる光共振器をもって構成される。面発光レーザは、その共振器長が僅か数μmであり、端面発光レーザの共振器長(数100μm)に比べてはるかに短く、活性領域の体積が小さいので高速特性に優れる。さらに、ビーム形状が円形に近く光ファイバとの結合が容易、へき開工程が不要でウエハ単位の素子検査が可能、低しきい値電流でレーザ発振し低消費電力といった低コスト化においても優れた特長をもっている。
【0007】
また、レーザの発振波長に関しても、近年、ガリウムインジウム窒素砒素(GaInNAs)、ガリウム砒素アンチモン(GaAsSb)といったガリウム砒素(GaAs)基板上に形成可能な新しい半導体材料による1.3μm帯の面発光レーザの発振が相次いで報告され、長距離、高速伝送が可能なシングルモードファイバーに適合する長波長帯面発光レーザ実用化の期待が非常に高まっている。特に、GaInNAsを活性層に用いた場合には、伝導帯における深いポテンシャル井戸で電子を閉じ込めることができ、温度に対する特性の安定性も大幅に改善できると予測されている。
【0008】
以上の利点により、長波長帯面発光レーザが実現されれば、高性能、かつ、低コストで、LANでの使用に適した光モジュールが可能であると期待されている。
【0009】
面発光レーザの光共振器の長さは著しく短く、レーザ発振を起こすためには上下の反射鏡の反射率を極めて高い値(99.5%以上)に設定することが必要である。反射鏡としては、屈折率の異なる2種類の半導体を1/4波長厚(λ/4n:λは波長、nは半導体材料の屈折率)で交互に積み重ねることにより形成した多層膜反射鏡が主として使用されている。
【0010】
多層膜反射鏡に用いられる2種類の半導体材料には、少ない積層数で高反射率を得るため、両者の屈折率差ができるだけ大きいことが望まれる。また、材料が半導体結晶の場合、格子不整合転位の抑制のため、基板材料と格子整合していることが好まれる。現状では、GaAs/アルミニウム砒素(AlAs)系半導体材料、あるいは、二酸化珪素(SiO)/二酸化チタン(TiO)等の誘電体材料から構成した多層膜反射鏡が主として用いられている。また、電流狭窄層は、素子の低閾電流化のために必須であり、活性層と電流を注入する電極の間に配置され、活性層に注入される電流を微少領域(以下アパーチャーと記述する。)に限定する役割を果たす。単一横モード化のためには、アパーチャー径を発振波長が850nmで2−3μm、1300nmで5−6μmと小さくなければならない。具体的には、素子構造内に導入したAlAs層を横方向から選択的に酸化し酸化アルミニウム(AlO)絶縁層に変化させることで中央に残った微小なAlAs領域のみで電流を狭窄する方法が現在主流である。また、バンドギャップの大きい半導体材料や、素子内の導電型とは逆の導電型にドーピングを施した材料を素子内に埋込むことにより電流を狭窄する方法もある。
【0011】
一方、10Gb/sを超える高速特性を有する光モジュール実現においては、光源として用いる面発光レーザは、10Gb/sを超える高速特性を達成する必要がある。そのためには、面発光レーザ素子の抵抗(R)及び容量(C)の低減が不可欠である。図5に、抵抗及び容量と、変調特性の関係を示す。面発光レーザ素子の容量は一般的な値として数100 fFであるので、10Gb/sを超える高速変調を達成する為には素子抵抗を少なくとも50Ω以下に低減する必要がある。
【0012】
面発光レーザには、上述のように、AlAs/GaAs系の半導体多層膜反射鏡が主として用いられている。従来素子では、上部p型のAlAs/GaAs系半導体多層膜反射鏡の上に電極が配置され、その半導体多層膜反射鏡を通して活性層に電流が注入されていた。その際、AlAs/GaAs系半導体の価電子帯のエネルギー差は、有効質量の重い正孔にとってヘテロ界面で大きな抵抗成分になり素子抵抗を増大させる問題があった。その対策として、AlAs/GaAsヘテロ界面に組成を徐々に変化させたAlGaAs半導体層を導入し、かつ、そのAlAs側のみにp型ドーピングを施してヘテロ界面の抵抗成分を低減する等の試みがなされてきた。しかしながら、単一横モードを実現する小径アパーチャーの素子において50Ω以下の素子抵抗を達成することは非常に困難である。
【0013】
また、抵抗の高い上部半導体多層膜反射鏡を介さず電流を注入する構造の面発光レーザも検討されている。一例として、本願発明者等が開発した特開平11-204875号公報に記載の面発光レーザの素子構造図を図6示す。ここで、601はn電極、602はn−GaAs基板、603は下部多層膜反射鏡、604は第1 GaAsスペーサー層、605はノンドープGaInNAs活性層、606は第2 GaAsスペーサー層、607は電流狭窄層、608はp−電流導入層、609は第3 p-GaAsスペーサー層、610はp電極、611は上部多層膜反射鏡である。
【0014】
p電極610から注入された電流は、第3スペーサー層609から電流導入層608を通して、電流狭窄層607で限定されたアパーチャーに導かれ、活性層605に導入される。即ち、上部多層膜反射鏡611を介さないので、素子抵抗が低減される。さらに本構造においては、p=1x1020 cm−3 程度にドーピング濃度を高くした電流導入層608を導入し、電極とアパーチャー間の抵抗成分の低減が実現されている。従って、本構造では、単一横モードを実現する小径アパーチャーの素子においては50Ω以下の素子抵抗を達成することができる。
【0015】
【発明が解決しようとする課題】
しかし、図6に示す面発光レーザを実際に多ロット作製したところ、抵抗値が20Ω程度で非常に特性が良い素子も得られるが、ロット間で特性の再現性が悪いと言う問題が生じた。特に抵抗値が異常に大きく電気的特性が悪い物が発生した。本願発明者等がその原因を追求したところ、アパーチャーの一部となる第3 GaAsスペーサー層609と第2 GaAsスペーサー層606の接合面に問題がある事が判明した。その接合面は、電流狭窄層607及び電流導入層608を選択的にエッチングして取り除いた後に第3スペーサー層609を再成長することにより形成される再成長界面であり、再成長工程の不具合により特性が劣化する。
【0016】
具体的には、再成長前に行う微量エッチングの再現性が悪く界面の結晶性が十分でない場合がある。他方、微量エッチング工程を省くと、電流狭窄層607及び電流導入層608を選択的にエッチングして取り除く工程で何らかの理由で界面にSiが付着し、その界面がn型の導電型になりその後p型の第3スペーサー層609を再成長してもp−n接合及びそれに因る空乏層が形成され大きな抵抗成分となる。
【0017】
本発明の第1の目的は、電極間に再成長界面をもつ半導体素子の上記再成長界面に生じる不純物の影響を低減した半導体レーザを実現することである。
【0018】
本発明の第2の目的は、電極間に再成長界面をもつ面発光レーザにおける電極間の抵抗を低減すると同時に多ロット作成時に特性の揃った高速かつ高性能な面発光半導体レーザ及びその面発光半導体レーザを用いた、構成が簡易で、経済的(低コストな)光モジュール及び光通信システムを提供することである。
【0019】
【課題を解決するための手段】
上記目的を達成するため、本発明の面発光半導体レーザは、電極間に再成長工程で構成された複数の半導体層をもつ面発光半導体レーザにおいて、再成長界面又はその直近の面が高濃度のドーパントをもつ薄膜で形成される。より具体的な本願発明の面発光半導体レーザの製造方法は、次の通りである。
即ち、基板結晶上に光を発生する活性層と前記活性層から発生した光からレーザ光を得るために前記活性層の上下を挟んだ共振器構造をもち、前記基板結晶と垂直に光を発生する面発光半導体レーザの製造方法であって、前記活性層の上側に第1のスペーサ層を形成し、前記第1のスペーサ層上に電流狭窄層および電流導入層をそれぞれ選択的にエッチング処理により形成する第1の工程と、前記第1の工程の後に前記第1のスペーサ層上の光透過アパーチャ部にデルタドープを行い第2の工程と、前記デルタドープされた第1のスペーサ層上に第2のスペーサ層を形成する第3の工程とを有し、前記光透過アパーチャ部表面を再成長界面とし、前記再成長界面が面発光レーザ内の光定在波の節の位置から1/8波長より近い位置に形成されている面発光半導体レーザの製造方法である。
更に、本発明において、前記電流狭窄層上に前記電流導入層を形成することにより、前記電流狭窄層上であり、かつ、前記電流狭窄層と前記電流導入層との間に空洞を形成することは有用である。
【0020】
前記ドーパントとしては、拡散定数の小さいものが適しており、カーボンが最適である。界面から10nm以内の位置へのデルタドーピングはトンネル効果によりキャリアが界面へ移動するので実質的に再成長界面へのデルタドープと同じになる。また、デルタドーピングの層厚は、作製誤差を考慮し10nm以下である。
【0021】
本発明によれば、前記再成長界面又はその直近の面が高濃度のドーパントをもつ半導体レーザでは、p型ドーパントをデルタドープする事で、図6で説明したn型ドーパントのSiを補償して、p−n接合及びそれに因る空乏層の抵抗成分を解消できる。すなわち界面に付着し汚染した物質はSiであったが、p型のドーパントとなる物質が付着した場合n型ドーパントをデルタドープすることで補償できる。また、再成長工程は面発光レーザ以外の半導体素子でも広く使用されている。汚染付着物を電気的に補償する再成長界面へのデルタドープは界面及び素子特性を改善のするため有効である。
【0022】
また、本発明の面発光半導体レーザの好ましい実施形態では、上記面発光半導体レーザにおいて、前記再成長界面が、光定在波の節の位置近傍(望ましくは節の位置から1/8波長より近い位置)に形成される。
【0023】
光定在波の腹及び節の位置は、共振器内の物質の屈折率を考慮した反射鏡からの距離と発振波長で一様に決まる。共振器間の距離は、正確に1/2波長厚の整数倍になっており、1/2波長厚毎に腹が存在する。一般に、活性層は最大利得を得るために光定在波の腹の位置に置かれる(但し、活性層の位置が定在波の腹の位置を決定する訳ではない)。その場合、光定在波の節は活性層から1/4, 3/4, 5/4波長厚の位置に存在する。図7に示すように、再成長界面の位置を光定在波の節に形成すると、節の位置では光が存在しないので再成長界面は吸収及び散乱の要因にならない。また、界面の位置により光の損失がどの様に影響されるか見積もった。光吸収体になるCデルタドープを施した界面を1つ有するAlAs/GaAs多層膜反射鏡(25周期)の反射スペクトルのシミュレーション結果を、図8に示す。100%と反射率の差が、光の損失を示す。界面が節に位置するばあいの損失は0.04%で、Cデルタドープした界面が存在しない場合と全く同一である。
【0024】
一方、界面が腹に位置する場合、損失は0.17%と4倍以上になった。一般に、光密度の大きい面発光レーザでは、損失の増加は素子の光特性に大きく影響する。従って、4倍の損失増は、単に効率が1/4に悪化するだけではなく、発振動作自体を阻止する場合もありえる。上記シミュレーションでは、定量化を簡単に行う為に界面の光損失要因としてCデルタドープ界面を取り扱ったが、再成長界面の場合も全く同様である。また、界面は正確に節の位置で無くとも、節から±1/8波長厚より近くにある場合面発光半導体レーザの特性に改善効果がある。
【0025】
前記ドーパントをもつ薄膜又は前記再成長界面が光定在波の節の位置近傍に形成される場合には、半導体レーザの静特性と輝度特性を同時に改善する効果をもつ。
【0026】
【発明の実施の形態】
以下に説明する実施例の面発光レーザはp接合界面を有しているが、再成長界面の位置を光定在波の節に合わせることで再成長界面による光損失を解消させる手段は、界面の伝導型によらない。
<実施例1>
図1は本発明による面発光レーザの一実施例の構造を示す断面図である。
基板結晶101上に光を発生する活性層104と活性層104から発生した光からレーザ光を得る為に活性層104の上下を反射鏡102及び110で挟んだ共振器構造を有し、かつ活性層104と反射鏡の1つ110との間に第2のスペーサ層105と、スペーサ層105上に再成長工程によって形成された第3のスペーサ層109の半導体層を有し、基板結晶と垂直に光を出射する面発光レーザである。
【0027】
再成長界面108は、光定在波の節の位置から1/8波長より近い位置に形成される。本実施例の発光波長は1.3μmである。以下具体的構成及び製造方法を示す。
【0028】
図1において、101はn型GaAs基板(n=1x1018 cm−3、d=300μm)、102はn型GaAs/AlAs半導体多層膜反射鏡(n=1x1018 cm−3)、103はnドープ第1GaAsスペーサ層(n=1x1018 cm−3、d=1/2波長厚)、104はノンドープGaInNAs/GaAs歪量子井戸活性層、105はpドープ第2GaAsスペーサ層(p=1x1017 cm−3、d=1/4波長厚)、106はGaAs基板と格子整合するn型Ga(0.5)In(0.5)P電流狭窄層(n=1x1018 cm−3、d=50 nm)、107はp型GaAs電流導入層(p=1x1020 cm−3、d=1/2波長厚)、108は再成長界面、109はp型第3GaAsスペーサ層(p=1x1018 cm−3、d=3/4波長厚)、110はノンドープGaAs/AlInP半導体多層膜反射鏡、111はp側電極、112はn側電極である。
【0029】
下部半導体多層膜反射鏡102は、1/4波長厚の高屈折率のGaAs層と1/4波長厚の低屈折率のAlAs層を交互に積層した。反射率を99.5%以上にする為に反射鏡層の積層数を25対とした。活性層104には、7nm厚のGaInNAs井戸層1層を10nm厚のGaAs障壁層で挟んだ実効的に0.95eV(波長:1.3μm)のバンドギャップを持つ歪量子井戸層を用いた。第1スペーサ層103及び第2スペーサ層105の厚みは、正確には活性層104の厚みの半分をそれぞれ差し引いた。その結果、共振器長は正確に1.5波長厚となった。
【0030】
半導体層102-107は、ガスソース分子線エピタキシー装置を用いて1×10−7Torrの高真空中で連続して結晶成長させた。III族の原料には金属のアルミニュム、ガリュウム及びインジウムを、V族の原料には金属砒素、フォスフィン及びプラズマで励起した窒素を用いた。ドーパントの原料には、Si及びCBr4を用いた。ウエハーを取り出しホトリソグラフ工程により図1に示すように、p型GaAs電流導入層107、電流狭窄層106を硫酸系エッチング液及び塩酸系エッチング液により順次選択的にエッチングし、直径5μmのアパーチャーを形成した。ウエハーを結晶成長装置に戻し、砒素と共にCBr4のビームを照射し再成長界面にp=1x1012 cm−2 の密度でCデルタドープを施した。
【0031】
その後、第3 GaAsスペーサ層109を再成長した。再成長界面は、上部反射鏡の下面から3/4波長厚の位置にあるので光定在波の節にある。また、電流狭窄層106を選択エッチングする際に、エッチング時間を制御することで空洞113を作製した。再成長時に、空洞113の上部のp型GaAs電流導入層107が変形し、空洞113がテーパー状になる。その為、アパーチャーと空洞113が接する部分での光損失が減少し素子の光学特性が改善された。アパーチャー内部のGaAsと外側の空洞部の真空は屈折率差が大きいので、単一の横モード発振が容易に得られる。
【0032】
引き続いて上部半導体多層膜反射鏡110を成長した。上部半導体多層膜反射鏡110は、1/4波長厚のGaAs層と1/4波長厚のGaAs基板と格子整合するAl(0.5)In(0.5)P層を交互に積層した。反射率を99.5%以上にする為に反射鏡層の積層数を25対とした。次に、上部多層膜反射鏡110の外側を第2 GaAsスペーサ層109に達するまでドライエッチングした。その後、内径7μm外径15μmのリング状p側電極111及びn側電極112を形成した。最後に、リング状p側電極111の外側をエッチングし素子分離を行った。
【0033】
本面発光レーザに電流を注入したところ、閾電流100μAでレーザ発振した。レーザ光は誘電体多層膜反射鏡側から出射され、室温において発振波長は1.3μmであった。本面発光レーザは、10万時間以上の長い素子寿命を有した。また、複数のロット間での歩留まりも70%以上と高かった。上記性能は、長波長帯面発光レーザとしては非常に優れている。尚、活性層としてGaAsSbなどの材料を用いても1.3μm帯の面発光レーザ素子を作製することができる。
<実施例2>
図2は本発明による面発光レーザの他の実施例の構造を示す断面図である。
基板結晶201上に光を発生する活性層204と前記活性層から発生した光からレーザ光を得る為に活性層204の上下を反射鏡202及び210で挟んだ共振器構造を有し、かつ活性層204と反射鏡の1つ210との間に第2のスペーサ層205と、スペーサ層205上に再成長工程によって形成された第3のスペーサ層209の半導体層を有し、基板結晶と垂直に光を出射する面発光レーザである。
【0034】
再成長界面208は、光定在波の節の位置から1/8波長より近い位置に形成される。本実施例の発光波長は0.98μmである。以下具体的構成及び製造方法を示す。201はn型GaAs基板(n=1x1018 cm−3、d=100μm)、202はn型GaAs/AlAs半導体多層膜反射鏡(n=1x1018 cm−3)、203はnドープ第1 GaAsスペーサ層(n=1x1017 cm−3、d=1/2波長厚)、204はノンドープGaInAs/GaAs歪量子井戸活性層、205はpドープ第2 GaAsスペーサ層(p=1x1017 cm−3、d=3/4波長厚)、206はGaAs基板と格子整合するAl(0.5)In(0.5)Pを選択酸化させたAlInO電流狭窄層(d=100 nm)、207はp型GaAs電流導入層(p=1x1020 cm−3、d=1/2波長厚)、208は再成長界面、209はp型第3GaAsスペーサ層(p=1x1018 cm−3、d=3/4波長厚)、210はSiO/TiO誘電体多層膜反射鏡、211はp側電極、212はn側電極である。半導体多層膜反射鏡202は、半導体中で1/4波長厚の高屈折率のGaAs層と半導体中で1/4波長厚の低屈折率のAlAs層を交互に積層した。反射率を99.5%以上にする為に反射鏡層の積層数を25対とした。活性層204には、3層の7nm厚GaInAs井戸層を10nm厚のGaAs障壁層で隔てて実効的に1.27eV(波長:0.98μm)のバンドギャップを持つ歪量子井戸層を用いた。第1スペーサ層203及び第2スペーサ層205の厚みは、正確には活性層204の厚みの半分をそれぞれ差し引いた。その結果、共振器長は正確に2波長厚となった。
【0035】
半導体層202-207は、有機金属気相エピタキシー装置を用いて50Torrの真空中で連続して結晶成長させた。III族の原料には金属のトリメチルアルミニュム、トリメチルガリュウム及びトリメチルインジウムを、V族の原料にはヂメチルヒドラジン、フォスフィン及びアルシンを用いた。ドーパントの原料には、ヂシラン、及びヂメチル亜鉛を用いた。ウエハーを取り出しホトリソグラフ工程により図2に示すようにp型GaAs電流導入層207及び電流狭窄層206となるAlInP層を硫酸系エッチング液及び塩酸系エッチング液により順次選択的にエッチングし、直径3μmのアパーチャーを形成した。
【0036】
ウエハーをエピタキシー装置に戻し、第3 GaAsスペーサ層209を再成長した。第3 GaAsスペーサ層209の再成長界面208に接する最初の10nmにp=1x1020 cm−3の高ドープを施して実効的にデルタドープをなした。再成長界面208は、上部反射鏡の下面から3/4波長厚の位置にあるので光定在波の節にある。
【0037】
次にリング状p側電極211が形成される部分の外側を第1 GaAsスペーサ層205途中までエッチングし素子分離を行った。その後、高温の水蒸気中でAlInPを外周部分から選択酸化させてAlInOx電流狭窄層206を作製した。アパーチャ部分にはAlInPが存在しないのでAlInPの選択酸化はアパーチャ部分で確実に停止し、アパーチャの径は高精度に制御できた。
【0038】
次に、リフトオフ法により内径10μm外径15μmのリング状p側電極211を形成した。その後、スッパタ蒸着法により誘電体多層膜反射鏡210を形成した。誘電体多層膜反射鏡210は、誘電体中で1/4波長厚さの高屈折率TiO層と誘電体中で1/4波長厚さの低屈折率SiO層を交互に積層して作製した。反射率を99%以上にする為に積層数を7対とした。その後、図1に示すようにCl系反応性イオンビームエッチングにより誘電体多層膜反射鏡10の外側をエッチングし、p側電極11を露出させた。最後に、n側電極12を形成した。
【0039】
次に、リフトオフ法により内径10μm外径15μmのリング状p側電極211を形成した。その後、スッパタ蒸着法により誘電体多層膜反射鏡210を形成した。誘電体多層膜反射鏡210は、誘電体中で1/4波長厚さの高屈折率TiO2層と誘電体中で1/4波長厚さの低屈折率SiO2層を交互に積層して作製した。反射率を99%以上にする為に積層数を7対とした。その後、図に示すようにCl系反応性イオンビームエッチングにより誘電体多層膜反射鏡210の外側をエッチングし、p側電極211を露出させた。最後に、n側電極212を形成した。
【0040】
本発明による面発光レーザ301は、素子抵抗が低いため素子自体の発熱が小さく、温度変動が小さい。それに加えて、面発光レーザ自体のしきい値電流値が小さいことも相まって、使用時のしきい値電流値の変化が非常に小さくなる。それにより、小型かつ単純な回路で素子を駆動することが可能となる。よって、図4に示した従来の高速光モジュールで必要であったペルチェ素子や、APC回路が不要となる。それにより、部品点数が大幅に少なくでき、また、駆動回路のサイズが小さくできる。よって、光モジュール自体のサイズも小型化し、大幅な低コスト化を実現できる。また、素子作製時の歩留まりが高いことも、低コスト化に有効である。さらに、本光モジュールは、面発光レーザの抵抗が低く、素子自体の発熱が小さいことから、活性層の劣下が生じにくいので、従来の光モジュールと比較してより長時間に渡って安定な特性を提供することができる。以上の効果は、既に述べたように、活性層における深いポテンシャル井戸で電子を閉じ込めることができる温度特性に優れた活性層材料、一例としてGaInNAs等を用いた面発光レーザにおいては、さらに顕著となる。
<実施例4>
図4は本発明による半導体レーザの更に他の実施例の構造を示す断面図である。本半導体レーザは横型発光の分布帰還形発光レーザでである。(a)は光ビーム方向に垂直な断面図、(b)は(a)の光軸方向の断面図である。
p-GaAs基板401上に、p-AlGaAsクラッド層402、回折格子403、p-AlGaAsガイド層404、GaNAsSb無歪活性層405、n-AlGaAsクラッド層407が順次積層され、メサストライプを形成する。メサストライプの側面は、p-AlGaAs埋込層412、n-AlGaAs埋込層413、p-AlGaAs埋込層414が埋め込まれている。さらに、クラッド層及び埋込層上にn-AlGaAs平坦化層415、n-GaAsギャップ層408、SiO2電流狭窄層406が化積層され、n-電極411が形成されている。また、p-GaAs基板の下側にp電極412が形成されている。上記構成は従来知られているものと同じであるが、本実施例では、回折格子上の再成長層であるp-AlGaAsガイド層の成長直前に行うカーボンデルタドープによってドーパントを含む層が形成され、回折格子形成時に生じた不純物による悪影響を軽減し、電極411,412間の抵抗を小さくする。
【0041】
【発明の効果】
本発明によれば、再成長工程を経て作製される半導体光レーザにおいて、再成長界面の汚染付着物を電気的に補償するデルタドープを行うことにより、素子抵抗が十分に低く超高速動作が可能な半導体レーザを再現性よく作製できる。したがって、半導体レーザを光源として用いる高速光モジュールの高性能化、低コスト化が図れる。更に半導体レーザが面発光レーザである場合、デルタドープによるドーパントのある再成長界面の位置を光定在波の節に合わせることで再成長界面がレーザ光の吸収又は散乱要因とならない様にする事で、高速動作をすると共に、半導体レーザの発光特性を改善できる。
【図面の簡単な説明】
【図1】 本発明による面発光半導体レーザ素子の一実施例の断面図。
【図2】 本発明による面発光半導体レーザ素子の他の実施例の断面図。
【図3】 本発明の半導体レーザを用いた光通信システムの構成図。
【図4】 本発明による面発光半導体レーザ素子の他の実施例の断面図。
【図5】 抵抗及び容量と、変調特性の関係を示す図。
【図6】 従来の面発光レーザ素子の断面図。
【図7】 再成長界面の位置を光定在波の節に合わすことで再成長界面がレーザ光の吸収又は散乱要因とならない事を説明する図。
【図8】 界面の位置により光の損失の影響を説明する特性図。
【図9】 従来の半導体レーザを用いた光通信システムの構成図。
【符号の説明】
101−半導体基板、102−下部多層膜反射鏡、103−第1スペーサー層、
104−活性層、105−第2スペーサー層、106−電流狭窄層、107−電流導入層、
108−再成長界面、109−第3スペーサー層、110−上部多層膜反射鏡、
111−p側電極、112−n側電極、113−空洞。
[0001]
BACKGROUND OF THE INVENTION
  The present invention obtains laser light from an active layer that generates light on a substrate crystal and light generated from the active layer.In order to sandwich the upper and lower sides of the active layerHas a resonator structure,The present invention relates to a method of manufacturing a surface emitting semiconductor laser that generates light perpendicular to the substrate crystal.
[0002]
[Prior art]
In recent years, rapid speeding up of information transmission is required. Therefore, development of optical communication having a transmission rate of 10 Gb / s or more has been performed. In general, an optical module incorporating a semiconductor laser, a light receiving element, a drive circuit thereof, and the like is used for optical communication.
[0003]
A system as shown in FIG. 9 is known as an optical communication system using the above optical module and having a transmission rate exceeding 10 Gb / s. The optical module 907 transmits signal light from the semiconductor laser 901 in accordance with an external circuit 908 that operates the optical module. The optical signal transmitted from the other optical module is received by the light receiving element 905 driven by the light receiving element driving circuit 906. All optical signals are transmitted at high speed through the optical fiber 909.
[0004]
As the semiconductor laser 901, an edge-emitting laser using a gallium indium phosphide (GaInPAs) based semiconductor material as an active layer is mainly used. In general, GaInPAs-based lasers have a drawback that the threshold current increases greatly when the element temperature rises. Therefore, a Peltier element 904 for temperature stabilization is incorporated, and an auto power control (APC) circuit that constantly measures the light output fluctuation from the semiconductor laser 901 with the light receiving element 903 for monitoring and feeds back to the laser drive circuit 902 is incorporated. There is a need.
[0005]
Therefore, the number of parts constituting the optical module 907 is large, the drive circuit is complicated and the size is large, and the cost of the optical module itself is inevitably increased.
[0006]
On the other hand, surface emitting lasers are attracting attention as light sources suitable for high-speed optical modules. A surface-emitting laser is an optical resonator composed of an active layer that generates light, a current confinement layer for injecting current into a very small area of the active layer, and a pair of reflecting mirrors arranged so as to sandwich the active layer vertically. Constructed with a vessel. The surface emitting laser has a cavity length of only a few μm, which is much shorter than the cavity length of the edge emitting laser (several hundred μm), and has a high active volume because the volume of the active region is small. In addition, the beam shape is almost circular and it can be easily coupled to optical fibers. No cleaving process is required, enabling device inspection on a wafer-by-wafer basis. Excellent features in cost reduction such as laser oscillation with low threshold current and low power consumption. Have
[0007]
As for the oscillation wavelength of the laser, in recent years, a 1.3 μm surface emitting laser made of a new semiconductor material that can be formed on a gallium arsenide (GaAs) substrate such as gallium indium nitrogen arsenide (GaInNAs) or gallium arsenide antimony (GaAsSb) has been developed. Oscillations have been reported one after another, and the expectation for practical use of a long-wavelength surface emitting laser suitable for a single mode fiber capable of long-distance and high-speed transmission has been greatly increased. In particular, when GaInNAs is used for the active layer, it is predicted that electrons can be confined in a deep potential well in the conduction band, and the stability of characteristics with respect to temperature can be greatly improved.
[0008]
Due to the above advantages, if a long-wavelength surface emitting laser is realized, it is expected that an optical module suitable for use in a LAN can be obtained with high performance and low cost.
[0009]
The length of the optical resonator of the surface emitting laser is extremely short, and it is necessary to set the reflectance of the upper and lower reflecting mirrors to an extremely high value (99.5% or more) in order to cause laser oscillation. As the reflecting mirror, a multilayer film reflecting mirror formed by alternately stacking two types of semiconductors having different refractive indexes at a quarter wavelength thickness (λ / 4n: λ is a wavelength, n is a refractive index of a semiconductor material) is mainly used. in use.
[0010]
In order to obtain a high reflectance with a small number of stacked layers, it is desirable that the difference in refractive index between the two semiconductor materials used in the multilayer mirror is as large as possible. In addition, when the material is a semiconductor crystal, it is preferable that the material is lattice-matched with the substrate material in order to suppress lattice-mismatched dislocations. Currently, GaAs / aluminum arsenic (AlAs) based semiconductor materials or silicon dioxide (SiO2)2) / Titanium dioxide (TiO2A multilayer film reflector made of a dielectric material such as) is mainly used. The current confinement layer is indispensable for lowering the threshold current of the device. The current confinement layer is disposed between the active layer and the electrode for injecting current, and the current injected into the active layer is described as a minute region (hereinafter referred to as an aperture). To play a limited role. In order to achieve a single transverse mode, the aperture diameter must be as small as 2-3 μm at an oscillation wavelength of 850 nm and 5-6 μm at 1300 nm. Specifically, the AlAs layer introduced into the device structure is selectively oxidized from the lateral direction to produce aluminum oxide (AlxOy) The current mainstream method is to narrow the current only by the minute AlAs region remaining in the center by changing to an insulating layer. There is also a method of confining current by embedding a semiconductor material having a large band gap or a material doped with a conductivity type opposite to that in the element into the element.
[0011]
On the other hand, in the realization of an optical module having high speed characteristics exceeding 10 Gb / s, a surface emitting laser used as a light source needs to achieve high speed characteristics exceeding 10 Gb / s. For this purpose, it is indispensable to reduce the resistance (R) and capacitance (C) of the surface emitting laser element. FIG. 5 shows the relationship between resistance and capacitance and modulation characteristics. Since the capacitance of the surface emitting laser element is several hundred fF as a general value, it is necessary to reduce the element resistance to at least 50Ω or less in order to achieve high-speed modulation exceeding 10 Gb / s.
[0012]
As described above, AlAs / GaAs-based semiconductor multilayer mirrors are mainly used for surface emitting lasers. In the conventional device, an electrode is disposed on the upper p-type AlAs / GaAs-based semiconductor multilayer mirror, and current is injected into the active layer through the semiconductor multilayer reflector. At that time, the energy difference in the valence band of the AlAs / GaAs semiconductor has a problem that a hole having a large effective mass becomes a large resistance component at the heterointerface and increases the device resistance. As countermeasures, attempts have been made to introduce an AlGaAs semiconductor layer with gradually changing composition into the AlAs / GaAs heterointerface and to reduce the resistance component at the heterointerface by p-type doping only on the AlAs side. I came. However, it is very difficult to achieve an element resistance of 50Ω or less in a small-diameter aperture element that realizes a single transverse mode.
[0013]
In addition, a surface emitting laser having a structure in which current is injected without going through a high-resistance upper semiconductor multilayer mirror has been studied. As an example, FIG. 6 shows a device structure diagram of a surface emitting laser described in Japanese Patent Application Laid-Open No. 11-204875 developed by the present inventors. Here, 601 is an n electrode, 602 is an n-GaAs substrate, 603 is a lower multilayer reflector, 604 is a first GaAs spacer layer, 605 is a non-doped GaInNAs active layer, 606 is a second GaAs spacer layer, and 607 is a current constriction. 608 is a p-current introduction layer, 609 is a third p-GaAs spacer layer, 610 is a p-electrode, and 611 is an upper multilayer reflector.
[0014]
The current injected from the p-electrode 610 is guided from the third spacer layer 609 through the current introduction layer 608 to the aperture defined by the current confinement layer 607 and introduced into the active layer 605. That is, since the upper multilayer film reflecting mirror 611 is not interposed, the element resistance is reduced. Furthermore, in this structure, p = 1x1020 cm-3 By introducing a current introduction layer 608 having a doping concentration increased to an extent, the resistance component between the electrode and the aperture is reduced. Therefore, in this structure, an element resistance of 50Ω or less can be achieved in a small-diameter aperture element that realizes a single transverse mode.
[0015]
[Problems to be solved by the invention]
However, when the surface emitting laser shown in FIG. 6 was actually manufactured in a large number of lots, an element having a resistance value of about 20Ω and very good characteristics could be obtained, but there was a problem that the reproducibility of characteristics between lots was poor. . In particular, the resistance value was abnormally large and the electrical characteristics were poor. When the inventors of the present application have pursued the cause, it has been found that there is a problem in the joint surface between the third GaAs spacer layer 609 and the second GaAs spacer layer 606 which are part of the aperture. The bonding surface is a regrowth interface formed by re-growing the third spacer layer 609 after selectively removing the current confinement layer 607 and the current introduction layer 608, and due to a defect in the regrowth process. Characteristics deteriorate.
[0016]
Specifically, there are cases where the reproducibility of the minute etching performed before regrowth is poor and the crystallinity of the interface is not sufficient. On the other hand, if a small amount of etching process is omitted, Si is attached to the interface for some reason in the process of selectively removing the current confinement layer 607 and the current introduction layer 608, and the interface becomes an n-type conductivity type and then p. Even if the third spacer layer 609 of the mold is regrown, a pn junction and a depletion layer due to the pn junction are formed, which becomes a large resistance component.
[0017]
A first object of the present invention is to realize a semiconductor laser in which the influence of impurities generated at the regrowth interface of a semiconductor element having a regrowth interface between electrodes is reduced.
[0018]
A second object of the present invention is to reduce the resistance between electrodes in a surface emitting laser having a regrowth interface between the electrodes, and at the same time, a high-speed and high-performance surface emitting semiconductor laser with uniform characteristics when producing multiple lots and its surface emitting An object is to provide an optical module and an optical communication system that use a semiconductor laser, have a simple configuration, and are economical (low cost).
[0019]
[Means for Solving the Problems]
  In order to achieve the above object, the present inventionSurface emissionA semiconductor laser has a plurality of semiconductor layers formed by a regrowth process between electrodes.Surface emissionSemiconductorBodyIn the laser, the regrowth interface or its nearest surface is formed of a thin film having a high concentration of dopant. More specific of the present inventionThe manufacturing method of the surface emitting semiconductor laser is as follows.
  That isThe laser light is obtained from the active layer that generates light on the substrate crystal and the light generated from the active layer.In order to sandwich the upper and lower sides of the active layerResonator structureA surface emission that generates light perpendicular to the substrate crystalSemiconductor laserManufacturing methodBecauseA first step of forming a first spacer layer on the active layer, and selectively forming a current confinement layer and a current introduction layer on the first spacer layer by etching; and After the step, a second step of performing delta doping on the light transmission aperture portion on the first spacer layer and forming a second spacer layer on the delta-doped first spacer layer are performed. A surface-emitting semiconductor laser having the light-transmitting aperture portion surface as a regrowth interface, the regrowth interface being formed at a position closer to 1/8 wavelength from the position of the node of the optical standing wave in the surface-emitting laser It is a manufacturing method.
  Furthermore, in the present invention, by forming the current introduction layer on the current confinement layer, a cavity is formed on the current confinement layer and between the current confinement layer and the current introduction layer. Is useful.
[0020]
As the dopant, one having a small diffusion constant is suitable, and carbon is most suitable. The delta doping to a position within 10 nm from the interface is substantially the same as the delta doping to the regrowth interface because carriers move to the interface by the tunnel effect. The layer thickness of delta doping is 10 nm or less in consideration of manufacturing errors.
[0021]
According to the present invention, in the semiconductor laser in which the regrowth interface or its immediate surface has a high concentration of dopant, the p-type dopant is delta-doped to compensate for the n-type dopant Si described in FIG. The resistance component of the pn junction and the depletion layer due to the pn junction can be eliminated. That is, the substance that adheres to the interface and is contaminated is Si, but when a substance that becomes a p-type dopant adheres, it can be compensated by delta-doping the n-type dopant. The regrowth process is also widely used in semiconductor elements other than surface emitting lasers. Delta doping to the regrowth interface that electrically compensates for contaminant deposits is effective to improve the interface and device characteristics.
[0022]
Further, in a preferred embodiment of the surface emitting semiconductor laser of the present invention, in the surface emitting semiconductor laser, the regrowth interface is near the node position of the optical standing wave (preferably closer than 1/8 wavelength from the node position). Position).
[0023]
The positions of the antinodes and nodes of the optical standing wave are uniformly determined by the distance from the reflecting mirror and the oscillation wavelength considering the refractive index of the substance in the resonator. The distance between the resonators is exactly an integral multiple of the ½ wavelength thickness, and an antinode exists for each ½ wavelength thickness. In general, the active layer is placed at the antinode position of the optical standing wave in order to obtain the maximum gain (however, the position of the active layer does not determine the antinode position of the standing wave). In that case, the node of the optical standing wave exists at a position of 1/4, 3/4, 5/4 wavelength thickness from the active layer. As shown in FIG. 7, when the position of the regrowth interface is formed at the node of the optical standing wave, light does not exist at the node position, so the regrowth interface does not cause absorption and scattering. We also estimated how the light loss is affected by the position of the interface. FIG. 8 shows a simulation result of the reflection spectrum of an AlAs / GaAs multilayer mirror (25 periods) having one C-delta doped interface that becomes a light absorber. The difference between 100% and reflectivity indicates light loss. When the interface is located at a node, the loss is 0.04%, which is exactly the same as when no C-delta doped interface exists.
[0024]
On the other hand, when the interface was located in the belly, the loss was 0.17%, more than 4 times. In general, in a surface emitting laser having a high light density, an increase in loss greatly affects the optical characteristics of the element. Therefore, a four-fold increase in loss may not only reduce the efficiency to ¼, but also prevent the oscillation operation itself. In the above simulation, the C delta doped interface is treated as a light loss factor of the interface for easy quantification, but the same is true for the regrowth interface. Even if the interface is not exactly at the position of the node, it has an effect of improving the characteristics of the surface emitting semiconductor laser when it is closer than ± 1/8 wavelength thickness from the node.
[0025]
  A thin film with the dopant orThe regrowth interface is an optical standing waveWhen it is formed in the vicinity of the position of the node, it has the effect of simultaneously improving the static characteristics and the luminance characteristics of the semiconductor laser.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
Although the surface emitting lasers of the examples described below have a p-junction interface, the means for eliminating the optical loss due to the regrowth interface by adjusting the position of the regrowth interface to the node of the optical standing wave is the interface. It does not depend on the conduction type.
<Example 1>
FIG. 1 is a sectional view showing the structure of an embodiment of a surface emitting laser according to the present invention.
In order to obtain laser light from the light generated from the active layer 104 and the active layer 104 that generate light on the substrate crystal 101, the active layer has a resonator structure in which the upper and lower sides of the active layer 104 are sandwiched between the reflecting mirrors 102 and 110, and is active. A second spacer layer 105 between the layer 104 and one of the reflectors 110, and a third spacer layer 109 semiconductor layer formed on the spacer layer 105 by a regrowth process, perpendicular to the substrate crystal; This is a surface emitting laser that emits light.
[0027]
The regrowth interface 108 is formed at a position closer than 1/8 wavelength from the position of the node of the optical standing wave. The emission wavelength of this example is 1.3 μm. A specific configuration and manufacturing method will be described below.
[0028]
In FIG. 1, 101 is an n-type GaAs substrate (n = 1x10).18 cm-3, D = 300μm), 102 is an n-type GaAs / AlAs semiconductor multilayer reflector (n = 1x10)18 cm-3), 103 is an n-doped first GaAs spacer layer (n = 1x1018 cm-3, D = 1/2 wavelength thickness), 104 is a non-doped GaInNAs / GaAs strained quantum well active layer, 105 is a p-doped second GaAs spacer layer (p = 1 × 1017 cm-3, D = 1/4 wavelength thickness), 106 is an n-type Ga (0.5) In (0.5) P current confinement layer (n = 1x10) lattice-matched with the GaAs substrate18 cm-3, D = 50 nm), 107 is a p-type GaAs current introduction layer (p = 1x1020 cm-3, D = 1/2 wavelength thickness), 108 is the regrown interface, 109 is the p-type third GaAs spacer layer (p = 1x10)18 cm-3, D = 3/4 wavelength thickness), 110 is a non-doped GaAs / AlInP semiconductor multilayer mirror, 111 is a p-side electrode, and 112 is an n-side electrode.
[0029]
In the lower semiconductor multilayer mirror 102, a high refractive index GaAs layer of 1/4 wavelength thickness and a low refractive index AlAs layer of 1/4 wavelength thickness were alternately laminated. In order to achieve a reflectance of 99.5% or higher, the number of mirror layers was set to 25 pairs. As the active layer 104, a strained quantum well layer having an effective band gap of 0.95 eV (wavelength: 1.3 μm) in which one 7 nm thick GaInNAs well layer is sandwiched between 10 nm thick GaAs barrier layers was used. For the thickness of the first spacer layer 103 and the second spacer layer 105, exactly half of the thickness of the active layer 104 was subtracted. As a result, the resonator length was accurately 1.5 wavelengths thick.
[0030]
The semiconductor layers 102-107 are formed by using a gas source molecular beam epitaxy apparatus.-7Crystals were grown continuously in a high vacuum of Torr. Metals such as aluminum, gallium and indium were used for Group III materials, and metal arsenic, phosphine and nitrogen excited by plasma were used for Group V materials. Si and CBr4 were used as dopant materials. As shown in FIG. 1, a p-type GaAs current introduction layer 107 and a current confinement layer 106 are selectively etched sequentially with a sulfuric acid-based etching solution and a hydrochloric acid-based etching solution to form an aperture having a diameter of 5 μm. did. Return the wafer to the crystal growth system and irradiate the CBr4 beam with arsenic to p = 1x10 at the regrowth interface.12 cm-2 C delta dope was applied at a density of
[0031]
Thereafter, the third GaAs spacer layer 109 was regrown. The regrowth interface is at the node of the optical standing wave because it is 3/4 wavelength thick from the lower surface of the upper reflector. In addition, when selectively etching the current confinement layer 106, the cavity 113 was formed by controlling the etching time. During the regrowth, the p-type GaAs current introduction layer 107 above the cavity 113 is deformed, and the cavity 113 becomes tapered. Therefore, the optical loss at the portion where the aperture and the cavity 113 are in contact with each other is reduced, and the optical characteristics of the device are improved. Since the GaAs inside the aperture and the vacuum in the outer cavity have a large refractive index difference, a single transverse mode oscillation can be easily obtained.
[0032]
Subsequently, the upper semiconductor multilayer reflector 110 was grown. The upper semiconductor multilayer mirror 110 is formed by alternately laminating a ¼ layer thick GaAs layer and a ¼ layer thick GaAs substrate by lattice matching with an Al (0.5) In (0.5) P layer. In order to achieve a reflectance of 99.5% or higher, the number of mirror layers was set to 25 pairs. Next, the outside of the upper multilayer reflector 110 was dry etched until it reached the second GaAs spacer layer 109. Thereafter, a ring-shaped p-side electrode 111 and an n-side electrode 112 having an inner diameter of 7 μm and an outer diameter of 15 μm were formed. Finally, the outside of the ring-shaped p-side electrode 111 was etched to separate the elements.
[0033]
When a current was injected into the surface emitting laser, laser oscillation occurred at a threshold current of 100 μA. The laser light was emitted from the dielectric multilayer film reflecting mirror side, and the oscillation wavelength was 1.3 μm at room temperature. This surface emitting laser had a long element lifetime of 100,000 hours or more. Also, the yield among multiple lots was as high as 70% or more. The above performance is very excellent as a long wavelength surface emitting laser. Even when a material such as GaAsSb is used for the active layer, a 1.3 μm band surface emitting laser element can be fabricated.
<Example 2>
FIG. 2 is a sectional view showing the structure of another embodiment of the surface emitting laser according to the present invention.
An active layer 204 for generating light on the substrate crystal 201, and a resonator structure in which the upper and lower sides of the active layer 204 are sandwiched between reflecting mirrors 202 and 210 in order to obtain laser light from the light generated from the active layer, and active A second spacer layer 205 between the layer 204 and one of the reflectors 210 and a third spacer layer 209 semiconductor layer formed on the spacer layer 205 by a regrowth process, perpendicular to the substrate crystal; This is a surface emitting laser that emits light.
[0034]
The regrowth interface 208 is formed at a position closer than 1/8 wavelength from the position of the node of the optical standing wave. The emission wavelength in this example is 0.98 μm. A specific configuration and manufacturing method will be described below. 201 is an n-type GaAs substrate (n = 1x1018 cm-3, D = 100μm), 202 is an n-type GaAs / AlAs semiconductor multilayer reflector (n = 1x10)18 cm-3), 203 is an n-doped first GaAs spacer layer (n = 1x1017 cm-3, D = 1/2 wavelength thickness), 204 is a non-doped GaInAs / GaAs strained quantum well active layer, 205 is a p-doped second GaAs spacer layer (p = 1 × 10)17 cm-3D = 3/4 wavelength thickness), 206 is AlInO obtained by selective oxidation of Al (0.5) In (0.5) P lattice-matched with the GaAs substrate.xCurrent confinement layer (d = 100 nm), 207 is p-type GaAs current introduction layer (p = 1x10)20 cm-3, D = 1/2 wavelength thickness), 208 is the regrown interface, 209 is the p-type third GaAs spacer layer (p = 1x10)18 cm-3, D = 3/4 wavelength thickness), 210 is SiO2/ TiO2A dielectric multilayer mirror, 211 is a p-side electrode, and 212 is an n-side electrode. In the semiconductor multilayer mirror 202, a high refractive index GaAs layer having a quarter wavelength thickness in a semiconductor and a low refractive index AlAs layer having a quarter wavelength thickness in a semiconductor are alternately stacked. In order to obtain a reflectance of 99.5% or more, the number of reflecting mirror layers was set to 25 pairs. As the active layer 204, a strained quantum well layer having an effective band gap of 1.27 eV (wavelength: 0.98 μm) is used by separating three 7 nm-thick GaInAs well layers by a 10 nm-thick GaAs barrier layer. The thickness of the first spacer layer 203 and the second spacer layer 205 was accurately subtracted from half of the thickness of the active layer 204, respectively. As a result, the resonator length was exactly 2 wavelengths thick.
[0035]
The semiconductor layers 202 to 207 were continuously grown in a vacuum of 50 Torr using a metal organic vapor phase epitaxy apparatus. Metals trimethylaluminum, trimethylgallium and trimethylindium were used as Group III materials, and dimethylhydrazine, phosphine and arsine were used as Group V materials. Disilane and dimethylzinc were used as dopant materials. As shown in FIG. 2, the AlInP layer that becomes the p-type GaAs current introduction layer 207 and the current confinement layer 206 is sequentially and selectively etched with a sulfuric acid-based etching solution and a hydrochloric acid-based etching solution as shown in FIG. An aperture was formed.
[0036]
The wafer was returned to the epitaxy apparatus and the third GaAs spacer layer 209 was regrown. P = 1x10 at the first 10 nm in contact with the regrowth interface 208 of the third GaAs spacer layer 20920 cm-3The delta dope was effectively made by applying a high dope. Since the regrowth interface 208 is at a position of 3/4 wavelength thickness from the lower surface of the upper reflecting mirror, it is at the node of the optical standing wave.
[0037]
Next, the outside of the portion where the ring-shaped p-side electrode 211 is formed is etched partway through the first GaAs spacer layer 205 to perform element isolation. Thereafter, AlInP was selectively oxidized from the outer peripheral portion in high-temperature steam to produce an AlInOx current confinement layer 206. Since AlInP does not exist in the aperture part, the selective oxidation of AlInP stopped reliably in the aperture part, and the aperture diameter could be controlled with high accuracy.
[0038]
Next, a ring-shaped p-side electrode 211 having an inner diameter of 10 μm and an outer diameter of 15 μm was formed by a lift-off method. Thereafter, the dielectric multilayer film reflecting mirror 210 was formed by a sputtering method. Dielectric multilayer reflector 210 is a high refractive index TiO with a quarter wavelength thickness in the dielectric.2Low refractive index SiO with 1/4 wavelength thickness in layers and dielectrics2It was produced by alternately laminating layers. In order to make the reflectance 99% or more, the number of layers was 7 pairs. Thereafter, as shown in FIG. 1, the outer side of the dielectric multilayer film reflecting mirror 10 was etched by Cl-based reactive ion beam etching to expose the p-side electrode 11. Finally, the n-side electrode 12 was formed.
[0039]
  Next, a ring-shaped p-side electrode 211 having an inner diameter of 10 μm and an outer diameter of 15 μm was formed by a lift-off method. Thereafter, the dielectric multilayer film reflecting mirror 210 was formed by a sputtering method. Dielectric multilayer reflector 210 was fabricated by alternately stacking a quarter-wave thickness high refractive index TiO2 layer in the dielectric and a quarter-wave thickness low refractive index SiO2 layer in the dielectric. . In order to make the reflectance 99% or more, the number of layers was 7 pairs. Then figure2Dielectric multilayer reflector by Cl-based reactive ion beam etching210Etch the outside of the p-side electrode211Was exposed. Finally, n-side electrode212Formed.
[0040]
Since the surface emitting laser 301 according to the present invention has a low element resistance, the element itself generates little heat and the temperature fluctuation is small. In addition, the threshold current value of the surface emitting laser itself is small, so that the change in the threshold current value during use is very small. Thereby, the element can be driven with a small and simple circuit. Therefore, the Peltier element and the APC circuit that are necessary for the conventional high-speed optical module shown in FIG. 4 are not required. Thereby, the number of parts can be greatly reduced, and the size of the drive circuit can be reduced. Therefore, the size of the optical module itself can be reduced, and a significant cost reduction can be realized. In addition, a high yield during device fabrication is also effective for cost reduction. Furthermore, since the optical module has a low resistance of the surface emitting laser and a small amount of heat generated from the element itself, the active layer is less likely to be deteriorated. Characteristics can be provided. As described above, the above effect becomes more remarkable in a surface emitting laser using GaInNAs or the like as an active layer material having excellent temperature characteristics that can confine electrons in a deep potential well in the active layer, for example, GaInNAs. .
<Example 4>
FIG. 4 is a sectional view showing the structure of still another embodiment of the semiconductor laser according to the present invention. This semiconductor laser is a lateral-type distributed feedback laser. (A) is sectional drawing perpendicular | vertical to a light beam direction, (b) is sectional drawing of the optical axis direction of (a).
On the p-GaAs substrate 401, a p-AlGaAs cladding layer 402, a diffraction grating 403, a p-AlGaAs guide layer 404, a GaNASSb unstrained active layer 405, and an n-AlGaAs cladding layer 407 are sequentially stacked to form a mesa stripe. A p-AlGaAs buried layer 412, an n-AlGaAs buried layer 413, and a p-AlGaAs buried layer 414 are buried on the side surface of the mesa stripe. Further, an n-AlGaAs planarization layer 415, an n-GaAs gap layer 408, and an SiO 2 current confinement layer 406 are laminated on the cladding layer and the buried layer, and an n-electrode 411 is formed. A p-electrode 412 is formed on the lower side of the p-GaAs substrate. Although the above configuration is the same as that conventionally known, in this embodiment, a layer containing a dopant is formed by carbon delta doping performed immediately before the growth of the p-AlGaAs guide layer, which is a regrowth layer on the diffraction grating. The adverse effect due to the impurities generated when forming the diffraction grating is reduced, and the resistance between the electrodes 411 and 412 is reduced.
[0041]
【The invention's effect】
According to the present invention, in a semiconductor optical laser manufactured through a regrowth process, device resistance is sufficiently low and ultrahigh-speed operation is possible by performing delta doping that electrically compensates for contaminant deposits at the regrowth interface. A semiconductor laser can be manufactured with good reproducibility. Therefore, high performance and low cost of a high-speed optical module using a semiconductor laser as a light source can be achieved. Furthermore, when the semiconductor laser is a surface emitting laser, the position of the regrowth interface with the delta-doped dopant is aligned with the node of the optical standing wave so that the regrowth interface does not cause absorption or scattering of the laser light. In addition to high-speed operation, the light emission characteristics of the semiconductor laser can be improved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an embodiment of a surface emitting semiconductor laser device according to the present invention.
FIG. 2 is a cross-sectional view of another embodiment of a surface emitting semiconductor laser device according to the present invention.
FIG. 3 is a configuration diagram of an optical communication system using the semiconductor laser of the present invention.
FIG. 4 is a cross-sectional view of another embodiment of a surface emitting semiconductor laser device according to the present invention.
FIG. 5 is a graph showing the relationship between resistance and capacitance and modulation characteristics.
FIG. 6 is a cross-sectional view of a conventional surface emitting laser element.
FIG. 7 is a diagram for explaining that the regrowth interface does not cause laser light absorption or scattering by matching the position of the regrowth interface with the node of the optical standing wave.
FIG. 8 is a characteristic diagram illustrating the influence of light loss depending on the position of the interface.
FIG. 9 is a configuration diagram of an optical communication system using a conventional semiconductor laser.
[Explanation of symbols]
101-semiconductor substrate, 102-lower multilayer mirror, 103-first spacer layer,
104-active layer, 105-second spacer layer, 106-current confinement layer, 107-current introduction layer,
108-re-growth interface, 109-third spacer layer, 110-upper multilayer reflector,
111-p side electrode, 112-n side electrode, 113-cavity.

Claims (2)

基板結晶上に光を発生する活性層と前記活性層から発生した光からレーザ光を得るために前記活性層の上下を挟んだ共振器構造をもち、前記基板結晶と垂直に光を発生する面発光半導体レーザの製造方法であって、
前記活性層の上側に第1のスペーサ層を形成し、前記第1のスペーサ層上に電流狭窄層および電流導入層をそれぞれ選択的にエッチング処理により形成する第1の工程と、
前記第1の工程の後に前記第1のスペーサ層上の光透過アパーチャ部にデルタドープを行第2の工程と、
前記デルタドープされた第1のスペーサ層上に第2のスペーサ層を形成する第3の工程とを有し、
前記光透過アパーチャ部表面を再成長界面とし、前記再成長界面が面発光レーザ内の光定在波の節の位置から1/8波長より近い位置に形成されていることを特徴とする面発光半導体レーザの製造方法。
An active layer that generates light on a substrate crystal and a resonator structure that sandwiches the upper and lower sides of the active layer in order to obtain laser light from the light generated from the active layer, and a surface that generates light perpendicular to the substrate crystal A method for manufacturing a light emitting semiconductor laser, comprising:
A first step of forming a first spacer layer on the active layer and selectively forming a current confinement layer and a current introduction layer on the first spacer layer by etching;
A second step intends row delta doped to the light transmitting aperture portion of the first spacer layer after said first step,
Forming a second spacer layer on the delta-doped first spacer layer;
The surface light emission characterized in that the surface of the light transmission aperture portion is used as a regrowth interface, and the regrowth interface is formed at a position closer to 1/8 wavelength from the position of the node of the optical standing wave in the surface emitting laser. Semiconductor laser manufacturing method.
前記電流狭窄層上に前記電流導入層を形成することにより、前記電流狭窄層上であり、かつ、前記電流狭窄層と前記電流導入層との間に空洞を形成することを特徴とする請求項1記載の面発光半導体レーザの製造方法。  The current introduction layer is formed on the current confinement layer, thereby forming a cavity on the current confinement layer and between the current confinement layer and the current introduction layer. 2. A method for producing a surface emitting semiconductor laser according to 1.
JP2001158785A 2001-05-28 2001-05-28 Manufacturing method of surface emitting semiconductor laser Expired - Fee Related JP4265875B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001158785A JP4265875B2 (en) 2001-05-28 2001-05-28 Manufacturing method of surface emitting semiconductor laser
US10/154,822 US6782032B2 (en) 2001-05-28 2002-05-28 Semiconductor laser, ray module using the same and ray communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001158785A JP4265875B2 (en) 2001-05-28 2001-05-28 Manufacturing method of surface emitting semiconductor laser

Publications (3)

Publication Number Publication Date
JP2002353568A JP2002353568A (en) 2002-12-06
JP2002353568A5 JP2002353568A5 (en) 2005-09-08
JP4265875B2 true JP4265875B2 (en) 2009-05-20

Family

ID=19002456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001158785A Expired - Fee Related JP4265875B2 (en) 2001-05-28 2001-05-28 Manufacturing method of surface emitting semiconductor laser

Country Status (2)

Country Link
US (1) US6782032B2 (en)
JP (1) JP4265875B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8760007B2 (en) 2005-07-12 2014-06-24 Massachusetts Institute Of Technology Wireless energy transfer with high-Q to more than one device
US8875086B2 (en) 2011-11-04 2014-10-28 Witricity Corporation Wireless energy transfer modeling tool

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003152284A (en) * 2001-11-14 2003-05-23 Fuji Xerox Co Ltd Light emitting device and optical transmission device
JP2004233551A (en) * 2003-01-29 2004-08-19 Sony Corp Optical communication module and connector
US6973105B2 (en) * 2003-03-21 2005-12-06 Agilent Technologies, Inc. Method and apparatus to enable adaptive equalization at high bandwidths when using single-mode VCSELs over multimode fibers
US7095058B2 (en) * 2003-03-21 2006-08-22 Intel Corporation System and method for an improved light-emitting device
US20070020933A1 (en) * 2003-09-24 2007-01-25 Koichi Naniwae Method of cleaning treatment and method for manufacturing semiconductor device
JP4870349B2 (en) * 2004-01-09 2012-02-08 シャープ株式会社 Manufacturing method of semiconductor laser device
JP4950432B2 (en) * 2004-06-11 2012-06-13 株式会社リコー Surface emitting semiconductor laser, surface emitting semiconductor laser array, image forming apparatus, optical pickup, optical transmission module, optical transmission / reception module, and optical communication system
EP1780849B1 (en) 2004-06-11 2013-01-30 Ricoh Company, Ltd. Surface emitting laser diode and its manufacturing method
US7693204B2 (en) 2006-02-03 2010-04-06 Ricoh Company, Ltd. Surface-emitting laser device and surface-emitting laser array including same
US20070181905A1 (en) * 2006-02-07 2007-08-09 Hui-Heng Wang Light emitting diode having enhanced side emitting capability
US7881358B2 (en) 2006-12-27 2011-02-01 Nec Corporation Surface emitting laser
JP5212113B2 (en) * 2006-12-27 2013-06-19 日本電気株式会社 Surface emitting laser
JP2008283028A (en) * 2007-05-11 2008-11-20 Fuji Xerox Co Ltd Surface light emission type semiconductor laser, manufacturing method of the same, module, light source device, information processing apparatus, optical transmission apparatus, optical space transmission apparatus, and optical space transmission system
JP2009021459A (en) 2007-07-13 2009-01-29 Fuji Xerox Co Ltd Method for driving surface emitting semiconductor laser and optical transmission module
US20110122908A1 (en) * 2009-11-24 2011-05-26 Murata Manufacturing Co., Ltd. Surface emitting device
DE102010002204A1 (en) * 2010-02-22 2011-08-25 OSRAM Opto Semiconductors GmbH, 93055 Semiconductor diode and method for producing a semiconductor diode
JP2013243329A (en) * 2011-07-07 2013-12-05 Ricoh Co Ltd Surface emitting laser element and atomic oscillator
JP2013030505A (en) * 2011-07-26 2013-02-07 Sumitomo Electric Ind Ltd Group-iii nitride semiconductor laser element
US9705283B1 (en) * 2014-05-20 2017-07-11 University Of Central Florida Research Foundation, Inc. Diffused channel semiconductor light sources
JP6700027B2 (en) * 2015-11-20 2020-05-27 スタンレー電気株式会社 Vertical cavity light emitting device
WO2018013713A2 (en) 2016-07-13 2018-01-18 University Of Centeral Florida Research Foundation, Inc. Semiconductor devices with depleted heterojunction current blocking regions
US10033156B2 (en) 2016-07-13 2018-07-24 University Of Central Florida Research Foundation, Inc. Low resistance vertical cavity light source with PNPN blocking
JP2018186213A (en) * 2017-04-27 2018-11-22 スタンレー電気株式会社 Vertical resonator type light-emitting element
KR102515674B1 (en) * 2018-04-04 2023-03-30 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 A surface-emitting laser device and light emitting device including the same
WO2019194600A1 (en) 2018-04-04 2019-10-10 엘지이노텍 주식회사 Surface-emitting laser element
KR102504307B1 (en) * 2018-06-29 2023-02-28 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 A surface-emitting laser device, light emitting device including the same and manufacturing method of the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69024246T2 (en) * 1989-03-31 1996-05-30 Toshiba Kawasaki Kk Process for producing a thin film semiconductor alloy
US5034958A (en) * 1990-04-19 1991-07-23 Bell Communications Research, Inc. Front-surface emitting diode laser
GB2320609A (en) * 1996-12-21 1998-06-24 Sharp Kk Semiconductor laser device
JP4134366B2 (en) 1998-01-08 2008-08-20 株式会社日立製作所 Surface emitting laser
GB2351390A (en) * 1999-06-16 2000-12-27 Sharp Kk A semiconductor material comprising two dopants

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8760007B2 (en) 2005-07-12 2014-06-24 Massachusetts Institute Of Technology Wireless energy transfer with high-Q to more than one device
US8760008B2 (en) 2005-07-12 2014-06-24 Massachusetts Institute Of Technology Wireless energy transfer over variable distances between resonators of substantially similar resonant frequencies
US8766485B2 (en) 2005-07-12 2014-07-01 Massachusetts Institute Of Technology Wireless energy transfer over distances to a moving device
US8772971B2 (en) 2005-07-12 2014-07-08 Massachusetts Institute Of Technology Wireless energy transfer across variable distances with high-Q capacitively-loaded conducting-wire loops
US8772972B2 (en) 2005-07-12 2014-07-08 Massachusetts Institute Of Technology Wireless energy transfer across a distance to a moving device
US8791599B2 (en) 2005-07-12 2014-07-29 Massachusetts Institute Of Technology Wireless energy transfer to a moving device between high-Q resonators
US8875086B2 (en) 2011-11-04 2014-10-28 Witricity Corporation Wireless energy transfer modeling tool

Also Published As

Publication number Publication date
JP2002353568A (en) 2002-12-06
US6782032B2 (en) 2004-08-24
US20020176465A1 (en) 2002-11-28

Similar Documents

Publication Publication Date Title
JP4265875B2 (en) Manufacturing method of surface emitting semiconductor laser
JP4919639B2 (en) Surface emitting laser element, surface emitting laser array, surface emitting laser element manufacturing method, surface emitting laser module, electrophotographic system, optical communication system, and optical interconnection system
US6320893B1 (en) Surface emitting semiconductor laser
US7940827B2 (en) Vertical-cavity, surface-emission type laser diode and fabrication process thereof
US5416044A (en) Method for producing a surface-emitting laser
JP4034513B2 (en) Surface emitting laser device, optical module using the same, and optical system
JP2009182145A (en) Semiconductor optical element
JP2003513476A (en) Long wavelength pseudomorphic InGaNPAsSb type I and type II active layers for GaAs material systems
US6570191B2 (en) Surface-light-emitting device including AlGalnP and AlGaAs multi-film reflecting layers
JPH10145003A (en) Semiconductor laser and optical communication system using the same
JPWO2007135772A1 (en) Light emitting element
JP2003168845A (en) Semiconductor laser element, optical module using the same, and optical system
JP3299056B2 (en) Surface emitting type InGaAlN based semiconductor laser
JP4134366B2 (en) Surface emitting laser
JP2004031925A (en) N-type semiconductor distributed bragg reflector, plane emission semiconductor laser device, plane emission laser array, plane emission laser module optical interconnection system, and optical communication system
JP2004063634A (en) Semiconductor distributed bragg reflector, surface emitting laser element, surface emitting laser array, optical communication system, and optical interconnection system
JP2006253340A (en) Surface emission laser element, manufacturing method thereof, surface emission laser array, electrophotographic system, optical communication system, and optical interconnection system
JP2002094187A (en) Semiconductor laser and optical communication system using it
JP4229681B2 (en) Semiconductor laser device, optical transmission module and optical transmission system
WO2023243298A1 (en) Vertical cavity surface-emitting laser element, and array of vertical cavity surface-emitting laser elements
JP3627899B2 (en) Surface emitting semiconductor laser, optical communication module and parallel information processing apparatus using the same
JP3680283B2 (en) Manufacturing method of semiconductor element
JP4132948B2 (en) Semiconductor distributed Bragg reflector, surface emitting semiconductor laser element, surface emitting laser array, surface emitting laser module, optical interconnection system, and optical communication system
JP2002324940A (en) Optical communication system
JP2002252428A (en) Optical communication system using long-waveband surface light-emitting laser device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050311

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080417

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090212

R150 Certificate of patent or registration of utility model

Ref document number: 4265875

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees